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A B S T R A C T   

Bee farming and beehealth are threatened by climate change, agricultural and agrochemicals intensification, and 
bee pests and diseases. Among these threats, bee pests have particularly been identified as a major obstacle to 
beehealth. Although previous studies have endeavoured to establish bee pests’ spatial distribution, their seasonal 
abundance in the landscape remains poorly understood. Hence, this study sought to determine factors that in-
fluence the abundance and spatial proliferation of bee pests in Kenya. Abundance data on Varroa destructor, 
Oplostomus haroldi, Galleria mellonella and Aethina tumida were collected from apiaries in Kenya during the wet 
and dry seasons. The abundance data were fitted to non-conflating human footprint datasets, satellite derived 
vegetation phenological, topographical and bioclimatic variables. The results indicated a significant (p ≤ 0.05) 
seasonal influence on bee pests’ abundance, while precipitation was the most relevant on most bee pests’ 
abundance prediction models. Topographic and vegetation phenological influence varied across the landscapes 
while anthropogenic influence was comparatively low. High seasonality in bioclimatic variables influenced the 
projected (year 2055) spatial and abundance risk levels of bee pests across the study area. The V. destructor and 
A. tumida prediction models for current and future epochs ranked excellent in their performance, while O. haroldi 
and G. mellonella were ranked good and fair, respectively. Due to their precision, this study concluded that these 
models could reliably be used to establish bee pests’ high-risk areas for management and mitigation purposes.   

1. Introduction 

Bee pollination services are vital for biodiversity, crop production, 
improving food and nutritional security, and conservation of bio(geo) 
diversity (Katumo et al., 2022). In semi-arid Africa with erratic rainfall 
which is unable to support rainfed agriculture, bee farmers directly 
benefit from honey and other hive by-products. Bee farming provides 
supplemental income from hive products such as honey and royal jelly 
(Raina et al., 2011) and enhance conservation efforts. Nevertheless, bee 
farming is threatened by climate change, agricultural and agrochemical 
intensification, habitat alterations, and bee pests and diseases (Muli 
et al., 2014). 

Bee pests are particularly devastating through colony collapse due to 
direct physical injury or indirectly as vectors of pathogens that transmit 
diseases. The impact caused by pests on bee colonies has recently 
attracted profound scientific interest on performance (Fombong et al., 
2012; Muli et al., 2014), spatial extents and proliferation patterns (Adan 

et al., 2021; Kganyago et al., 2018; Makori et al., 2017), and their 
economic impact (Boncristiani et al., 2021). Globally, the most common 
and economically important bee pests are the varroa mites, large hive 
beetles, small hive beetles and wax moths (Fombong et al., 2012; Pirk 
et al., 2016; Torto et al., 2010). Although these pests are known to 
proliferate across agroecological gradients, their abundance, spatial and 
temporal distribution in Kenya remain largely unknown. 

Bee pests have different optimal bioclimatic conditions with signif-
icant variations in temperature, precipitation, net productivity and 
altitudinal range (Peterson and Nakazawa, 2008). The habitats’ biotic 
conditions such as net productivity and vegetation phenology affect bee 
pests’ population dynamics and richness. Specifically, biotic conditions 
affect pest hosts’ agility, vigour and ability to produce and accumulate 
hive products such as bee bread, on which the pests thrive (Baumann 
et al., 2017; Pirk et al., 2016). On the other hand, bioclimatic conditions 
could limit or enhance bee pests’ proliferation and reproduction (Torto 
et al., 2010). Moreover, anthropogenic effects on bee pests and their 
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hosts influence their spatial distribution and proliferation (Winfree 
et al., 2009). For instance, landscape fragmentation and agricultural 
intensification adversely influence landscape continuity, and flower 
diversity and intensity, sustaining the pests’ proliferation (Boncristiani 
et al., 2021). Conversely, human settlements impact bee distribution by 
reducing their nesting sites, habitats and their ability to resist pests’ 
invasion. Therefore, information on human effects on the distribution of 
both bees and their pests are desirable. 

To understand and establish the spatial distribution and proliferation 
of bee pests, machine learning (ML) algorithms provide statistical 
pathways for linking a feature(s) of interest (response) to reliable pre-
dictor variables such as biotic, bioclimatic and anthropogenic factors in 
space and time (Diao and Wang, 2014; Strebel et al., 2022; Uusitalo 
et al., 2019; Wulder et al., 2022). To achieve accurate and realistic bee 
pests’ predictions, predictor variables should be carefully and meticu-
lously selected. Satellite-based variables such as vegetation phenology 
and derived human footprint are continuous observations with better 
spatial and temporal resolutions that could capture ‘actual’ landscape 
patterns and human distribution patterns (Cord et al., 2014; WCS and 
CIESIN, 2005; Zhang et al., 2013). Moreover, response variables such as 
bee pests’ abundance, with the ability to provide extra information other 
than ‘location-only’ are necessary for developing optimum management 
options. 

Studies like Makori et al. (2017) have predicted the spatial distri-
bution of bee pests using presence-only data, climate and vegetation 
variables. As previously mentioned, a number of studies have shown the 

value of abundance data in providing reliable information (Baldridge 
et al., 2016; Dallas and Hastings, 2018; Hallman and Robinson, 2020; 
Waldock et al., 2022). Moreover, Makori et al. (2017) used the 
maximum entropy (MaxEnt) model to predict bee pests’ distribution 
using presence-only dataset while there are other algorithms that could 
handle quantitative observations such as abundance, which could be 
explored. Other cutting-edge machine learning algorithms such as 
random forest (RF) (Breiman, 2001) could perform better than MaxEnt 
in predicting the abundance and distribution of species. The RF algo-
rithm has been demonstrated to yield high prediction precision and 
accuracy among regression methods (Belgiu and Drăguţ, 2016; 
Izquierdo-Verdiguier and Zurita-Milla, 2020; Parmar et al., 2019; Spe-
iser et al., 2019). Furthermore, the influence of human footprint has not 
yet been included in predicting abundance distribution of bee pests in 
Kenya. This study hypothesized that human footprint could adequately 
explain anthropogenic influence on the distribution of bee pests in 
Kenya. Therefore, this study sought to establish the influence of biocli-
matic, vegetation phenology, topography, and human footprint vari-
ables on the current and future spatial and abundance proliferation of 
bee pests in Kenya. 

