
Submitted 12 December 2022
Accepted 11 March 2024
Published 22 April 2024

Corresponding author
Olaitan I. Awe, laitanawe@gmail.com

Academic editor
Vasco Azevedo

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj.17181

Copyright
2024 Omar et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Investigating antimicrobial resistance
genes in Kenya, Uganda and Tanzania
cattle using metagenomics
Kauthar M. Omar1, George L. Kitundu1, Adijat O. Jimoh2,3, Dorcus N.
Namikelwa4, Felix M. Lisso1, Abiola A. Babajide5, Seun E. Olufemi6 and
Olaitan I. Awe7,8

1Department of Biochemistry and Biotechnology, School of Pure and Applied Sciences, Pwani University,
Kilifi, Kenya

2Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,
University of Cape Town, Cape Town, South Africa

3Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency,
Abuja, Nigeria

4Department of Data Management, Modelling and Geo-Information Unit, International Centre of Insect
Physiology and Ecology, Nairobi, Kenya

5 South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
6Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
7African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
8Department of Computer Science, University of Ibadan, Ibadan, Oyo State, Nigeria

ABSTRACT
Antimicrobial resistance (AMR) is a growing problem in African cattle production
systems, posing a threat to human and animal health and the associated economic
value chain. However, there is a poor understanding of the resistomes in small-holder
cattle breeds in East African countries. This study aims to examine the distribution
of antimicrobial resistance genes (ARGs) in Kenya, Tanzania, and Uganda cattle
using a metagenomics approach. We used the SqueezeMeta-Abricate (assembly-
based) pipeline to detect ARGs and benchmarked this approach using the Centifuge-
AMRplusplus (read-based) pipeline to evaluate its efficiency. Our findings reveal a
significant number of ARGs of critical medical and economic importance in all three
countries, including resistance to drugs of last resort such as carbapenems, suggesting
the presence of highly virulent and antibiotic-resistant bacterial pathogens (ESKAPE)
circulating in East Africa. Shared ARGs such as aph(6)-id (aminoglycoside phos-
photransferase), tet (tetracycline resistance gene), sul2 (sulfonamide resistance gene)
and cfxA_gen (betalactamase gene) were detected. Assembly-based methods revealed
fewer ARGs compared to read-based methods, indicating the sensitivity and specificity
of read-based methods in resistome characterization. Our findings call for further
surveillance to estimate the intensity of the antibiotic resistance problem and wider
resistome classification. Effective management of livestock and antibiotic consumption
is crucial in minimizing antimicrobial resistance and maximizing productivity, making
these findings relevant to stakeholders, agriculturists, and veterinarians in East Africa
and Africa at large.
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INTRODUCTION
According to the World Health Organization, antimicrobials are used for the prevention
and/or treatment of infections in animals, humans, and plants. Antimicrobials include
antibiotics, antifungals, and antiparasitics (WHO, 2021). Antimicrobial resistance (AMR)
refers to the ability of microorganisms such as bacteria, fungi, parasites and viruses to
evolve and become resistant to antibiotics, and when this happens, infections become
more difficult to treat, thereby increasing the risk of disease spread, severe illness, and
ultimately death (Prestinaci, Pezzotti & Pantosti, 2015). This has become a global health
concern worldwide (Donado-Godoy et al., 2015). The emergence of resistance to antibiotics
in microorganisms, especially bacteria, is partially due to the existence of resistance genes
(Zalewska et al., 2021), and farm animals, such as cattle being the prime reservoirs for these
genes (Kim & Ahn, 2022).

Despite the importance of antimicrobials in the livestock sector, with reference to
veterinary medicines used for the treatment of animal infections and growth promotion of
animals, the uncontrolled, subtherapeutic doses of antibiotics in cattle farms can promote
the growth of bacteria that are antibiotic resistant, which in turn affects the changes in
microbial metabolism of the animal’s rumen and the global health crisis associated with
antibiotic resistance (Maron, Smith & Nachman, 2013; Economou & Gousia, 2015). The
transmission of antibiotic resistance genes (ARGs) occurs majorly through conjugation,
which refers to horizontal gene transfer that exchanges mobile genetic elements, such as
plasmids and transposons that code for ARGs between bacterial species (Redondo-Salvo et
al., 2020). Bacteria can also develop antibiotic resistance through chromosomal mutation
that empowers them with the ability to withstand high concentrations of antimicrobials
from recurrent exposure (Baym et al., 2016). In other cases, they have natural resistance due
to the presence of an impermeable cell membrane or lack of an inherent target molecule
for the antibiotic to counter against (Mann et al., 2021).

