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ABSTRACT

Flower-visiting insects that are pollinators play a critical role in promoting biodiversity in agroecosystems
and agricultural food production through their pollination ecosystem service. However, several factors
affect the survival of these pollinators and flower visitors, including the heavy and indiscriminate applica-
tion of agrochemicals to control crop insect pests, which is impacted by various cropping patterns in
a landscape and by shifting environmental conditions. Thus, this study focused on investigating the
influence of cropping patterns on the spatial distribution of pollinators (Apis mellifera, Hymenoptera other
than A. mellifera, and Syrphidae), flower visitors (Calliphoridae), and pests, i.e. fruit fly (Bactrocera dorsalis)
and false codling moth (Thaumatotibia leucotreta) of the avocado, a pollinator-dependent crop. Cropping
patterns, earth observation data and relevant environmental variables were used as the predictor variables
for modeling the potential distribution and abundance of avocado pollinators, flower visitors and pests in
one of the leading regions in avocado production in Kandara, Maragua, and Gatanga sub-Counties in
Murang'a County, Kenya. In specific, species distribution modeling (SDM) and species abundance model-
ing (SAM) techniques, i.e. the maximum entropy (MaxEnt) model (presence-only data) and negative
binomial (NB) distribution in a generalized linear model (GLM) (abundance data) were used, respectively.
Additionally, the spatial distribution probability of the co-occurrence of the pollinators, flower visitors and
pests was also analyzed. This study revealed that cropping patterns was the most consistent influential
predictor variables for the distribution of avocado pollinators, flower visitors and pests. A large area of
Kandara and some parts of Maragua and Gatanga sub-Counties showed a high spatial distribution
probability of the studied avocado pollinators, flower visitors and pests. However, only the majority of
Kandara sub-County had a high spatial distribution probability score of the potential co-occurrence of the
avocado pollinators, flower visitors and pests. Further, A. mellifera was the most abundant flower-visiting
pollinator compared with the other studied pollinators, while B. dorsalis was the most abundant avocado
pest compared with T. leucotreta. In addition, GLM analysis indicated that no environmental variable was
significant in explaining the abundance of the studied avocado pollinators, whereas precipitation and
elevation derivatives of aspect and hillshade were statistically significant (p < 0.05) in explaining the
abundance of B. dorsalis. Solar radiation was significant in explaining only the abundance of
T. leucotreta. Our study revealed that SDM and SAM modeling outputs can be used to inform decision-
making for the implementation of sustainable management efforts regarding pollinators, flower visitors,

and insect pests.

1. Introduction
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biotic pollinators estimated its worldwide value to

Biotic and abiotic pollination is an essential ecosystem  be USD 195 billion to ~USD 387 billion yearly (mod-
service that accounts for 9.5% of the value of all food ified for inflation in March 2020) (Porto et al. 2020).
produced globally (Potts et al. 2010). Recent studies ~ Moreover, of the 115 most important global food
on the economic value of pollination provided by  crops, 87 depend on insects and other animal
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pollinators for the production of fruits, vegetables or
seeds (Klein et al. 2007).

Some studies have referred to a possible decline of
these pollinators in various geographical setups (Novais
et al. 2016; Rhodes 2018), while other studies have
shown that managed bees are on the increase in differ-
ent set-ups, as estimated from Food and Agriculture
Organization (FAO) of the United Nations datasets
from 1961 to 2017 (Phiri, Févre, and Hidano 2022).
However, these insect pollinators are still endangered
by factors such as landscape simplification, increasingly
influenced by monoculture cropping systems; intensive
use of agrochemicals such as synthetic pesticides; cli-
mate variability; and increased occurrence of pollinator
pests and diseases (Moreaux et al. 2022).

Flower-visiting insects have been used to serve as
an indication of pollination services in several crops,
including avocado (Persea americana) (Garibaldi et al.
2020). Various insects visit the avocado flower; how-
ever, the insect flower visitors that have been known
to be the most efficient pollinators for avocado are
the Western honeybee Apis mellifera (Dymond et al.
2021). Consequently, distinguishing pollinators from
other generic flower visitors is important in avocado
production for the successful management of key
pollinator species (Sagwe et al. 2022).

Avocado, a highly pollinator-dependent crop, is
a vital horticultural commodity in Kenya and is largely
cultivated by small-scale farmers. Eighty percent of
avocado produced in Kenya is consumed in the
domestic market, while the rest is exported as fresh
or processed fruits/oils (Kathula 2021). However, the
presence of insect pests like the false codling moth
(Thaumatotibia leucotreta) and the oriental fruit fly
Bactrocera dorsalis has a severe impact on the produc-
tion of avocado in Kenya (Toukem et al. 2020).
Integrated pest management (IPM) has been imple-
mented in avocado production systems to combat
these pests while limiting the use of chemical pesti-
cides (Onsomu 2019), but excluding pollinator man-
agement strategies. Nevertheless, the inclusion of
pollinator management strategies through integrated
pest and pollinator management (IPPM) would
improve yields of pollinator-dependent crops, while
sustaining biodiversity (Biddinger and Rajotte 2015).

Spatial characterization of pollinators, flower visi-
tors and pests is an essential cornerstone of IPPM.

Currently, up-to-date spatial prediction of fruit crop
pollinators, flower visitors and pests is scarce in agri-
culture-promising countries like Kenya. To the best of
our knowledge, only a few studies have assessed the
spatial pattern of fruit crop insect pollinators, flower
visitors and pests at a localized scale. For instance,
Makori et al. (2022) used multisource spatial data to
understand the spatial distribution and change pat-
terns of stingless bees in Kenya and revealed a higher
probability of their decline than of their proliferation.
In another study, Mandela et al. (2018) analyzed the
diversity and abundance of camphor basil (Ocimum
kilimandscharicum) flower visitors in Kakamega forest
in Kenya and reported that species diversity of the
flower visitors increased with closeness to the forest
edge.

Additionally, Zingore et al. (2020) predicted the
potential expansion of the peach fruit fly Bactrocera
zonata and found that, under changing climatic con-
ditions, the pest could invade wider regions in Africa
and South America. Furthermore, Mahmoud et al.
(2020) determined the habitat suitability of two fruit
fly species (i.e. B. zonata and B. dorsalis) and their
suitable co-occurrence range in Sudan, and found
that the two pests were spread across a wide area in
the country. Furthermore, Stotter (2009) assessed the
spatial-temporal distribution of the T. leucotreta in
South Africa in the citrus crop and found that male
T. leucotreta were mostly confined to citrus orchards,
thus providing insights into the local distribution of
the T. leucotreta across the agricultural landscape.
Statistical models have also been employed to esti-
mate B. dorsalis and T. leucotreta abundance in avo-
cado orchards by using climatic variables (Odanga
et al. 2018) and a landscape productivity indicator
(i.e. normalized difference vegetation index: NDVI)
(Toukem et al. 2020). Both studies demonstrated the
importance of climatic and NDVI variables in estimat-
ing B. dorsalis and T. leucotreta abundance, respec-
tively. The spatial distribution of pollinators, flower
visitors, and pests is also influenced by the landscape
structure, which could be tailored in terms of land use
land cover (LULC) or cropping patterns (Mudereri
et al. 2020; Ochungo et al. 2019).