2. Methods 

2.1. Study site 

The study was conducted in 38 counties in Kenya encompassing four 

Fig. 1. Study area on the human footprint (human influence index (HII) backdrop indicating regions used to predict proliferation of bee pests in Kenya (within the 
blue outline) and bee pest abundance locations (black points). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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agroecological zones. The study area covers 253,627.10 km2 and spans 
more than half of the country including Nyanza, Western, Rift Valley, 
Mount (Mt.) Kenya, Eastern and Coastal regions (Fig. 1). Abundance 
data were collected from 14 counties comprising of Vihiga and Kaka-
mega (in the western region), Nandi and Baringo (Rift Valley region), 
Embu, Nyeri, Laikipia, Meru and Isiolo (Mt. Kenya region), Machakos 
and Kitui (Eastern region) and Taita Taveta, Kilifi and Kwale (coastal 
region). The study sites varied in elevation from 2 m above sea level at 
the coastal region to 2,045 m above sea level at the Nandi Hills in the 
Rift Valley region. 

The coastal region is a low altitude area with high temperature and 
humidity, with Arabuko Sokoke as the major forest. Human settlement 
and intensification of agriculture are two major threats to natural 
vegetation in the region (Schürmann et al., 2020). Mt. Kenya, Nandi and 
Western regions are characterized by high altitude, low temperature and 
high humidity. Major water towers such as Mau Complex, Cherangani 
Hills and Kakamega Forest are found in these regions. The Tana River 
County in the coastal region, Baringo County in the Rift Valley region 
and the larger Eastern region are characterized by high temperature and 
low humidity, and are predominantly covered by shrubs and few stands 
of Acacia trees. Due to low precipitation, small scale subsistence farming 
is the major socio-economic activity practiced in these regions (Schür-
mann et al., 2020). On the other hand, Kakamega, Kisii Highlands, 
Nandi Hills and Mt. Kenya regions receive higher precipitation, hence 
higher agricultural productivity and are mainly utilized for maize 
farming, a staple food crop in Kenya. In addition, bee farming is used to 
improve household income from hive products and crop production 
through pollination services (Warui et al., 2018). 

2.2. Data collection and pre-processing 

Data used for prediction of bee pests’ proliferation were categorized 
into response and predictor variables. 

2.2.1. Response variables 
Bee pests’ abundance data were collected between March and April 

2014 and June 2015 wet and dry seasons, respectively. A sample point 
consisted of an apiary with five or more hives in one location. The 
apiaries were randomly selected for sampling with help from the local 
community according to the requirements of estimation density across 
the landscape in proportion to population density (Endo et al., 2015). An 
enumeration of all bee pests in selected apiaries was done and data on 
four bee pests species with global economic importance were recorded; 
i.e., varroa mites (Varroa destructor), large hive beetles (Oplostomus 
haroldi), small hive beetles (Galleria mellonella) and wax moths (Aethina 
tumida), using standard methods as detailed in Dietemann et al. (2013) 
and Torto et al. (2010). A total of 45 apiaries had V. destructor, 24 had 
O. haroldi, 38 had G. mellonella and 37 had A. tumida (refer to Table 2 for 
bee pest abundance data), which were acceptable sample size ranges for 
most machine learning modelling algorithm applications (Peterson and 
Nakazawa, 2008). 

The apiaries considered for the four bee pests span across four ag-
roecological zones in the study area, with a representative climatic 
gradient. The Wilcoxon rank sum test was performed to test the signif-
icance influence (p ≤ 0.05) of seasonality on abundance of bee pests 
between wet and dry seasons, following heterogeneous variance obser-
vations (Fagerland and Sandvik, 2009). Further, this dataset was parti-
tioned to 70% for training and 30% for validation purposes before the 
models were developed. 

2.2.2. Predictor variables 
All predictor variables were clipped to the boundaries of the study 

area and resampled and harmonized to the same (base) spatial resolu-
tion as detailed by Makori et al. (2022). Therefore, the align raster op-
tion in QGIS software (QGIS Development Team, 2022) was used to edit 
the resolution of topographical (90 m), bioclimatic (1 km) and human 

footprint (1 km) datasets to that of the vegetation phenology datasets 
that had moderate resolution (250 m). 

2.2.2.1. Vegetation phenology. Vegetation phenology was derived from 
enhanced vegetation index (EVI), acquired by a 250 m resolution 
Moderate Resolution Imaging Spectroradiometer (MODIS) imagery at a 
16-day interval. This study used EVI observations from 2000 to 2021 
(21 years) to derive vegetation phenology variables in TIMESAT soft-
ware environment (Eklundha and Jönsson, 2017). Best fitting was 
achieved using TIMESAT parameter settings as recommended by Makori 
et al. (2017). 

A total of 13 vegetation phenological variables were derived and 
used in this study. These were start of the season time (start_t), end of 
season time (end_t), length of season (length), base value (base), time for 
middle of season (mid), maximum value (max), amplitude (amplitude), 
left derivative (left_d), right derivative (right_d), large integral (large_i), 
small integral (small_i), start of season value (start_v) and end of season 
value (end_v). 

2.2.2.2. Topographical variables. Topographical variables derived from 
a 90-metre pixel resolution (3 arcsec resolution) digital elevation model 
(DEM), were used to model the influence of land morphology on spatial 
distribution and proliferation of bee pests in Kenya. The DEM was ac-
quired by a Shuttle Radar Topography Mission (SRTM) instrument 
(CGIAR-CSI, 2020; Li, 2003). The derived topographical variables 
included topographical position index (TPI), terrain ruggedness index 
(TRI), roughness, aspect and hillshade. 

