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ABSTRACT ARTICLE HISTORY

Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith), damage Received 5 September 2022
was monitored at a regional scale using time series data in Accepted 26 February 2023
Western and Southern African countries. The study employed the
normalized difference vegetation index (NDVI) computed from
Landsat 8 imagery using the Google Earth Engine (GEE) using - . -
image composites for the years 2013 to 2020 for the study areas. i?gé%ié&fj)f;ﬁ %?::vagrm;
The index was then reclassified based on the NDVI threshold val- normalized difference

ues into low, sparse, moderate, and dense classes. FAW preva- vegetation index

lence data were then utilized to validate the correlation between

the FAW infestation and NDVI values. FAW was associated with a

decrease in vegetation productivity between the years 2016,

2017, and 2018 when the pest infestation was reported in the

study areas. The validation results showed that there is a correl-

ation between FAW infestation and NDVI (R?0.83). Our study high-

lighted that NDVI can be used as a proxy to quantify pest

damage to vegetation productivity.
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Introduction

Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera, Noctuidae), is
endemic to the Americas, but following its first detection outside of its native range in
2016 (Goergen et al. 2016), it has rapidly spread across different continents
(Sharanabasappa et al. 2018; Naeem-Ullah et al. 2019; Sun et al. 2021; IPPC 2022),
thereby becoming a true global pest of many important crops, among them chiefly maize
and sorghum. Studies have attributed this rapid spread to recent increases in global tem-
perature which provide suitable environmental conditions to the pest (Diaz-Alvarez et al.
2020; Nurzannah et al. 2020). Commonly, FAW thrives under tropical humid conditions
to complete its development (Du Plessis et al. 2020). In Africa, the pest was first detected
in Nigeria in 2016, followed by Sao Tomé and Principe, Benin, Ghana, Togo and
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subsequently also in the Democratic Republic of Congo (DRC) (Goergen et al. 2016). To
date FAW has been recorded in 47 out of the 54 African countries (Cabi 2022), driven by
the strong dispersal ability of the adult moths which are capable of travelling up to 70 km
per day (Ge et al. 2021). In 2018, FAW was first reported in Asia, i.e. India and Yemen,
and by 2019 had widely spread with records from China, Malaysia, Indonesia, Pakistan,
Japan, South Korea and Australia (Harrison et al. 2019).

Being an invasive species that mostly damages cereal crops, FAW has negatively
impacted food and nutrition security, particularly among small scale farmers in Africa
(Cock et al. 2017). For instance estimates in 12 African counties indicate that, maize
yields have been reduced by 8.3 to 20.6 million tons annually following the FAW invasion
(Day et al. 2017). Maize is one of the most important staple food crops in sub-Saharan
Africa (SSA), covering approximately 36 million hectares and supporting the livelihoods
for about 208 million people on the continent (Day et al. 2017; Assefa and Ayalew 2019).
The economic losses by FAW in 12 major maize-growing countries of Africa are esti-
mated at US$2.5 to 6.2 billion (Shylesha et al. 2018).

Earlier studies have demonstrated the use of various geo-spatial and remote sensing
tools for effective monitoring of important crop pests like FAW and plant diseases
(Acharya and Thapa 2015; Rani et al. 2018; Roberts et al. 2021; Rano et al. 2022). Some
of these previous studies predicted habitat suitability of FAW using various modelling
approaches at global scale (Tepa-Yotto et al. 2021; Guimapi et al. 2022; Paudel et al.
2022). However, the potential crop damage caused by FAW at finer scales remains to
assessed and quantified by means of remote sensing technologies. Remotely sensed data,
acquired either with handheld (Filho et al. 2020) or airborne (Bhattarai et al. 2019) sen-
sors, have been used for assessing insect crop damage. Essentially, symptoms of crop
damage by insect pests can be visual and/or invisible depending on the attack stage. To
develop early warning tools using satellite systems for early insect pest damage detection,
there are several sensors such as WorldView-3 that provide imagery of high (<3 m) spa-
tial resolutions. However, to test such operational early warning systems, readily available
satellite data should be utilized. Landsat 8, which operates with a multispectral sensor of
30m spatial resolution, could provide unique data for FAW damage detection at local
and regional scales. This could be achieved by integrating Landsat 8 based spectral fea-
tures and geo-spatial analytics to characterize landscape structure in relation to FAW
damage. This approach would enable the assessment of the spatio-temporal FAW damage
status in crops like maize and sorghum, which are among the most preferred host plants
of the pest (Day et al. 2017). Specifically, time series optical Sentinel-2 spectral bands and
vegetation indices can provide a robust, efficient and cost-effective technique for monitor-
ing FAW damage (Horelu et al. 2015; Prabhakar et al. 2020). Though a Sentinel-2 multi-
spectral image has a high spatial resolution of 10m it’s, however, not suitable for long
term time series analysis compared to Landsat images due to image availability since the
satellite was launched in 2015, hence lacking historical images.