Although various milestones have been
achieved by earlier studies, most have not pre-
dicted spatial distribution probability for the



avocado pollinators, flower visitors, and pests in
a localized avocado production system such as
Murang’a County. Furthermore, few studies have
assessed the use of geospatial modeling
approaches for determining the suitable sites for
the co-occurrence of two or more pollinators,
flower visitors, or pest species (Mahmoud et al.
2020). Moreover, studies have not looked at the
role or effect of remotely sensed cropping patterns
and environmental variables in estimating pollina-
tor, flower visitor and pest distribution, co-
occurrence and/or abundance.

Therefore, this study sought to illustrate the
synergy provided by remotely sensed outputs,
e.g. cropping patterns in applications such as
insect studies. Specifically, the aim of this study
was twofold: (1) to predict the spatial distribution
probability of avocado pollinators, flower visitors,
and pests using cropping patterns, and environ-
mental and topographic variables, together with
an ecological niche modeling approach (maximum
entropy: MaxEnt), and to determine the suitable
co-occurrence range of the avocado pollinators,
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flower visitors and pests; and (2) to estimate and
analyze the abundance of avocado pollinators,
flower visitors and pests using environmental vari-
ables and generalized linear models (GLMs).

2. Material and methods
2.1. Study area

The study was conducted in the County of Murang’a
in Kenya (Figure 1). The County lies between lati-
tudes 0° 34 00” S and 1° 07’ 00” S, and longitudes
36° 00’ 00” E and 37° 27" 00"E. There are two distinct
rainfall patterns in the area: long rains from March
to May and short rains from October to November
every year. The annual temperature ranges from
12°C to 20°C, while the annual rainfall ranges from
800 to 2600 mm (Ovuka and Lindqvist 2000).
Murang’a County has a complex heterogeneous
landscape, translating into heterogeneous cultiva-
tion of crops like avocado, common bean
(Phaseolus vulgaris), sweet potato (l[pomoea batatas),
mango (Mangifera indica), maize (Zea mays),
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Figure 1. Map of the study area comprising Gatanga, Kandara and Maragua sub-Counties in Murang’a County, Kenya, with overlaid

sampled avocado farms, elevation and other surface features.
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macadamia (Macadamia integrifolia), arrowroot
(Maranta arundinacea), pineapple (Ananas comosus),
banana (Musa spp), coffee (Coffea arabica) and tea
(Camellia sinensis). Horticultural crops, e.g. avocado,
depend on pollinators such as Hymenoptera Apis
mellifera. The peak avocado flowering season begins
in August (Sagwe et al. 2022), while the fruiting
period occurs in February (Toukem et al. 2020).
Gatanga, Kandara and Maragua sub-Counties in
Murang’a County were selected, since they are cri-
tical for avocado farming in Kenya. Further

information regarding the study area has been
described in Aduvukha et al. (2021).

2.2 Methodology

Figure 2 demonstrates the methodology used for
species distribution modeling (SDM), co-occurrence
analysis, and species abundance modeling (SAM). In
summary: i) SDM involved using the MaxEnt model
while integrating remotely sensed data of cropping
patterns and non-croplands variables mapped in
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Figure 2. Flow diagram of the approach adopted for the species distribution modelling, co-occurrence analysis, and species
abundance modelling of avocado pollinators, flower visitors and pests. ASCIl = American Standard Code for Information

Interchange; MaxEnt = maximum entropy.
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(Aduvukha et al. 2021).

Aduvukha et al.,, (2021), avocado pollinators, flower
visitors and pests occurrences sampled in NDVI
informed avocado farms (Adan et al. 2021; Sagwe
et al. 2021; Toukem et al. 2020) and environmental
variables; ii) co-occurrence analysis involved intersec-
tion analysis of the outputs from the MaxEnt model;
and iii) SAM involved utilizing the GLM, i.e. negative
binomial distribution, to analyze the effect of the
environmental variables on the abundance of the
avocado pollinators, flower visitors, and pests.
A detailed description of the datasets and analysis is
presented herein.

2.2.1. Earth observation remote-sensing data
description and processing

2.2.1.1. Remote sensing datasets and field data
collection. Remote sensing datasets of Sentinel-1
and Sentinel-2, as well as derived spectral indices
and vegetation phenology and field data, were used
in the mapping of cropping patterns and non-
croplands, as described below (Aduvukha et al. 2021).
2.2.1.1.1. Sentinel-1 radar data. A total of 30
Sentinel-1 images were obtained from the European
Space Agency (ESA) Copernicus data hub (ESA 2019)
for all four seasons, i.e. hot dry (season 1, n=5), long
rainy (season 2, n=9), cool dry (season 3, n=8), and

short rainy (season 4, n=28) (Aduvukha et al. 2021).
Sentinel-1 is a synthetic aperture radar sensor, provid-
ing images in the C-band frequencies continuously in
all weather conditions, both day and night with
a revisit period of 12 days (ESA 2019). The Sentinel-1
sensor acquires images in four modes, i.e.: stripmap
(SM) (images small islands); interferometric wide swath
(IW) (main acquisition over land); extra-wide swath
(EW) (utilizes TOPSAR: Terrain Observation with
Progressive Scans to acquire wider area data compared
to IW); and wave (uses “leap frog” acquisition mode).
Processing levels of the modes include Level-0, Level-1
(Single Look Complex-(SLC), ground range detected-
(GRD)), and Level-2. In detail, Level-0 contains noise,
orbit and altitude information, internal calibration and
echo source packets; Level-1 SLC products are pro-
cessed at natural pixel spacing and they preserve the
phase information, while Level-1 GRD products are
generated with less speckle and increased image qual-
ity, as well as containing the detected amplitude; and
Level-2 contains geolocated geophysical products
derived from Level-1 (ESA 2019). This study utilized
the IW and Level 1 GRD products. Vertical transmit
and vertical receive (VV) and vertical transmit and hor-
izontal receive (VH) modes of dual polarization were
utilized in Sentinel-1 images. The sensor image pre-
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processing was carried out using the Sentinel applica-
tion platform (SNAP) toolbox and they included the
application of the precise orbit file, thermal noise and
image border, radiometric calibration, and speckle fil-
tering (Filipponi 2019). In addition, the 90 m shuttle
radar topography was bilinearly resampled to 10 m
for terrain correction of the Sentinel-1 data. A subset
composite image VV and VH image of each season was
then obtained after stacking the individual processed
images (Aduvukha et al. 2021).

2.2.1.1.2. Sentinel-2. Time-series (10 December 2017
to 15 December 2018) multi-sensor datasets from the
freely available Sentinel-2 sensor and Sentinel-1 sen-
sor were utilized in this study. Sentinel-2 comprises
optical imagery of 13 multiple spectral bands, span-
ning across the visible, near-infrared, and short-wave
infrared part of the spectrum, with resolutions ran-
ging between 10m, 20m, and 60m. It covers
a horizontal distance of 290 km as it captures the
Earth’s surface images (ESA 2019). A total of 128
images across four seasons were used, i.e. hot dry
(season 1, n=42), long rainy (season 2, n=24), cool
dry (season 3, n =22) and short rainy (season 4, n = 40)
(Aduvukha et al. 2021). Atmospheric correction (redu-
cing the atmosphere’s effects of scattering and
absorption on the reflectance values of images cap-
tured by satellite or aerial sensors) was carried out
using the Sen2cor module in the SNAP toolbox (ESA
2019). Other preprocessing procedures performed in
SNAP included cloud masking, resampling (20 m
Sentinel-2 bands to 10m, using the nearest-
neighbor technique), layer stacking, mosaicking, and
computation of the median pixel image for each sea-
son. The Sentinel-2 spectral bands used were bands 2,
3,4,5,6,7,8a, 11, and 12 (Aduvukha et al. 2021).

