
Citation: Mashala, M.J.; Dube, T.;

Mudereri, B.T.; Ayisi, K.K.;

Ramudzuli, M.R. A Systematic

Review on Advancements in Remote

Sensing for Assessing and

Monitoring Land Use and Land

Cover Changes Impacts on Surface

Water Resources in Semi-Arid

Tropical Environments. Remote Sens.

2023, 15, 3926. https://doi.org/

10.3390/rs15163926

Academic Editors: Georgios Mallinis

and Dino Ienco

Received: 4 June 2023

Revised: 2 August 2023

Accepted: 4 August 2023

Published: 8 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Review

A Systematic Review on Advancements in Remote Sensing for
Assessing and Monitoring Land Use and Land Cover Changes
Impacts on Surface Water Resources in Semi-Arid
Tropical Environments
Makgabo Johanna Mashala 1,2,*, Timothy Dube 3 , Bester Tawona Mudereri 4,5 , Kingsley Kwabena Ayisi 2

and Marubini Reuben Ramudzuli 1

1 Department of Geography and Environmental Studies, University of Limpopo, Private Bag X1106,
Sovenga 0727, South Africa

2 Risk and Vulnerability Science Centre (RVSC), University of Limpopo, Private Bag X1106,
Sovenga 0727, South Africa

3 Institute of Water Studies, Department of Earth Science, University of the Western Cape, Private Bag X17,
Bellville 7535, South Africa

4 International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
5 School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3,

Johannesburg 2050, South Africa
* Correspondence: 201412998@keyaka.ul.ac.za; Tel.: +27-786252362

Abstract: This study aimed to provide a systematic overview of the progress made in utilizing remote
sensing for assessing the impacts of land use and land cover (LULC) changes on water resources
(quality and quantity). This review also addresses research gaps, challenges, and opportunities
associated with the use of remotely sensed data in assessment and monitoring. The progress of
remote sensing applications in the assessment and monitoring of LULC, along with their impacts on
water quality and quantity, has advanced significantly. The availability of high-resolution satellite
imagery, the integration of multiple sensors, and advanced classification techniques have improved
the accuracy of land cover mapping and change detection. Furthermore, the study highlights the vast
potential for providing detailed information on the monitoring and assessment of the relationship
between LULC and water resources through advancements in data science analytics, drones, web-
based platforms, and balloons. It emphasizes the importance of promoting research efforts, and
the integration of remote sensing data with spatial patterns, ecosystem services, and hydrological
models enables a more comprehensive evaluation of water quantity and quality changes. Continued
advancements in remote sensing technology and methodologies will further improve our ability to
assess and monitor the impacts of LULC changes on water quality and quantity, ultimately leading to
more informed decision making and effective water resource management. Such research endeavors
are crucial for achieving the effective and sustainable management of water quality and quantity.

Keywords: arid environment; land cover assessment and monitoring; machine learning; satellite
data; water quality and quantity; water resources management

1. Introduction

Freshwater is a valuable natural resource that sustains biodiversity, carbon and nutri-
ent cycles, food provision, and ecological functions [1]. Globally, freshwater resources offer
significant socio-economic and ecological benefits, serving industrial, agricultural, and
domestic needs. Semi-arid regions, covering about 15% of the Earth’s surface [2], are char-
acterized by unpredictable weather, long dry seasons, and erratic rainfall [3]. In the global
semi-arid tropical regions, particularly Southern Africa, renewable freshwater resources are
estimated to be around 2300 cubic kilometers [4]. Around seventy percent of the available

Remote Sens. 2023, 15, 3926. https://doi.org/10.3390/rs15163926 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15163926
https://doi.org/10.3390/rs15163926
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3456-8991
https://orcid.org/0000-0001-9407-7890
https://doi.org/10.3390/rs15163926
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15163926?type=check_update&version=1


Remote Sens. 2023, 15, 3926 2 of 29

water resources are in transboundary rivers, with the remaining thirty percent distributed
between lakes and groundwater [5]. Any modifications or fluctuations in the water supply
can have significant consequences for vital economic sectors, especially agriculture, and
the overall natural capital. Scientific research has demonstrated that alterations in seasonal
and inter-annual rainfall patterns, climate change effects, droughts, floods, and human
activities have collectively influenced water systems, increasing their vulnerability [5,6].

