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Abstract

This review examines the use of insect meal (IM) as a substitute for fishmeal (FM) in fish feeds within the past
decade. While global interest in this alternative is growing, research on its effects on fish digestibility, blood
parameters, and economic performance has been limited. Meta-analysis on the apparent digestibility coefficient
revealed a negative effect summary on dry matter (-0.92) and crude lipid (-0.51), although the difference between
the two groups was relatively minor. However, a positive effect summary was reported in the apparent digestibility
of crude protein (0.12), suggesting a potential advantage in the utilization of protein by fish fed with IM-containing
diets. Whereas meta-analysis on fish blood parameters demonstrates varying effects summary, necessitating further
research. Analysis of economic performance revealed an overall better economic performance in the IM diet
with an effect summary of -0.08 for feed cost and 0.00 for the economic profit index. Overall use of IM in
aquafeed shows promise in improving feed quality and fish performance, potentially becoming a sustainable
alternative to traditional FM. Recommendations include exploring IM’s impact on fish blood parameters through
more investigations. Shifting focus from traditional measures to markers directly linked with fish health and
immune response can provide more precise insights. Moreover, exploring various components of IM, such as
lipids and functional elements like chitin, through simplified breakdown methods, can significantly enhance our
comprehension of their nutritional value. Analyzing how each part influences fish health could pave the way for a
sustainable and efficient alternative to FM in aquaculture.
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1 Introduction tives to fishmeal (FM) to enhance sustainability and

economic viability. At the same time, the emergence
Aquaculture, with its emphasis on responsible and effi-  of insect meal (IM) has sparked considerable inter-
cient fish farming, has been exploring diverse alterna- est as a revolutionary alternative to FM in aquacul-
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ture. Its introduction in aquaculture signifies a remark-
able shift in sustainable protein sources for aquatic
species. The use of IM from seven insect species in
aquafeeds has been identified in Europe following the
approval granted by the European Union in 2017 (Euro-
pean Commission, 2017). This includes the black sol-
dier fly (BSF) (Hermetia illucens), the common house-
fly (Musca domestica), the lesser mealworm (Alphito-
bius diaperinus), the yellow mealworm (Tenebrio moli-
tor), the house cricket (Acheta domesticus), the banded
cricket (Gryllodes sigillatus), and the field cricket (Gryl-
lus assimilis). This novel protein source stands out for
its high nutritional value, encompassing both macronu-
trients and micronutrients, mirroring the nutritional
requirements vital for optimal growth and develop-
ment in aquatic organisms (Nugroho and Nur, 2018;
Salam et al., 2021). Compared to traditional livestock or
crop farming, insect farming offers major environmen-
tal advantages. These include requiring less land and
water, exhibiting high feed conversion efficiencies, and
having the unique ability to transform low-value organic
by-products into high-quality frass (van Huis and Oon-
incx, 2017).

As most insects reproduce very quickly, within 30 to
50 days (Fernandez-Cassi et al., 2019), the harvesting of
insects can be done frequently. These insects have been
widely farmed using several traditional methods, such
as container farming (Morales-Ramos et al., 2024), pit
farming (Meutchieye et al., 2016), and greenhouse farm-
ing (Coudron et al.,, 2022). These methods involve rais-
ing insects in simple, excavated pits, or basic contain-
ers, making them suitable for home-scale or small-scale
production. They are particularly beneficial in rural
areas or for small-scale farmers, offering accessible entry
points into insect farming. These approaches contribute
to local food security and economic development by
providing cost-effective and straightforward methods
to produce high-nutrient biomass from organic waste.
However, challenges such as maintaining optimal condi-
tions for insect growth, including temperature, humid-
ity, and hygiene, can be difficult in these methods. Addi-
tionally, they typically yield lower volumes compared to
industrial methods, which may limit scalability. Despite
these challenges, these farming methods hold signifi-
cant potential such as empowering local communities,
reducing dependence on imported feed, and promoting
sustainable agricultural practices. By integrating tradi-
tional methods like pit farming with modern techniques
and knowledge, productivity and efficiency in insect
farming can be improved at various scales.
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The interest in large-scale production of insects is
now expanding to countries such as Malaysia (Nutrition
Technologies; Entofood), China (Guangzhou Unique
Biotechnology Co., Ltd., Inspro Science Ltd., Dingzhou
Taigu Biotechnology Co., Ltd.), France (InnovaFeed,
Ynsect), Singapore (Protenga, Insectta, Entobel), the
United States (Beta Hatch), the UK (Entocycle), Canada
(Entosystem), and the Netherlands (Protix) due to its
low maintenance and space requirements (Smetana
et al., 2016; van Huis and Oonincx, 2017), with China
leading. These insect culture industries use innovative
techniques and technologies for large-scale production
by employing a vertical insect production system inte-
grated with automated machinery. This setup creates
a zero-waste facility while maintaining high biosafety
measures and top-notch quality standards. Among the
farmed insects, the BSF and the yellow mealworm stand
out for their ability to convert organic waste into high-
nutrient biomass, rivaling FM (Henry et al., 2015; Rema
et al., 2019). IM’s use extends beyond aquaculture, find-
ing applications in poultry and livestock farming (Elahi
et al., 2022; Sogari et al., 2023; van Huis and Gasco,
2023).

However, debates persist regarding the use of IM in
aquaculture, with consumer acceptance posing a signif-
icant challenge. Concerns about allergenicity to insect
protein and hygienic practices arise, particularly when
insects are farmed using waste materials (Wassman et
al., 2021). Despite the common consumption of insects
in Asia, Africa, South America, and Oceania, integrat-
ing IM into the aquaculture industry as FM substitute
requires time for consumer acceptance. Various sensory
studies assessing fish fed diets with IM have unveiled
noteworthy insights. For instance, assessments involv-
ing both trained and untrained sensory panels — regular
consumers of fish — examined attributes like color, tex-
ture, flavor, appearance, and odor of fish meat or fillet
(Lock et al., 2015; Chaklader et al., 2023; Bruni et al.,
2019, 2021). Fish-fed IM displayed paler flesh color com-
pared to wild-caught fish, indicating lower fillet qual-
ity in the former, consequently affecting overall liking
scores (Bruni et al., 2019). Preferences for a firmer tex-
ture in fish meat, likely influenced by higher lipid con-
tent, were noted (Turek et al, 2020). However, higher
IM inclusion in diets resulted in lower scores for color
intensity in cooked salmon (Belghit et al., 2019), as well
as changes in aroma, taste, and aftertaste in rainbow
trout (Turek et al., 2020). Conversely, attributes such
as tenderness, juiciness, and fibrousness were deemed
acceptable by consumers of fish with a high IM percent-
age (Bruni et al., 2019, 2021). Notably, sensory panels
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in fillet testing often failed to discern significant differ-
ences between fish fed diets with FM and IM (Basto et
al., 2023a). This suggests that partial IM replacement
might be preferable over total FM replacement, based
on observed sensory attributes. In addition, studies have
indicated that consumers are more likely to accept this
innovation when processed rather than used in its orig-
inal form (Chao et al., 2018).