In Africa, reports indicate that the continent has the lowest antimicrobial usage in
animals worldwide (World Organisation for Animal Health (OIE), 2020), even though
a high incidence of resistance to antimicrobials have been observed in foodborne
pathogens isolated from animals and animal products (Van Boeckel et al., 2019).
However, there is limited data in East Africa on antimicrobial knowledge, attitudes,
and practices (KAP) (Kemp et al., 2021). It has been recorded that the extensive usage of
antimicrobials/antibiotics for treatment of dairy cattle infected with certain pathogens
encourages the development of resistant strains in such host animals (Vincent et al., 2018).
Research shows that in East Africa, AMR is linked to human-animal contact, community
transmission of resistant bacteria, and ease of access to cheap antibiotics (Omulo et al.,
2015) but there is little information on the source, diversity, as well as the distribution of
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antimicrobial resistant genes in themost non-cultivable environmental bacterial-pathogens
in Africa.

The shown ability to project AMR from genetic sequencing data is a significant leap in
resistome surveillance. There have been efforts to model the evolution of viral pathogens
like SARS-CoV-2 using genomic sequence data (Awe et al., 2023), HIV-1 evolution in sub-
Saharan Africa (Obura et al., 2022), biomarker discovery (Chikwambi et al., 2023; Nyamari
et al., 2023; El Abed et al., 2023), malaria/CoVID-19 biomarker discovery (Nzungize et
al., 2022), analysis of RNA-seq and ChIP-seq data (Ather et al., 2018), and Ebola Virus
comparative genomics (Oluwagbemi & Awe, 2018). Genomics and bioinformatics have
been reported to be playing a key role in newborn screening (Wesonga & Awe, 2022) and in
agriculture. For instance, there have been computational methods to define gene families
and their expression in legumes (Die et al., 2019). High sensitivity, which is the ability
to recognize AMR determinants associated with antimicrobial resistance phenotype and
high specificity, which is the ability to recognize the absence of AMR determinants in
an antimicrobial susceptible phenotype have been observed depending on the bacterial
species studied (Hendriksen et al., 2019a; Hendriksen et al., 2019b). One of the methods
that can be used in analysing DNA sequences is metagenomics. Metagenomics refers to the
study of the structure and function of the total nucleotide sequences which is isolated and
analysed from the entire community of micro-organisms present in a sample (Thomas,
Gilbert & Meyer, 2012). A notable technique called shotgun metagenomics, studies the
genetic content of an environmental sample by extracting and sequencing its microbial
community’s total genomic DNA. As a result, this technique yields a substantial overview of
themicrobiota and allows for the simultaneous investigation of the taxonomic classification
and functional aspects of the microbial communities (Kibegwa et al., 2020), as compared
to its counterpart, amplicon sequencing approach which only targets a particular region
of the community’s genomic DNA. Hence, shotgun metagenomics is the most suitable
approach for our study.

According to the East Africa Integration agenda, the East African Community (EAC)
aims at transforming the region into a single market (Umulisa, 2020). This means goods
and services will be moving across different partner states and that includes the most
widely used dairy products from cattle. For milk alone, Eastern Africa is recorded as the
first and leading milk-producing region in Africa. It represents 68% of the continent’s
milk production with Kenya and Tanzania being amongst the biggest dairy producers in
Africa (Bingi & Tondel, 2015). All of this, when integrated into the value chain, creates
employment opportunities through businesses done by the movement of products around
the member states.

An understanding of circulating resistomes is thus crucial since cattle management
becomes quite difficult with disease burden, leading to a reduced production as well as
increasing production costs, which threatens the economic growth agenda of the EAC.
In this case, it is important to understand the emergence of resistomes within the states
implicated to better manage livestock in maximizing production and lowering risk and
production costs. In addition to the cost-related benefits of the study, the outcomes will
assist stakeholders in a large extent to improve the standardization protocols that control
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Table 1 Metadata describing experimental aspects of the samples obtained from each country.