One of the most commonly used differential vegetation index for crop health monitor-
ing is the normalized difference vegetation index (NDVI) (Tucker and Sellers 1986).
Generally, NDVI is an indicator of crop vigor, stress and damage as a function of the
reflectance at the near infrared (NIR) and red bands (Wall et al. 2008; Huang et al. 2014;
Ji et al. 2021). For instance, Prabhakar et al. (2020) used NDVI calculated from Sentinel-2
data to show the viability of site-specific pest management and found that NDVI is quite
effective for detecting FAW infestations with an R* of 0.80. In another study, Zhang et al.
(2016) developed a mapping approach for tracking fall armyworm (FAW) infestation at a
regional scale using a univariate model and two-date HJ-CCD (Huanjing satellite charge
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coupled device) NDVI. HJ-CCD is also an optical multispectral sensor of 30m spatial
resolution which generates images comparable to Landsat 8, however such images are not
available in google earth engine software. This method was found to be effective and
promising for use in a typical FAW outbreak event in Tangshan, Hebei Province, China.
Furthermore, Zhang et al. (2016) expressed the need for robust and cost-effective remote
sensing tools for monitoring FAW damage at a regional scale. Thus, this research aims to
create a robust and cost-effective remote sensing instrument for FAW damage on a
regional scale in Africa. The study fills the research gap as it utilizes Landsat 8 time series
data for pre- and post- FAW invasion period at a regional scale, unlike previous studies
that have used Sentinel-2 or other remote sensing technologies for crop damage detection
at a site-specific/farm level (Horelu et al. 2015; Prabhakar et al. 2021). The objective of
this study is to use multi-date Landsat 8 images and NDVI datasets to evaluate the spatial
and temporal status of FAW damage in maize growing areas to cover the pre- and post-
FAW infestation to evaluate the pest damage. Additionally, the study seeks to measure
the crop damage caused by FAW in both West and South African study areas. The
Landsat 8 image was considered for the study due to its narrower spectral bands,
improved calibration and signal-to-noise characteristics, higher 12-bit radiometric reso-
lution, and more precise geometry (Roy et al. 2016).

Study area

This study was focused on the following areas: Atlantique region of Benin, Centrale in
Togo, Salima in Malawi, Chongwe in Zambia, and Limpopo in South Africa (Figure 1).
These study areas were selected based on the presence of maize and sorghum cropping
systems (Table 1) in the respective areas and their history of FAW attack. Atlantique is
one of the 12 departments in Benin, located between latitude 6° 20’ 00” N to 6° 50" 00”
N and longitude 2° 0’ 00" E to 2° 20’ 00” E in the south of the country. It covers an area

20'00W 10'00w 000" 10'00°E 2000 30'00°E 40°00°E 50'00°E

Limpopo

Centrale
] Chongwe
B salima
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1] Africa boundary
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Figure 1. Study area map showing the study regions located in western and southern Africa: Centrale (Togo),
Atlantique (Benin), Salima (Malawi), Chongwe (Zambia), and Limpopo (South Africa).
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Table 1. Cropping Surface of Maize and Sorghum for the study area in hectares (ha).

Region, Country Maize cropping surface ha Sorghum cropping surface ha
Atlantique, Benin 19,000 7,000
Centrale, Togo 28,000 9,000
Salima, Malawi 43,000 6,400
Chongwe region in Zambia 19,000 6,900
Limpopo, South Africa 464,000 16,000

Source: FAO 2018. Statistical yearbook 2018. Retrieved from http://www.fao.org/state-of-food-security-nutrition/en/

of 3,233km” with an estimated population of 1.397 million, annual precipitation of
1,200mm and an annual temperature range between 28° and 32°C. Approximately 60%
of its population depend on agriculture for food and income (Atindogbe et al. 2012).