2.2.1.1.3. Vegetation indices. Vegetation indices are
used to describe various aspects of vegetation, includ-
ing vegetation cover, vegetation health, and vegeta-
tion water content features, through using
a combination of the spectral characteristics of more
than one wavelength (Xue and Su 2017). Eight indices
(Table 1) were derived from the composite seasonal
images of Sentinel-2 imagery and used in this study
(Aduvukha et al. 2021).

2.2.1.1.4. Phenological variable. Vegetation pheno-
logical variables were incorporated in this study,
since they target the growth cycle of the vegetative
components of the landscape (Kimball 2014). These
variables (Araya 2017) (Table 2) were simulated from
the multi-season NDVI images of Sentinel-2 using
TIMESAT software (Jonsson and Eklundh 2004). Local
functions were fit to the data points in the time-series
NDVI curve data to analyze the phenological signals,
which were then combined into a global model.
Consequently, a smooth model function was
employed to extract phenological variables for each
season. A thresholding method, with a relative thresh-
old of 0.3, was used to define the timings of the
phenological events (Table 2) (Landman et al., unpub-
lished work). A composite image for the vegetation
phenological variables (n=15) from each of the four
seasons was created and used in the cropping pattern
classification analysis (Table 2).

2.2.1.1.5. Cropping pattern and non-croplands field
data collection. Field data for cropping pattern and
non-croplands were sampled from 12 December 2018
to 19 December 2018 (Aduvukha et al. 2021). The
cropping patterns included monocrop maize, mixed
crop maize, monocrop avocado, mixed crop avocado,
monocrop coffee, monocrop tea and monocrop

Table 1. Summary of the vegetation indices used in the mapping of cropping patterns and non-croplands, as adopted from Aduvukha

et al. (2021).
No. Index Formula Reference
1 Atmospherically resistant vegetation index-2 (ARVI2) 018+ 1.17 (NIR Red) (Kaufman and Tanre 1992)
: : NIR+Red
2 Enhanced vegetation index (EVI) 2.5 % % (Ahamed et al. 2011)
3 Green normalized difference vegetation index (GNDVI) m‘gggg (Gitelson, Kaufman, and Merzlyak 1996)
odified soil adjusted vegetation index (NIR—Red)(1-+1) i et al.
4 Modified soil adjusted ion index (MSAVI) (N',C*min”ffll” (Qi et al. 1994)
e
5 Normalized difference vegetation index (NDVI) ZHZZ (Tucker et al. 1979)
6 Normalized difference water index (NDWI) xfﬁ.imﬁi (Gao 1996)
7 Soil adjusted vegetation index (SAVI) (Huete 1988)

8 Two-band enhanced vegetation index (EVI2)

(itiets) « (1 -+ 0.5)

2.5 % NIR—Red

el (Jiang et al. 2007)

Note: NIR= near-infrared band; L= 2*s*(NIR-Red) *(NIR-s* Red)/(NIR+Red), where s is the slope of the soil line from a plot of red versus near-infrared brightness

values.
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Table 2. Vegetation phenological variables that were used in mapping of cropping patterns and non-
croplands, as adopted from Araya (2017) and Aduvukha et al. (2021).

No. Phenological variable Definition of the NDVI curve and physiological description

1 Onset_value The NDVI value at the start of the growth (seedling growth stage)
2 Onset_time The time when the growth onset is achieved

3 Max_value The maximum NDVI value in the season

4 Max_time The time when the Max_value is attained (anthesis growth stage)
5 Offset_value The NDVI value at the end of the season

6 Offset_time The time when growth offset is attained (senescence growth stage)
7 LengthGS The length of the growing season

8 BeforeMaxT The length of time between onset and Max_value

9 AfterMaxT The length of time between Max_value and offset

10 GreenUpSlope The rate of increase in NDVI value between onset and offset

1 BrownDownSlope The rate of decrease in NDVI value between Max_value and offset
12 TINDVI The area under the NDVI curve between onset and offset

13 TINDVIBeforeMax The area under the NDVI curve between onset and Max_value

14 TINDVIAfterMax The area under the NDVI curve between Max_value and offset

15 TINDVIAsymmetry The difference between TINDVIBeforeMax and TINDVIAfterMax

pineapple, while the non-croplands included areas of
water, forest, shrubland, and built-up areas
(Aduvukha et al. 2021). A stratified random sampling
method was used to collect the ground truth field
data as points (i.e. pixels) by using a mobile-based
global positioning system (GPS), and GPS Essentials
(GPS Essentials 2020) with a maximum allowable error
of 3 m. Furthermore, the collected field data points
were set at a sampling distance of =20 m each to
avoid spatial autocorrelation instances with respect
to the 10 m resolution of Sentinel-2 imagery bands
used. On-screen digitizing on high-resolution imagery
provided by Google Earth imagery (Google Earth
2020) was then employed to convert the pixels of
reference data to homogenous units (i.e. polygons)
to be used for classification. Studies have shown that
polygon-based training areas perform better than
pixel-based training areas do (King’ori et al. 2023).
A summary of the number of points and their corre-
sponding pixels within the polygons of each class is
shown in Aduvukha et al. (2021).

2.2.1.2 Cropping pattern and non-croplands clas-
sification. This included selecting the most impor-
tant variables among the remote sensing dataset
combinations (Table 3) and thereafter using
a machine-learning algorithm for classification.
Specifically, a guided regularized random forest
(GRRF) algorithm was used to select important vari-
ables in each of the eight remotely sensed data com-
bination scenarios (Table 3) (Aduvukha et al. 2021).
The GRRF for selecting most important variables has
been found to perform better than other methods,
such as regularized random forest (RRF) and random
forest (RF) algorithms, do (Deng and Runger 2013).

Table 3. The remote sensing datasets combination scenarios
and number of variables for the classification of cropping pat-
terns and non-croplands, as highlighted in Aduvukha et al.
(2021).

Number of
Variable combination variables
Sentinel-2 bands only 40
Sentinel-2 bands and Sentinel-1 48
Sentinel-2 bands and vegetation indices 48
Sentinel-2 bands and vegetation phenology 55
Sentinel-2 bands, vegetation indices and Sentinel-1 56
Sentinel-2, vegetation indices and vegetation 63
phenology
Sentinel-2, vegetation phenology and Sentinel-1 63
Sentinel-2, vegetation indices, vegetation phenology 71

and Sentinel-1

The limitation of RF in selecting the most important
variables lies in its susceptibility to select highly cor-
related variables, while RRF may select variables that
are not robustly relevant (Deng and Runger 2013). On
the other hand, the strength of GRRF in selecting the
most robust variables lies in its facility to subject each
feature to a penalty coefficient by altering the coeffi-
cient of importance of gamma (y) value of 0 to 1,
while maintaining the base coefficient of lambda (\)
value of 1 (Deng and Runger 2013). The importance of
the variables was assessed using the mean decrease
accuracy ranking method (Han, Guo, and Yu 2016).
Further explanation of GRRF, RF and RRF in variable
selection can be found in Deng and Runger (2013).
Thereafter, a RF classification algorithm was used to
delineate the different cropping patterns and non-
croplands (Aduvukha et al. 2021). The RF algorithm
was preferred to other supervised classification meth-
ods, such as maximum likelihood. This is because RF is
non-parametric, i.e. it does not assume the data dis-
tribution but it learns first from the “seen” data and
predicts the pattern of the “unseen” data (Breiman
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2001; Wiener and Liaw 2002), thus reducing chances of
overfitting. On the other hand, maximum likelihood
assumes a normal distribution of the training data,
hence high chances of overfitting the predictions
(Sisodia, Tiwari, and Kumar 2014). Data were parti-
tioned as 70% for training and 30% for testing
(Aduvukha et al. 2021). The variable selection and crop-
ping patterns and non-croplands classification were
implemented in R software using the caret package
(R Core Team 2019).

