Abstract:
In this study, we tested whether GLS field symptoms on maize can be detected using hyperspectral data re-sampled to WorldView-2, Quickbird, RapidEye and Sentinel-2 resolutions. To achieve this objective, Random Forest algorithm was used to classify the 2013 re-sampled spectra to represent the three identified disease severity categories. Results showed that Sentinel-2, with 13 spectral bands, achieved the highest overall accuracy and kappa value of 84% and 0.76, respectively, while the WorldView-2, with eight spectral bands, yielded the second highest overall accuracy and kappa value of 82% and 0.73, respectively. Results also showed that the 705 and 710 nm red edge bands were the most valuable in detecting the GLS for Sentinel-2 and RapidEye, respectively. On the re-sampled WorldView 2 and Quickbird sensor resolutions, the respective 608 and 660 nm in the yellow and red bands were identified as the most valuable for discriminating all categories of infection.