2.2.2.3. Bioclimatic variables. Bioclimatic variables used in this study 
were obtained from AfriClim (Fick and Hijmans, 2017; Platts et al., 
2015) at 1 km spatial resolution. Bioclimatic variables contain derived 
summaries of rainfall and temperature and describe current (year 2021 - 
historical data over 1970 – 2000) and future (2055 - simulated means 
from 2041 to 2070) conditions. Simulated climatic conditions under 
intermediate CO2 emissions, set by the International Panel on Climate 
Change (IPCC) at representative concentration pathway scenario (RCP) 
4.5 W/m2 (Platts et al., 2015) using total radioactive forcing values were 
used. Twenty-one bioclimatic variables were used for current and future 
timesteps, comprising of 10 temperature-related variables i.e.; mean 
annual temperature (bio1), mean diurnal range in temperature iso-
thermality (bio2), isothermality (bio3), temperature seasonality (bio4), 
maximum temperature warmest month (bio5), minimum temperature 
coolest month (bio6), annual temperature range (bio7), mean tempera-
ture warmest quarter (bio10), mean temperature coolest quarter (bio11) 
and potential evapotranspiration (pet), and 11 precipitation-related 
variables i.e.; mean annual rainfall (bio12), rainfall wettest month 
(bio13), rainfall driest month (bio14), rainfall seasonality (bio15), rain-
fall wettest quarter (bio16), rainfall driest quarter (bio17), annual 
moisture index (mi), moisture index moist quarter (mimq), moisture 
index arid quarter (miaq), number of dry months (dm) and length of 
longest dry season (llds). 

2.2.2.4. Human footprint. The human footprint variable was obtained 
from the global human footprint (IGHP) data of the last of the wildlife 
project, version 2 (v2) of 2005 (LWP-2). The dataset was accessed from 
National Aeronautics and Space Administration’s (NASA) socioeco-
nomic data and applications centre’ (SEDAC) platform (https://sedac. 
ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-ighp/ 
data-download), which provides an anthropogenic effect on natural 
environments across the globe (WCS and CIESIN, 2005). Specifically, 
the dataset provides the human influence index (HII) normalized based 
on biomes. It has a 1-kilometre spatial resolution and integrates human 
population pressure, landuse, infrastructure and human access. 
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2.2.3. Variable selection 
Variables used for model predictions were carefully selected to avoid 

multicollinearity that could lead to volatility in model performance 
(Dormann et al., 2013). However, before testing for multicollinearity, 
the recursive feature elimination (RFE) criteria in the ‘caret’ package in 
R was used to provide insight on the minimum number of uncorrelated 
variables that could yield comparable prediction results (Darst et al., 
2018; Makori et al., 2022). To select preferred prediction variables, a 
two-stage elimination criterion was performed, firstly using variable 
inflation factor (VIF) and Pearson correlation coefficient. This was 
meant to reduce multicollinearity amongst predictor variables while 
establishing orthogonal variables that were most suited for bee pests 
prediction models (Dormann et al., 2013). Secondly, multiple regression 
models were utilized to regress each predictor variable against all other 
variables to detect collinearity while computing VIF for each combina-
tion (Plant, 2012). This step was used to select important prediction 
variables from the pool while iteratively eliminating those with high 
linear regression coefficients. 

The Pearson correlation coefficient was set at th = 0.7 (r ≥ 0.7) as the 
first threshold for best results. The second threshold was set using the 
‘vifstep’ function in ‘usdm’ package in R (Naimi and Araújo, 2016). This 
was used to further assess collinearity among variables from the first 
step while eliminating collinear ones with more than 10 VIF values. The 

resultant correlation matrix (Fig. 2) indicated that some predictor var-
iables tagged important for bee pests’ distribution were correlated. For 
instance, start of season time (start_t) and rainfall driest quarter (bio17) 
were highly correlated. Hence, 14 important and uncorrelated predictor 
variables were selected for building the models when fitted with 
response variables (Araújo et al., 2019). 

2.3. Fitting modelling environment 

Bee pests’ abundance observations were related to selected uncor-
related predictor variables using machine learning random forest (RF) 
algorithm. The RF ecological niche modelling environment was 
employed in the ‘sdm’ package (Naimi and Araújo, 2016) in R software 
(R Core Team, 2021). Each RF model was set to ten iterations model runs 
and an ensemble approach was utilized to estimate species-specific 
mean predictions. Hence, the variations among the predictions were 
harmonized (Hao et al., 2019). The ‘ensemble’ function was used in the 
‘sdm’ package to harmonize results of individual bee pests’ species 
prediction replications using true skills statistics (TSS) weighted 
approach in both the current and future timestamps. A 0.7 TSS cut off 
was used to select the replicate models that were included in the 
ensemble (Hao et al., 2019). 

Predictions were done under both current and future projections for 

Fig. 2. Collinearity matrix indicating correlation interaction of all predictor variables used to predict spatial proliferation of bee pests in Kenya. Red colour denotes 
negative correlation while blue indicates positive correlation. Darker shades of both red and blue colours indicate higher correlation while size and direction of the 
circles show extent and nature of correlation. Circles facing the right side indicate positive correlation and vice versa. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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all bee pests’ species under similar model settings, with simulated cli-
matic and human footprint scenarios. Since projected vegetation 
phenology was unavailable and elevation was assumed not to change in 
the future epoch, their current datasets were also used for future 
predictions. 

2.4. Prediction model validation 

The RF models were evaluated using the coefficient of determination 
(R2) (Equation 1) that was calculated using the R software (Chicco et al., 
2021; Colin Cameron and Windmeijer, 1997; Renaud and Victoria- 
Feser, 2010; Rights and Sterba, 2020). This established the power of 
fit between abundance and environmental suitability represented as 
deviance of fit and the extent which the models could explain the bee 
pest’s abundance distribution. Degree of agreement, sign and signifi-
cance of the models were used to report suitability and prediction power 
of each RF model. Prior to the evaluation, data from each model were 
subjected to covariation linear test and scatter plot reported for each 
prediction model. Then, model prediction power was ranked using a 
modified Swets discriminatory power (Makori et al., 2022; Swets, 1988) 
for each model from fail to excellent (Table 1). 

