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H I G H L I G H T S  

• Biological control (BC) technologies are necessary to address the significant constraint that Fall armyworm (FAW) poses in cereal production in Africa. 
• The study employs a step-by-step modeling approach to map suitable sites of BC technologies, specifically parasitoids (Cotesia icipe). 
• Pest infestation levels are estimated using an evolutionary adaptive Neuro-Fuzzy inference system with a high coefficient of determination (R2) > 0.89. 
• We utilize fuzzy inference theory to accurately map the suitability of different regions in Kenya for the adoption of augmentative biocontrol using the parasitoids 

C. icipe in maize farms. 
• Artificial intelligence-based methods provide an effective advisory tool for guiding the deployment of biological control agents, such as parasitoids, for sustainable 

FAW management.  
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A B S T R A C T   

Fall armyworm (FAW) Spodoptera frugiperda (J. E. Smith) is a major pest affecting cereal production in Africa. 
Biological control (BC) technologies are being promoted as a sustainable alternative to chemical control, which 
can lead to health risks and environmental hazards. However, effective deployment of these technologies re-
quires site-specific recommendations. In this study, we use a step-by-step modelling approach to map suitable 
sites for BC technologies, focusing on the parasitoid Cotesia icipe using the FAW level of infestation, the ecological 
niche of the parasitoid, and the FAW host crop. The level of pest infestation was estimated using an evolutionary 
adaptive Neuro-Fuzzy inference system (R2 > 0.89) while the pest ecological niche was obtained using the 
maximum entropy algorithm (area under curve, AUC > 0.9). A fuzzy operator was used to combine all fuzzified 
variables into a single layer that represents the landscape’s overall suitability for C. icipe in maize farms. Our 
computational findings indicate that C. icipe holds substantial promise as a BC agent in maize farms, with 
suitability levels consistently surpassing 90% throughout maize cropping seasons. The findings demonstrate that 
the utilization of artificial intelligence, combined with data science and knowledge representation, serves as an 
effective advisory tool for guiding the deployment of BC agents, such as parasitoids, for the sustainable man-
agement of FAW. This approach enables informed decision-making and enhances the efficacy of FAW man-
agement strategies by providing valuable insights and recommendations based on data-driven and computer 
intelligence analyses.   

1. Introduction 

The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is one 
of the most recent invasive agricultural pest species recorded in Africa 

(Goergen et al., 2016). Since the first report in 2016, FAW has become a 
key cereal pest throughout the continent, impeding the attainment of 
optimum yield without the adoption of efficient control measures. While 
FAW is recognized as a polyphagous noctuid (Montezano et al., 2018), a 
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recent study by Volp et al. (2022) suggests that certain crops may not be 
as vulnerable as previously thought. Among the affected crops, maize 
has endured the most significant impact, closely followed by sorghum. 
In Africa, maize remains the primary host crop, especially at the seedling 
and vegetative stages (Guimapi et al., 2022; Rwomushana et al., 2018). 
Therefore without proper FAW control, maize yield losses are estimated 
at 50% in low and medium producing zones (De Groote et al., 2020). 

Generally, chemical control, such as conventional pesticides, is the 
primary control strategy used by farmers. However, chemical control, 
although effective, is often financially inaccessible to smallholder 
farmers due to its cost (Baudron et al., 2019). Moreover, it has envi-
ronmental consequences and has been documented to lead to pest 
resistance in certain instances (Muraro et al., 2022; Suganthi et al., 
2022). Hence, environmentally friendly methods for mitigating the risk 
of crop losses are needed (Agboka et al., 2022a) through Integrated Pest 
Management (IPM), and to reduce health risks, protect the environment 
(Soares et al., 2016), and partially replace conventional pesticides. FAW 

IPM package includes monitoring techniques, cultural practices such as 
maize legume intercropping and biological control (BC) using natural 
enemies such as predators and parasitoids (Niassy et al., 2019; Sisay 
et al., 2019; Tepa-Yotto et al., 2021). One of the most successful and 
applied FAW IPM in Africa is the BC approach. 

BC approaches generally include classical, augmentative, and 
conservational methods. In classical BC natural enemies such as insect 
predators and parasitoids are introduced to manage the population of 
invasive pests. In contrast, augmentative BC consists of boosting the 
population of natural enemies through supplementation (Van Lenteren, 
2000; Perez-Alvarez,Nault,and Poveda, 2019; Collier and Van Steen-
wyk, 2004). Conservational BC, on the other hand, focuses on modifying 
landscape habitats to support and sustain the population of natural en-
emies (Pollard and Holland, 2006; Bone et al., 2009). 