Moreover, concerns about the environmental impact
of insect culture stem from claims suggesting increased
energy consumption and a higher carbon footprint (Le
Féon et al., 2019). However, Tran et al. (2021) argued
against these claims, attributing potential problems
to arise possibly due to poor digestibility. Studies on
IM in fish diets found that several insects are poorly
digested due to high chitin levels when added in exces-
sive amounts (Fontes et al., 2019; Elesho et al., 2021;
Mastoraki et al, 2020). These challenges underscore
the necessity for comprehensive evaluations of IM
impact on various fish parameters, encompassing fish
digestibility and their effect on fish blood parameters.
While several meta-analyses have assessed parameters
like fish nutritional profile (Gougbedji et al., 2022),
growth performance (Hua, 2021; Luthada-Raswiswi et
al., 2021; Weththasinghe et al., 2021; Gougbedji et al.,
2022; Prakoso et al., 2022; Rapatsa and Moyo, 2022),
feed efficiency (Rapatsa and Moyo, 2022), and con-
sumer acceptance (Wassmann et al., 2021) in response
to FM substitution with IM, studies focusing on fish wel-
fare and economic performance remain scarce. Given
the relatively new adoption of IM as the main protein
source in aquaculture feeds, conducting a meta-analysis
on IM’s effect on fish digestibility, blood parameters,
and overall economic performance becomes impera-
tive. Apparently, assessing blood parameters in fish is
crucial because these metrics serve as reliable indica-
tors of fish health and physiological status, reveal the
impact of dietary changes on fish metabolism, immune
response, and overall well-being (Ahmed et al., 2020).
Parameters such as hematocrit, blood cell counts, and
various biochemical markers (i.e. total protein, triglyc-
erides, glucose, and cholesterol) provide insights into
how well fish can utilize IM and adapt to it as part of
their diet. This information is vital for ensuring that IM
does not negatively affect fish health, which is a critical
aspect of sustainable aquaculture practices. Economic
performance, on the other hand, directly influences its
feasibility for widespread adoption by considering the
cost of production, potential savings from using IM,
and financial benefits from better growth rates and feed
conversion ratios. Additionally, understanding the mar-
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ket dynamics and consumer willingness to pay for fish
products raised on IM diets is essential for determining
the economic viability of this alternative protein source.
By examining these economic aspects, the research can
provide a comprehensive assessment of the potential
benefits and challenges associated with IM adoption in
the aquaculture industry.

This article aims to provide an overview of recent
advancements in developing fish feeds from diverse
insect proteins and their impact on apparent digestibil-
ity coefficient (ADC), blood parameters, and economic
analysis. These research areas are crucial for validating
IM as a sustainable alternative to FM and supporting its
integration into commercial aquaculture. Comprehen-
sive data are essential for understanding the benefits of
using IM as a partial or full FM replacement, offering
valuable insights for the public and policymakers.

2 Materials and method

Literature search and data extraction to include in
meta-analyses
A systematic literature search was conducted through
electronic databases such as Google Scholar and Web of
Science in August 2023, for published research over the
last 10 years (2013 — August 2023), using a combination
of search keywords (insect meal, aquafeed, digestibility,
blood parameters, and feed cost). The first step started
with a screening of each article’s title and abstract initial
search generated 5,530 articles (Figure 1). The litera-
ture search for meta-analyses eliminated review articles,
surveys, conference proceedings, preprints, patents, the-
sis dissertations, and article-in-press. Articles reporting
the incorporation of IM in poultry feed, and ornamen-
tal fish such as zebrafish, goldfish, and guppy were also
excluded. Among these, 5,383 studies did not fit the cri-
teria, leaving 147 articles to be included in the systematic
review and 65 relevant articles for the meta-analysis.
Data screening was used to assess research direction,
study types, types of insects used, and replacement of
FM with IM (total or partial). This analysis aimed to
track the progression of IM in aquaculture and combine
experimental results to enhance future decision-making
in aquaculture applications. The meta-analysis adhered
to the Preferred Reporting Items for Systematic reviews
and Meta-Analyses (PRISMA) statement principles. Pre-
defined criteria for study inclusion in the meta-analysis
database were applied separately, covering the effects
of FM replacement with IM on (a) fish digestibility, (b)
fish blood parameters, and (c) economic performance.
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FIGURE 1

Specifically, 32 articles were used for digestibility, 42
articles for blood parameters, and 10 articles for eco-
nomic analysis. Some studies provided data for multi-
ple parameters, while others focused on a single aspect,
resulting in overlapping counts. This ensures compre-
hensive coverage across different aspects of IM’s impact
on aquaculture.

We incorporated studies that offer insights into the
impact of insects (e.g. BSF, superworm, mealworm, etc.)
at different life stages (e.g. larvae, prepupae, and imago)
and IM processing (e.g. full fat, defatted, partially defat-
ted, etc.) in the diets of various fish species (e.g. sea
bass, catfish, tilapia, etc.) at varying growth stages (e.g.
larvae, fingerling, juvenile, and adult), and their feed-
ing habits (omnivorous, carnivorous, and herbivorous).
These studies also provide information on FM replace-
ment (partial or total). The overview of studies included
in the meta-analysis is presented in Table 1.