Equation 1: Coefficient of determination (R2) used to validate the 
developed bee pests’ abundance distribution prediction models. 

R2 = 1 −
SSres

SStot  

where:  

i) SSres is the sum of squares of residuals (unexplained variation)  
ii) SStot is the total sum of squares (total variation) 

3. Results 

3.1. Seasonality influence on bee pests’ abundance 

The Wilcoxon rank sum test with continuity correction performed at 
95 percent confidence interval (p ≤ 0.05) indicated that there was a 
significant difference (p = 0.047) between bee pests’ abundance field 
observations in the wet and dry seasons. Moreover, a visual observation 
showed high seasonal variability for bee pests (Fig. 3). Generally, there 
were more bee pests’ abundance in the wet than the dry season 
(Table 2). The average bee pests’ abundance in the dry season was 42.25 
pest counts with relatively low dispersions around the mean. On the 
other hand, bee pests’ abundance was more (almost five-fold) during the 
wet season with a mean of 199.75 and higher relative dispersions 
around the mean compared to the dry season. The V. destructor had the 
highest difference between seasons (at 6.35 times) while G. mellonella 
had the least seasonal difference (at 0.95 times). 

3.2. Predictor variable selection and bee pests’ abundance predictions 

Twenty seven out of forty-one predictor variables used in the 
collinearity test (Fig. 2) were conflating. Based on their individual in-
teractions and importance they were eliminated from further analysis. 

The selected variables (14) that were non-conflating and ranked high in 
variable importance scale were used to develop refined bee pests’ 
abundance prediction models. The recursive feature elimination (RFE) 
model (Fig. 4) used to test the least variable interaction before elimi-
nating the collinear ones further indicated that only 14 predictor vari-
ables would yield acceptably high bee pests’ abundance predictions. 

Bioclimatic and topographical clusters contributed the highest 
number of variables and logit compared to vegetation phenological 
variables for all pest-specific models. Furthermore, bioclimatic variables 
had the highest influence at 37.4% on V. destructor prediction models 
(Fig. 5). Moreover, temperature seasonality and annual temperature 
range alone had the highest logit at 22.3% on V. destructor’s prediction. 
The left derivative and the start of the season value had a substantial 
single contribution at 14.7% and 14.3%, respectively on predicting bee 
pests’ abundance than any other single variable. Topographical influ-
ence on V. destructor was 30.1%, while vegetation phenological vari-
ables contributed 29.0% logit to this bee pest model. On the other hand, 
human footprint had the second lowest logit at 3.5% on V. destructor 
prediction. 

The bioclimatic variables contributed most logit of 41.1% to 
O. haroldi abundance prediction. Phenological effect was more sub-
stantial at 30.6% than topological effect at 23.8%, suggesting that 
O. haroldi was more sensitive to vegetative food substrate than eleva-
tional variations. Notably, phenological effect was more pronounced on 
G. mellonella contributing almost half (49.6%) of logit to the prediction 
model, followed by topology at 29.7%. The bioclimatic effect on the 
G. mellonella was relatively lower at 17.2% compared to the other bee 
pests. This suggested lower sensitivity of G. mellonella to climatic vari-
ations and more responsiveness to vegetative food substrate. On the 
other hand, A. tumida’s abundance prediction models had a much higher 
logit for topographical variables at 52.7%, indicating high sensitivity of 
the bee pest to topographical variations. Also, hillshade and aspect had 
27.8 %, more than a quarter logit on the A. tumida abundance while 
bioclimatic and vegetation phonological variables contributed 31.2% 
and 8.6% logit, respectively. The anthropogenic effect on bee pests’ 
abundance as indicated by human footprint was highest at 7.4% on the 
A. tumida and lowest at 3.5% on the V. destructor and G. mellonella 
abundance models. 

3.3. Bee pests’ abundance prediction validation 

The coefficient of determination indicated that the V. destructor and 
A. tumida models had a high power of fit between the response and 
predictor variables, hence regarded as excellent (Table 3). However, the 
O. haroldi model was ranked as good while the G. mellonella model was 
ranked fair. Moreover, although its p values at 95% confidence interval 
were highly significant (p ≤ 0.05), the O. haroldi model had a slightly 
lower significance score (p = 2.7e-08). Furthermore, dispersion of 
abundance around the line of best fit was higher in the O. haroldi and 
G. mellonella models compared to others (Fig. 6). This was in line with 
observations using the coefficient of determination for the same pre-
diction models, suggesting that G. mellonella and O. haroldi models were 
comparatively weaker in fitting bee pests’ abundance to environmental 
suitability than the others. 

Table 1 
Model evaluation ranks used to categorise bee pests’ abundance proliferation 
prediction models developed for Varroa destructor, Oplostumus haroldi, Galleria 
mellonella and Aethina tumida in Kenya.  

Pearson’s correlation coefficient (r) value Rank 

0.40 and below Fail 
0.41 to 0.60 Poor 
0.61 to 0.70 Fair 
0.71 to 0.80 Good 
0.81 and above Excellent  

Table 2 
Means of Varroa destructor, Oplostomus haroldi, Galleria mellonella and Aethina 
tumida abundance data collected during the wet and dry seasons in Kenya. The 
seasonal difference show difference between seasons.  