Thus, it is crucial to manage these delicate freshwater resources carefully. Sub-Saharan
African countries heavily rely on freshwater resources for agriculture and residential use,
intensifying the pressure on ensuring water security and sustainable management [7].
Uneven rainfall distribution and external influences on water resources highlight the
importance of water conservation and effective management. Extensive research had
revealed that changes in land use and land cover (LULC), climate change impacts, and
the proliferation of invasive alien species make water resources vulnerable [8,9]. The
study of LULC change gained prominence in the mid-20th century [10], influencing water
resources, human livelihoods, and ecosystem health. Human activities, such as agriculture,
mining, and urbanization, significantly drive LULC transformation. These changes affect
hydrological processes, climate variability, ecosystem services, drainage systems, and
increase vulnerability to floods [11–13] Consequently, they directly impact the quantity and
quality of water resources. For instance, studies have demonstrated how LULC changes
contribute to a declining water quality in rivers and lakes, adversely affecting ecology and
water quality [7,14,15]. Therefore, identifying effective methods to assess and monitor
the impacts of LULC dynamics on water quality and quantity is vital for efficient water
resource management.

Remote sensing has proven to be a cost-effective and efficient tool for providing
spatially explicit data on various ecosystems, including surface water resources [16]. Earth
observation techniques, such as modern UAVs, balloons, multispectral, and hyperspectral
sensors, can help monitor semi-arid tropical environments and potentially address water
scarcity, pollution, and the conservation of water quality. Understanding the relationship
between LULC and water resources is essential for effective watershed management,
policymaking, future LULC development considerations, and freshwater protection. Giri
and Qui [17] provide a detailed review addressing land use and water quality in the 21st
century. The study also provides insights into the factors that contribute to water quality
problems, the indices used to evaluate water quality, techniques for identifying suitable
explanatory variables for water quality, and the processing methods needed to capture
spatial effects. Moreover, the study explores the modelling of water quality, using the
identified explanatory variables to gain insights. Ullah et al. [18] reviewed the impacts of
land use on surface water quality using a statistical approach. They indicated that each
statistical method has a unique purpose, application and assumptions aimed at providing
solutions to different problems. Meanwhile, Ozbay et al. [19] reviewed the relationship
between land use and water quality and its assessment, using hyperspectral remote sensing
in the mid-Atlantic estuary. Their main goal was to provide research findings on the
application of hyperspectral remote sensing in order to monitor specific LULC and water
quality. Meanwhile, previous studies have explored this relationship and the application of
remote sensing in monitoring water quality, quantity, and specific LULC changes. However,
bibliometric analyses of comprehensive systematic reviews on the use of remote sensing in
global semi-arid tropical environments to understand LULC changes and their impacts on
water resources are lacking.

This study aims to bridge this research gap by providing a comprehensive systematic
overview of the progress, challenges, and opportunities related to the use of remote sensing
applications in order to assess and monitor LULC changes and their effects on water quality
and quantity in semi-arid tropical environments. This study aims to address the following
key questions: (i) Which water quality and quantity parameters can be detected using
remote sensing? (ii) What role does remote sensing play in understanding the relationship
between LULC changes and water quality and quantity? (iii) Which methods have been
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utilized to assess and monitor these changes? (iv) What challenges have been encountered
in these endeavors? (v) What can be achieved in the future to improve our understanding
and monitoring of LULC changes and their impacts on water resources? Through these
efforts, the study seeks to offer valuable insights into the potential of remote sensing
technologies and provide suggestions with which to better assess and monitor LULC
changes and their impacts on water resources in semi-arid tropical regions.

2. Research Method and Literature Search

This study conducted a systematic literature review that aimed to establish progress
and identify existing gaps, using remotely sensed data to map and monitor LULC changes
and their effects on water quality. This study also aimed to further outline the challenges
and opportunities associated with remote sensing applications for assessing and monitoring
the impacts of LULC change on surface water resources.

Literature Search and Data Extraction

The literature searches for this study utilized the Google Scholar, Scopus, and Web
of Science databases, targeting peer-reviewed international journals related to remote
sensing, hydrology, ecology, geographical information systems (GIS), and water resources.
The search strategy involved defining appropriate search strings and identifying relevant
keywords, phrases, and terms. To identify relevant keywords, phrases, and terms, we used
the most cited literature reviews. Initial searches included terms such as “land use and
land cover change”, “impacts”, and “water quality and quantity”, resulting in a total of
18,187 publications being retrieved (17,500 from Google Scholar, 411 from Scopus, and 276
from Web of Science).