The Centrale region of Togo is located between latitude 8° 0 00”N to 9° 0’ 00"N and
longitude 1° 0/ 00” E to 1° 0/ 00” E with an area of 13,420 km® annual rainfall between
1,200-1,500mm and an annual temperature range between 20° and 39 °C. The main eco-
nomic activity within the study site is agriculture with a population totaling 617,871 as of
the 2010 census (Ataba et al. 2020). The Salima district of Malawi is located between lati-
tude 13° 30’ 00” S to 14° 0’ 00” S and longitude 34° 10’ 00” E to 34° 40’ 00" E, covers an
area of 2,196km’, with a population of 478,368 (Government of Malawi, 2018), and a
mean annual precipitation of 1,188mm as unimodal rainfall. With an average annual tem-
perature of 22°C, the district has a tropical climate. The district is dominated by small
holder agriculture, covering approximately 107,400 hectares (Musa et al. 2018).

The Chongwe district in the Lusaka province of Zambia is located between latitude 15°
0’ 00” S to 16° 0’ 00” S and longitude 28° 0’ 00” E to 30° 0’ 00" E, covers an area of
8,669 km®, with a population of 192,303, and precipitation ranges between 800-1,000mm
with an annual temperature of 20.4°C (Jacqueline and Mubanga 2020) . Agriculture is
the most important economic activity, primarily with crops like maize, cassava, and sweet
potatoes (CSO, 2003). Finally, the Limpopo Province of South Africa lies between latitude
23° 0" 00” S to 25° 0’ 00” S and longitude 27° 0’ 00” E to 31° 0’ 00” E, covering an area
of 125,754km’? an estimated population of 5,778,400, an annual temperature ranging
between 24.6 —28.2°C, 500 mm of total annual rainfall, with commercial farmers occupy-
ing >70% of the province’s prime agricultural land, while smallholder farmers occupying
the remaining arable surface (Cai et al. 2017).

Methodology
Data description

Landsat 8 satellite data

Landsat 8 multispectral top of the atmosphere images (LANDSAT/LC08/C01/T1_TOA)
were utilized for the analysis. The Landsat 8 has a spatial resolution of 30 m with 11 spec-
tral bands distributed between the visible, near-infrared (NIR), shortwave infrared (SWIR)
and thermal infrared (TIRS) regions of the electromagnetic spectrum (EMS). The sensor
has an altitude of 705km and a temporal resolution (revisit time) of 16days (USGS,
2021).

Data analysis

The methodology framework of this study consisted of four main steps (Figure 2).
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Figure 2. Flowchart of the hierarchical methodology steps for assessing and quantifying the damage of fall army-
worm on maize productivity using the normalized difference vegetation index (NDVI).

Table 2. Landsat 8 satellite images 11 spectral bands, which are used to capture different aspects of the Earth’s
surface.

Band Number Band Name Wavelength (um) Resolution (m)
1 Coastal 0.44 —0.48 30
2 Blue 0.45 —0.51 30
3 Green 0.53 —0.59 30
4 Red 0.64 — 0.67 30
5 NIR1 0.84 - 0.88 30
6 SWIR1 1.57 — 1.65 30
7 SWIR2 211-229 30
8 Panchromatic 0.50 — 0.68 15
9 Cirrus 1.36 —1.38 30

Table 2 lists the spectral bands of a satellite sensor, along with their band numbers, names, wavelength ranges in
micrometers (um), and spatial resolutions in meters. The sensor has eight multispectral bands (bands 1-7 and 9) and
one panchromatic band (band 8). The multispectral bands cover a wide range of wavelengths from the visible to
the near-infrared (NIR) and shortwave infrared (SWIR) regions of the electromagnetic spectrum. The spatial resolution
of the multispectral bands is 30 meters, while the panchromatic band has a higher resolution of 15 meters.
Additionally, the sensor has a Cirrus band (band 9) that is sensitive to high-altitude clouds.

Step 1: Landsat 8 (Table 2) images were obtained and processed using Google Earth
Engine (GEE) software (https://code.earthengine.google.com), which is a cloud computing
software (Kumar and Mutanga 2018). The image processing involved cloud masking of
which band quality band (BQA) was utilized, also atmospheric correction was utilized to
remove the effects of atmospheric scattering and absorption on the images, as these fac-
tors can affect the NDVI values. A total of 415, 613, 909, 320, and 517 images were used
for the Atlantique, Centrale, Chongwe, Salima, and Limpopo regions, respectively.