Bee pest species Bee pest count Seasonal difference 
Wet season Dry season 

V. destructor 476.00 75.00 6.35 
O. haroldi 31.00 15.00 2.07 
G. mellonella 20.00 21.00 0.95 
A. tumida 272.00 58.00 4.69 
Mean of total 199.75 42.25 4.73  
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3.4. Bee pests’ proliferation and distribution 

The prediction models indicated varied bee pests’ abundance in 
different regions of the study area. The Mt. Kenya region was predicted 
with a high abundance for V. destructor and A. tumida and moderate 
suitability for G. mellonella. Moreover, these bee pests were predicted to 
be highly abundant in the western, Kisii highlands, Lake Victoria, cen-
tral and coastal regions of Kenya (Fig. 7). These regions have higher 
precipitation compared to the rest of the study site. Western, Kisii 
highlands, Mt. Kenya and central regions experience lower temperatures 
whereas the coastal region experiences higher temperature. On the other 
hand, the eastern region had varied predicted bee pests’ abundances 
while Tana River, Kajiado and other semi-arid regions were predicted 

with low abundance of all bee pests. However, O. haroldi had low pre-
dicted abundance in most regions of the study area in the current epoch 
apart from Mwingi in the eastern region. The latter regions are char-
acterized by relatively dry conditions with low precipitation levels, 
isothermality and high temperatures. These regions exhibit varied ag-
roecological and climatic conditions in line with the predicted abun-
dance. Indeed, rainfall wettest month (bio13), rainfall seasonality 
(bio15) and annual temperature range (bio7) contributed most logit to 
the models. On the other hand, high altitude regions were predicted to 
have a high abundance of all bee pests. Additionally, high precipitation 
and low temperature were observed in regions with high altitudes. Re-
gions with low altitudes were also characterised by low precipitation 
levels, isothermality and higher temperature. These regions were 

Fig. 3. Boxplot for bee pests’ abundance for the dry and wet seasons in Kenya. There was a significant seasonality influence (p ≤ 0.05) between observations in the 
two seasons. 

Fig. 4. The recursive feature elimination (RFE) model indicates that 14 independent features (variables) could yield acceptable prediction accuracy based on root 
mean square error (RMSE). 
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consequently predicted with low bee pests’ abundance. They include 
Narok, Kajiado, Kwale, Tana River, the larger Taita Taveta, Makueni and 
Kitui counties. 

The future abundance predictions indicated a general increase in 
potential bee pests’ risk in most regions of the study area. There was 
both increment in abundance and spatial proliferation across the study 
area (Fig. 8). The maps showed that most parts of the study area pre-
viously predicted with moderate bee pests’ proliferation changed to high 
abundance in the future epoch. Regions predicted with high prolifera-
tion include Mt. Kenya, central, western Kenya, Kisii highlands, Lake 
Victoria, coast and Mwingi in the eastern region. Notably, V. destructor 
(a) and A. tumida (d) had higher proliferation (13,973.15 km2 and 
12,786.62 km2 respectively) while O. haroldi (b) had a moderate pro-
liferation rate (3,076.71 km2). On the other hand, G. mellonella (c) had a 
higher reduction in proliferation (4,588.16 km2) than increase in pro-
liferation (2,771.60 km2) in the future (Table 4). Furthermore, change 
maps (Fig. 9) indicated that most parts of western, Kisii, Lake Victoria, 
Mt. Kenya, central and coastal regions had high bee pests’ proliferation 
in the future, while most parts of eastern regions had changed from low 
to moderate proliferation for G. mellonella (c). Moreover, some parts of 
the study site had reduced proliferation (Table 4 and Fig. 9), which 
indicated that these sites transformed to less suitability for bee pests. 
However, areas with reduced bee pests’ abundance were less compared 

to those with increased proliferation. Bioclimatic data indicated that 
rainfall seasonality and rainfall wettest quarter increased in the future 
epoch compared to current conditions. 

4. Discussion 

There is elevated global interest in beehealth amid increased climate 
change, disturbances on natural environments and food production 
systems. As a supplemental source of income and nutritional source, 
understanding the spatial proliferation of bee threats is vital. Accurate 
and reliable predictive tools that establish extent and severity of po-
tential risks posed by bee pests’ are important in promoting beehealth 
(Makori et al., 2017). In this study, natural variables and human foot-
print patterns were utilized to develop bee pests’ abundance prediction 
models. Bee pests’ abundance data provided spatially explicit and ac-
curate pest population information for improved predictability as 
opposed to modelling using occurrence only. 

4.1. Seasonality influence on bee pests’ abundance 

The effect of seasonality on bee pests’ abundance was apparent. 
There was an average of almost five-fold (4.73) more bee pests during 
the wet season than the dry season. This was more pronounced for 
V. destructor with more than six times (6.35) pests in the wet season 
compared to the dry season (Table 2). Contrary to this study’s findings, 
previous studies have indicated constant infestation patterns of 
V. destructor across all seasons (Strauss et al., 2013). Other than 
G. mellonella, all bee pests were significantly more in the wet season. 
Similarly, Torto et. al (2010) reported higher incidences of A. tumida 
during the wet season. Seasonality directly and indirectly affects bee 
pests’ abundance and distribution through their hosts (honeybees), on 
which they depend for food substrate and feeding on their brood. In 
addition, the hosts collect nectar and pollen from plants, which are 

Fig. 5. Interaction of selected non-conflating predictor variables for Varroa destructor (a), Oplostomus haroldi (b), Galleria mellonella (c) and Aethina tumida (d) 
abundance prediction models in Kenya. 

Table 3 
Coefficient of determination (R2) and probability scores (p-values) of models 
developed for prediction of abundance of bee pests in Kenya.  

Abundance prediction model R2 p Rank 

Varroa destructor  0.88 6.1e-16 Excellent 
Oplostomus haroldi  0.77 2.7e-08 Good 
Galleria mellonella  0.67 4.7e-10 Fair 
Aethina tumida  0.83 2.5e-11 Excellent  
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Fig. 6. Scatter plots indicating the distribution of predicted against observed abundance for Varroa destructor (a), Oplostomus haroldi (b), Galleria mellonella (c) and 
Aethina tumida (d). 