The retrieved articles underwent further screening using level 2 search criteria, in-
cluding keywords such as “remote sensing”, “tropical semi-arid”, and the years 2001–2021.
This process yielded a total of 1248 articles from Google Scholar, 121 articles from Scopus,
and 95 articles from Web of Science. In the level three screening, additional keywords such
as “catchment scale”, “sub-catchment scale”, “algorithms”, “riparian buffers”, “land cover
land use classifications”, “land use land cover monitoring challenges”, “machine learn-
ing”, “freshwater resources”, “deep learning”, “hydrological model”, “spatial pattern”,
“ecosystem services”, “change detection”, “multi-spatial scale”, “catchment management”,
“buffer zone“ and “water pollution” were used. This resulted in a final compilation of
197 articles in EndNote for further screening, eliminating duplications and excluding non-
English papers, gray literature, extended abstracts, conference proceedings, fee articles,
and those not published between 2001 and 2021 (Figure 1). The remaining 197 articles
were captured in Microsoft Excel and used to comprehensively outline the progress, gaps,
challenges, and opportunities related to using remote sensing to assess and monitor land
use and land cover changes and their impacts on surface water resources in semi-arid
environments. Bibliometric analysis was employed to assess the published articles and
identify key terms related to mapping and monitoring LULC changes and their impacts on
surface water quality.
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3. Results
3.1. Progress of Remote Sensing in Assessment and Monitoring Land Use and Land Cover Changes

Land use and land cover (LULC) change examines the transformation and alteration
of Earth’s land surface, including changes in land use patterns and the conversion of natu-
ral land cover to human-modified landscapes. The assessment and monitoring of LULC
changes using remote sensing have made significant progress over the years. Remote
sensing technologies have advanced in terms of data acquisition, spatial resolution, spec-
tral coverage, and temporal frequency, enabling the more accurate and detailed analysis
of LULC dynamics. Some key areas of progress in the remote sensing assessment and
monitoring of LULC changes include data availability, fine-scale mapping, the integration
of multisource data, classification algorithms, change detection techniques, and web-based
platforms and open data initiatives.

3.1.1. Data Availability and Integration of Multisource Data

The availability of satellite imagery data from platforms such as Landsat, Sentinel,
and other commercial satellites has greatly improved. These datasets provide consistent
seasonal and long-term coverage, allowing for the analysis of LULC changes over time.
Advances in remote sensing have enabled the mapping and monitoring of LULC changes
at finer spatial scales. High-resolution imagery and data fusion techniques have enhanced
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our ability to capture detailed LULC information, including urban areas, agricultural fields,
and small-scale changes [20]. The integration of multisource remote sensing data, such
as optical, radar, and LiDAR, has expanded the capabilities of LULC change assessment.
Combining data from different sensors enhances our understanding of LULC dynamics
and provides valuable information regarding vegetation structure, terrain characteristics,
and three-dimensional mapping. Remote sensing has progressed in the development
of change detection techniques, enabling the identification and quantification of LULC
changes. These techniques include image differencing, spectral indices, time series analysis,
and object-based change detection, enabling more accurate and efficient change assessment.

3.1.2. Classification Algorithms

The repetitive practice of using a multi-sensor image system to capture information
provides valuable data for managing land-based resources. Remote sensing also offers the
standardized data collection procedure, data integration, and analysis within a geographic
information system [21,22]. Remote sensing satellites have proven valuable in employ-
ing various classification techniques to map LULC changes within watersheds such as
supervised, unsupervised classification, and object-based image analysis (Table 1).

Table 1. Classification algorithms for mapping LULC classification.

Algorithm/Techniques Sensor Used Performance Range References

Supervised Classification

Support Vector Machine (SVM)

Landsat OLI, ETM+, TM, Terra ASTER,
Hyperion Hyperspectral imagery

and Quickbird
Synthetic Aperture Radar (SAR)

88–98% [23–25]

Random Forest (RF) Sentinel 2 MSI, Landsat 8, SPOT,
RapiEye, LiDAR 88–95% [20,26,27]

Convolutional Neural Network (CNN) Aerial photograph 91–98% [28]
Classification and Regression Tree (CART) Sentinel 2 and Landsat OLI, LiDAR 85–90% [29,30]