Cotesia icipe Fernandez-Triana and Fiaboe (Hymenoptera: Braconi-
dae) have been identified as the dominant indigenous parasitoid of FAW, 
boosting a natural parasitism rate of 33.8–45.3 % (Mohamed et al., 

Fig. 1. Methodological flow diagram illustrating the step-by-step modelling approach for strategic deployment of C. icipe against fall armyworm in Africa.  
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2021; Sisay et al., 2019). While this parasitoid shows promise as a BC 
agent for FAW, pinpointing target-specific deployment areas for efficient 
control remains a significant challenge. This challenge is exacerbated by 
Africa’s diverse agroecological zones and socio-cultural diversity 
(Kyalo, 2019), making it difficult to replicate BC technologies due to 
varying environmental conditions and cultural practices. 

The emergence of advanced artificial intelligence (AI) algorithms has 
revolutionized our ability to understand and model complex biological 
and environmental interactions, including agroecological suitability for 
specific insect species. This shift has led to the adoption of advanced 
computational techniques like Fuzzy Logic and machine learning algo-
rithms, in agricultural pest management. Fuzzy Logic, rooted in classical 
set theory, provides a nuanced graded assessment of data, crucial for 
variables such as pest presence or environmental conditions that do not 
fit neatly into binary categories (Agboka et al., 2022b; Landmann et al., 
2023). Meanwhile, machine learning algorithms excel at recognizing 
patterns, predicting outcomes, and extracting actionable insights from 
vast datasets (Tonnang et al., 2017). The synergy of these methodologies 
is at the forefront of agricultural technologies, enabling precise and 
proactive responses to challenges like pest invasions (Ibrahim et al., 
2022). Although their integration into agriculture, especially in FAW 
management, is an emerging field. 

In this study, we propose a methodology that harnesses data science 
and AI algorithms to recommend suitable sites for scaling up the native 
parasitoid, Cotesia icipe, for effective management and control of the 
invasive Spodoptera frugiperda in Kenya and Africa. Our approach com-
bines data exploration and AI systems to comprehend, analyse, and 
resolve complex interactions in the agroecosystem. By integrating 
multiple information, methods, and approaches, our methodology 
adapts and learns to perform optimally in ever-changing scenarios (Begg 
& Lai, 2008). The resulting models will support the promotion and 
expansion of best practices for FAW management in Kenya and beyond, 
ultimately leading to improved crop yields, reduced health risks, and 
minimized environmental harm. 

2. Methods 

2.1. Overall methodology and assumptions 

Our study combined data science techniques and AI algorithms to 
strategically deploy the native parasitoid, C. icipe, against the invasive 
FAW, in Kenya and across Africa. We used a Neuro-fuzzy algorithm, to 
predict FAW infestation levels and the maximum entropy algorithm 
(MaxEnt) for the geospatial assessment of C. icipe ecological niche. This 
provided insights into FAW-prone areas and parasitoid-favorable 
regions. 

The integration of these results with maize cultivation data layers in 
a Fuzzy set leads to a comprehensive map highlighting optimal regions 
in Kenya where C. icipe can serve as an effective BC against FAW. This 
multi-layered approach allows for a nuanced understanding of the 
interplay between FAW infestation, maize cultivation, and C. icipe po-
tential efficacy. 

Expanding our perspective, we incorporated additional data layers, 
including agroecological zones and the Crop Development Index to 
extend our predictions from Kenya to the entire African continent. This 
provides a pan-African perspective on the strategic deployment of 
C. icipe for FAW management as illustrated in Fig. 1. 

In modelling the parasitoid suitability relative to its host, we made 
three (3) specific assumptions to simplify the complexity while preser-
ving essential ecological principles:  

1) We have directed our focus towards augmentative control methods 
aimed at bolstering the ecosystem’s innate resilience against invasive 
insect pests, such as the FAW. Our study draws from prevalence data 
collected in farms, shedding light on the inherent interactions be-
tween the FAW and indigenous parasitoids in the ecosystem.  

2) The host-plant range for FAW was specifically delineated to maize 
cultivation areas. This geographical constraint inherently defines the 
extent and relevance of our developed models, as their predictions 
are closely tied to regions where maize farming is prevalent. 