Fig. 7. Predicted current abundance of Varroa destructor (a), Oplostomus haroldi (b), Galleria mellonella (c) and Aethina tumida (d). Blue, yellow and red colours 
indicate low, moderate and high predicted abundance (pests per apiary), respectively. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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affected by seasonal variations. Moreover, seasonality affects the ability 
of honeybees to collect and make food substrate on which the pests’ 
prey. Vegetation phenology indicated a reduction in raw materials 
(nectar and pollen) in the dry season and vice versa. This is influenced by 
mean annual rainfall, rainfall seasonality and rainfall wettest month, 
which are high in the wet season. In addition, both pollen and nectar 
collected from flowering plants triggered by either onset or end of the 
rainy season, are available within apiaries for preying by bee pests 
(Fombong et al., 2012). 

4.2. Predictor variable selection and bee pests’ abundance prediction 

Bee pests proliferate at varying climatic and altitudinal gradients, 
hence could be found across varying agroecological and agroclimatic 
regions (Fombong et al., 2012). Their abundance is dependent on their 
hosts distribution and survival, and various climatic and vegetation 
conditions. Obligate ectoparasites such as V. destructor depend fully on 
their hosts for survival, hence their success and distribution are depen-
dent on the hosts’ resilience and vibrancy. Moreover, generalists’ pests 

such as A. tumida and G. mellonella depend on other food substrates as 
well, hence more susceptible to climatic variations. Predictive models 
developed in this study established that bioclimatic variables contrib-
uted most logit of 17.2% to 41.1% towards the abundance and distri-
bution of bee pests. Additionally, vegetation phenology, topology and 
human footprint had varied contributions across scale at 3.5% to 52.7%. 
Moreover, precipitation variables were more predominant than tem-
perature variables for all the studied bee pests. 

Rainfall wettest month, rainfall seasonality and annual temperature 
range contributed most of the information needed for predicting the 
distribution of bee pests. The models predicted high abundance in re-
gions with high precipitation levels. Moreover, precipitation variation 
affected distribution and abundance of bee pests across space and time. 
There was a positive correlation between precipitation and spa-
tial–temporal distribution of all bee pests as indicated by their current 
increase in abundance and spatial presence in the future epoch (2055). 
Other studies (Makori et al., 2022, 2017; Mwalusepo et al., 2015) also 
recorded a positive correlation between precipitation and insects’ dis-
tribution. Moreover, response variables indicated a significant differ-
ence between abundance observations in the wet and dry seasons 
(Table 2 and Fig. 3). Moreover, Torto et al. (2010) indirectly linked 
proliferation of A. tumida to precipitation via increased forage that 
triggered host colony growth and increase of brood. 

Most predictor variables originally used for prediction of bee pests’ 
abundance in this study were deemed redundant, hence eliminated from 
final prediction models. The recursive feature elimination (RFE) model 
was useful in determining the least number of predictor variables that 
could be used while providing fundamental information necessary for 
accurate prediction of bee pests’ distribution (Fig. 4). In conjunction 
with collinearity and variable importance elimination criteria, model 
prediction power was enhanced while minimizing parametrization and 
volatility. Although vegetation phenological and topological variables 
were not highly palpable towards bee pests’ prediction models and 

Fig. 8. Predicted future (2055) abundance of Varroa destructor (a), Oplostomus haroldi (b), Galleria mellonella (c) and Aethina tumida (d). Blue, yellow and red colours 
indicate low, moderate and high predicted abundance (pests per apiary), respectively. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

Table 4 
Predicted abundance change for Varroa destructor, Oplostumus haroldi, Galleria 
mellonella and Aethina tumida between current and future timestamps repre-
sented in area (km2).  

Class Varroa 
destructor 

Oplostomus 
haroldi 

Galleria 
mellonella 

Aethina 
tumida  

Area (km2) 

Decrease  001,481.43  000,409.36  004,588.16  001,345.22 
No change  238,172.53  250,141.03  246,267.34  239,495.27 
Increase  013,973.15  003,076.71  002,771.60  012,786.62  

Total  253,627.10  253,627.10  253,627.10  253,627.10  
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contributed comparatively lower permutation, they were important in 
sharpening the models as indicated by the number of variables from 
these categories tagged (Fig. 5). Moreover, vegetation phenology sig-
nifies the availability of both pollen and nectar, which are vital to the 
pests’ hosts in producing food substrates and enhancing colony strength. 
Both time and value at the start of the season (start_t and start_v 
respectively), length of the season (length) and right derivative (right_d) 
were among vegetation phenology variables tagged important. All these 
variables are important ecological indicators of nectar and pollen 
availability. Right derivative (right_d) on the other hand indicates min-
imum vegetative matter available for bee foraging in between seasons, 
hence available food substrate to carry both the pests and their hosts 
through the next season. Mt. Kenya, central, Kisii, Lake Victoria, western 
and coastal Kenya regions had high values of these predictor variables 
indicating a positive correlation with bee pests’ abundance, which were 
also high in these regions. 

Slope, terrain roughness index (TRI) and topographical position 
index (TPI) were among the topographical predictor variables that 
contributed most logit to prediction models. Combined permutation 
contribution of topographical predictor variables to bee pests’ abun-
dance prediction models ranged from 23.8% to 52.7%. Indeed, most 
regions predicted with a high abundance of bee pests had high altitude 
such as Mt. Kenya, Cherangani hills, Kisii highlands and areas around 
Mt. Elgon. However, coastal Kenya and eastern regions were predicted 
with a high abundance of bee pests as well. This was in line with pre-
vious studies (Kimathi et al., 2020; Makori et al., 2022, 2017) which 
reported that insects have diverse altitudinal gradients. Although 
topographical variables were crucial in the prediction of bee pests, their 
direct impact could not be conclusively deciphered. Their impact could 
however be derived from altitudinal effect on precipitation, temperature 
regimes and vegetation phenology. In this regard, different categories of 
predictor variables could not reliably be used in seclusion to predict 
distribution of bee pests and should be coupled with other 

complementary predictor variables. 

