icipe Digital Repository

Anti-Tick Vaccines: Current Advances and Future Prospects.

Show simple item record

dc.contributor.author Dennis, Muhanguzi
dc.contributor.author Christian, Ndekezi
dc.contributor.author Joseph, Nkamwesiga
dc.contributor.author Shewit, Kalayou
dc.contributor.author Sylvester, Ochwo
dc.contributor.author Moses, Vuyani
dc.contributor.author Magambo, Phillip Kimuda
dc.date.accessioned 2022-10-03T08:12:40Z
dc.date.available 2022-10-03T08:12:40Z
dc.date.issued 2022
dc.identifier.uri http://hdl.handle.net/20.500.12562/1712
dc.description NA en_US
dc.description.abstract Ticks are increasingly a global public health and veterinary concern. They transmit numerous pathogens that are of veterinary and public health importance. Acaricides, livestock breeding for tick resistance, tick handpicking, pasture spelling, and anti-tick vaccines (ATVs) are in use for the control of ticks and tick-borne diseases (TTBDs); acaricides and ATVs being the most and least used TTBD control methods respectively. The overuse and misuse of acaricides has inadvertently selected for tick strains that are resistant to acaricides. Furthermore, vaccines are rare and not commercially available in sub-Saharan Africa (SSA). It doesn’t help that many of the other methods are labor-intensive and found impractical especially for larger farm operations. The success of TTBD control is therefore dependent on integrating all the currently available methods. Vaccines have been shown to be cheap and effective. However, their large-scale deployment for TTBD control in SSA is hindered by commercial unavailability of efficacious anti-tick vaccines against sub-Saharan African tick strains. Thanks to advances in genomics, transcriptomics, and proteomics technologies, many promising anti-tick vaccine antigens (ATVA) have been identified. However, few of them have been investigated for their potential as ATV candidates. Reverse vaccinology (RV) can be leveraged to accelerate ATV discovery. It is cheap and shortens the lead time from ATVA discovery to vaccine production. This chapter provides a brief overview of recent advances in ATV development, ATVs, ATV effector mechanisms, and anti-tick RV. Additionally, it provides a detailed outline of vaccine antigen selection and analysis using computational methods. en_US
dc.description.sponsorship Check PDF en_US
dc.publisher Methods in Molecular Biology en_US
dc.rights Attribution-NonCommercial-ShareAlike 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/us/ *
dc.subject Anti-tick vaccines en_US
dc.subject Anti-tick vaccine antigens en_US
dc.subject Computational biology en_US
dc.subject Tick control en_US
dc.subject Reverse vaccinology en_US
dc.title Anti-Tick Vaccines: Current Advances and Future Prospects. en_US
dc.type Article en_US


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States

Search icipe Repository


Advanced Search

Browse

My Account