A composite image was then computed using the median values of the pixels for each
year, covering the months January to December of 2013 to 2020 for the selected study
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regions to compute the NDVI using the Red (band 4) and NIR (band 5) bands (Table 1)
of Landsat images (Equation 1).
(NIR — Red) .
NDVI = —— (Equation 1).
(NIR + Red)
where NIR and red are reflectance values at near-infrared and red bands 5 and 4 of
Landsat 8, respectively.

Step 2: The NDVI values were reclassified into four classes, i.e. Low, sparse, moderate,
and dense vegetation, using the reclassify tool in QGIS (QGIS.org, QGIS 2020) to quantify
FAW crop damage in terms of vegetation change. The sparse and moderate vegetation
productivity comprised of bare soil and grassland classes, while the dense vegetation
entailed annual cropland, perennial cropland, forestland and woodlands (Akbar et al.
2019). The natural breaks threshold technique (Singh and Javeed 2021) was then used to
reclassify the NDVI values into the four vegetation classes. The method was used to find
class breaks that best group standard deviation data with comparable values while also
maximizing the difference between classes (Table 3).

The NDVI threshold values listed for each vegetation class in the study regions are
based on empirical observations and previous research. NDVI values provide an estima-
tion of vegetation density and vigor, with higher values indicating denser and healthier
vegetation cover. The threshold values are used to classify different vegetation classes
based on their NDVI ranges. These values can vary depending on the specific region, cli-
mate, and vegetation types. Therefore, the values listed for each study region and vegeta-
tion class have been determined through previous research and field observations to best
fit the local vegetation patterns and characteristics (Singh and Javeed 2021).

Step 3: The specific year of which the FAW was identified for each study site was
obtained from literature. (Goergen et al. 2016; Koffi et al. 2020; Dassou et al. 2021). The
vegetation density class for each study region for the period before and after the

Table 3. The threshold range of the normalized difference vegetation index (NDVI) values for the four vegetation
density classes viz., water body, low, sparse, moderate, and dense vegetation for the five study regions.

Study region Vegetation class NDVI values range
Atlantique (Benin) Low vegetation —0.15 to 0.10
Sparse vegetation 0.10 to 0.26
Moderate vegetation 0.26 to 0.36
Dense vegetation 0.36 to 0.67
Centrale (Togo) Low vegetation —0.10 to 0.39
Sparse vegetation 0.36 to 0.47
Moderate vegetation 0.47 to 0.54
Dense vegetation 0.54 to 0.77
Salima (Malawi) Low vegetation —0.48 to —0.04
Sparse vegetation —0.04 to 0.22
Moderate vegetation 0.22 to 0.31
Dense vegetation 0.31 to 0.75
Chongwe (Zambia) Low vegetation —0.37 to 0.05
Sparse vegetation 0.05 to 0.28
Moderate vegetation 0.28 to 0.36
Dense vegetation 0.36 to 0.77
Limpopo (South Africa) Low vegetation —0.67 to —0.00
Sparse vegetation —0.00 to 0.27
Moderate vegetation 0.27 to 0.41
Dense vegetation 0.41 to 0.84

The range of NDVI values for each vegetation class in five different study regions in table 3: Atlantique (Benin),
Centrale (Togo), Salima (Malawi), Chongwe (Zambia), and Limpopo (South Africa). The Low vegetation class had the
lowest NDVI values, ranging from -0.67 to -0.04, while the Dense vegetation class had the highest values, ranging from
0.31 to 0.84. The range of NDVI values for Sparse vegetation and Moderate vegetation classes varied between regions.
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introduction of FAW was then computed using mulusce plugins in QGIS software, an
algorithm subtracting annual NDVT values for pre and post FAW infestation expressed in
hectares. The 2013 annual average NDVI values were used as a reference to quantify sub-
sequent crop damage, since it was a year with high NDVI values in many of the study
regions during pre-FAW introduction.