Deep Neural Network (DNN) Landsat TM and OLI, Sentinel 2 92–95% [31]
Decision Tree (DT) Landsat TM and ETM+, Sentinel 2 85–90% [20,32]

Spectral Angle Mapper Landsat 8, hyperspectral, RapidEye 89–90% [24,33,34]
Recurrent Neural Network (RNN) Very High Spatial Resolution (VHSR) 75–86% [35]
Artificial Neural Network (ANN) Landsat ETM+ 70–85% [32]

Maximum Likelihood (MLC) Landsat TM 67–72% [20,36,37]
Unsupervised Classification

ISODATA MODIS 54–69% [38]
K-Nearest neighbor Landsat TM and ETM+, Sentinel 2 87–91% [39]

Object-Based Image Analysis
Object-based image analysis (OBIA) Lidar, Sentinel 2 87–91% [40]

Unsupervised classification is a computer-automated process that groups pixels that
are statistically similar into categories using a clustering algorithm, such as K-means [41]
or ISODATA [38]. Unsupervised classification is valuable when the field data are lacking
or knowledge about the study area is unavailable [20,42]. However, the spectral properties
change over time with the image data, atmospheric condition, and the sun’s angle at the
time the image was captured; hence, detailed spectral knowledge of different features
may be required. In contrast, supervised classification allows the analyst to select training
samples for each land cover class and guide the computer to identify the spectral features
of similar areas for each class [43]. This is particularly achievable using classification
algorithms such as maximum likelihood (MLC), support vector machine (SVM), an artificial
neural network (ANN) and random forest (RF), among others. Based on the finding
(Figure 2), classification techniques such as MLC have been widely employed in studying
LULC change in water resources. For example, the study by Ding et al. [44] derived the
LULC change map from the Landsat TM using the MLC algorithm for classification and
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achieved an overall accuracy of 88% and a Kappa coefficient of 0.85%. Similarly, the study
by Tadesse et al. [45] derived the LULC change from Landsat TM, ETM+ and OLI using
MLC and achieved overall accuracies of 87%, 89%, and 93%, respectively, and Kappa
coefficients of 0.83, 0.83, and 0.88, respectively. The MLC considers spectral variation
within each category and the overlap covering the different classes. However, this method
is time-consuming since it requires more pixels in each training dataset to specify each
class [20] The MLC technique also produces lower classification accuracy results when
compared to other classification techniques such as ANN, SVM, and RF [20,30,46].
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Thus, ANN, SVM, and RF machine learning (ML) algorithms are more robust and
effective for classification techniques [20,47,48]. Supervised classification requires labelled
training data to learn and understand the patterns associated with each category. Once
the training data are labelled, these ML techniques can build models based on the labelled
examples and use this knowledge to categorize new, unseen text accurately and efficiently,
which is a challenge with MLC. However, the challenges associated with these methods are
that they require extensive training (data hungry), require human supervision (expertise),
and are computationally extensive when producing accurate LULC change maps [49].
Although individual classifiers achieve better accuracy results, they often fail to predict
true classes with high accuracy. Therefore, studies have combined different classifiers to
boost performance and reduce the classification error [50–52]. However, the ensemble fails
on new data when individual classifiers are too complex for the training data present or
their training error becomes too large quickly [49,53]. The problem associated with the
ensemble is finding the right balance between the individual models’ complexity and their
fit to the data. Thereby, performing more ensemble iterations can reduce the error of the
combined classifier on the training data.

Obtaining high-quality and sufficient reference datasets, as is required in most of these
machine learning algorithms, is still an enormous task in most of the sub-Saharan African
countries [54]. Acquiring reference data through field surveys is still challenging due to
the inaccessibility of some areas, costs associated with travel and the time investment
needed. To counter this limitation, other studies have adopted the migration of reference
data from a specific time (year) to another time (target year) in order to address the lack
of accurate and reliable current data. Likewise, good training data combined with the
high spatial resolution of an image, together with an ensemble ML, often provide a high
classification accuracy [55]. For instance, the study by Zhou [40] used Light Detection and
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Ranging (LiDAR) to map LULC change using object-based image analysis classification and
achieved an overall accuracy of 91% and a Kappa coefficient of 0.87%; additional examples
are provided in Table 1.