Statistical analysis

In this study, we calculated each study’s effect size
(Hedges’ g) based on sample size, means, and stan-
dard deviations of control and treatment diets. A mixed
model (fixed or random effect) was used, considering
heterogeneity (Q) among studies. The between-study
variance (or tau-squared, t°) was calculated to find to
which extent the true effect sizes varied within the
meta-analysis. A t* of 0.00 indicated a fixed-effects
model; otherwise, a random-effects model was used.

Summary of the selection process for the research articles included in the meta-analysis.

After that, the calculated heterogeneity caused by true
effects was computed using 1?2 statistics (Higgins and
Thompson, 2002; Higgins et al., 2003). A chi-squared
test (x*) was calculated for the heterogeneity test at
P < 0.05.

The forest plot was designed based on each study’s
bias-corrected effect size and 95% confidence interval
(CI95%) from each study. The vertical line signifies the
line of no effect, denoting no clear difference between
the IM group and the control group. The desired out-
come (favoring the IM group) was located to the right
of the vertical line. An exception was made for feed
cost, where the favoring treatment group (IM group) has
been positioned on the left to indicate a positive out-
come associated with lower costs. The effect summary
was calculated and drawn in the forest plot to conclude
the analysis. All data analyses and forest plot designs
were conducted in Microsoft Excel (Microsoft 365) fol-
lowing Neyeloff et al. (2012) and Lajeunesse (2021).

3 Results and discussion

Research direction

Figure 2 illustrates the research trajectory based on
publications, showcasing the remarkable progression
observed in the evaluation of IM as a substitute for FM
over the past decade (2013 — August 2023). The time-
line indicates that the utilization of IM as a replacement
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for FM commenced in 2014, with an initial experiment
involving the complete substitution of FM with full-fat
IM (0.7%). Subsequently, in 2015, research endeavors
diversified to encompass various approaches. Notably,
there was a transition towards gradual replacements of
FM with full-fat IM, constituting 1.4% of the studies,
while the total replacement of FM with IM remained
at 0.7%. The period from 2016 to 2018 witnessed a
predominant concentration of the partial replacement
of FM with IM, contributing 0.7%, 6.8%, and 4.8% in
the years 2016, 2017, and 2018, respectively. Concur-
rently, the years 2017 and 2018 marked a surge in efforts
aimed at enhancing the quality of IM, reflected in stud-
ies focusing on processes such as defatting and partial
defatting of IM in fish feed. Starting from 2019 onward,

30 35 40 45 50

Percentage (%) occurrence of insect-based aquafeed substitution for fishmeal in different study types (N = 147).

the research landscape exhibited greater diversification
in investigations into the partial and total replacement
of FM with IM. Noteworthy advancements included
explorations into defatting, de-chitinization, hydropho-
bic fraction removal, degutting, fermentation, drying
methodologies of IM, utilization of exuviae, implemen-
tation of specific feeding regimes, and even direct feed-
ing of live insects to fish.

Figure 3 outlines the distribution of publications
across diverse study types. Out of the N = 147 stud-
ies, full-fat IM (55.1%) shows a clear preference, with
11.6% using it for total FM replacement and 43.5% for
partial FM replacement. Notably, full-fat IM is widely
favored due to its practicality and potential cost sav-
ings during processing. Nevertheless, its high lipid con-
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tent creates challenges during feed extrusion, impacting
feed durability and water stability (Weththasinghe et al.,
2021), while also leading to lipid oxidation and subse-
quent rancidity, thereby affecting both feed quality and
fish palatability (Chaklader et al., 2022). Moreover, the
imbalanced fatty acid profile, with an elevated saturated
fatty acid content, can lead to lipid accumulation in fish
livers (Zarantoniello et al., 2023). Given the higher lipid
content found in IM, such as 20% in cricket (Prachom
et al., 2023), 36% in BSF (Tippayadara et al., 2021), and
29% in yellow mealworm (Basto et al., 2020), which sur-
passes the 10% lipid content of FM (Caimi et al., 2020),
the partial replacement strategy appears to be a more
viable option. This trend is reflected in the study pref-
erences which employed partial replacement of full-fat
IM with FM compared to the total FM replacement.
This approach could maintain optimal lipid levels in fish
diets while mitigating lipid oxidation and preserving
the feed’s physical structure. Following this, the defat-
ted IM in fish diets garnered 21.7% occurrence (2.7% for
total and 19.0% for partial FM replacement), while par-
tially defatted IM constituted 16.3% occurrence (4.1%
for total and 12.2% for partial FM replacement). The
defatted IM offers benefits in terms of feed efficiency
and fish performance. This is due to its higher protein
content (50.6% crude protein) and lower lipid content
(8.2% crude lipid) as reported in BSF compared to full-
fat IM (Karapanagiotidis et al., 2023). Referring to Figure
3, most of the research appeared to prefer the use of
defatted IM at a partial FM replacement over the total
FM replacement. Considering the lack of EPA and DHA
in IM (Fabrikov et al.,, 2021), the total replacement of
FM with IM could diminish fish performance due to
the lack of essential nutrients. However, through partial
replacement, integrating FM into the diet helps main-
tain a balanced intake, addressing these deficiencies
and potentially bolstering overall fish health and perfor-
mance. Based on the information presented, it appears
that partial replacement of FM with IM could offer a
more efficient strategy, as opposed to the labor-intensive
process of defatting IM.

