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Draft genome of Microsporidia sp. MB—a malaria-blocking 
microsporidian symbiont of the Anopheles arabiensis
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ABSTRACT We report the draft whole-genome assembly of Microsporidia sp. MB, 
a symbiotic malaria-transmission-blocking microsporidian isolated from Anopheles 
arabiensis in Kenya. The whole-genome sequence of Microsporidia sp. MB has a length of 
5,908,979 bp, 2,335 contigs, and an average GC content of 31.12%.
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M icrosporidia are microscopic, obligate intracellular eukaryotes that widely infect 
both vertebrates and invertebrates (1–7). Microsporidia sp. MB is a species of 

microsporidia that infects Anopheles mosquitoes and has been identified as a potential 
malaria transmission-blocking agent, as it can significantly reduce the vectorial capacity 
of Anopheles (8). Moreover, it exhibits positive effects on the fitness of its host, contri­
buting to its spread in host populations (8, 9). Its unique characteristics and life cycle 
adaptations make it an intriguing subject for research in mosquito-borne disease control 
(10). We aimed to sequence and assemble the genome of this important symbiont 
isolated from Anopheles arabiensis mosquitoes in Kenya.

Gravid female mosquitoes were collected in Ahero (34.9190°W, −0.1661°N), West­
ern Kenya and used to set up isofemale family lines. Genomic DNA was extracted 
from dissected ovaries of Microsporidia sp. MB-infected F1 progenies using the pro­
tein precipitation extraction protocol, as previously described, and screened for the 
symbiont using MB18S primers quantitative PCR assays (8). Highly infected samples were 
selected for sequencing after assessing DNA quality using Qubit Fluorometric Quantita­
tion (ThermoFisher Scientific, Waltham, USA). Paired short-insert libraries were prepared 
using KAPA HiFi HotStart Library Amp Kit and sequenced with DNBSeq technology (2 
× 150 bp reads) at BGI Genomics (https://www.bgi.com/global), generating a total of 
326,181,200 raw paired-end reads. SOAPnuke v2.1.8 was employed to filter the reads 
using filtering parameters: “-n 0.001 L 10 -q 0.5 --adaMR 0.25 --polyX 50 –minReadLen 100” 
(11). FastQC v0.11.9 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) (12) 
and MultiQC v1.12 (13) were used for quality assessment. The host reads were removed 
by mapping to the reference genomes of A. arabiensis (GenBank: GCA_000349185.1) and 
A. gambiae s.s. (GenBank: GCA_000005575.1) from the NCBI RefSeq database (release 
219) (http://www.ncbi.nlm.nih.gov/RefSeq/) (14, 15) using the Burrows-Wheeler Aligner 
(BWA) v0.7.17 (https://github.com/lh3/bwa) (16). Samtools v1.3.1 (https://github.com/
samtools/) (17) was used to filter out host-mapped reads. Kraken2 v2.0.8 (18) was applied 
to remove bacterial contaminants using the minikraken_8 GB_20200312 database. 
The clean reads were de novo assembled using Unicycler v0.4.9 (19), and a meg­
ablast search was conducted against microsporidia proteins to remove non-target 
contigs. The raw reads were reassembled to the cleaned assembly using BWA-MEM 
v0.7.17 (16) generating a consensus assembly. A remote BLAST against the NCBI nt 
database was used to identify contigs with high similarity to microsporidia. Gene 
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prediction was performed using GeneMarkS v4.3 (20) (intronless eukaryotic mode), 
and RepeatModeler v2.0.4 (http://www.repeatmasker.org) (21) used to identify repeats 
in the assembly (RepBaseRepeatMaskerEdition-20181026). Genome completeness was 
assessed using Benchmarking Universal Single-Copy Orthologs (BUSCO) v5.4.3 (22) 
against the microsporidia_odb10 database (n = 600) (23) indicating 81% completeness. 
Quality assessment and genome statistics were determined using QUAST v5.2.0 (24), 
revealing a total genome size of 5.90898 Mb spanning 2,335 contigs, with an N50 of 
5,000 bp (Table 1).

Phylogenomic analysis using OrthoFinder v2.5.4 (25) showed Microsporidia sp. MB is 
closely related to Vittaforma corneae within the Enterocytozoonidae group, consistent 
with previous taxonomic classification based on SSU rRNA (4, 8, 10), and contained the 
highest proportion of core BUSCO genes (Fig. 1). Default parameters were used for all 
software except where otherwise noted.
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FIG 1 Phylogenomic analysis of Microsporidia sp. MB alongside genome assembly statistics comparison among the Enterocytozoonidae group of which five 

genomes have been fully sequenced. Nosema granulosis from the Nosematidae group of Microsporidia was used as an outgroup. The tree was constructed 

using maximum likelihood with FastTree v2 (26) based on the 399 single-copy orthologous genes found in all species using OrthoFinder v2.5.4 (25). Protein 

sequences were aligned with MAFFT v7 (27) using default options. Identified genes and species trees were generated on OrthoFinder v2.5.4 (28) and visualized 

on Dendroscope v3.8.4 (29). The phylogenomic tree reveals the close relationship between Microsporidia sp. MB and Vittaforma corneae.

TABLE 1 Microsporidia sp. MB genome assembly statistics

Metric

Assembly size (bp) 5,908,979
Number of contigs 2,335
N50 (bp) 5,000
GC content (%) 31.12
The proportion of repeats (%) 0.57
Number of predicted genes 2,247
Gene density (genes/kb) 0.363
Mean CDS length (bp) 1,108
BUSCO (n = 600)
No. (%) of complete genes 486 (81.0)
No. (%) of complete and single-copy genes 485 (80.8)
Number (%) of complete and duplicated genes 1 (0.2)
Number (%) of fragmented genes 12 (2.0)
Number (%) of missing genes 102 (17.0)
GenBank accession number JAVKTW000000000
SRA accession number SRR25938329
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