Deep Learning (DL) algorithms have the capacity to extract automatic and hierarchical
features from a large dataset, which makes them able to work with remote sensing data [31,56].
CNNs are one DL algorithm that are used to solve problems associated with spatial data.
CNNs outshine other algorithms when aiming to capture spatial features such LULC
patterns, textures, and shapes. They can also handle both multispectral and hyperspectral
data. They can automatically learn and extract meaningful representations from the image
data, leading to a high classification accuracy [28]. CNN transfer learning enables the
learned features to be leveraged and reduces the need for extensive labelled training data.
Meanwhile, RNNs are best at processing temporal and spatial dependencies in sequential
remote sensing data, such as time series and spatial data in a sequential structure. RNNs
are also able to flexibly work with hyperspectral imagery because they can handle data in
which the number of spectral bands may vary across different samples [35]. Understanding
the different spectral bands can be valuable for the classification of LULC. This provides
opportunities to classify complex contextual images and improve the classification accuracy.
However, these techniques have never been used to assess and monitor the impacts of
LULC on water resources in semi-arid tropical environments. The major drawback of
using these algorithms is the requirement for extensive datasets during the training process,
particularly when dealing with large amounts of data. The computation involved in
training and testing can be costly. RNNs can struggle to capture long-term dependencies
effectively with remote sensing data, especially when analyzing time series with a large
time lag. CNNs are prone to overfitting, where the model becomes excessively specialized
to the training data and fails to generalize to unseen data.

3.1.3. Spectral Classification
Band Based Classification

Band-based classification is performed using the individual spectral bands of the
remote sensing image [57]. This method relies solely on the spectral information captured
by the different bands of the remote sensing image. They cannot effectively enhance specific
features of interest, as the classification is based on the raw spectral values of each band.
The results of band-based classification may be more straightforward to interpret since
they directly correspond to the individual spectral bands [58]. This method can be more
sensitive to atmospheric effects, such as haze or aerosols, which may impact the accuracy
of the classification [57,58]. It is relatively straightforward and simple to implement, as it
involves using each band independently for classification.

Index Based Classification

Classification using different spectral indices in remote sensing is a common approach
used to extract valuable information from satellite imagery. Spectral indices combine
specific spectral bands to highlight various land cover characteristics, such as vegetation
health, water content, and soil properties. Index-based classification and specific spec-
tral indices, which are combinations of different spectral bands, are used to perform the
classification [59]. Instead of using individual bands, index-based classification uses spec-
tral indices that combine bands in specific ways to highlight certain features of interest.
By using spectral indices, this method can enhance specific features, such as vegetation,
water bodies, or soil, making it more effective in certain applications [59]. Index-based
classification can be more robust against atmospheric effects since the spectral indices can
mitigate some of the atmospheric influences. Implementing index-based classification may
require more pre-processing steps to calculate the spectral indices, adding some complexity
to the process. The commonly used indices are the normalized vegetation index (NDVI),
the normalized difference water index (NDWI), the normalized difference built-up index
(NDBI), and the soil adjusted vegetation index (SAVI). Integrating spectral indices with
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other data sources, such as ancillary data and ground truth information, can enhance the
accuracy and reliability of LULC change classification results.

3.1.4. Change Detection

Change detection is the process of identifying and quantifying areas of change in the
LULC, or other environmental variables over time. Change detection provides a means
by which to monitor and understand the dynamics of environmental changes [60]. It
helps identify the magnitude, location, and patterns of changes, enabling researchers and
decision makers to gain insights into ecosystem dynamics, urban growth, deforestation,
agricultural expansion, and other changes affecting the environment [27]. It facilitates a
better understanding of the dynamic nature of the Earth’s surface and enables informed
decision making for sustainable development and environmental protection. The accuracy
of change detection relies on factors such data quality, spatial and temporal resolution,
methodology and reference, or ground truth data [61]. The accuracy of the quality input
data used for change detection plays a significant role. High-quality, well-calibrated data
with minimal noise and distortions contribute to better levels of accuracy. Possessing
reliable reference data or ground truth information is crucial for evaluating the change
detection accuracy. Ground truth data, obtained via field surveys or high-accuracy sources
and remote sensing technology, are used to verify the detected changes, and assess the
method’s performance [62,63].