Consequently, the area under class method
(Olofsson et al. 2013) was used to construct the con-
fusion matrix for accuracy assessment to estimate the
user’s accuracy (UA), producer’s accuracy (PA), overall
accuracy (OA), and kappa coefficient (Aduvukha et al.
2021).

2.2.2. Pollinators, flower visitors, and pests field data
collection
2.2.2.1. NDVI field characterization for sampling
avocado farms. Time-series Sentinel-2 images of
both dry and wet seasons accessed from the Google
Earth Engine cloud computing platform were used
(Gorelick et al. 2017). The seasons were determined
from Climate Hazards Group InfraRed Precipitation
with Station Data (CHIRPS) rainfall data (Adan et al.
2021). Ninety images for the dry season were
obtained from 1 January 2018 to 28 February 2018,
while 50 images for the wet season were obtained
from 1 March 2018 to 31 March 2018. One hundred
random points were generated within the study area,
and a K-means clustering technique was used to cate-
gorize the extracted NDVI values into three levels, i.e.
high, medium, and low (Table 4) (Adan et al. 2021).
The dry and wet season NDVI images were com-
bined to provide a composite NDVI image (Adan et al.
2021). Using expert knowledge (observing texture,
pattern, shade, tone, and color hue) (Li et al. 2020),
the classification accuracy of the composite NDVI was

Table 4. Normalized difference vegetation index (NDVI) of dry
and wet seasons description and range, as described in Adan
et al. (2021).

NDVI range
NDVI intensity description Dry season Wet season
High 0.537-0.853 0.559-0.865
Medium 0.318-0.537 0.345-0.559
Low <0.318 <0.345

assessed. An overall accuracy of 86.2% was attained,
as detailed in Adan et al. (2021).

2.2.2.2. Sampling protocol for farms. The vegeta-
tion intensity classes of low, medium, and high
obtained from NDVI as described in
Section 2.2.2.1 were used as sampling strata, in
which pollinator, flower visitor and pest data
were collected in the study area. The sampling
was carried out during the avocado peak flowering
(26 August 2019-4 September 2019) and peak
fruiting (27 January 2020-13 February 2020) sea-
sons, respectively, in farm sizes of approximately
0.2-0.4 ha (Sagwe et al. 2021). Thirty-five farms
were selected across the low, medium, and high
NDVI regions, using a multi-stage sampling proto-
col, as detailed in Adan et al. (2021). In summary,
the avocado farms selection protocol in each stra-
tum included: (1) minimal number of avocado trees
per farm at seven; (2) socio-economic data on
farmers’ willingness-to-pay for IPPM technologies
(IPM only where biological treatment of pests was
introduced, pollinators only (P) where managed
bees were introduced, IPPM where both managed
bees and biological treatment of pests were intro-
duced, and control where neither treatments of
pests nor managed bees were introduced); and
(3) setting specific distances among avocado
farms with the different IPPM technologies. The
specific distances between farms with the different
technologies were as follows (i) IPPM and P were
at least 1.5-3.0km separate from each other, (ii)
IPM and control were at least 0.5km away from
each other, and (iii) IPPM or P were at least 3.5 km
away from either IPM or control sites (Adan et al.
2021). The implementation of the different IPPM
technologies was assessed in a separate study by
Toukem et al. (2022) to establish the effect of the
inclusion of pollinators in pest management of
crops such as avocado.

2.2.2.3. Avocado pollinator, flower visitor, and
pest occurrence and abundance data. For purposes
of this study, flower-visiting insects that are good at
pollinating avocado crops were defined as “pollinators,”
while those flower-visiting insects that are poor at polli-
nating avocado crops were called “flower visitors”
(Sagwe et al. 2022). Furthermore, in this study, “occur-
rences” were defined as geolocated instances of the



observed pollinator, flower visitor, or pest, while “abun-
dance” was defined as the relative number (count) of
a pollinator, flower visitor, or pest trapped per unit area
of the farm size. Therefore, for avocado pollinators and
flower visitors, three avocado trees, spaced 20 m apart
within each of the selected farms, were randomly
selected, and each of the three avocado trees was
observed for 5min from 0800 to 1700 h (Greenwich
Mean Time: GMT + 3). The pollinators and/or flower
visitors were captured using sweep nets (white in
color) and were forthwith preserved in 70% ethanol
(Sagwe et al. 2022). The sampled pollinators and flower
visitors were identified by Robert Copeland, icipe,
Nairobi, Kenya, and categorized into four groups: (1)
A. mellifera (order Hymenoptera), (2) Hymenoptera
excluding A. mellifera (order Hymenoptera), (3)
Syrphidae (order Diptera) and (4) Calliphoridae (order
Diptera). Other categories of pollinators or flower visitors
were also sampled, but were of very low count, and thus
were not included in this study.

Regarding avocado pests, traps for the specific
pests were set on two separate avocado trees at
a distance of =20 m apart in each of the selected
farms (Toukem et al. 2020). Lynfield traps (icipe,
Nairobi, Kenya) with para-pheromone methyl euge-
nol (River Bioscience, Addo, South Africa) were used
to trap B. dorsalis, while T. leucotreta were trapped
using white delta-shaped traps, lured with the rele-
vant sex pheromone (Kenya Biologics, Nairobi,
Kenya). Insects from the Lynfield traps were kept
in 70% ethanol for preservation, while sheets with
trapped insects from the white delta-shaped traps
were enclosed in a polythene sheet before analysis
in the laboratory, as detailed in Toukem et al.
(2020). The pests were subsequently identified by
Robert Copeland, icipe, Nairobi, Kenya. On the other
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hand, the abundance of the avocado pests was
collected after 2 weeks within the sampling period
only on 17 farms that were set as control treat-
ments out of the total 35 selected farms, since the
other 18 farms were put on other IPPM treatments
before sampling the abundance of pests.

A mobile-based GPS application, i.e. GPS Essentials
(Schollmeyer Software Engineering, Munich, Germany),
was used to geolocate the specific trees within each
avocado farm where pollinators, flower visitors, and
pests were sampled.

2.2.3. Predictor variables

2.2.3.1. Environmental predictor variables and
preprocessing. The most influential environmental
variables that affect the distribution and abundance
of avocado pollinators, flower visitors, and pests were
used as predictor variables in the modeling experi-
ments (Kjohl, Nielsen, and Stenseth 2011; Odanga
etal. 2018). These were average temperature, precipita-
tion, solar radiation, wind speed, morning relative
humidity, afternoon relative humidity, and elevation
(Table 5). Slope, hillshade, and aspect were derived
from elevation. In addition, the variable “cropping pat-
terns,” which were derived from Aduvukha et al. (2021),
were also included as comprising a predictor variable.
These cropping patterns were monocrop tea, mixed
crop avocado, mixed crop maize, monocrop avocado,
monocrop coffee, monocrop maize, and monocrop
pineapple and non-croplands. For the environmental
variables, long-term mean average values of July,
August, September, and October, estimated from
1961 to 1990 and 1970 to 2000 (Kriticos et al. 2012;
Fick and Hijmans 2017), were used in predicting polli-
nator and flower visitor spatial distribution probability,
as they coincide with the pre-peak, during and post-

Table 5. Predictor variables used in spatial distribution and abundance analysis of avocado pollinators, flower

visitors, and pests.