Other investigated areas, such as de-chitinization,
hydrophobic fraction removal, drying methods, live
insects, degutted approaches, and fermentation, each
constituted 0.7% of the total publications (Figure 3).
The presence of chitin, a major component of insect
exoskeletons, seemingly impedes the use of IM in
aquafeed, as noted by Gasco et al. (2019), limiting
its potential benefits. However, the scarcity of stud-
ies focused on removing chitin from IM suggests that
its presence may not significantly affect fish perfor-
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mance when partially replacing FM. This area requires
further in-depth studies to achieve a more comprehen-
sive understanding. Despite this limitation, Su et al.
(2017) reported an interesting outcome — introducing
de-chitinized mealworms into the yellow catfish’s diet,
replacing 50% of IM with FM resulting in an enhanced
immune response against infections and diseases. Sim-
ilarly, Ghosh and Mandal (2019) demonstrated that
by removing grasshopper appendages to reduce excess
chitin and replacing 50% of FM in the rohu diet, growth
performance comparable to traditional FM-based diets
was maintained. These methods have been success-
fully validated, particularly in shrimp meals, which are
extensively incorporated as primary protein sources in
aquafeed alongside FM (Rimoldi et al., 2023). Effective
removal techniques for chitin in shrimp meals imply
potential solutions for challenges with IM, potentially
making it a viable and common feed ingredient in the
future. On the other hand, Fontes et al. (2019) noted that
chitin content in IM did not appear to affect the lipid
digestibility of tilapia fingerlings. These observations
suggest that different fish species may exhibit varying
levels of tolerance to chitin, which might be related to
fish feeding behaviors, whether herbivorous, omnivo-
rous, or carnivorous. Table 1 shows the type of IM used in
fish diets based on their feeding behaviors. Considering
species-specific dietary needs, carnivorous fish typically
require high protein and essential fatty acids, making
full-fat IM from species such as BSF suitable as a FM
replacement totally or partially (Cardinaletti et al., 2019;
Caimi et al., 2020; Caimi et al., 2021). In contrast, her-
bivorous fish typically require lower protein levels and
higher fiber in their diets, traditionally met by plant-
based proteins such as soybean meal (SBM). The use of
IM offers an alternative protein source that can con-
tribute to a balanced diet, providing essential amino
acids and nutrients crucial for growth and health. Stud-
ies in Table 1 show instances where IM partially or fully
replaces SBM or FM in herbivorous fish diets (Hu et
al., 2023; Li et al., 2023; Ghosh and Mandal, 2019; Lu
et al., 2020), highlighting the importance of nutritional
requirements and feed formulation goals in choosing
suitable IM types (full fat, defatted, partially defatted,
de-chitinized). Considering this, partially defatted IM
may be more appropriate for herbivorous fish due to
its balanced nutrient profile with reduced fat content
but essential amino acids and micronutrients intact.
Omnivorous fish, with their flexible dietary require-
ments, can benefit from both full-fat and defatted IM,
depending on specific nutritional targets in their diet
formulation. Cadena-Cadena et al. (2023) mentioned
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FIGURE 4  Type of insect used in the studies (N = 147).

Nile tilapia, being omnivorous has high resistance and
adaptability to different types of food. However, these
feeding preferences do not necessarily dictate the selec-
tion of IM types such as full fat, defatted, or partially
defatted. Instead, the choice of IM type is primarily
driven by the specific nutritional requirements of each
fish species and the desired formulation of their diet.
Therefore, while feeding habits provide a framework
for understanding fish species’ nutritional needs, the
selection of IM type is driven by the nutritional com-
position of the IM and how well it meets the specific
dietary requirements of the targeted fish species. Fig-
ure 4 shows the distribution of insect species used in the
study. BSF is the most frequently utilized species, with 81
studies, followed by mealworm with 34 studies. Super-
worm and cricket are both used 5 times each. Other
species such as cockroach, housefly, mopane worm,
short-horned grasshopper, leafworm, chironomid fly,
maggot, caterpillar, and moth are used less frequently,
each contributing fewer than 5 studies. The high fre-
quency of BSF and yellow mealworm use in most studies
suggests that they are widely recognized for their favor-
able nutrient profile and practical advantages in feed
production. Its high protein content, coupled with man-
ageable lipid levels makes them a preferred choice for
researchers seeking sustainable alternatives to tradi-
tional FM. Furthermore, the life stage of insects signif-
icantly affects their nutrient composition. IM derived
from larval stages has been found to contain lower lipid
content (<20%) (Abdel-Latif et al., 2021) compared to

meal obtained from prepupae and imago stages (>30%)
(Cardinaletti et al.,, 2019; Mohd-Yusoff et al., 2022) in
the case of BSF. Consequently, researchers opted for
IM sourced from larvae stages, known for their lower
lipid and chitin levels compared to prepupae and imago
stages. This preference aligns with evidence from Fig-
ure 5, highlighting that studies focusing on larvae stage
IM are more prevalent than those involving prepupae
or adult insects. Among these studies, full-fat insects
were used in the majority (43.64%), followed closely
by partially defatted and defatted ones at 21.82% each.
The difference in lipid content between insect life stages
presents practical challenges, necessitating researchers
to consider not only nutritional disparities but also
the feasibility of handling various consistencies of IM
in feed production. This disparity suggests that larval-
derived meal is more manageable for practical handling.
The drier nature of larval-derived meals makes it more
operationally feasible for existing storage, transport, and
mixing equipment in feed production.

Meta-analyses

Fish digestibility

The meta-analyses examining the ADC of dry mat-
ter, crude protein, and crude lipid are summarized in
Table 2, while their respective forest plots are depicted
in Figure 6. In general, the ADC of nutrients is a cru-
cial measure of nutrient utilization in fish. The anal-
ysis indicated a trend favoring the control group in
the ADC, showing an overall effect summary of -0.92
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TABLE 2 Sub-data sets analysis comparing the effect of feeding insect meal on apparent digestibility, fish health, and economic
sustainability of fish in aquaculture
Parameter df Mixed model (fixed or random Effect summary  CI95%
effect) based on heterogeneity
7 Q P 12

Apparent digestibility coefficient
(i) Dry matter 19 3.88 62.61 0.00 69.65 -0.92 -1.97 t0 0.14
(ii) Crude protein 27 5.25 77.46 0.00 65.14 0.12 -0.82 to 1.07
(iif) Crude lipid 21 2.72 37.85 0.01 44.51 -0.51 -1.33t0 0.31
Fish blood parameters
(i) Non-specific immune

- Lysozyme activity 15 12.05 126.35 0.00 88.13 2.38 0.40 to 4.37
(ii) Blood metabolite

- Glucose 21 1.99 4.80 1.00 -337.60 0.31 -0.38 t0 1.00

- Total protein 15 4.846 8.94 0.88 726.13 -1.36 -2.52to0 -0.20

- Triglycerides 17 5.16 76.61 0.00 77.81 0.84 -0.34 to 2.02

- Cholesterol 23 4.04 92.68 0.00 75.18 -0.46 -1.38 to 0.45
(iii) Hematological

- Hemotocrit 7 10.36 0.81 1.00 -762.11 0.31 -1.99 to 2.60

- Monocytes 7 0.48 13.17 0.07 46.84 -0.02 -0.72 t0 0.69
Economic analysis
(i) Fish feed cost 9 0.00 6.93 0.64 -29.86 -0.07* -0.31to 0.15
(ii) Economic profitindex 5 0.00 4.39 0.50 -14.02 0.00 -0.47 to 0.49