Techniques such as pixel-by-pixel differencing, image ratioing, and image thresholding
are used to identify and highlight differences between images. Time series analysis involves
studying data collected over a period of time to detect patterns or trends. Statistical
methods, such as regression analysis, seasonal decomposition, and moving averages,
are employed to reveal changes in temporal data [64]. Remote sensing technologies,
including satellite and aerial imagery, play a crucial role in monitoring LULC. Geographic
Information Systems (GIS) aid in spatially analyzing and visualizing the detected changes.
With the advent of machine learning and artificial intelligence, change detection has seen
significant advancements. Supervised and unsupervised learning algorithms, such as
SVM, RF, and CNNs, can be trained to automatically detect changes in various data
types [27,65]. Light Detection and Ranging (LiDAR) technology utilizes laser pulses to
measure distances to the Earth’s surface and generate high-resolution 3D maps [29]. It is
especially useful in detecting changes in topography, vegetation, and infrastructure. Radar-
based change detection employs microwaves to penetrate clouds and vegetation, making
it an all-weather and day-and-night imaging technique. It is useful for monitoring land
subsidence, urban growth, and natural disasters. Data mining techniques can be applied to
large datasets to discover hidden patterns or anomalies that are indicative of changes. This
technology is widely used in fraud detection, network intrusion detection, and more. Time-
of-flight cameras use light signals to measure distances, enabling real-time 3D imaging and
change detection applications, such as object tracking and gesture recognition [66]. The
challenges associated with the technique include spatial and temporal resolution, spectral
heterogeneity, spectral similarity, radiometric variation, scale and context, computational
resources and processing, and data availability.

3.1.5. Web-Based Platforms and Open Data Initiatives

The emergence of web-based platforms, such as Google Earth Engine (GEE) and
Sentinel Hub, has facilitated easy access to remote sensing data and analysis tools [67].
Open data initiatives promoted by space agencies and governments have further promoted
the sharing of remote sensing datasets, enabling broader participation in LULC change
monitoring. These advancements in remote sensing technology and techniques have
significantly improved the assessment and monitoring of LULC changes. They provide a
more comprehensive understanding of the dynamics and impacts of human activities on
the Earth’s surface. Continued progress in remote sensing, along with ongoing research
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and development, will further enhance our ability to monitor and manage LULC changes
effectively.

3.2. Water Quality and Quantity

Water quantity refers to the various aspects that contribute to the overall measurement
and understanding of water availability and supply. Some common components that can
be measured using remote sensing technology include precipitation, evapotranspiration,
runoff and streamflow, groundwater, reservoir and lake monitoring, and soil moisture.
Remote sensing can estimate precipitation patterns and distribution by measuring cloud
properties, rainfall rates, and storm characteristics using sensors such as radar or microwave
radiometers [22,68]. Remote sensing can quantify the amount of water lost from the land
surface through evaporation and plant transpiration. It involves estimating energy fluxes
and vegetation indices using optical or thermal sensors in order to assess evapotranspira-
tion rates [69,70]. It can also help to estimate runoff and streamflow by monitoring changes
in water levels and river discharge using altimeters, radar sensors, or optical imagery [71,72].
This enables the water movement in river networks to be assessed. More insights into
groundwater resources can be obtained by monitoring changes in the land surface eleva-
tion using satellite-based radar interferometry (InSAR) or gravity data from the Gravity
Recovery and Climate Experiment (GRACE) mission [48,73]. The soil moisture content can
be estimated by measuring the microwave radiation emitted or reflected by the Earth’s
surface [68,74]. This information helps to assess water availability in the root zone and
supports agricultural water management. In reservoir and lake monitoring, remote sensing
enables the monitoring of water levels, surface area, and volume changes in reservoirs
and lakes using radar or optical imagery [75]. This information is crucial for water supply
management and flood control.

Remote sensing data may have limitations regarding its spatial and temporal resolu-
tion, sensitivity to atmospheric conditions, calibration and validation, complex terrain and
land cover heterogeneity, and limited data accessibility for specific parameters. Therefore,
it is important to consider these limitations when using remote sensing for water quantity
assessments. Integrating remote sensing with other data sources, utilizing complementary
techniques, and incorporating appropriate modelling approaches can help to mitigate
these limitations and improve the accuracy and reliability of water quantity assessments.
In addition, by leveraging remote sensing data, scientists and water resource managers
can assess and monitor these components of water quantity on various scales, providing
valuable insights into water availability, distribution, and movement.