Fig. 2. Visualization of membership functions for C. icipe ecological niche, fall armyworm infestation percentage, and cultivated maize area.  
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3) We utilize the diverse agroecological zones of Kenya as foundational 
reference points, establishing them as a prototype for making 
broader projections across the African continent. 

2.2. Variables preprocessing and model development 

2.2.1. Model development and performance assessment 
In this section, we outline our methodology for creating a fuzzy 

membership function, to evaluate the suitability of C. icipe in controlling 
FAW infestations in maize fields in Kenya. We focused on key variables: 
the ecological niche of C. icipe parasitoid, FAW infestation level, and the 
presence of maize. These variables were chosen based on expert con-
sultations and field study patterns. To transform this complex data into a 
model, we employed a ’fuzzification’ process. Raw variable values were 
converted into fuzzy degrees ranging from 0 and 1. Thresholds and value 
ranges for fuzzification were determined through expert insights and 
field observations. For instance, experts provided optimal suitability 
ranges for each variable, and our hands-on field observations confirmed 
or adjusted these insights to align with real-world scenarios. In our fuzzy 
membership function, a degree of 1 symbolizes the optimal contribu-
tion, while a degree of 0 represents the least desirable outcome. This 
allows for quantitative representation, laying the foundation for subse-
quent analyses (Fig. 2). 

Furthermore, a Fuzzy operator combined all fuzzified variables into a 
single layer to represent the overall suitability of the landscape for 
deploying and scaling the BC technology. The algebraic product 
(compensatory operator) of each layer (Robinson, 2003) was used to 
produce a single layer containing suitable sites μSS based on the defined 
variables. The Fuzzy operator (Bone et al., 2005; Garcia et al., 2019a) 
was computed in R statistical software (R Core Team, 2020), and the 
formula is as follows: 

μSS = μ(Inf ) × μ(Env) × μ(Zea) (1)  

where μ(RDS) = the Fuzzy membership function for the impact of FAW 
infestation level in maize farms; μ(Env) = the Fuzzy membership func-
tion for the prevailing environmental condition; andμ(Zea) = the Fuzzy 
membership function for the presence of maize. 

Model accuracy was assessed by comparing predicted suitability 
with actual field recovery points, a method previously employed by 
Agboka et al., (2022a). 

The field observations used for this assessment were collected from 
periodic recovery exercises by icipe. It is crucial to state that, the data 
used for validation exclusively came from the icipe database and had no 
overlap with the data used for the model’s development. To quantify the 
model’s overall accuracy, we calculated the ratio of correct predictions 
to the total predictions. Correct predictions were those that aligned with 
recovery points falling within the intermediate and optimum classes. 

This systematic approach provides a robust evaluation of the model’s 
performance. 

2.2.2. Fuzzy model variables preprocessing 
We identified three key variables to assess the suitability of deploy-

ing C. icipe as a BC agent. These variables include FAW infestation levels 
in maize farms, the presence of FAW host plants (specifically maize), and 
the ecological niche of C. icipe. These factors were thoroughly analyzed 
to evaluate the feasibility of deploying C. icipe for biological pest control.  

a) FAW infestation levels 

The FAW prevalence data (number of infested plants), which covers 
the period from January 2018 to December 2020, were obtained from 
Africa’s Food and Agriculture Organization’s (FAO) sustainable man-
agement program, collected by the FAW Monitoring and Early Warning 
System (FAMEWS) application. This data source was accessed via the 
Food and Agriculture Organization (FAO) platform (http://www.fao.or 
g/fall-armyworm/en/) in a CSV format. We calculated FAW prevalence 
as a percentage using the following formula (FAO, 2018): 

I =
NI

Tn
(2)  

where I is the prevalence of infestation, NI is the number of infested 
plants and Tn represents the total number of plants scouted. 

Recent studies support the idea that fluctuations and dynamics in the 
population of FAW are strongly influenced by current climatic condi-
tions (Caniço et al., 2020). Climatic factors such as temperature, pre-
cipitation, wind speed, solar radiation, and water vapour pressure were 
sourced from the WorldClim platform (www.worldclim.org) at an 
approximate spatial resolution of 1 km (Booth, 2018; Fick & Hijmans, 
2017). In addition, the availability and intake of soil nutrients, partic-
ularly nitrogen, play a significant role in the growth of host plants (Gu 
et al., 2022). This, in turn, has a direct impact on the abundance of pests 
like FAW and the intensity of their attack (Bala et al., 2018). To analyse 
soil-nutriment-related factors, soil data at a resolution of 250 m con-
taining nitrogen and phosphorus nutrient values, was downloaded from 
https://www.isric.org/. 

