Abstract:
Background: African trypanosomiasis, which is mainly transmitted by tsetse flies (Glossina spp.), is a threat to public
health and a significant hindrance to animal production. Tools that can reduce tsetse densities and interrupt disease
transmission exist, but their large-scale deployment is limited by high implementation costs. This is in part limited
by the absence of knowledge of breeding sites and dispersal data, and tools that can predict these in the absence of
ground-truthing.
Methods: In Kenya, tsetse collections were carried out in 261 randomized points within Shimba Hills National
Reserve (SHNR) and villages up to 5 km from the reserve boundary between 2017 and 2019. Considering their limited
dispersal rate, we used in situ observations of newly emerged flies that had not had a blood meal (teneral) as a proxy
for active breeding locations. We fitted commonly used species distribution models linking teneral and non-teneral
tsetse presence with satellite-derived vegetation cover type fractions, greenness, temperature, and soil texture and
moisture indices separately for the wet and dry season. Model performance was assessed with area under curve
(AUC) statistics, while the maximum sum of sensitivity and specificity was used to classify suitable breeding or forag-
ing sites.
Results: Glossina pallidipes flies were caught in 47% of the 261 traps, with teneral flies accounting for 37% of
these traps. Fitted models were more accurate for the teneral flies (AUC = 0.83) as compared to the non-teneral
(AUC = 0.73). The probability of teneral fly occurrence increased with woodland fractions but decreased with cropland
fractions. During the wet season, the likelihood of teneral flies occurring decreased as silt content increased. Adult
tsetse flies were less likely to be trapped in areas with average land surface temperatures below 24 °C. The models
predicted that 63% of the potential tsetse breeding area was within the SHNR, but also indicated potential breeding
pockets outside the reserve.
Conclusion: Modelling tsetse occurrence data disaggregated by life stages with time series of satellite-derived vari-
ables enabled the spatial characterization of potential breeding and foraging sites for G. pallidipes. Our models provide
insight into tsetse bionomics and aid in characterising tsetse infestations and thus prioritizing control areas.