Variable Unit Resolution Year Source
Average temperature °C 1 km 1970-2000 (Fick and Hijmans 2017)
Precipitation mm 1 km 1970-2000 (Fick and Hijmans 2017)
Solar radiation k) m~2 day™ 1 km 1970-2000 (Fick and Hijmans 2017)
Wind speed ms™ 1 km 1970-2000 (Fick and Hijmans 2017)
Relative humidity (morning) % 10-arc minutes 1961 - 1990 (Kriticos et al. 2012)
Relative humidity (afternoon) % 10-arc minutes 1961-1990 (Kriticos et al. 2012)
Elevation m 1 km (Fick and Hijmans 2017)
Slope Y%rise 1 km n/a Derived from elevation
Hillshade n/a 1 km n/a Derived from elevation
Aspect degrees 1 km n/a Derived from elevation
Cropping pattern n/a 10m 2018 Aduvukha et al. (2021)

n/a=not applicable.
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peak flowering seasons of avocado in the study area.
This period also coincided with the pollinator and
flower visitor field data collection. For pest spatial dis-
tribution probability modeling, long-term mean aver-
age values of the environmental variables, estimated
from 1961 to 1990 and 1970 to 2000 for December,
January, February, and March, were used. This matched
with the avocado pre-peak, during and post-peak fruit-
ing season in Kenya, during which the pests were
sampled.

The bilinear interpolation method was used to
resample the environmental predictor variables to
10m X 10 m pixel size and then clipped to the size
of the study area to be harmonized with the cropping
pattern predictor variable that was developed by
Aduvukha et al. (2021).

2.2.3.2. Predictor variable selection. The variance
inflation factor (VIF) was used to determine the
most uncorrelated predictor variables to reduce
multicollinearity (Robinson and Schumacker 2009).
A VIF threshold of =10 was set as an indicator of
multicollinearity and redundancy in the predictor
variables (Pradhan 2016) (Table 6). The total num-
ber of predictor variables subjected to VIF were n=
11 (Table 1) for the pollinators, flower visitors, and
pests, with seven predictor variables being retained
for pollinators and flower visitors, while eight pre-
dictor variables were retained for the pests
(Table 6). However, some of the key predictor vari-
ables, such as temperature that is known to influ-
ence the distribution of pollinators, flower visitors,
and pests, were suggested for exclusion by the VIF

Table 6. Variables selected after performing multicollinearity
analysis using the variance inflation factor (VIF) of a minimum
of 10 for avocado pollinators, flower visitors, and pests.

Variable VIF <10
Avocado pollinators/Flower aspect 1.1
visitors
cropping pattern 1.01
hillshade 1.18
precipitation 7.53
morning relative humidity ~ 5.52
slope 1.34
wind speed 3.43
Avocado pest aspect 1.10
cropping pattern 1.12
hillshade 1.16
precipitation 4.07
afternoon relative 2.72
humidity
slope 1.24
solar radiation 8.69
wind speed 414

test. However, some of these predictor variables
were retained, for instance, average temperature,
based on their biological relevance to avocado pol-
linators and flower visitors (average temperature
with VIF of 135.99) and pests (average temperature
with VIF of 70.71) distribution and abundance (EFSA
2011; Pradhan 2016).

2.2.4. Species distribution modelling.

2.2.4.1. Model settings. Before applying the SDMs to
predict the spatial distribution probability of avocado
pollinators, flower visitors, and pests, the geolocations
of avocado pollinators, flower visitors, and pest obser-
vations were reprojected to the Universal Transverse
Mercator (UTM) coordinate system, zone 37 south
(Snyder 1987). This was done to ensure compatibility
with the coordinate system of the predictor environ-
mental variables.

The MaxEnt model, Version 3.4.1 (Phillips and
Dudik 2008), was used to predict potentially suita-
ble areas of avocado pollinators, flower visitors,
and pest distributions. The model settings of the
MaxEnt were majorly influenced by the number of
occurrence points for each of the avocado pollina-
tors, flower visitors, and pests (Phillips and Dudik
2008). Consequently, this influenced the MaxEnt
feature types in modeling the avocado pollinators,
flower visitors, and pests (Table S1 in
Supplementary). Outliers were eliminated using
a “ten percentile” training presence criterion,
which declares the 10% most extreme presence
observation as absent (Cord et al. 2014).
Additionally, a regularization multiplier of two
was employed to ensure a less localized prediction
(Radosavljevic, Anderson, and Araujo 2014).
Moreover, to ascertain a robust MaxEnt model,
the replicate runs were set to 10 (Makori et al.
2017). Cross-validation replication type was used
for A.  mellifera, Syrphidae, Calliphoridae,
B. dorsalis and T. leucotreta because of its robust-
ness (Kohavi 1995), while a bootstrap replication
type for Hymenoptera excluding A. mellifera was
used because of the small sample size (Merow,
Smith, and Silander 2013). A sensitivity analysis of
the variable contribution to the model was con-
ducted using a jackknife test. The jackknife test
assesses how each variable affects the performance
of the model by determining changes in the accu-
racy of the model as it systematically eliminates



one variable at a time. The critical variables for
predictions are identified by comparing how the
model performs, with and without each variable
(Phillips and Dudik 2008).

2.2.4.2. Model performance assessment. Model
performance of the prediction of spatial distribution
probability for the occurrence of avocado pollinators,
flower visitors, and pests was assessed using the recei-
ver operating characteristic (ROC)'s threshold-
independent area under the curve (AUC) (Merow,
Smith, and Silander 2013). The AUC informs the prob-
ability of whether presence (sensitivity) in comparison
to absence (specificity) was ordered correctly by the
model. The values of AUC range from 0 (no possibility
of occurrence) to 1 (highest possibility of occurrence),
with values greater than 0.7 being regarded as accep-
table for predicting spatial distribution probability for
the species (Araujo et al. 2005).

2.2.4.3. Co-occurrence spatial distribution of avo-
cado pollinators, flower visitors, and pests.
Potential co-occurrence analysis of the sampled polli-
nators, flower visitors, and pests was carried out using
the spatial distribution probability outputs generated
from MaxEnt. The MaxEnt outputs were in the
American  Standard Code for Information
Interchange (ASCII) file format, which were first con-
verted to the raster image file format (tiff) and
assigned three unique values: low, medium, or high.
The tiff files were reclassified to low (0.01-0.35), med-
ium (0.36-0.69), and high (0.70-0.99) classes. These
classes represented the cluster thresholds of co-
occurrence spatial distribution probability of the pol-
linators, flower visitors, and pests, from the co-
occurrence analysis. Each of the tiff files was con-
verted to a vector polygon file to perform an intersect
analysis among the respective classes represented by
the respective polygons. This was done to assess
areas of similarity between the pollinators and flower
visitors (only pollinators and flower visitors) and pests
(only pests) and also to compare the co-occurrence
with the occurrence of all pollinators, flower visitors,
and pests. Intersecting polygons were converted to
raster data, resulting in the delineation of co-
occurrence spatial distribution probabilities of all the
pollinators and flower visitors, all the pests, and all the
combined pollinators, flower visitors, and pests.
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2.2.5. Species abundance modelling

A generalized linear model (GLM) was implemented in
R software, Version 3.6.1 (R Core Team 2019) to infer the
relationship between the abundance of the avocado
pollinators, flower visitors, and pests, and the selected
environmental predictor variables. Specifically, the
negative binomial distribution in GLM, which accommo-
dates overdispersion of integer counts data, was used
(Lindén and Méantyniemi 2011). The coefficient estimates
of all the environmental predictor variables and their
significance level (p < 0.05) were analyzed to assess their
relationships with the abundance of avocado pollina-
tors, flower visitors, and pests. Hymenoptera species
excluding A. mellifera pollinators were not included in
this analysis because of their very low counts (n =8).

