Abstract:
The promotion of edible insects, including saturniid caterpillars as potential food source is widely gaining momentum. They are adequately rich in nutrients such as proteins, amino acids, fatty acids, and micronutrients. Despite saturniids being a traditional food source with economic benefits, information on their diversity, host plants and their potential distribution in Africa are lacking, which this study seeks to address. Edible saturniids and their host plants were characterized using specific primers (LepF1/LepR1 and 3F_KIM_F/1R_KIM_R, respectively). Maximum entropy (MaxENT) and GARP (genetic algorithm for ruleset production) models were used to characterize the potential distribution of commonly consumed saturniids under current and future climate scenarios. Seven species of saturniids were recorded from 11 host plants in Kenya: Gonimbrasia zambesina, Gonimbrasia krucki, Bunaea alcinoe, Gonimbrasia cocaulti, Gonimbrasia belina, Gynanisa nigra and Cirina forda. Two morphotypes of G. zambesina and B. alcinoe were recorded. These saturniid caterpillars occur twice a year except for G. cocaulti. Predictive models revealed that tropical and subtropical regions were potentially suitable for B. alcinoe and C. forda. The information generated from this study would be important to guide conservation efforts and their sustainable utilization as food in Africa.