Step 4: The validation data were obtained from the Food and Agricultural
Organization of the United Nations (FAO) collected in the selected study sites across
Africa (FAO 2018). We utilized FAW data for the year 2018/2019 (January — December)
for which geographic location together with field collected information about different
crop types were available. Hence, the points were filtered to focus on maize farm field
samples. The original excel data were then converted into a shapefile in QGIS software.
The field data points were later overlaid on the NDVI raster data sets, of which the
NDVI values were extracted for each point of FAW prevalence, using the extract values
by points tool in QGIS. Linear regression was then applied to validate the correlation
between NDVI values and the prevalence of FAW that was computed using the scouting
data obtained from the field that signified the presence of FAW by rating the proportion
of plants affected by the pest.

Results
NDVI classification

Figure 3 highlights the variation in the classified NDVI images. In Atlantique, Benin
(Figure 3a), there was a higher sparse and moderate vegetation density in 2013 than the
densely vegetated class in 2016. In the other years, there was no consistent overall trend
in vegetation density with the dense vegetation class more dominant in the region in
2014 and 2019. In the Centrale region of Togo (Figure 3b), the density of vegetation was
decreasing over the years with density values in 2013 being considerably higher than in
2020. In Salima, Malawi (Figure 3c), the vegetation density was lower in 2017 than in
2013. A similar trend was observed in Limpopo (South Africa) (Figure 3d), and also in
Chongwe (Zambia) (Figure 3e), the vegetation cover in 2018 was lower than in 2013.

Average annual NDVI time-series

In 2016, the variation in the yearly average NDVI for Atlantique (a) and Centrale (b) was
minimal in both areas, as seen in Figure 4 The lowest average NDVI for Chongwe (c)
was reported in 2014, then climbed in 2015 before continuing to decline until 2020. The
lowest NDVTI values were recorded in Salima (d) and Limpopo (e) in 2017 and 2018,
respectively.

Area of change for the NDVI classes

We observed a decrease in moderate and dense vegetation classes by 4% and 19%,
respectively, for the Atlantique (Benin) and Centrale (Togo) regions in 2016, and for the
latter country also an increase in sparse (4%) and low vegetation (19%) (Tables 4 and 5).
For Chongwe (Zambia) and Salima (Malawi) we noted a decrease in moderate and dense
vegetation classes (Tables 6 and 7), and for Limpopo (South Africa) a decrease in dense,
moderate and sparse vegetation between 2013 and 2018 (Table 8).



8 (&) M. ADANETAL.

UO0E JWVE WWOE OVE

14°00°S 13°00°S 13°400°S 13°300°S 13°200°S 13'100°S

. B
2020 -
Legend Low veg
T towwe a [ sperve veg b L towve
[ soersa vey B vocerato veg ) sowrseve
I riocute vog - — — B Ocooveg = = — — L ] - — —
s 7 Y oo 020 w w0 = | - oo v 036 12 W N

14008

15°00°S

25'00°S

16°00°S

Legend
Legend Lty e
[ towveg d [0 soanse veq
[0 sowe s E-m.., -
I oserwn veg = | I Doosovey oW 4« o
I oo v b

Figure 3. The classified normalized difference vegetation index (NDVI) for the years 2013 to 2020, for the regions of
a) Atlantique (Benin), b) Centrale (Togo), ¢) Salima (Malawi), d) Limpopo (South Africa) and e) Chongwe (Zambia).
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Figure 4. Annual average normalized difference vegetation indices (NDVI) from 2013 to 2020 for the regions of a)
Atlantique (Benin), b) Centrale (Togo), ¢) Chongwe (Zambia), d) Salima (Malawi), and e) Limpopo (South Africa).

Table 4. Area and percentage of change in the normalized difference vegetation index (NDVI) classes between 2013
and 2016 for the Atlantique region of Benin (veg. = vegetation).

Area (ha) . Change (%) .
Difference (ha) _— Difference (%)
NDVI class 2013 2016 A 2013 2016 A
Low veg. 14931.99 15647.91 715.92 4.86 5.09 0.23
Sparse veg. 94165.94 104702.21 10536.28 30.65 34.08 343
Moderate veg. 127876.97 126585.90 —1291.08 41.62 41.20 —0.42
Dense veg. 70267.69 60306.57 —9961.12 22.87 19.63 —3.24

Difference (ha) and Change (%) columns in the table 4 shows the change in area and percentage change, respect-
ively, for each vegetation class between 2013 and 2016. A positive or negative sign indicates whether the area
increased or decreased, respectively.