Country Size (.gz format) Sample count Sample type Sequencing Platform Collection date

Kenya 2.6 Gb 47 (single end) Rumen liquor and fecal Illumina Miseq 2016
Tanzania 1.6 Gb 36 (single end) Fecal Illumina Miseq V3 2015 and 2016
Uganda 23.2 Gb 06 (paired end) Fecal Illumina Hiseq X-Ten 2016 and 2017

the circulation of cattle-derived products and guide veterinarians on informed decisions
on how to efficiently manage clinical cases.

METHODS
Workflow
Data acquisition
Metagenomics data of Kenyan, Ugandan and Tanzanian cattle gut microbiome was
obtained from public repositories. The data was obtained using the search method
described in Supplementary methods: Data Search. The Kenyan and Ugandan datasets
were retrieved from ENA under bioprojects PRJEB28482 and PRJEB20456 respectively,
using fasterq-dump from the NCBI SRA Toolkit (https://github.com/ncbi/sra-tools/wiki/01.-
Downloading-SRA-Toolkit). All samples from bioprojects PRJEB28482 (Kenya dataset)
were used but only six samples (samples ERR1950666 to ERR1950671) from the bioproject
PRJEB20456 (Uganda dataset) were used. This was because Uganda dataset had a
significantly higher read depth per sample than the Kenya and Tanzania datasets. The
grabseqs tool (Taylor, Abbas & Bushman, 2020) was used to retrieve the Tanzania dataset
fromMG-RAST server (Meyer et al., 2008) under the project mgp81260. Table 1 highlights
the total number of samples and size of dataset obtained from each country.

Quality control
Fastqc was used to assess the quality of the raw reads (Andrews, 2010). Multiqc was used
to generate an aggregate report for all fastqc reports per country (Ewels et al., 2016). The
retrieved reads were all of good quality with a quality score (Q) greater than 20; thus, we
saw no need to further trim them to much higher qualities since from Q ≥ 20 is within
tolerable limit for Illumina data without interfering with subsequent downstream analyses.

Metagenomics data analysis
The initial metagenomics analysis of taxonomic abundance and functional annotation was
achieved with SqueezeMeta v1.5.1 (Tamames & Puente-Sánchez, 2019), which is a pipeline
that constitutes all the steps from assembly of reads to functional annotation. Megahit
was used for assembling (Li et al., 2015). Prinseq was used to remove short contigs (<200
bps) and determine contig statistics (Schmieder & Edwards, 2011). Barrnap was used to
predict RNAs (Seemann, 2014). RDP classifier was used to taxonomically classify 16S rRNA
sequences (Wang et al., 2007). Aragorn was used for predicting tRNA/tmRNA sequences
(Laslett, 2004). Prodigal was used to predict open reading frames (ORFs) (Hyatt et al.,
2010). Diamond (Buchfink, Xie & Huson, 2014) was used to search for similarity between
eggNOG (Huerta-Cepas et al., 2015), GenBank (Clark et al., 2015), and KEGG (Kanehisa,
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2000). Searches for HMM homology were performed using HMMER3 (Eddy, 2009) from
the Pfam database (Finn et al., 2015). Using Bowtie2 (Finn et al., 2015), reads were mapped
against contigs. Binning was conducted using MaxBin2 and Concoct (Wu, Simmons &
Singer, 2015), and Metabat2 (Kang et al., 2019).

Detection of antimicrobial resistance genes (ARGs)
ARGs were detected from the assembly output of the SqueezeMeta pipeline with abricate
version 1.0.1 (tseemann, 2020) using all its built-in databases which include CARD
(Comprehensive Antibiotic Resistance Database) and resfinder, NCBI AMRFinderPlus,
ARG-ANNOT, EcOH, MEGARES 2.00 (Feldgarden et al., 2019; McArthur et al., 2013;
Bortolaia et al., 2020; Gupta et al., 2014; Donado-Godoy et al., 2015; Ingle et al., 2016),
which is the default setting for robustness and sensitivity to ARGs detection.