*The negative effect summary for feed cost indicates a positive outcome associated with lower costs.

for dry matter and -0.51 for crude lipids. This suggests
that the inclusion of IM in fish diets might not sig-
nificantly enhance the ADC of dry matter and lipids
compared to the control group, which utilized an insect-
free diet. The observed low ADC values of dry matter
and crude lipid, possibly due to antinutritional factors
like chitin, protease inhibitors, and secondary metabo-
lites as mentioned by Karlsen et al. (2015), highlight
the complexities in achieving optimal efficiency. In this
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review, the average ADC of dry matter and crude lipid
in the fish fed with the IM group was 74% and 89%,
respectively, which were reported lower than those in
the control group, which were 78% and 92%, respec-
tively (data not shown). Although the fish fed with the
IM group exhibited lower average ADC values for dry
matter and crude lipid compared to the control group,
the difference between the two groups was relatively
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FIGURE 6 Apparent digestibility for (i) dry matter®, (ii) crude protein**, and (iii) crude lipid*** forest plot of effect sizes of fish fed with

insect meals as a replacement for fishmeal. The summary of effect size, calculated according to a random effects model, is
indicated by the red square. The size of the squares illustrates the weight of each study relative to the mean effect size with
smaller squares representing less weight. CI = Confidence interval. *Average ADC dry matter in fish-fed IM and fish-fed IM-free
diet are 74% and 78%, respectively. **Average ADC crude lipid in fish-fed IM and fish-fed IM-free diet are 89% and 92%,
respectively. ***Average ADC crude protein in fish-fed IM and fish-fed IM-free diet are 89% each.

minor. This marginal difference explains the minimal
impact observed in the effect summary.

Comparatively, studies examining various plant pro-
teins, such as rice bran, maize bran, sago, banana
peel, cocoa husk, and copra waste, on tilapia have
reported a wider range of ADC for dry matter, typi-

cally falling between 50-70% (Yossa et al, 202la, b).
Similarly, research on terrestrial animal proteins like
blood meal and meat meal in rohu, Labeo rohita fin-
gerlings, has shown lower ADC values of 42-57% (Hus-
sain et al., 2011). These findings emphasize the diverse
ADC values across different protein sources, highlight-
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FIGURE 6 (Continued.)

ing the challenges in identifying optimal alternatives to
FM for nutrient utilization. Despite the marginal differ-
ences from FM, IM exhibits a comparative advantage in
supporting better nutrient utilization. The low ADC of
crude lipids in fish fed with IM is probably due to the
inefficiency in digesting and utilizing lipids from these
substitutes, especially when the IM is not defatted and
entirely replaces FM. Factors like high lipid and chitin
levels in IM might pose challenges to efficient diges-
tion, leading to lower ADC values. According to Sklan
et al. (2004), fish demonstrated lower absorption rates
for saturated fatty acids compared to polyunsaturated
fatty acids. Johnsen et al. (2008) added that Atlantic
salmon more efficiently absorbed polyunsaturated fatty
acids than monounsaturated and saturated fatty acids,
with decreasing absorption efficiency for longer-chain
monounsaturated and saturated fatty acids. Gasco et
al. (2022) demonstrated that defatted yellow meal-
worm and BSF, partially substituting FM, resulted in
higher ADC of crude lipids, averaging 90%. This con-
trast underscores the influence of defatting and par-
tial substitution on enhancing lipid digestibility in fish
diets containing insect-based ingredients. Furthermore,
Eggink et al. (2022) revealed species-specific differences
in chitin digestion, with Nile tilapia and rainbow trout
digesting chitin at rates of 59% and 50%, respectively.
This suggests a varying ability among fish species to
digest chitin, potentially contributing to the observed
lower ADC of crude lipids when fish are fed with IM.
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On the other hand, a positive effect summary was
noted in the ADC of crude protein (0.12), was evi-
dent, indicating a favorable trend toward the IM group.
This suggests a potential advantage in the utilization
of protein by fish fed with IM-containing diets. The
observed variability in the ADC of crude protein among
studies further emphasizes the complexity of protein
digestion and absorption in fish diets containing insect-
based ingredients. The contrasting trend in crude pro-
tein digestibility, favoring the IM group, underscores the
potential benefits of incorporating IM into fish feeds,
particularly in enhancing the utilization of dietary pro-
tein. The high reported ADC values of crude protein
in fish fed with IM, despite the ingredients not being
dechitinized, suggest that the low digestibility of crude
lipid in fish fed with IM might not solely result from
the high chitin content. Instead, it may be attributed to
the high lipid level in the IM, highlighting the need for
a partially defatted process or partial substitution with
FM, rather than total substitution. However, it’s note-
worthy that substantial heterogeneity was observed in
the meta-analysis of ADC crude protein, highlighting
the need for a nuanced approach to managing IM pro-
cessing, which may be influenced by both the species
of fish and the type of IM utilized. As the utilization of
IM in aquafeeds continues to evolve, determining the
digestibility and optimal inclusion levels for these alter-
native protein sources remains critical. The inclusion of
IM in aquafeed formulations holds promise in augment-
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FIGURE 7  Non-specific immune parameter (lysozyme activity) forest plot of effect sizes of fish fed with aquafeed containing insect meal

as a replacement of fishmeal. The mean effect size, calculated according to a random effects model, is indicated by the red
square. The size of the blue squares illustrates the weight of each study relative to the mean effect size with smaller squares

representing less weight. CI = Confidence interval.

ing fish protein digestion, yet the varying results under-
score the necessity for further research to optimize their
incorporation and understand their impact on overall
nutrient utilization.

Fish blood parameters

The meta-analyses examining fish non-specific immune
(lysozyme activity), blood metabolites (glucose, total
protein, triglycerides, and cholesterol), and hematolog-
ical parameters (hematocrit and monocytes) are sum-
marized in Table 2, while their respective forest plots
are depicted in Figures 7, 8, and 9.