4.3. Bee pests’ abundance prediction validation 

Model accuracy is dependent on the selection of appropriate 
response and non-conflating predictor variables while circumventing 
redundancy (Araújo et al., 2019). Abundance of bee pests’ species was 
fitted with various predictor variables to determine the best environ-
mental fit. Under the same model settings, two out of four abundance 
prediction models’ performances were ranked excellent (Table 3), 
indicating a more accurate ordering of specificity and sensitivity. The 
O. haroldi and G. mellonella models were ranked good (R2 = 0.77) and 
fair (R2 = 0.67), respectively with comparatively lower accuracy indi-
cating lower ordering of response and predictor variables. Ordering of 
observed versus predicted abundance (Fig. 6) indicated low dispersions 
that pooled closer to the line of the best fit in all models’ performance, 
with slightly higher dispersion on the O. haroldi and G. mellonella models 
with notable outlier abundance scores. Hence, these models suggested 
comparatively higher instability in prediction and thus could not be used 
in seclusion with high certainty to predict proliferation. Despite notably 
lower prediction accuracy in the G. mellonella model, it had insignifi-
cantly low prediction skewness. Consequently, all models developed in 
this study could be used to order sensitivity and specificity. Neverthe-
less, rigorous and robust acquisition of substantially observed abun-
dance data is necessary to improve the predictive power of bee pests’ 
abundance prediction models. 

4.4. Bee pests’ proliferation and distribution 

Climate simulation under different CO2 emission pathways suggests 
an increase in temperature and localized precipitation intensity in the 
future (Platts et al., 2015). Hence, the abundance and agility of most 
beneficial insects such as bees that host some pests will decrease (Torné- 

Fig. 9. Change maps for abundance of Varroa destructor (a), Oplostomus haroldi (b), Galleria mellonella (c) and Aethina tumida (d). Red and blue colours indicate 
positive and negative abundance change (pests per apiary), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Noguera et al., 2014), reducing their ability to defend themselves 
against pests. Moreover, prediction models established a positive cor-
relation between levels of precipitation and bee pests’ proliferation. Bee 
pests’ abundance increased with an increase in precipitation in some 
regions in Kenya from moderate to high (Table 4 and Figs. 7, 8 and 9). 
Furthermore, the Wilcoxon rank sum test with continuity correction 
indicated significant (p ≤ 0.05) differences in observed bee pests’ 
abundance between the wet and the dry seasons (Table 2 and Fig. 3), 
which was more pronounced in V. destructor and A. tumida. Their pre-
diction models revealed notable differences between predicted bee 
pests’ abundance in current and future epochs. Specifically, there was an 
increased area suitable for V. destructor by a total of 13,973.15 km2 and a 
decrease of only 1,481.43 km2. Moreover, A. tumida suitability increased 
by 12,786.62 km2 and decreased by only 1,345.22 km2. The Mt. Kenya, 
central, Kisii highlands, Lake Victoria, western and coastal Kenya re-
gions, characterized by high precipitation, were most affected. In 
addition, these regions have been demonstrated to have higher rainfall 
and temperature seasonality with elevated levels of evapotranspiration 
in the future. The primal climatic conditions for bee pests could have 
shifted with interaction of changing bioclimatic variables. In addition, 
these interactions could affect phenological patterns in the habitats of 
pests and their hosts. A positive shift of precipitation levels in regions 
such as Kitui, Narok and Kajiado directly or indirectly triggered an in-
crease of both suitability and abundance of bee pests in the future epoch 
(Fig. 9). Furthermore, such changes negatively affect bees making them 
more susceptible to pests’ invasion hence increasing their threat levels. 

The inclusion of human footprint dataset and vegetation phenology 
variables improved the predictive power of bee pests’ abundance mak-
ing them more realistic. While human footprint data indicate anthro-
pogenic effect on the prediction models, vegetation phenological 
variables provided data on growing seasons at grain level, hence avail-
ability of food substrates. Moreover, vegetation phenological variables 
were processed from MODIS EVI at higher spatial and temporal reso-
lutions (250 m) as opposed to bioclimatic data (1,000 m). Therefore, 
vegetation phenological variables offered the prediction models higher 
environmental heterogeneity at higher spatial resolution than biocli-
matic variables. Hence, vegetation variations enabled the prediction 
models to identify heterogenous pockets on the landscape which either 
hinder or limit abundance and proliferation of bee pests. In addition, 
vegetation phenological variables were derived from 16-day MODIS EVI 
datasets, which improved the temporal resolution compared to biocli-
matic variables that are interpolated over longer periods and large ho-
mogenous spatial extents. Therefore, vegetation phenological variables 
provided prediction models with detailed near real-time and actual in-
formation that improved their predictive power, hence more credible 
and dependable. 

5. Conclusions 

Amid elevated global interest in climate change and anthropogenic 
influence on natural environments and agricultural patterns, bee 
farming has gained relevance, especially in Africa where food and 
nutritional security are often elusive. However, beehealth is threatened 
by among others, bee pests, which ravage apiaries. This study developed 
abundance and distribution prediction models for four bee pests viz 
V. destructor, O. haroldi, G. mellonella and A. tumida. Abundance data 
were integrated with bioclimate, vegetation phenology, topographical 
and human footprint variables to develop precise and reliable bee pests’ 
abundance prediction models. Two out of four models ranked excellent 
for bee pests abundancy modelling using the coefficient of determina-
tion. Precipitation contributed most logit for the models and seasonal 
variations proved significantly (p ≤ 0.05) influential as indicated by the 
Wilcoxon rank sum test with continuity correction. Furthermore, re-
gions with high rainfall variability and high humidity were predicted 
with higher threat levels of bee pests. Moreover, threat levels were 
predicted to increase both spatially and in intensity (abundance) with 

climate variations. The prediction models developed in this study could 
reliably be used to map high risk areas, where management efforts and 
resources could be employed to curb the spread of bee pests. Therefore, 
they could provide decision makers with essential tools to assuage 
spread of bee pests, hence improving beehealth. 
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Gruber, B., Lafourcade, B., Leitão, P.J., 2013. Collinearity: a review of methods to 
deal with it and a simulation study evaluating their performance. Ecography 36, 
27–46. 

Eklundha, L., Jönsson, P., 2017. TIMESAT 3.3 with Seasonal Trend Decomposition and 
Parallel Processing Software Manual. Lund University. 