Benchmarking
To benchmark our analysis workflow (Fig. 1A) containing SqueezeMeta for metagenomics
analysis and abricate for ARG’s identification, we compared the efficiency of our
workflow (Fig. 1A) with our benchmarking workflow (Fig. 1B). The benchmarking
workflow contained AMRplusplus v2.0.2 (Gray & Head, 2008) for resistome identification,
centrifuge version 1.0.4 (Kim et al., 2016) for taxonomic assignment and Krona version
2.8.1 (Ondov, Bergman & Phillippy, 2011) for the visualisation of taxonomic profiles. It
is worth mentioning that generally (Fig. 1A) workflow was assembly based and (Fig. 1B)
workflowwas read based. In this way we were also assessing the efficiency of assembly-based
methods against read based methods in the identification of ARGs in our study.

Data visualization
A key stage in data analysis is the interpretation of the obtained results from different
sequence analysis tools. This can be done by using plots, graphs, tables etc, depending on
the results you have and the question you are trying to answer. Given our study objectives,
which aimed to present taxonomic and functional annotations and the visualization of the
identified drug classes and ARGs identified, we relied heavily on the use of R and Python
programming languages as well as Krona for the visualisation of centrifuge in particular.
Portions of this text were previously published as part of a preprint (Omar et al., 2023).

RESULTS
Taxonomic microbial abundance and functional annotation
Assessment of taxonomic composition is essential in any metagenomics study. It provides
you with the insights needed to draw necessary conclusion with regard to your study. In
our case where we were interested in detecting antimicrobial resistance, annotating the
potential taxonomies found in our samples aids in giving an idea of the severity of resistance
and possible mechanism of transmission of these genes across different bacteria if at all
certain strains linked with horizontal gene transfers are to be identified. In this section, we
highlight the taxonomic and functional abundance of our analysis samples.
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Figure 1 Pictorial representation of the analysis workflows. (A) The assembly based workflow using
SqueezeMeta pipeline and abricate. (B) The benchmarking read based workflow using AMRplusplus
pipeline, centrifuge and Krona.

Full-size DOI: 10.7717/peerj.17181/fig-1

Taxonomic Microbial Abundance in Kenya, Tanzania and Uganda
Kenya. Our results highlight some of the details regarding the possible taxonomic
composition and functional capacity of microbial communities in samples from each
country. In Fig. S1A, a greater proportion of reads were unmapped in the Kenyan dataset.
The phyla Bacteroidetes, Proteobacteria and Firmicutes were observed to be the most
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Figure 2 The cattle rumen liquor and fecal excreta metagenome fromKenya, Tanzania and Uganda.
Taxonomical assignment was done directly from the metagenomic reads using centrifuge and the tax-
onomical classification results were imported into Krona for visualization. The hierarchical taxonomic
levels are from Kingdom to species from center to the edges respectively but some phyla are within clade
groups like Firmicutes phylum in the Tetrabacteria group (clade). (A) Kenyan samples. (B) Tanzanian
samples. (C) Ugandan samples.

Full-size DOI: 10.7717/peerj.17181/fig-2
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abundant in decreasing order, with Proteobacteria being most abundant in some samples.
All viruses were unclassified here. Similarly, at the family level of prokaryotic abundance,
there was a large percentage of unmapped reads as shown in Fig. S2A, produced by
SqueezeMeta in the co-assembly mode and the most abundant families were Prevotellaceae
and Bacteriodaceae. Pseudomonadaceae was prevalent in a few of the sample reads with a
spiked abundance level.

Figure 2A was generated using the custom pipeline (Fig. 1B) to benchmark taxonomic
assignment of the metagenomic results obtained from SqueezeMeta. At the phylum level,
Proteobacteria was generally observed to be most abundant as seen in some of the samples
from the SqueezeMeta pipeline. However, at the family level, Pseudomonadaceae was
observed to be most abundant, which is consistent with what was observed in some
samples of the analysis with SqueezeMeta. Here, a better species resolution is observed.

Tanzania. In the Tanzanian dataset, Proteobacteria, Firmicutes and Bacteroidetes are the
most abundant phyla (Fig. S1B), a similar observation to that of Kenya. Based on the
co-assembly generated by SqueezeMeta, majority of the reads were abundant for the
family—Pseudomonadaceae in a few samples, followed closely by Comamonadaceae and
Oxalobacteraceae (Fig. S2B). As seen previously with the Kenyan samples, a high proportion
of reads were also unmapped. There were unclassified abundances of bacteria and viruses
observed in the taxonomy as well.