3. Results
3.1. Cropping pattern and non-croplands

The best-performing classification scenario (OA =
94.33% and kappa =0.93) (Table S2 in Supplementary),
i.e. Sentinel-2 bands, vegetation indices and Sentinel-1
combination, was used in the spatial modeling of the
avocado pollinators, flower visitors and pests (Aduvukha
et al. 2021). The mapped cropping patterns were mono-
crop avocado, mixed crop avocado, monocrop maize,
mixed crop maize, monocrop coffee, monocrop tea, and
monocrop pineapple while the non-croplands were
comprised of built-up area, grassland, forest, shrubland,
and water (Figure 3).

3.2. Species distribution modelling

3.2.1. Maximum entropy (MaxEnt) model
performance

All the MaxEnt models used for predicting the spatial
distribution probability of all the studied avocado polli-
nators (A. mellifera, Hymenoptera excluding A. mellifera
and Syrphidae), flower visitors (Calliphoridae) and pests
(B. dorsalis and T. leucotreta) demonstrated a good pre-
diction performance within an AUC of 0.70-0.83
(Figure 4).

3.2.2. Predictor variable contribution

The first three ranked variables for the prediction
of pollinator distribution were wind speed
(38.10%), precipitation (28.60%) and cropping pat-
terns (26.60%) for A. mellifera; cropping pattern
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Figure 4. Mean area under the curve (AUC) to two decimal places for predicting spatial distribution probability of (a) Apis mellifera, (b)
Hymenoptera excluding A. mellifera, (c) Syrphidae (d) Calliphoridae (e) Bactrocera dorsalis, and (f) Thaumatotibia leucotreta.

(39.40%), aspect (25.00%), and wind speed
(18.70%) for Hymenoptera excluding A. mellifera;
cropping pattern (57.80%), precipitation (33.70%),
and wind speed (8.00%) for Syrphidae; and preci-
pitation (45.50%), wind speed (41.70%), and crop-
ping pattern (9.5%) for Calliphoridae (Table 7). The

first three ranked variables for avocado pest dis-
tribution were cropping pattern (47.00%), average
temperature (42.90%) and wind speed (2.60%) for
B. dorsalis; and cropping pattern (44.30%), slope
(28.50%) and average temperature (19.80%) for
T. leucotreta (Table 8). Based on the jackknife
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Table 7. Contribution (%) of predictor variables to Apis mellifera, Hymenoptera excluding A. mellifera, Syrphidae, and
Calliphoridae spatial distribution probability from maximum entropy (MaxEnt) models using the jackknife test.

Variable Apis mellifera Hymenoptera excluding A. mellifera Syrphidae Calliphoridae
Cropping pattern 26.60 39.40 57.80 9.50
Aspect 1.60 25.00 0.30 1.80
Hillshade 0.20 6.10 0.00 0.10
Precipitation 28.60 7.20 33.70 45.50
Morning relative humidity 4.40 0.10 0.10 0.30
Slope 0.50 1.40 0.00 1.10
Average temperature 0.00 2.00 0.00 0.00
Wind speed 38.10 18.70 8.00 41.70

Table 8. Contribution (%) of predictor variables to Bactrocera
dorsalis and Thaumatotibia leucotreta spatial distribution prob-
ability from maximum entropy (MaxEnt) models using the jack-
knife test.

Bactrocera Thaumatotibia
Variable dorsalis leucotreta
Cropping pattern 47.00 4430
Aspect 1.50 0.70
Hillshade 0.00 1.10
Precipitation 1.90 3.80
Afternoon relative 1.50 0.30
humidity
Slope 1.10 28.50
Solar radiation 1.60 0.40
Average temperature 42.90 19.80
Wind speed 2.60 1.00

tests performed on the MaxEnt model, the relative
variable importance of the cropping pattern and
environmental variables showed varied contribu-
tions on the ecological niche (EN) models (Figure
S1 in Supplementary).

3.2.3. Spatial distribution probability of avocado
pollinators, flower visitors, and pests
The MaxEnt model for avocado pollinators
(A. mellifera and Syrphidae) and avocado flower visi-
tors (Calliphoridae) predicted a medium to a high
spatial probability distribution in Kandara sub-
County, and a low to a high spatial probability dis-
tribution in Maragua and Gatanga sub-Counties
(Figure 5a-c and d). The majority of Kandara and
portions of Maragua and Gatanga sub-Counties
experienced the highest spatial distribution probabil-
ity score of >0.9 for the presence of A. mellifera and
Syrphidae pollinators, and Calliphoridae flower visi-
tors. The MaxEnt model for Hymenoptera excluding
A. mellifera pollinators (Figure 5b) also showed a low
to a high spatial probability distribution score in the
three sub-Counties.

The MaxEnt model predicted high avocado pest spa-
tial probability distribution scores (=0.9) in the central
and western sides of Maragua and Kandara sub-

Counties, and low to high scores in Gatanga sub-
County. A low distribution score was observed in the
eastern side of Maragua and Gatanga sub-Counties for
B. dorsalis and T. leucotreta (Figure 5e, f respectively).

3.2.4. Co-occurrence spatial distribution probability
of avocado pollinators, flower visitors, and pests

The avocado pollinator and flower visitor co-occurrence
analysis showed a low to high probability of co-
occurrence in the three studied sub-Counties, with the
majority of Kandara showing a medium to high prob-
ability of pollinator and flower visitor co-occurrence
(Figure 6a). Further, avocado pest co-occurrence analysis
showed a medium to high probability of co-occurrence
in Kandara, while a low to a high probability of co-
occurrence was present in Gatanga and Maragua
(Figure 6b). On the other hand, the combined co-
occurrence analysis of avocado pollinators, flower visi-
tors, and pests showed a medium to a high probability
of co-occurrence in Kandara and a low to a high prob-
ability of co-occurrence in Maragua and Gatanga.
(Figure 6c). The accuracy of the co-occurrence analysis
(Figure 6) is taken to be similar to those of Figure 5
(SDM) since the inputs used are derived from Figure 5.

3.3. Species abundance modelling

3.3.1. Avocado pollinator, flower visitor, and pest
abundance

The relative abundance of the avocado pollinators
and flower visitors showed that A. mellifera was rela-
tively more abundant (80.84%) than Calliphoridae
(10.05%) and Syrphidae (9.11%). Among the avocado
pests, the relative abundance of B. dorsalis (96.62%)
was higher than that of T. leucotreta (3.38%) (Table 9).
Distribution of the abundance avocado pollinators,
flower visitors, and pests per their respective farms
are summarized in Table S3 in Supplementary.
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Figure 5. Spatial distribution probability of avocado pollinators (a) Apis mellifera, (b) hymenoptera excluding Apis mellifera, and (c)
Syrphidae; avocado flower visitors (d) Calliphoridae and avocado pests (e) Bactrocera dorsalis (f) Thaumatotibia leucotreta predicted
using the maximum entropy (MaxEnt) model. The dark blue color indicates a low spatial distribution probability, while the red color
represents a high spatial distribution probability. The resolution of the maps is 10 m in relation to spatial resolution of the cropping

pattern variable.