In lysozyme activity, a positive effect summary was
observed with a value of 2.38, indicating the parame-
ter favoring the IM group over the control group (Fig-
ure 7). Lysozyme is considered an essential compo-
nent of the innate immune system in fish and many
other organisms. Its importance lies in its ability to
defend against bacterial infections by acting as a pre-
biotic thus modulating the gut microbial communities
of fish. The low levels of lysozyme activity in fish might
indicate fish stress or disease. The present findings sug-
gest that IM can be an excellent candidate for par-
tial FM replacement, possibly resulting from the pres-
ence of chitin that helps enhance the immune response
in fish (Purkayastha and Sarkar, 2020). Reportedly, the
inclusion of yellow mealworm at 67% FM replacement
showed a better immune response in the rainbow trout
as demonstrated by Henry et al. (2018). In other stud-
ies, Rimoldi et al. (2023) compared chitin derived from
20.4% shrimp waste meal and FM with added 1.6%

BSF prepupae exuviae and successfully demonstrated
that chitin present in BSF meal was better at modu-
lating gut microbiota communities of rainbow trout.
Soetemans et al. (2020) outlined that the distinction
between chitin in crustaceans and insects primarily lies
in the composition of nanofibers; shrimp chitin com-
prises nanofibers with varying thickness but lacking
pores, whereas BSF chitin contains discernible pores.
Rimoldi et al. (2023) added that variations in chemi-
cal composition, structural attributes (i.e. surface and
porosity), and solubility of chitin can significantly influ-
ence its bio-accessibility. This evidence strongly sug-
gests that incorporating chitin-rich, particularly from
insects into fish feeds may bolster disease resistance,
improve immune system functionality, and potentially
reduce the reliance on FM, thereby offering a more sus-
tainable and immunologically beneficial alternative in
aquaculture practices.

As for blood metabolites, understanding their pro-
file is pivotal, offering a quick assessment of the fish’s
health and metabolic state in response to dietary alter-
ations or stress (Ahmed et al, 2023). Key indicators
such as blood glucose levels, reflecting carbohydrate
metabolism, triglycerides indicating lipid utilization,
total protein denoting overall protein synthesis and
health, and cholesterol as a vital lipid component, pro-
vide insightful metrics. Analyzing these parameters
becomes essential in evaluating the suitability of IM
in fish diets. Notably, our review demonstrates varying
effects, with glucose and triglycerides showing a pos-
itive impact favoring the IM group (Figure 8). As such,

JOURNAL OF INSECTS AS FOOD AND FEED 0 (2024) 1-27



EFFECTS OF INSECT MEALS ON FISH

(i) Glucose

15

(g +Cl95%)

|~ Line of null effect

Abdel-Tawwab et al. I | - 6.70+4.12

Kolawole et al. : ’ —a— 3.14+0.93

Guerreiro et al. ' + 0.84+0.96

Mastorakiet al. —-— 0.58+1.27

Dumas et al. —_—t-— 0.50+1.63

Mikotajczak et al. T 0.34+0.93

Cardinaletti et al. — 0.33+1.61

Ordofiez et al. —_— Tt 0.31+1.61

Hu et al. — 0.23+1.61
, Longetal. : : 0.17 +1.60
@ Bastoetal | 0.02+0.80
T Henderetal . : -0.10 £1.24
& Melenchén etal. -0.17+1.39

Di-Rosa et al. ! -0.18+0.65

Gebremichael et al. : -0.25+0.80

Basto et al. — -0.31+1.14

Belghit et al. —i'——f -0.48+1.62

Jeong et al. o -0.62+1.64

Jeong et al. — -0.76+£1.66

Wang et al. —_— -0.84+1.67

| |
@ Effect summary e ! 0-31
Favor control group Favor IM group
Effect size (Hedges, g)
(ii) Total protein
/— Line of null effect
(g + C195%)

Nyuliwe et al. 1 1 —_— 3.99+2.77

Belghit et al. : : —— 1.92+1.93

Somdareet al. ' |— 1.18+1.73

Hender et al. l |—— 1.05+1.32

Mikotajczak et al. ) -l 0.46+0.94

Ordofiez et al. ! 0.30+1.61

Magalhdes et al. ! 0.19+0.93
9 Gebremichael et al. - -0.07 £ 0.80
5 Dumasetal ! -0.14+1.60
2 Abdel-Tawwab et al. . -0.32+1.61
Y Jeongetal. | — -0.61+1.64

Jeong et al. | — -1.00+0.98

Jeong et al. | —a— -1.08+1.71

Amer et al. el | -1.85+1.91

Di-Rosaet al. —a— ! ! -6.59+1.66

Kolawole et al. —a— 1 1 -19.37+4.29

136 |
@ Effect summary e !
Favor control group Favor IM group
Effect size (Hedges, g)

FIGURE 8  Blood metabolite parameters forest plot of effect sizes for (i) glucose, (ii) total protein, (iii) triglycerides, and (iv) cholesterol of

fish fed with aquafeed containing insect meal. The summary of effect size, calculated according to a fixed effect model for
glucose and random effects model for total protein, triglycerides, and cholesterol which is indicated by the red square. The size
of the squares illustrates the weight of each study relatively to the mean effect size with smaller squares represent less weight.