Validation

There was a significant (P, 0.05) positive correlation between the NDVI values and FAW
prevalence with a strong R? of 0.83 (Figure 5), implying a higher FAW prevalence with
lower NDVI values and vice versa.
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Table 5. Area and percentage of change for the normalized difference vegetation index (NDVI) classes between
2013 and 2016 for the Centrale region of Togo (veg. = vegetation).

0y
Area (ha) Difference (ha) M Difference (%)
NDVI class 2013 2016 A 2013 2016 A
Low veg. 165432.06 358454.01 193021.95 12.49 27.05 14.57
Sparse veg. 431605.47 491854.69 60249.22 32.58 37.12 4.55
Moderate veg 484141.68 342134.53 —142007.15 36.54 25.82 —10.71
Dense veg. 243706.11 132442.09 —111264.02 18.40 1.00 —8.40

Difference (ha) and Change (%) columns in the table 5 shows the change in area and percentage change, respect-
ively, for each vegetation class between 2013 and 2016. A positive or negative sign indicates whether the area
increased or decreased, respectively.

Table 6. Area and percentage of change for the normalized difference vegetation index (NDVI) classes between
2013 and 2017 for the Chongwe region of Zambia (veg. = vegetation).

0,
Area (ha) Difference (ha) M Difference (%)
NDVI Class 2013 2017 A 2013 2017 A
Low veg. 266.85 200410.83 200143.98 18.43 18.41 0.02
Sparse veg. 313848.90 429315.49 115466.59 28.87 39.50 10.60
Moderate veg. 539585.67 317554.72 —222029.95 49.64 29.20 —20.40
Dense veg. 233235.93 139655.31 —93580.62 21.46 12.85 —8.61

Difference (ha) and Change (%) columns in the table 6 shows the change in area and percentage change, respect-
ively, for each vegetation class between 2013 and 2017. A positive or negative sign indicates whether the area
increased or decreased, respectively.

Table 7. Area and percentage of change for the normalized difference vegetation index (NDVI) classes between
2013 and 2017 for the Salima region of Malawi (veg. = vegetation).

Area (ha) . Change (%) .
Difference (ha) _— Difference (%)
NDVI Class 2013 2017 A 2013 2017 A
Low veg. 97298.64 96534.19 —764.45 31.18 30.93 —0.24
Sparse veg. 65001.06 105596.58 40595.52 20.83 33.83 13.00
Moderate veg. 108690.06 93423.57 —15266.48 3483 29.93 —4.89
Dense veg. 41105.16 16540.58 —24564.58 13.17 530 —7.87

Difference (ha) and Change (%) columns in the table 7 shows the change in area and percentage change, respect-
ively, for each vegetation class between 2013 and 2017. A positive or negative sign indicates whether the area
increased or decreased, respectively.

Table 8. Area and percentage of change for the normalized difference vegetation index (NDVI) classes between
2013 and 2018 for Limpopo, South Africa (veg = vegetation).

Area (ha) Change (%)

Difference (ha) —_— Difference (%)
NDVI class 2013 2018 A 2013 2018 A
Low veg. 21195.16 4195000.91 4173805.75 0.17 34.02 33.85
Sparse veg. 6854595.74 5769171.76 —1085423.99 55.59 46.78 —8.80
Moderate veg. 4776531.85 1999759.36 —2776772.49 38.73 16.22 —22.51
Dense veg. 679377.82 367768.54 —311609.28 5.51 298 —2.53

Difference (ha) and Change (%) columns in the table 8 shows the change in area and percentage change, respect-
ively, for each vegetation class between 2013 and 2018. A positive or negative sign indicates whether the area
increased or decreased, respectively.

Discussion

The study could conclusively show that NDVI can be used as a proxy for monitoring
FAW induced crop damage. With multi-date NDVI data we could detect changes in vege-
tation density from before to after the FAW invasion in the study regions. For each of
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Figure 5. Correlation between the normalized difference vegetation index (NDVI) and prevalence of fall armyworm

(FAW) in five regions of sub-Saharan Africa, i.e. the regions of a) Atlantique (Benin), b) Centrale (Togo), c) Chongwe
(Zambia), d) Salima (Malawi), and e) Limpopo (South Africa).