3.3.2. Generalized linear model

Abundance of A. mellifera had a positive relationship
with precipitation, slope, and wind speed, but
a negative relationship with aspect, hillshade, morn-
ing relative humidity, and average temperature
(Table 10). Furthermore, the results showed that

the abundance of Syrphidae pollinators had
a positive relationship with aspect, precipitation,
morning relative humidity, slope, average tempera-
ture, and wind speed, but a negative relationship
with  hillshade, while the abundance of
Calliphoridae flower visitors had a positive



GISCIENCE & REMOTE SENSING (&) 15

36°45'0"E 37°00°E

37°1S0°E

0°45'0"S

1°0'0"S

Pollinator and
flower visitor co-occurrence

I High: 0.70 - 0.99
Medium: 0.36 - 0.69
I Low: 0.01-0.35

1°150"S

1°0'0°S

1°15'0"S

Pollinator, flower visitor

and pest co-occurrence

B High: 0.70 - 0.99
Medium: 0.36 - 0.69

W Low: 0.01-0.35

36°45'0"E 37°0'0°E 37°15'0"E

b)

0°45'0°s

1°00"S

Pest co-occurrence
W High: 0.70 - 0.99

Medium: 0.36 - 0.69
B Low: 0.01-0.35

1°150"S

0 30 60 km

36°45'0"E 37°00E

ITIS0'E
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Table 9. The abundance (n) and relative abundance (%) of
avocado pollinators, flower visitors, and pests.

Avocado pollinators, flower visitors Abundance Relative
and pests (n) abundance (%)
Apis mellifera 503 80.48
Syrphidae 58 9.28
Calliphoridae 64 10.24
Total 625 -
Bactrocera dorsalis 25,433 96.62
Thaumatotibia leucotreta 889 3.38
Total 26,322 -

relationship with aspect, hillshade, and wind speed,
but a negative relationship with precipitation, morn-
ing relative humidity, slope, and average tempera-
ture. No variable was significant (p < 0.05) for
pollinators and flower visitors.

Regarding the avocado pests, the abundance of
B. dorsalis had a positive relationship with hill-
shade, slope, average temperature, and afternoon
relative humidity, but a negative relationship with
aspect, precipitation, wind speed, and solar radia-
tion (Table 10). However, only the relationship
between the abundance of B. dorsalis with aspect,
precipitation, and hillshade was statistically

significant (p < 0.05). Thaumatotibia leucotreta
abundance showed a positive relationship with
aspect, afternoon relative humidity, average tem-
perature and wind speed, but a negative relation-
ship with precipitation, hillshade, slope and solar
radiation, with only solar radiation being statisti-
cally significant (p < 0.05).

4. Discussion

This study predicted the spatial distribution of avocado
pollinators, flower visitors, and pests in Murang'a
County, Kenya using accurate remotely sensed cropping
patterns (OA 94.33% and kappa 0.83), environmental
factors as predictor variables, and the MaxEnt ecological
niche modeling approach. In addition, the study
revealed the co-occurrence spatial distribution probabil-
ity of the studied avocado pollinators, flower visitors,
and pests. Furthermore, the study also examined the
relationship between the abundance of avocado polli-
nators, flower visitors, and pests with environmental
variables by using a GLM model.
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Table 10. Summary of the relationship between the environmental variables and the abundance of avocado
pollinators, flower visitors, and pests depicting the regression coefficient estimates and p-value (p < 0.05).

Avocado pollinators, flower visitors and pests Environmental variables Estimate p-value
Apis mellifera (Intercept) 8.53 0.69
aspect —0.00 0.34
hillshade -0.01 0.24
slope 0.03 0.19
precipitation 0.01 0.60
average temperature -0.23 0.61
morning relative humidity —-0.14 0.58
wind speed 3.74 0.17
Syrphidae (Intercept) —-32.40 0.33
aspect 0.00 0.27
hillshade —0.00 0.71
slope 0.02 0.49
precipitation 0.02 0.92
average temperature 0.48 0.49
morning relative humidity 0.22 0.56
wind speed 4.46 0.13
Calliphoridae (Intercept) 531 0.80
aspect 0.00 0.75
hillshade 0.01 0.18
slope —-0.24 0.40
precipitation -0.01 0.76
average temperature -0.32 0.53
morning relative humidity -0.13 0.59
wind speed 3.66 0.31
Bactrocera dorsalis (Intercept) 73.56 0.025*
aspect -0.00 0.00*
precipitation -0.38 <0.0071*
hillshade 0.04 4.15e-08*
slope 0.04 0.12
afternoon relative humidity 0.08 0.48
average temperature 1.16 0.19
wind speed -1.99 0.20
solar radiation —0.00 0.22
Thaumatotibia leucotreta (Intercept) 127 0.00%*
aspect 5.47e-04 0.62
precipitation —8.11e-02 0.43
hillshade —5.97e-04 0.95
slope —5.07e-02 0.13
afternoon relative humidity 3.48e-02 0.83
average temperature 1.29¢+00 0.24
wind speed 1.74e+00 0.34
solar radiation —7.68e-03 0.03*

*Significant variables (p < 0.05).

4.1. Species distribution modelling

The study identified highly suitable habitats for each
of the avocado pollinators, flower visitors, and pests in
the northern and central parts of Kandara, the north-
western part of Gatanga, and the south-eastern part
of Maragua. These regions are characterized by con-
ducive climatic conditions for avocado farming and
thus demonstrated the importance of the LULC vari-
able in predicting pollinator, flower visitor, and pest
habitats or invasive plant species (Sittaro, Hutengs,
and Vohland 2023; Tonnang et al. 2017). In terms of
the influence of environmental variables on the dis-
tribution of the avocado pollinators and flower visi-
tors, the present study suggests that the distribution
of the pollinators and flower visitors had a negative

correlation with high wind speed (>2.5ms™', Figure

S2 in Supplementary). There is a likelihood of
increased resistance of the flight of A. mellifera and
Syrphidae pollinators with high wind speed, espe-
cially in the opposite direction (not measured in this
study). This may cause a reduced flower visitation
rate, consequently reducing their distribution
(Hennessy et al. 2020). Wind speed has also been
observed to contribute to an increased rate of cooling
of some Diptera pollinators (Inouye et al. 2015). The
high precipitation (>40mm, Figure S2 in
Supplementary) reported in this study area may be
unsuitable for the distribution of A. mellifera and
Syrphidae pollinators, and Calliphoridae flower visi-
tors. Previous studies have highlighted how high



rainfall negatively affects the foraging and flight activ-
ities of A. mellifera pollinators, which may have
resulted in their lower occurrence (Gonzalez et al.
2009).

Average temperature can positively affect the sur-
vival, development, and reproduction of crop insect
pests, thus affecting their distribution (Zingore et al.
2020). Studies have indicated that T. leucotreta sur-
vives and propagates successfully in a temperature
range between 16°C and 30°C (Jager and Marthalise
2013). Likewise, Choi et al. (2020) reported that the
same temperature range positively influenced the
fertility of B. dorsalis in the laying of eggs. Moreover,
slope (>0%, <10%, Figure S2 in Supplementary),
which is a derivative of elevation, positively influ-
enced the spatial distribution probability of both
B. dorsalis and T. leucotreta. This result corroborates
Odanga et al. (2018) who found that B. dorsalis dis-
tribution increased as elevation decreased, since
B. dorsalis is a lowland pest. On the other hand, this
study demonstrated that wind speed negatively
affected the distribution of B. dorsalis, which implies
that regions with high wind speed (=3.2 ms™’, Figure
S2 in Supplementary) would, for instance, negatively
affect the flight of B. dorsalis, hence affecting their
distribution (Susanto et al. 2022).