CI = Confidence interval.

glucose and triglycerides exhibited a positive effect sum-
mary with values of 0.31 and 0.84, respectively, signify-
ing a magnitude that favors the IM group. These changes
indicate improved carbohydrate and lipid metabolism,
which is directly related to the high ADC of lipid as
discussed previously. This improvement can lead to bet-
ter energy utilization and growth performance in fish.
The enhanced carbohydrate metabolism, evidenced
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by improved blood glucose levels, indicates more effi-
cient use of carbohydrates for energy. Meanwhile, the
improved lipid metabolism, resulting from the high
ADC of lipid, supports better energy storage and utiliza-
tion. These metabolic enhancements can be observed
in the high growth performance reported in sturgeon
(Rawski et al., 2020), snakehead (Prachom et al., 2023),
and rainbow trout (Prakash et al., 2023; Vale Pereira et



Effect size (Hedges, g)

FIGURE 8 (Continued.)

al., 2023). While proteins and amino acids primarily
impact glucose metabolism (Shwetha et al., 2012), the
suggestion that specific proteins or amino acids from
the IM diet may have a more favorable effect on regu-
lating blood glucose levels compared to those derived
from FM, hints a potential correlation between dietary
protein sources and blood glucose control in fish. This
aligns with Ahmed et al’s (2023) study, indicating that
C. carpio exhibited higher blood glucose levels when fed
an Azolla meal than the FM. It's an example of how
specific alternative feeds, like Azolla meal, can affect
fish metabolites. Meanwhile, the higher blood triglyc-
erides in fish fed with IM compared to the FM may be
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attributed to certain components or nutrients such as
fatty acid composition which might trigger metabolic
pathways that result in elevated triglyceride levels in
the blood. Additionally, the high blood lipid content in
fish fed with IM is closely related to the lipid content of
IM itself, highlighting how the lipid composition of IM
influences blood lipid profiles in fish. Since triglycerides
are essential for energy storage, moderately higher lev-
els can be advantageous for fish growth and energy
reserves. This underscores the importance of partial FM
replacement with IM, rather than total replacement, to
optimize growth and metabolic health in fish. However,
as triglycerides are essential for energy storage, exces-
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FIGURE 9 Hematological parameters forest plot of effect sizes for (i) hematocrit and (ii) monocytes of fish fed with aquafeed containing
insect meal. The summary of effect size, calculated according to a random effects model, indicated by the red square. The size
of the squares illustrates the weight of each study relative to the mean effect size with smaller squares representing less weight.

CI = Confidence interval.

sively high levels might hint at imbalances or health
concerns.

Conversely, both total protein and cholesterol showed
negative effect summaries (-1.36 and -0.46, respec-
tively), potentially linked to deficiencies in certain
amino acids and cholesterol, resulting in decreased
bloodstream levels. Fish might encounter challenges in
digesting nutrients from IM, impacting overall nutrient
absorption and utilization, as observed with leafworm
meal (Amer et al,, 2021) and mealworm (Jeong et al.,
2020). However, the inclusion of BSF in fish diets did
not affect blood total protein and total cholesterol levels
(Zhou et al., 2018; Guerreiro et al., 2020; Hender et al.,
2021). These conflicting outcomes in blood metabolite
levels, observed across various studies on different fish

JOURNAL OF INSECTS AS FOOD AND FEED 0 (2024) 1-27

species, might be attributed to varying fish tolerance lev-
els towards different insect species used in diets. While
deficiencies in certain amino acids and cholesterol in
IM could decrease total protein and cholesterol in the
bloodstream, not all insect sources, like BSF mentioned
in several studies, seem to yield the same impact on
these blood metabolites. This discrepancy suggests that
fish species might react differently to various insect-
based diets, affecting their ability to digest and utilize
nutrients from these alternative feed sources.

On the other hand, hematological parameters linked
to the non-specific immune function serve as reliable
indicators of overall fish health and their response to
dietary changes or stressors (Jeong et al., 2020). A pos-
itive summary effect was observed in hematocrit (0.31),
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while a negative summary effect was noted in mono-
cytes (-0.02), albeit with only a slight difference (Fig-
ure 9). These findings suggest that the fish were gener-
ally in good health and could tolerate IM in their diets,
despite a slightly lesser impact compared to FM. Studies
by Abdel-Tawwab et al. (2020), Alves et al. (2020), and
Tippayadara et al. (2021) reported that the difference
in monocyte count between fish fed with IM and FM
is not significant, explaining this marginal difference. It
might be insightful to explore whether the slight vari-
ations observed in monocytes, despite the overall good
health of the fish, could be linked to the chitin content
present in the IM diets.

Considering all the findings on fish blood parameters,
it is a noteworthy aspect that demands our attention.
The significant impact of replacing FM with IM on fish
blood parameters further strengthens the proposition
that IM can serve as a viable alternative. We recom-
mend a cautious approach to incorporating IM into fish
diets to safeguard fish health. Given the notable impact
of IM on fish blood parameters, further investigations
are necessary. Revisiting this subject with comprehen-
sive research findings will facilitate the identification of
diverse factors influencing fish responses to IM in their
diets.

Economic performance

As IM is considered a novel ingredient, early opinions
on feed cost analysis seem unfavorable towards the use
of IM in terms of reducing feed cost management. This
economic disparity is frequently attributed to the rela-
tively high cost of IM compared to FM. As elucidated
by Mulazzani et al. (2021), the current cost of IM, rang-
ing from €3.5 to €7/kg in Europe, reflects the ongoing
lack of competitive production scale. Arru et al. (2019)
posited that this cost differential plays a pivotal role in
the observed trends. A transitional period is necessary to
establish a stabilized and economically accessible price
point.

However, our findings noted that the underlying
effect summaries show a positive favor toward the IM
group, indicating that lower costs were incurred dur-
ing the experiment compared to the control group. The
meta-analysis revealed effect summaries of -0.08 for
feed cost and 0.00 for the economic profit index, indi-
cating better economic performance in the IM diet (Fig-
ure 10, Table 2) in terms of both feed cost and economic
profit index. The growing interest in IM production has
driven the global expansion in the IM industry, fostering
a scenario where IM prices align more closely with those
of FM. A market analysis in China conducted by Zhang
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et al. in 2019 showed that processed by-product protein
meals such as mushroom spent corn stover, highly dena-
tured protein SBM, and distillers’ grain were priced at
US $100, US $300, and US $150 per ton, respectively.
Meanwhile, the price of dried mealworm larvae dur-
ing that time was around US $5,000 per ton (Zhang
et al., 2019), which was pricier than traditional pro-
tein sources, making it less accessible for widespread
use in animal feed. Today, our online market survey in
China indicated a stagnant price for dried mealworms,
with a slight reduction to US $4,700 per ton using the
Made-in-China platform. In contrast, cricket meal and
dried BSF were, respectively, priced at US $3,900 and
US $2,500 per ton on the Alibaba platform, reflecting
significant shifts in the market for insect-based protein
feeds in China. Although the price of dried mealworm
larvae has remained relatively stable, indicating steady
demand possibly due to established market use, its high
cost remains a barrier to widespread adoption com-
pared to other protein sources. On the other hand, the
price of dried BSF has halved over the past five years.
The observed trends in BSF prices suggest significant
market shifts, attributed to increased production effi-
ciency, scaling, and growing market acceptance. Addi-
tionally, BSF is widely produced in China, the largest
distributor, possibly due to their efficient conversion
of organic waste into high-protein biomass (Kim et al,
2021; Purnamasari and Khasanah, 2022), which cre-
ates price competition and explains the cost difference
compared to other IMs. Conversely, mealworms are gen-
erally more expensive because they require more con-
trolled rearing environments compared to BSF, which
can thrive on a wider range of feed sources such as
kitchen waste, manure, fecal sludge, and distillers’ by-
products (Seyedalmoosavi et al., 2022).