To reduce dimensionality and address correlations within our data-
sets, we employed statistical techniques in R software (R Core Team, 
2020). Specifically, we utilized Pearson’s correlation coefficient and 
conducted cluster analysis, visualizing the results with a dendrogram. 
The variables with the lowest correlations (as depicted in Fig. 3) were 
subsequently selected as input parameters for our evolutionary Adaptive 
Neuro-Fuzzy Inference System (ANFIS) model. 

The model was developed in Matlab software (The Mathworks, 
2021). The data were partitioned into 70% to develop the model and 

Fig. 3. Dendrogram obtained from cluster analysis with Pearson correlation coefficient. The variables selected for developing the evolutionary Adaptive-Network- 
based Fuzzy Inference System (GA-ANFIS) are in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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30% for accuracy assessment. The evolutionary Adaptive Neuro-Fuzzy 
inference system (GA-ANFIS) is a subset of AI models based on the 
Takagi–Sugeno Fuzzy inference system (Jang, 1993) powered by a ge-
netic algorithm. The GA-ANFIS integrates the benefits of neural net-
works, Fuzzy logic, Fuzzy inference system, and genetic algorithm into a 
single framework (Walia et al., 2015) to automatically generate a set of 
optimal connection weights required to train the Neuro-Fuzzy effi-
ciently, creating a robust model. The rules of the first-degree Fuzzy 
Sugeno model (Sugeno & Kang, 1988) are as follows: r1, r2,…, rn, where 
n represents the number of rules (Nikolić et al., 2015): 

Rule : if w is C and z is D, then r = ax+ by+ c (3)  

where C, and B, are the membership functions for multiple inputs, 
including w and z. For a zero-order Sugeno model, the output level r is a 
constant (a = b = 0). The degree of membership quantifies the contri-
bution of a variable in the context of our model. It can range between 
0 and 1, with 0 indicating no membership and 1 indicating full mem-
bership or maximum contribution of that particular variable. 

As our study centered on Kenya, we segmented the area into 1 km ×
1 km grids using Quantum GIS (QGIS, 2009). For each grid’s centroid 
coordinates, we then extracted the least correlated corresponding raster 
variables specifically wind, nitrogen, temperature, and precipitation for 
those specific locations. The GA-ANFIS model was run in 3000 iterations 
for accurate prediction with optimum cross-over and mutation rate 
(Angelova & Pencheva, 2011). Following our analysis with the ANFIS 
machine learning model, the resultant predictions were transformed 
into a spatial format. We utilized QGIS (QGIS, 2009) to rasterize these 
predictions, converting the model’s output data into georeferenced 
raster layers. This process enabled us to visualize and further analyze the 
spatial distribution of our predicted data within the context of our study 
area. 

The metrics used in evaluating the models’ performances include the 
coefficient of determination (R2), and root mean squared error (RMSE). 
The equations of the performance evaluation metrics are defined in Eqs. 
(4) to (5). 

R2 = 1 −
∑n

i=1yi − ŷi)
2

∑n
i=1(yi − yi)

2 (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(ŷi − yi)
2

n

√

(5)  

where ŷi and yi are respectively the predicted and observed FAW 
infestation in the ith month, i = 1, 2,….., n and y the average of the 
observed values. 

Moreover, as maize was considered the dominant host plant for the 
FAW, the FAO’s general cropping calendar (FAO, 2017) on maize in East 
Africa (April – July and November – January) is used as the time frame 
for the projections and mapping of the proposed BC technology sites. 
The monthly predictions that align with the existing cropping calendar 
were merged using QGIS (QGIS, 2009) to create a consolidated raster 
layer representing the average implementation of the proposed man-
agement technology for each season. 

The obtained outputs were categorised based on accumulated 
knowledge and field observation for easy interpretability and further 

analysis (fuzzification). For example, maize plants with a meagre per-
centage of pest infestation (less than 10%) do not require advanced 
control action. Therefore, this group was considered a low class. 