The benchmark with Centrifuge i.e., a tool used to implement the custom pipeline,
was used to assign taxonomic labels to sequence reads from Tanzania (Fig. 2B). The plot
also shows species-level assignment as compared to the plot generated from SqueezeMeta.
Interestingly, in both plots (Fig. S1A and Fig. 2B), there is a high percentage of the
phylum—Proteobacteria and unmapped reads as well as a minute level of virus abundance.
However, in this plot (Fig. 2B), it details and expands more on the Proteobacteria phylum,
such as the divisions - Alphaprotobacteria, Gammaproteobacteria, and the gram-negative
bacteria - Pseudomonas fluorescens, P. azotoformans, Enterobacteriaceae etc.

Uganda. With the Ugandan dataset (Fig. S1C), there was an uneven distribution of
abundances for each phylum in the few samples retrieved from the dataset. The most
abundant were Firmicutes, Proteobacteria and unmapped or unidentified sequence reads.
Fusobacteria and Bacteroides were only prevalent in a few of them. The most prevalent
families observed were Enterobacteriaceae and Oscillospiraceae.

The benchmark results clearly resolve the most abundant phylum to be Proteobacteria
(Figs. S1C and S2C). The taxonomic classification in the Fig. 2C is similar at the family
level with SqueezeMeta results having the most abundant family as Enterobacteriaceae. At
species level (Fig. 2C), there is a presence of ESKAPE pathogens: Enterobacter spp, Klebsiella
pneumoniae and Pseudomonas aeruginosa.

Functional annotation of Kenya, Tanzania and Uganda samples
Functional annotation provides an overview of the possible physiological functions that
the microbiome might have while they are in the gut environment. In our case this
informationmay be used to understand the possiblemechanisms that underlie development
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of antimicrobial resistance if any. In our study, a total of 15 KEGG orthologue resistance
genes were functionally annotated in the Kenyan samples (Fig. S3A). The analyses show
that the orthologue—Iron complex outer membrane receptor protein (K02014)—was
enriched in a few of the samples, with expression profiles of TPM (transcripts per million)
above 3,000, while other genes expressed were below 3,000. A similar trend was observed
in the Tanzanian samples (Fig. S3B), with K02014 having high expression levels. On the
other hand, there was a disparity of orthologue resistance genes in the Ugandan samples
(Fig. S3C), as there was an absence of K02014. However, there were high gene expression
profiles in K06147 (ATP-binding cassette, subfamily B bacterial), with TPM levels above
3,000, K07497 (putative transposase) with TPM levels between 2,000 and 3,000 in a few of
the samples. All other gene expression profiles were below 2,000.

Identified AMR drug classes
Understanding the AMR drug classes to which potential AMR genes belong to, helps to
provide an overview of the extent of resistance to antimicrobials and the potential threat
it poses to public health. In this study, four drug classes of resistance common to Kenya,
Uganda and Tanzania were identified from the metagenomic assembled contigs. These
were Tetracycline, Beta-Lactam, Sulfonamide and Streptomycin. However, there was a
varying prevalence to these drug classes in each of the East African countries. Tetracycline
resistance was the highest in Kenya and Uganda, with a prevalence of 27% and 24%
respectively (Figs. S4A and S4C). Lincosamide resistance was only detected in the Kenyan
cattle samples while Streptomycin, Sulfonamide and Spectinomycin resistance was the
lowest at 9% (Fig. S4A). Carbapenem resistance was found solely in Tanzanian cattle
samples. Additionally in Tanzania, resistance levels were lowest for Chloramphenicol and
Trimethoprim (both at 6%). Ugandan samples had 15 unique drug classes, including
Cephalosporin, Streptothricin, Quinolone, Nitroimadazole and others (Fig. S4C). The
highest number of resistance drug classes was found in Uganda, with a total of 15 (Fig. 3A
and Table 2).