At the same time, market prices in the US show simi-
larity to those in China based on our online market sur-
vey. Our survey on the Alibaba platform found that most
US suppliers sell IM originating from China, explaining
the price similarity. This could be attributed to labor and
regulatory compliance costs that make US-produced
IM less competitive compared to other countries. How-
ever, our market analysis is focused exclusively on the
Alibaba platform. There may be variations on other plat-
forms; for example, US suppliers might produce their
own IM. Surprisingly, our online market analysis of IMs
from European countries such as the Netherlands on
the Alibaba platform shows that dried BSF is priced at
around USD 800 per ton, while mealworms are priced
at US $100 per ton, significantly cheaper than in the
Chinese market. Our assumption is that these price dif-
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FIGURE 10 Economic performance forest plot of effect sizes for (i) feed cost and (ii) economic profit index of fish fed with aquafeed

containing insect meal. The summary of effect size was calculated according to a fixed effects model, indicated by the red
square. The size of the squares illustrates the weight of each study relative to the mean effect size with smaller squares

representing less weight. CI = Confidence interval.

ferences may be influenced by varying production costs,
regulatory environments, and market demand dynamics
across different regions. In Africa, including countries
like Kenya and South Africa, the price of BSF meal
ranges from US $2,000 per ton. Overall, these price
disparities reflect the complex interplay of local fac-
tors affecting the production, distribution, and demand
for insect-based protein feeds globally. Zhang et al
(2019) added that despite cost differences among pro-
tein by-product feedstulffs, insect rearing demonstrates
stronger sustainability and efficiency in transforming
plant biomass into animal biomass compared to con-
ventional feedstocks. These price trends underscore the
increasing economic viability of insects, particularly
BSF, as a protein source, aligning with global trends
towards sustainable agricultural practices. Overall, these
developments in the insect-based protein market, par-
ticularly in China, are positive for agricultural sustain-
ability. IM production not only offers efficient biomass
conversion and environmental benefits through waste
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utilization but also contributes to local economic devel-
opment by creating jobs in farming, processing, and dis-
tribution sectors. Continued innovations and increased
production capacities are expected to further enhance
affordability and market acceptance of these alternative
protein sources.

Overall, these developments in the insect-based pro-
tein market are positive for agricultural sustainabil-
ity. Continued innovations and increased production
capacities are expected to further enhance affordabil-
ity and market acceptance of these alternative protein
sources. Moreover, through consultations with experts,
we have found that IM production not only offers effi-
cient biomass conversion and environmental benefits
through waste utilization but also contributes signifi-
cantly to local economic development by creating jobs
in farming, processing, and distribution sectors. This
dual benefit makes IM a promising source of income
for households while aiding environmental sustainabil-
ity. Still, we recommend conducting additional research
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in this field to further validate and solidify these find-
ings, considering the lack of degree of freedom in the
current study as the scarcity of data hampers a compre-
hensive understanding of these dimensions (Turner et
al., 2013).

4 Future perspectives on the insect feed
industry

Despite initial concerns about human acceptance, anal-
ysis of the impact of IM on fish welfare and aquacul-
ture cost management has demonstrated its successful
use as a substitute for FM in aquafeed. Future stud-
ies investigating IM offer a clear opportunity to deepen
our understanding of its positive effects on fish health
and performance. Shifting focus from traditional mea-
sures to markers directly linked with fish health and
immune response can provide more precise insights.
Moreover, exploring various components of IM, such as
lipids, functional elements such as chitin, through sim-
plified breakdown methods, can significantly enhance
our comprehension of their nutritional value. Analyzing
how each part influences fish health when reintroduced
step by step offers valuable insights into the benefits of
IM. As IM emerges as a potential solution for global food
security and sustainability, our findings shed light on the
crucial role legislation can play in facilitating its accep-
tance and integration. However, differing regulations
across countries pose safety and consumer acceptabil-
ity concerns, hindering insect-based aquafeed growth.
Future research should prioritize comprehensive life
cycle assessments to understand IM’s impact on aqua-
culture development and economics.

5 Conclusion

The advancement of insect feed technology, partic-
ularly IM, holds substantial promise for enhancing
aquafeed quality and improving fish performance. Cur-
rent research consistently demonstrates positive effects
on fish growth and financial outcomes, yet further
exploration is needed to fully understand the welfare
implications and economic viability of integrating IM
into aquafeed systems. Our review underscores the
potential of IM in enhancing fish digestibility, with
numerous studies reporting improved nutrient absorp-
tion and growth metrics when IM partially or fully
replaces FM. We advocate for the partial replacement
of FM with IM, recognizing FM’s superiority in EFA
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and EAA. Analysis of blood parameters, including glu-
cose and triglycerides, indicates that IM can positively
influence fish health and metabolic states. However,
achieving balanced nutrient profiles remains a chal-
lenge to prevent potential deficiencies in total pro-
tein and cholesterol levels. Economically, IM offers a
promising alternative to FM by potentially reducing feed
costs and promoting sustainable aquaculture practices.
Nonetheless, its economic performance requires further
investigation, especially in large-scale operations, to val-
idate its cost-effectiveness and market acceptance. As
the aquaculture industry continues to evolve, IM stands
poised to become a competitive and sustainable alter-
native to traditional FM, offering benefits to both aqua-
culture practices and environmental sustainability.
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