Co-occurrence analysis revealed that a large area of
Kandara exhibited medium to high-probability co-
occurrence of the studied pollinators, flower visitors,
and pests individually and combined. Sharing of the
ecological niches between the studied pollinators,
flower visitors, and pests may cause the competition
for resources, especially by the dominant pollinator
and pest thus affecting the populations of other pol-
linators, flower visitors, and pests (Mahmoud et al.
2020). Nonetheless, there is a possibility of “minor”
pollinators, flower visitors and pests to adapt to new
ecological niches for their survival (Hassani et al.
2022).

4.2. Species abundance and generalized linear
modelling

In this study, A. mellifera (order Hymenoptera) was
more abundant, compared with Syrphidae (order
Diptera) pollinators and Calliphoridae flower visitors
(order Diptera). Earlier studies have shown that
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A. mellifera has been observed to be the most abun-
dant pollinator in fruit crop systems including avo-
cado (Kjehl, Nielsen, and Stenseth 2011), although
A. mellifera is often a managed species. The
B. dorsalis avocado pest was more abundant than
T. leucotreta, presumably owing to the presence of
other suitable host plants, e.g. mangos, which were
also in their fruiting season during the time of the
field data collection.

The relationship between average temperature
and morning relative humidity was negative to the
abundance of A. mellifera since these pollinators pre-
fer to start most of their activity at lower temperatures
(12°C to 13°C) and because moderate morning rela-
tive humidity provides warm and cooler conditions
that also increase their activity (Nikolova et al. 2016).
On the other hand, wind speed showed a positive
relationship with the abundance of A. mellifera in
this present study, but Hennessy et al. (2020) have
reported that an increase in wind speed increased the
resistance of the flight of bees, thereby causing fewer
flowers to be visited. The negative relationship of
abundance of A. mellifera with the aspect and hill-
shade, which are both derivatives of elevation, can
be explained by the species-area relationship,
whereby an increase in elevation may also affect the
air temperature, which tends to be cooler than the
minimum temperature for A. mellifera activity
(Lefebvre et al. 2018). On the other hand, precipitation
showed a positive relationship with the abundance of
A. mellifera, although high precipitation may cause
mechanical difficulty in the flight of A. mellifera,
thereby affecting the visitation of these pollinators —
hence lower count observations (Lawson and Rands
2019). Surprisingly, no environmental variable was
significant to the abundance of A. mellifera suppo-
sedly because of the near indistinctive differences in
the abundance counts among the different observed
farms.

The positive relationship between the abundance
of B. dorsalis and T. leucotreta and average tempera-
ture and afternoon relative humidity can be explained
by the importance of temperature and moisture in
improving pest egg formation (Potting and van der
Straten 2010; Rashmi et al. 2020). Interestingly in this
study, the abundance of B. dorsalis is shown to be
positively correlated with hillshade and aspect, which
are derivatives of elevation. This is contrary to Odanga
et al. (2018), who found that B. dorsalis populations
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are negatively correlated with an increase in eleva-
tion. On the other hand, slope, and hillshade, which
are derivatives of elevation, showed a negative rela-
tionship with the abundance of T. leucotreta. Odanga
et al. (2018) demonstrated the fact that these pests
exhibited no distinguishing characteristics across dif-
ferent altitudinal ranges owing to their wider toler-
ance to temperature ranges, which are also affected
by altitude.

The negative relationship between the abun-
dance of B. dorsalis and T. leucotreta and precipita-
tion is presumably caused by the inhibition of
survival of the larva-pupal stage of the pest,
which is inhibited when soil moisture is beyond
the field capacity, while T. leucotreta is more pre-
sent in warmer humid areas (Montoya, Flores, and
Toledo 2008; Potting and van der Straten 2010).
Wind speed had a negative relationship with the
abundance of B. dorsalis in the present study, in
that an increase in the speed of wind, especially in
the opposing direction, can cause flight resistance
of the pest, thus affecting their flight to the tar-
geted area (Susanto et al. 2022). On the contrary,
Verghese et al. (2006) found that wind speed had
a positive relationship with the abundance of
B. dorsalis, as the wind can also be a medium of
dispersing the metathyl food lure for B. dorsalis,
hence attracting them, and subsequently increas-
ing the abundance of B. dorsalis catches. An
increase in solar radiation causes an increase in
temperature, whereby extremely high tempera-
tures negatively affect B. dorsalis (Shrestha, Thapa,
and Gautam 2019). The relationship between the
abundance of B. dorsalis and precipitation, aspect
and hillshade was significant (p < 0.05), supposedly
because of the contribution of these variables to
temperature variations.

The positive relationship between wind speed and
the abundance of T. leucotreta could have influenced
more numbers of T. leucotreta to be trapped, since the
wind may aid the swinging of the traps for an
increased number of T. leucotreta captures (Moore
2019). Presumably, the significance (p < 0.05) of the
relationship of the abundance of T. leucotreta with
solar radiation demonstrated in the results was
caused by the direct temperature effect on the degree
of moisture, i.e. relative humidity, thus directly affect-
ing the abundance of T. leucotreta (Potting and van
der Straten 2010).

The relationships between the abundance of
Syrphidae and Calliphoridae and the environmental
variables observed in this study may be inconclu-
sive. This is because their observed counts in the
sampled farms did not exhibit population densities
that varied significantly for proper interpretation.
A longer sampling period could provide an oppor-
tunity to sample increased species abundance
(Mandela et al. 2018).

This study summarized Hymenoptera excluding
A. mellifera, Syrphidae and Calliphoridae into larger
groups such as families to increase the sample size
suitable for the spatial distribution modeling. This
may result in broadening the ecological niches of
species in the specific orders and families, and so fail
to account for species-specific ecological niches.
However, the findings can be useful in deducing the
general behavior of the respective pollinators and
flower visitors, in comparison with other pollinators,
such as A. mellifera of the Apidae family.

5. Conclusions

This study revealed the possibility of combining accu-
rate remotely sensed variables of cropping patterns
and environmental variables in investigating the spa-
tial distribution and abundance of the avocado polli-
nators, flower visitors, and pests (AUC > 0.70).
Specifically, this study revealed that the studied polli-
nators, flower visitors, and pests had a medium to
high probability of occurrence in Kandara and some
parts of Maragua. Gatanga had a varied probability of
their occurrence, from low to high. This study also
highlighted the dominance of A. mellifera avocado
pollinators and B. dorsalis as avocado pests.
Moreover, the co-occurrence analysis of the avocado
pollinators, flower visitors and pests also demon-
strated the potential regions of their high, medium,
and low simultaneous occurrences. This is crucial in
providing key information necessary for the decision-
makers and farmers in the implementation of IPPM
techniques at a landscape scale. Future studies could
look into the spatial modeling of these insects, during
off-peak and peak flowering and fruiting seasons, in
regions of similar agroecological zone settings. This
would help to capture the diversity of the avocado
insects and compare the most influential variables in
the abundance of these insects in the different sea-
sons. Consequently, this would further aid in the



development of recommender systems for intelligent
implementation of sustainable development efforts,
such as IPPM.
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