On benchmarking our assembly-based approach of ARGs identification with the
read-based method in AMRplusplus, we identified a broader spectrum of drug classes since
the drug classes belonged to ARGs that were directly mined from the reads rather than
the assembly (which does not assemble all reads thus leaving out some information). The
number of drug classes identified from reads in the 3 countries were reported to be 59.
Uganda has all 59 drug classes with 11 unique to Uganda. Tanzania and Kenya had 44 drug
classes each (Fig. S5 and Table S1).

Identified AMR genes
AMR genes in the microbiome pose a possible threat of unmanageable bacterial infections
when the bacteria have virulence factors or acquires virulence factors. In this study,
we evaluated the possibility of antibiotic resistance in the case of an infection by
identifying AMR genes. The Ugandan dataset had the highest number of AMR genes
detected from the assembly, totalling to 111 genes (Fig. 4 and Table 3). The common
AMR genes identified in the three countries studied are aph(6)-id (aminoglycoside
phosphotransferase), tet (tetracycline resistance gene), sul2 (sulfonamide resistance gene)
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Figure 3 Drug classes count identified in Kenya, Uganda and Tanzania from AMR genes mined from
the assembled contigs. The drug classes venn diagram was generated with bioinformatics and evolution-
ary genomics Venn diagram tool from Abricate’s output. A total of 24 drug classes were identified in the
three countries having 22 in circulation in Uganda, seven in Tanzania and six in Kenya.

Full-size DOI: 10.7717/peerj.17181/fig-3

and cfxA_gen (betalactamase gene). The twoAMRgenes unique toKenya include cfxA6 class
A beta (lactamase) and aadA27 (streptomycin/spectinomycin resistance gene) (Table 3).

A total of 1,425 AMR genes were identified from the reads as a benchmark of the
assembly-based approach. Uganda had a total of 1,420 ARGs in circulation, 965 of which
were unique to Uganda, while Tanzania had 403 AMR genes in circulation with 3 unique
to itself. Kenya had 353 genes in circulation which were also found in either Uganda or
Tanzania (Fig. S6 and Table S2). There were many genes identified from reads as compared
to those mined from assembled contigs. This is because during assembly, assembled contigs
exclude some reads which may contain some of the AMR genes.

DISCUSSION
In our study, we performed metagenomic analysis on public datasets generated from cattle
rumen and faecal samples in the three East African countries; Kenya, Tanzania and Uganda.
Our data analysis suggests that Prevotellaceae, Pseudomonadaceae and Enterobacteriaceae
are themost abundant families in Kenya, Tanzania and Uganda respectively. These findings
agree with previous reports (Kibegwa et al., 2020; Okubo et al., 2018). Enterobacteriaceae,
the most abundant family which includes Escherichia coli, the most abundant species in
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Table 2 Drug classes in which resistance was identified in Kenya, Uganda and Tanzania mined from
assembled contigs.

Country’s name Count ARGs drug class

Kenya Tanzania Uganda 4 SULFONAMIDE BETA-LACTAM TETRACYCLINE
STREPTOMYCIN

Tanzania Uganda 2 TRIMETHOPRIM CHLORAMPHENICOL;FLORFENICOL

Kenya Uganda 1 LINCOSAMIDE
Uganda 15 ERYTHROMYCIN AMIKACIN;KANAMYCIN

NITROIMIDAZOLE AMINOGLYCOSIDE
AMIKACIN;KANAMYCIN;QUINOLONE;TOBRAMYCIN
STREPTOTHRICIN RESISTANCE VANCOMYCIN
QUINOLONE PHENICOL;QUINOLONE
CHLORAMPHENICOL CEPHALOSPORIN MACROLIDE
FOSFOMYCIN LINCOSAMIDE;STREPTOGRAMIN

Tanzania 1 CARBAPENEM
Kenya 1 SPECTINOMYCIN;STREPTOMYCIN

Figure 4 AMR genes count in Kenya, Uganda and Tanzania mined from assembled contigs. The Venn
diagram was produced using the bioinformatics and evolutionary genomics Venn diagram tool from Abri-
cate’s output. In total, 120 AMR genes were identified in the three countries, with 111 in Uganda, 16 in
Tanzania, and nine in Kenya.

Full-size DOI: 10.7717/peerj.17181/fig-4
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Table 3 AMR genes present in Kenya, Uganda and Tanzania mined from assembled contigs.