Endo, T., Watanabe, T., Yamamoto, A., 2015. Confidence interval estimation by 
bootstrap method for uncertainty quantification using random sampling method. 
J. Nucl. Sci. Technol. 52, 993–999. https://doi.org/10.1080/ 
00223131.2015.1034216. 

Fagerland, M.W., Sandvik, L., 2009. The Wilcoxon–Mann–Whitney test under scrutiny. 
Stat. Med. 28, 1487–1497. https://doi.org/10.1002/sim.3561. 

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate 
surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/ 
10.1002/joc.5086. 

Fombong, A.T., Mumoki, F.N., Muli, E., Masiga, D.K., Arbogast, R.T., Teal, P.E.A., 
Torto, B., 2012. Occurrence, diversity and pattern of damage of Oplostomus species 
(Coleoptera: Scarabaeidae), honey bee pests in Kenya. Apidologie 44, 11–20. 
https://doi.org/10.1007/s13592-012-0149-6. 

Hallman, T.A., Robinson, W.D., 2020. Comparing multi- and single-scale species 
distribution and abundance models built with the boosted regression tree algorithm. 
Landsc. Ecol. 35, 1161–1174. https://doi.org/10.1007/s10980-020-01007-7. 

Hao, T., Elith, J., Guillera-Arroita, G., Lahoz-Monfort, J.J., 2019. A review of evidence 
about use and performance of species distribution modelling ensembles like 
BIOMOD. Divers. Distrib. 25, 839–852. https://doi.org/10.1111/ddi.12892. 

Izquierdo-Verdiguier, E., Zurita-Milla, R., 2020. An evaluation of Guided Regularized 
Random Forest for classification and regression tasks in remote sensing. Int. J. Appl. 
Earth Obs. Geoinformation 88, 102051. https://doi.org/10.1016/j. 
jag.2020.102051. 

Katumo, D.M., Liang, H., Ochola, A.C., Lv, M., Wang, Q.-F., Yang, C.-F., 2022. Pollinator 
diversity benefits natural and agricultural ecosystems, environmental health, and 
human welfare. Plant Divers. 44, 429–435. https://doi.org/10.1016/j. 
pld.2022.01.005. 

Kganyago, M., Odindi, J., Adjorlolo, C., Mhangara, P., 2018. Evaluating the capability of 
Landsat 8 OLI and SPOT 6 for discriminating invasive alien species in the African 
Savanna landscape. Int. J. Appl. Earth Obs. Geoinformation 67, 10–19. https://doi. 
org/10.1016/j.jag.2017.12.008. 

Kimathi, E., Tonnang, H.E.Z., Subramanian, S., Cressman, K., Abdel-Rahman, E.M., 
Tesfayohannes, M., Niassy, S., Torto, B., Dubois, T., Tanga, C.M., Kassie, M., 
Ekesi, S., Mwangi, D., Kelemu, S., 2020. Prediction of breeding regions for the desert 
locust Schistocerca gregaria in East Africa. Sci. Rep. 10, 11937. https://doi.org/ 
10.1038/s41598-020-68895-2. 

Li, J., 2003. Detecting Urban Land-Use and Land-Cover Changes in Mississauga Using 
Landsat TM Images. J. Environ. Inform. 2, 38–47. https://doi.org/10.3808/ 
jei.200300016. 

Makori, D.M., Fombong, A.T., Abdel-Rahman, E.M., Nkoba, K., Ongus, J., Irungu, J., 
Mosomtai, G., Makau, S., Mutanga, O., Odindi, J., Raina, S., Landmann, T., 2017. 
Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely 
Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models. ISPRS 
Int. J. Geo-Inf. 6, 66. https://doi.org/10.3390/ijgi6030066. 

Makori, D.M., Abdel-Rahman, E.M., Ndungu, N., Odindi, J., Mutanga, O., Landmann, T., 
Tonnang, H.E.Z., Kiatoko, N., 2022. The use of multisource spatial data for 
determining the proliferation of stingless bees in Kenya. Giscience Remote Sens. 59, 
648–669. https://doi.org/10.1080/15481603.2022.2049536. 

Muli, E., Patch, H., Frazier, M., Frazier, J., Torto, B., Baumgarten, T., Kilonzo, J., 
Kimani, J.N., Mumoki, F., Masiga, D., Tumlinson, J., Grozinger, C., 2014. Evaluation 
of the Distribution and Impacts of Parasites, Pathogens, and Pesticides on Honey Bee 
(Apis mellifera) Populations in East Africa. PLOS ONE 9, e94459. 

Mwalusepo, S., Tonnang, H.E.Z., Massawe, E.S., Okuku, G.O., Khadioli, N., 
Johansson, T., Calatayud, P.-A., Le Ru, B.P., 2015. Predicting the Impact of 
Temperature Change on the Future Distribution of Maize Stem Borers and Their 
Natural Enemies along East African Mountain Gradients Using Phenology Models. 
PLoS ONE 10, e0130427. 

Naimi, B., Araújo, M.B., 2016. sdm: a reproducible and extensible R platform for species 
distribution modelling. Ecography 39, 368–375. https://doi.org/10.1111/ 
ecog.01881. 

Parmar, A., Katariya, R., Patel, V., 2019. A Review on Random Forest: An Ensemble 
Classifier, in: Hemanth, J., Fernando, X., Lafata, P., Baig, Z. (Eds.), International 
Conference on Intelligent Data Communication Technologies and Internet of Things 
(ICICI) 2018, Lecture Notes on Data Engineering and Communications Technologies. 
Springer International Publishing, Cham, pp. 758–763. 10.1007/978-3-030-03146- 
6_86. 

Peterson, A.T., Nakazawa, Y., 2008. Environmental data sets matter in ecological niche 
modelling: an example with Solenopsis invicta and Solenopsis richteri. Glob. Ecol. 
Biogeogr. 17, 135–144. https://doi.org/10.1111/j.1466-8238.2007.00347.x. 
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