Additional classes were derived using a combination of data quan-
tiles and expert knowledge, as presented in Table 1.  

b) Maize presence 

Several studies have reported that FAW has found a conducive 
environment and is established in Africa, with maize as the primary host 
plant (Garcia et al., 2019b; Guimapi et al., 2022; Li et al., 2020; Wu 
et al., 2019). Therefore, the study domain is areas where maize is grown; 
these were sourced from the MapSPAM data centre (https://www. 
mapspam.info/data/) (Institute, 2020) at 10 km2 spatial resolution. 
All datasets were resampled to a consistent 1 km resolution to ensure 
uniformity in our geospatial analysis. The MapSPAM data were pro-
cessed using the “Raster Calculator” tool in QGIS (QGIS, 2009) and 
categorised to indicate the presence or absence of maize crops.  

c) Ecological niche of Cotesia icipe 

Species distributions are strongly influenced by prevailing environ-
mental conditions such as temperature and rainfall (Qin et al., 2017). In 
this study, we hypothesized that the performance of C. icipe is closely 
associated with the ecological niche of the parasitoid. The modelling 
experiment for assessing the ecological niche of C. icipe was conducted 
using the MaxEnt algorithm (Phillips et al., 2006). MaxEnt was chosen 
for its statistical robustness, adaptability to different environments, and 
its ability to handle presence-only data, which was the case in our study 
(Marchioro & Krechemer, 2018). This algorithm has proven effective in 
species distribution modelling and has been widely utilized in ecological 
research (Elith et al., 2011). The geocoded locations of the parasitoid (n 
= 15) were sourced from the database of the International Centre of 
Insect Physiology and Ecology (icipe). These data were obtained from 
field studies conducted in Kenya, specifically in regions such as Kilifi, 
Kwale, Taita Taveta, Makueni, and Machakos (Mohamed et al., 2021), 
with a single occurrence data point sourced from the open-source 
biodiversity database of the Global Biodiversity Information Facility 
(GBIF) (https://www.gbif.org). Environmental variables considered for 
modelling consisted of 19 bioclimatic variables sourced from the 
Worldclim data portal (https://worldclim.org/) (Booth, 2018; Fick & 
Hijmans, 2017) at 1 km resolution. The Landcover variable was sourced 
from the European space agency (https://www.esa-landcover-cci.org/). 
We also performed a Pearson’s collinearity test on the 20 environmental 
variables to identify and address multicollinearity, reducing dimen-
sionality in the predictor variables. By exploring the dendrogram 
generated from the Pearson’s correlation coefficient, we selected eight 
variables (bio2, bio9, bio10, bio12, bio15, bio16, bio17, Landuse/land 
cover) that were least correlated and suitable for model development. 

The model was replicated three times using the sub-sample method, 
with each replication using a different subset of the data. The outputs of 
the three replicates were combined to create an ensemble of probability 
outputs, which allowed us to determine the optimum niche and per-
formance of the model. In each replication, 70% of the species occur-
rence points were used for training the model, while the remaining 30% 
were retained for testing the model’s performance. The model outputs, 
generated with a receiver operating curve (AUC) > 0.9 based on scores 
ranging from 0 (very low) to 1 (optimal) were mapped using QGIS 
(QGIS, 2009). The suitability score for each model was categorised into 
five classes: very low (0–0.2), low (0.2–0.4), moderate (0.4–0.6), high 
(0.6–0.8) and very high (0.8–1). 

2.3. Extrapolation of the base model to Africa 

By using the spatially well-distributed base model obtained for 
Kenya, we were able to obtain a representative sample of the study area, 

Table 1 
Categorisation of the infestation prevalence level determined by quantile esti-
mates derived from the available data, which represented the intensity of fall 
armyworm infestation in Kenya.  

Quantiles Infestation class Proportion (%) 

[Min(0), 1st Qu (8 %)] Low  14.63 
>1st Qu (8 %)], <= Median (24 %)] Moderate  28.10 
>Median (24 %)],<= 3rd Qu (44 %)] High  28.00 
>3rd Qu (44 %), <=Maximum (100 %) Very High  29.27  
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ensuring that the analysis captured the variability across different re-
gions (Hyman et al., 2013). To streamline the analysis process, we 
employed a simplification technique using QGIS (QGIS, 2009). Specif-
ically, we averaged the predictions for two distinct seasons: April to July 
and November to January. The Maxent algorithm was again used to 
extrapolate and predict the potential suitability of the BC agents across 
Africa, using socioeconomic and agroecological zone data as predictor 
layers. To enrich the predictive modelling process, we incorporated 
socioeconomic data, specifically the Global Development Potential 
Indices targeting crops at a resolution of 500 x 500 m (Oakleaf et al., 
2020). These data were obtained from the Socioeconomic Data and 
Applications Center (SEDAC), which is a data center within NASA’s 
Earth Observing System Data and Information System (EOSDIS). SEDAC 
is hosted by the Center for International Earth Science Information 
Network (CIESIN) at Columbia University (https://sedac.ciesin.col 
umbia.edu/data/sets). 