Country’s Name Count ARGs

Kenya Tanzania Uganda 4 aph(6)-Id tet(40) sul2 cfxA_gen
Kenya Uganda 3 tet(O) lnu(C) tet(W)
Tanzania Uganda 5 sul1 aadA1 aadS tet(A) aph(3′′)-Ib
Kenya 2 cfxA6 aadA27
Tanzania 7 floR2 blaTHIN-B blaRm3 tet(G) aadA11 aadA4 dfrB1
Uganda 99 aadA2 dfrA15 tet(44) blaOXY-1-1 blaEC-13 ere(D) fosA4

erm(B) aac(6′)-Ib-cr4 tet(33) erm(Q) msr(D) cmlA1
tet(D) tet(X) mph(B) cfxA2 str dfrA14 lnu(B) vanR-O
blaOXA-347 blaEC-5 hugA qnrS1 cmx blaHER-3 tet(S)
fosA qnrD1 ant(6)-Ia mef(A) lsa(E) dfrF qnrB6 blaOKP-
A-11 tet(M) tet(K) blaOXY-3-1 erm(C) oqxB9 dfrA8
catA14 sul3 tetA(P) blaSED tet(B) erm(F) oqxA10 blaLAP-2
sat2_gen aadA9 tet(32) lnu(AN2) dfrA17 dfrG aad9 fosA8
dfrA23 oqxB20 blaACI-1 catA2 dfrA1 fosA5 blaEC-18
fosA7 aph(3′)-IIIa blaCMY-48 erm(G) qnrB2 tet(Z) qnrB62
tet(L) fosA_gen ant(6)-Ib mef(En2) dfrA12 qnrS13 aadA5
tetB(P) erm(X) dfrA27 blaACT-41 sat4 floR aadE tet(H)
blaCMY-157 mph(A) nimE blaCTX-M-152 blaEC-15 dfrA5
blaCMY-151 GENE oqxA9 blaTEM-1 tet(Q) fosA6

Uganda, has been associated with acquiring antimicrobial-resistance-genes from other
bacteria through horizontal gene transfer, hence acting as reservoirs of AMR genes (Bailey
et al., 2010; Carattoli, 2008). In addition to E. coli, a higher number of ESKAPE pathogens
such as Enterobacter spp,Klebsiella pneumoniae and Pseudomonas aeruginosawere identified
in Uganda. Thus, the presence of high abundance of E. coli and ESKAPE pathogens could
explain the high number of circulating resistomes in Uganda compared to the other East
African countries in the study.

In all three countries, Tetracycline antibiotic resistance was observed to be the most
prevalent. This may be due to the fact that Tetracycline is the most widely used broad
spectrum antibiotic in the East African countries (Kimera et al., 2020). According to
Sangeda et al. (2021), the most common antibacterial agents used in Tanzania are
aminoglycosides, beta-lactams, quinolones, tetracycline, trimethoprim, sulfonamides,
and various antibacterial cocktails, with the tetracycline class topping the list. The
aforementioned findings closely align with our study results to a great extent, as we also
found similar resistances to the drugs described by Sangeda et al. (2021) in the Tanzania
cattle samples. This could be as a result of the all-time culprit, the overuse or incorrect
usage of these antibacterial medications.

The read based method further highlighted that aminoglycosides are the common
resistance drug class shared by all the three countries followed by tetracyclines. Elfamycins
and MLS (macrolides-lincosamides and streptogramins B) resistance was also identified
in Kenya and Tanzania using the read based method. These findings were not featured in
the assembly-based method, hence highlighting the strength of detecting more AMR genes
that read based methods has over assembly-based methods.
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The genes identified to be common in the three countries (aph6-id, tet, sul2, cfxA_gen)
are of public health significance. In several studies, the gene aph6-id, which is an
aminoglycoside resistance gene, has been linked to multi-drug resistant E. coli in cattle
farms in Korea (Belaynehe et al., 2017), Jeddah (Yasir et al., 2020) and Pakistan (Ali et
al., 2021). This gives an indication of the widespread distribution of this gene and
is a critical epidemiological marker that could increase multidrug resistance in other
pathogens through horizontal gene transfer. The genes, tet and sul2 enhance resistance to
sulfonamides and tetracyclines, which are very important antimicrobial classes according
toWHO’s ranking (WHO, 2017). These antibiotics are heavily used in livestock industry in
East Africa (Orwa et al., 2017; Sangeda et al., 2021), and over time, the antibiotic residues
in beef from cattle may constitute a health risk to humans when consumed. The presence
of cfx gene, which encodes for cephalosporin resistance indicates that cephalosporin is also
one of the most widely used antibiotics in East Africa. Altogether, this suggests the need
for approaches that combat the increasing antimicrobial resistance incidences.