the latter, we used the year 2013 as the pre-FAW infestation reference year and hypothe-
sized that after FAW was introduced, i.e. 2016 for Benin and Togo, 2017 for Malawi and
Zambia, and 2018 for South Africa, drops in NDVI could be attributed to the impact of
the pest (Goergen et al. 2016; Abrahams et al. 2017; Murray et al. 2019; Koffi et al. 2020;
Dassou et al. 2021; Kasoma et al. 2021). This is consistent with other studies that utilized
spectral vegetation indices such as NDVI to monitor crop health and vigor (Wall et al.
2008; Huang et al. 2014; Ji et al. 2021). For instance, Prabhakar et al. (2020) used NDVI
to detect FAW damage in sorghum. The authors utilized Sentinel-2 derived NDVI to
detect FAW infestation at farm level in southern India, and could correlate pest infest-
ation with NDVI at an R* of 0.80 very similar to the R* 0.83 in our study. Like other noc-
tuid pests, FAW damages maize and sorghum crops and cause defoliation and stem
damage, resulting in substantial yield losses (FAO 2018). These crop morphological and
physiological symptoms can cause considerable changes in the crop spectral features, par-
ticularly in the red and NIR portions of the EMS. The red and NIR portion of the EMS,
which is used to calculate the NDVI, are known chlorophyl and water sensitive features
that can mimic the changes in the crop chlorophyl and water content due to pest damage
(Yamanura and Patil 2021).

In Zambia, a 40% decline in NDVI magnitude was reported during the 2016/2017
cropping season and continued to decline until 2018 (Kansiime et al. 2019). This is
corroborated with our findings, which show that the frequency of NDVI values
decreased from 2017 to 2020. It is highly likely, that the massive FAW outbreaks in
2016/2017 in Zambia, with >124,000 ha of maize affected, could have been the reason
for the observed NDVI reductions (Kansiime et al. 2019). Also, the level of NDVI
reductions can vary depending on the FAW intervention measures applied. For
instance, in Zambia, the NDVI values continued to decline following the 2016 inva-
sion until 2020, possibly because of shortcomings in information dissemination to
affected farmers, and inadequate control methods coupled with a lack of reliable
access to insecticides (Kasoma et al. 2021). Yet, in countries like Benin, Togo, and
Malawi, NDVI values increased after the FAW invasion, possibly because of more suc-
cessful pest control intervention utilizing synthetic and biological insecticides which
led to a considerable drop in FAW population levels (CABI 2018). Similar
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observations were made in Togo, with FAW levels decreasing from 68.5% to 55.8%
and 17.8% in 2016, 2017, and 2018, respectively, due to the increased use of synthetic
insecticides (Koffi et al. 2020).

Nonetheless, it is worth noting that NDVI is not only affected by insect pest damages
but also by other biotic and abiotic factors such as crop diseases, weeds, drought, flood,
nutrient deficiencies etc. (Pei et al. 2019). For instance, the NDVI decrease in Chongwe
(Zambia) and Limpopo (South Africa) in 2014 and 2015 prior to the FAW invasion were
a result of El Nino oscillations (Archer et al. 2017). Moreover, the region experienced a
severe drought from 2014 to 2015, which caused a considerable reduction in NDVI and
crop yield (Liu and Zhou 2021). However, the effect of precipitation on NDVI cannot be
confounded with other biotic and abiotic factors as the index steadily increases if rainfall
is abundant and vice versa (Pei et al. 2019; Achille et al. 2021). Also, the impact of tem-
perature changes on NDVI is minimal (Wang et al. 2003).

Conclusions

Our study demonstrates that NDVI can be utilized as a proxy for monitoring crop damage
caused by FAW. Essentially, the study reclassified NDVI imagery to four greenness classes
viz., low, sparse, moderate and dense vegetation, to quantify crop damage due to FAW
infestation. The study hypothesized that the change in NDVI between 2013, 2014, 2015
(pre FAW invasion), and 2016, 2017 and 2018 (post FAW invasion) were caused by FAW
damage. We found considerable reductions in NDVI in all study regions of Benin, Togo,
Malawi, Zambia and South Africa post FAW invasion. Our results can be used as a guide
for monitoring the effectiveness of pest control methods that are currently rolled out across
Africa to mitigate FAW effects on important staple crops like maize and sorghum. They
can also be used to estimate crop yield as a function of FAW damage in affected regions.
Finally, we believe that future studies should look at testing our approach in other FAW
affected regions of SSA and field validated with data on FAW damage and yield.
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