3. Results 

In this study, a hybrid model incorporating various techniques, 
including neural networks, fuzzy logic, a fuzzy inference system, and a 
genetic algorithm, was employed for predicting FAW infestation within 
maize farms. This integrated approach significantly enhanced the 

robustness of the predictions. 
The results reveal that the Genetic Algorithm-based Adaptive- 

network-based Fuzzy Inference System (GA-ANFIS) effectively 
explained the variation between observed and estimated values. As 
demonstrated in Table 2, the hybrid model yielded high R2 values (close 
to 1) and reasonable RMSE values, underscoring its accuracy in pre-
dicting FAW-infested plants within maize farms. These findings high-
light the model’s robustness and effectiveness, offering valuable insights 
for optimizing pest management strategies in maize cultivation. 

Fig. 4 presents the interpolated maps illustrating the degree of suit-
ability across different regions in Kenya for the implementation of 
augmentative biocontrol using C.icipe in maize farms. The validation 
results demonstrate the efficacy of the developed index based on the 
Fuzzy inference theory, achieving a classification accuracy of 100% in 
distinguishing areas of high and low suitability for scaling up the 
parasitoid in Kenya. Computational findings suggest that C. icipe holds 
substantial potential as a biocontrol agent in maize farms, with area 
suitability exceeding 90% throughout the two maize cropping seasons. 
Central Kenya emerges as particularly favorable for implementing this 
augmentative BC technology. The southwestern region of the country 
shows intermediate levels of success (>0.20 %) when adopting the 
technology. Additionally, the coastal regions exhibit high suitability 
(>0.55 %) for releasing the BC agent, with some exceptions within the 
coastal belts to be less conducive (<0.20 %) for release. 

These results highlight the potential and applicability of C. icipe as an 
effective biocontrol solution in maize farms across Kenya showing 
particularly promising conditions for its implementation. The detailed 
suitability maps offer valuable insights for guiding decision-making and 
prioritizing areas for the deployment of this augmentative BC 
technology. 

The extrapolation of the predicted outputs to Africa, achieved by 

Table 2 
Performance metrics of evolutionary Adaptive-network-based Fuzzy Inference 
System on predicting insect pest infestation in maize farms.  

Performance metrics Train Test 

R2  0.926  0.890 
RMSE  10.901  15.600  

Fig. 4. Generated suitable sites for C. icipe candidate technology displayed in Kenya’s two maize cropping seasons: (A) is the first season from April to July and (B) 
represents the second cropping season from November to January. 
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utilizing agroecological similarity and the Global Development Potential 
Indices targeting crops, exhibited an average AUC greater than 0.8. This 
extrapolation process confirmed that the release of parasitoids would 
generally be effective in most maize-harvested areas in Sub-Saharan 
Africa. 

Fig. 5 provides a representation of the suitability of the African 
landscape for the augmentative BC technology, as extrapolated from the 
Kenya model to Africa. The results presented in Fig. 5 demonstrate an 
appropriate level of suitability for deploying this BC technology across 
several regions. The corresponding maps visually illustrate the high 
suitability of C. icipe parasitoid in most maize-harvested areas 
throughout Africa. These maps further support the notion that the BC 
technology can be successfully implemented in a wide range of maize- 
growing regions across the continent. These findings highlight the po-
tential for utilizing C. icipe parasitoid as an effective BC approach in Sub- 
Saharan Africa, particularly in areas where maize is extensively culti-
vated. The results offer valuable insights for decision-makers and 
stakeholders involved in pest management and agricultural practices in 
the region 