Functional annotation was performed using SqueezeMeta pipeline, which generated
heat maps of genes identified in the three EAC countries - Kenya, Uganda and Tanzania. Of
the 15 annotated KEGG orthologues, four exhibited significantly elevated gene expression
profiles corresponding to the sample genes in the three countries. In Kenya and Tanzania,
gene profile K02014 - iron complex outer membrane receptor protein gene, was highly
expressed for some samples as seen in Figs. S3A and S3B. This functional profile gives
survival advantage to the bacteria by helping the bacteria bind to iron-containingmolecules
in the environment, thus enabling them to live longer (Palmer & Skaar, 2016; Caza &
Kronstad, 2013), potentially leading to the transfer of ARGs or acquiring more ARGs
through mutations and horizontal gene transfer.

In Uganda, three KEGG orthologues had a significantly high gene expression profile for
some samples as seen in Fig. S3C. These include; functional profiles K06147—ATP-Binding
cassette subfamily B, K07497—putative transposase and K07483—transposase, in their
respective decreasing expression levels in TPM (Transcripts per million).

According to Vigil-Stenman et al. (2017), transposons play a fundamental role in
bacterial genome-plasticity and host-adaptation, although their transcriptional activity
in the natural bacterial communities has not been largely explored. Thus, the K07497—
putative transposase and K07483—transposase functional profiles as per the KEGG
orthologue heat map in Fig. S3C, suggests the possibility that the introduction and use
of antibiotics triggered the changes in genomic regions (mediated by transposons) of the
bacteria in the samples. Changes in these regions might have resulted into resistant genes
with significant expression in some of the sample genes collected from Uganda.

The use of short reads sequences posed challenges in assembling some reads into contigs.
Lower sequencing depth in the samples for Kenya and Tanzania in the analysis might have
contributed to less observations of drug resistance classes compared to Ugandan samples.
Moreover, there was not enough gut metagenomic samples available for all the three
countries for our analysis. This hampered having solid conclusion on the resistome status
in the three countries.

Omar et al. (2024), PeerJ, DOI 10.7717/peerj.17181 13/21



CONCLUSIONS AND NEXT STEPS
Antimicrobial resistance to drugs and other therapeutics is consistently on the rise, as
evidenced by the findings of several studies emphasising the numerous routes by which
bacteria harbouring AMR genes may be transmitted to humans. Based on the economic
value of cattle in Africa, and beef being a common source of protein, we focused on the
East African cattle to determine which AMR genes would be found through shotgun
metagenomic analysis. Our findings indicate that East African cattle’s gut microbiome
has a wide range of antibiotic resistance genes. Thus, the need for the development of
new antibiotic drug classes to suppress the effects of bacteria harbouring AMR genes.
Furthermore, the potential of transmission from cattle to humans poses a larger threat.

This study gives an overview of the current state of antibiotic resistance in selected
East African countries. This includes the identification of a wide range of ARGs, including
ARGs linked to multi drug resistance in E. coli such as aph6-id. It also associates high
prevalence of ARGs to the high abundance of Enterobacteriaceae and ESKAPE pathogens.
This information could serve as a signal to authorities coordinating East African integration,
prompting them to modify and/or formulate policies governing antibiotic use and transit
of dairy products across the EAC member nations and Africa at large. It is essential for
them to recognize that the development agenda has a cost, which involves focusing and
incentivizing researchers to conduct more studies on combating antibiotic resistance, to
guarantee a prosperous and harmonious integration of EAC.

Our study acts as a pilot in efforts of AMR surveillance using metagenomics samples
in the EAC region. Here, we benchmarked assembly-based methods against read-based
methods. Based on our two workflows, we noted that read based methods are more robust
for the identification of AMR genes. However, this might vary depending on your research
questions and design.
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