4. Discussion 

This study offers a comprehensive approach to understanding and 
managing FAW infestations by strategically deploying C. icipe as a 
promising BC agent. The approach comprised several components: First, 
a GA-ANFIS (Genetic Algorithm and Adaptive Neuro-Fuzzy Inference 
System) model was employed to accurately simulate pest infestation 

levels by incorporating climatic and soil variables. Next, an ecological 
niche model was used to predict suitable sites for C. icipe deployment 
based on environmental conditions and host plant availability. These 
predicted sites, along with estimated infestation level and maize avail-
ability, guided the identification of suitable locations for deploying the 
BC technology. To validate the baseline model, the focus was primarily 
on Kenya where the accuracy of the model was assessed by comparing 
the recovered parasitoid occurrence points with sites demonstrating 
potential suitability score for deploying the BC technology. The results 
confirmed the practicality and acceptability of the model in the Kenyan 
context. The innovative approach demonstrates the value of integrating 
AI algorithms to address the complexities of environmental conditions 
and interactions involved in the coexistence of the host plant, fall 
armyworm (FAW), and its parasitoids. The assumptions made during the 
model’s conceptualization have proven to be meaningful and realistic, 
offering valuable insights for effectively deploying the BC technology. 

The results underscore the utility of employing AI algorithms to 
mimic complex dynamics systems (Carter & Finn, 1999; Jacobs et al., 
2015; Mackinson, 2000; Shariati et al., 2017; Wongnak et al., 2022) such 
as insects, plants, weather, soil and natural enemies and their in-
teractions. The advanced hybrid system showcased their advantage by 
delivering high precision in performance metrics compared to other 
modelling methods, despite a limited dataset (Liu et al., 2021). This also 
justifies the growing interest in using and applying hybrids and 
ensemble models in solving ecological and environmental problems 
(Rohman et al., 2015). 

The suitability of the Africa landscape for C. icipe demonstrates the 

Fig. 5. Continental suitability for utilizing C. icipe as a biocontrol agent to combat fall armyworm infestations in maize farms across Africa.  
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prominence and potential of deploying this parasitoid as the primary BC 
agent against FAW (Tepa-yotto et al., 2021). This extensive potential 
distribution is attributed to the resilience mechanism of the selected 
technology making it adaptable to a variety of successful agroecologies, 
including areas with less favorable climatic conditions (Thorat & Nath, 
2018). Additionally, parasitoids with innate dispersal abilities (Lind-
stedt et al., 2019), facilitated their wide dissemination as highly effec-
tive BC agents across Africa (Mohamed et al., 2021; Tepa-yotto et al., 
2021). 

Overall, BC offers numerous advantages, including reduced toxicity, 
rapid biodegradability, and the ability to target specific pests while 
maintaining ecological balance (Akutse et al., 2020; Bhushan et al., 
2011; Harding & Raizada, 2015; Kumar, 2015). Identifying suitable sites 
for BC dissemination at scale provides a valuable tool for deploying safer 
FAW management strategies within the continent. This tool is expected 
to promote the adoption of IPM technologies, enhancing the likelihood 
of success and reducing the need for widespread pesticide use (Jolly, 
1988; Rubiano & Soto, 2009). In addition, the generated maps from this 
study can guide agricultural practitioners and other stakeholders in 
effectively managing FAW infestation at scale. Furthermore, the maps 
can inform decision-making by indicating where to adopt and deploy BC 
in specific sites to control pests and optimize crop yield. This approach 
also contributes to minimise the use of pesticides, reducing harm to non- 
target organisms, and mitigating environmental hazards. 

The findings of the study open up possibilities for transferring 
environmentally friendly control methods aimed at targeting insect pest 
infestation hotspots. However, it is essential to acknowledge some lim-
itations, such as data availability and the unique agrarian landscape of 
Africa, where diverse cropping systems play a significant role. Addi-
tionally, the study omits factors like interspecific interactions and 
pesticide use regimes, which are crucial to BC dynamics. These chal-
lenges underscore the need for continuous refinement of modeling ap-
proaches to better align with real-world complexities. 

5. Conclusions 

Overall, this study utilized multiple algorithms to propose a meth-
odology to identify specific sites for deploying BC against FAW in Africa. 
The tool offers timely and reliable predictions of site-specific infested 
plants and environmentally friendly management strategies for FAW 
management. Consequently, this tool is expected to be enhanced and 
adapted to stimulate and accelerate the adoption of IPM management 
technologies at localised FAW hotspots. Moreover, the approach, which 
is driven by an understanding of pest biology rather than purely statis-
tical regressions and accuracy metrics, can be generalized globally and 
applied to other IPM technologies. 
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