Water quality refers to the chemical, physical, biological, and radiological characteris-
tics of water that determine its suitability for various uses and its impact on the environment
and human health [28]. The water quality parameters that can be assessed using remote
sensing include the chlorophyll-a concentration, water turbidity, dissolved organic matter
(DOM), water temperature, total suspended solids (TSS), water pH, and harmful algal
blooms (HABs) [76]. For further details, the study by Gholizadeh et al. [77] elaborates
more on the water quality parameters and limitations of remote sensing for assessing water
quality. However, most studies monitoring water quantity have focused more on water bal-
ance (evapotranspiration) and monitoring water (reservoir and lakes), with little attention
paid to runoff, ground water recharge and soil moisture. Water quality parameters such as
pH, TSS, temperature, and DO are commonly evaluated in water quality assessments [78].
Meanwhile, HABs and the chlorophyll-a concentration have received little attention.

3.3. Impacts of LULC Changes on Water Resources

Rapid population growth, socioeconomic factors and a lack of natural resource conser-
vation policies are major contributing factors to LULC changes worldwide. According to
Dwarakish and Ganasri [43], slope, the distance from the river, soil erosion, altitude, and
built-up areas are significant contributing factors to LULC changes. Nonetheless, they are
not considered in most studies when assessing and monitoring the impact of LULC on
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water resources. Changes in LULC can have a wide-ranging impact on various aspects of
the environment. These LULC changes can alter landscape patterns, hydrological processes
(surface flow), physical factors (stream morphology and temperature increase), biology
(biodiversity and ecosystems) and water quality and quantity (nutrients and pollution
increase). Semi-arid tropical climates are characterized by erratic climate change. The
semi-arid tropical climatic conditions need to be frequently monitored for effective water-
shed or catchment management, and sustainable water resources. LULC changes, such
as agriculture, urbanization, and mining, are likely to improve livelihoods, contribute
towards local and national economic development, facilitate food security and advance
biofuel energy, making them a priority for the development of countries. Yet, these are
the most substantial factors causing negative environmental modification. Agriculture
is directly associated with the removal of natural vegetation, increased soil erosion [79],
algal bloom [80], increased greenhouse gas emissions and nutrient imbalances. Natural
vegetation, such as riparian vegetation, can act as an important habitat for a variety of
species and can trap sediments and pollutants in water. Therefore, alterations in the natural
vegetation affect the ecosystem services provided by the streams, which are important for
reducing flood streams, managing runoff, and preventing erosion [64,79,81]. Ultimately,
these changes affect the water storage provided by aquifers, ecological processes, functions
and services, and hydrological factors. This will have implications for hydrological factors,
thus affecting water supply and availability [26]. This will lead to changes in the drainage
network, which is important for surface runoff and drainage patterns. Ecosystem services
play an important role in watershed and water management. However, they are often
overlooked in water resources management.

Urbanization and mining are associated with impervious surfaces, urban heat islands,
the increased susceptibility of areas to floods, the loss of drainage systems and changing
hydrological systems [82,83]. These artificial surfaces often result in increased runoff, and
further generate a path for the transportation of pollutants into water bodies [84]; this
reduces the infiltration into and storage capacity of water in shallow aquifers and increases
the chances of severe floods occurring [85]. Urban heat islands can be aggravated by a
warming climate, particularly during heat waves, which change the water balance (evapo-
transpiration) and hydrological factors of the catchment. These changes affect the timing
and magnitude of evaporation loss and the water yield, which govern the soil moisture
content and the flow patterns of hydrological regimes. At the end, increased streamflow
and precipitation occur, and the frequency of large floods and larger sedimentation in-
creases [85]. To better manage LULC and water resources effectively, it is important to
assess hydrological components by using advanced tools, with which it is very important
to attain sustainable water resources at a catchment scale. Land cover changes are located
within the spatial representation of landscape. Modeling LULC patterns offers a better
understanding of past and future LULC and its related implications and guides future land
use policies. Taking these studies in semi-arid tropical areas into account will ensure the
sustainability of the catchment via the planning and management of the watersheds.

Consequently, these LULC changes have a serious impact on a wide range of ecological
processes and result in several global environmental problems, such as land degradation,
desertification, biodiversity loss, habitat loss, and species transfer. These impacts affect the
water supply, irrigation, fishing, and power generation, reduce food production and land
productivity, and decrease many countries’ Gross Domestic Products (GDP). Contaminated
surface water results in health risks for humans, increases the financial cost of purification
and human consumption, and affects economic development. The impact of LULC on
water resources is caused by a lack of proper management strategies and land use planning
surrounding water resources. A lack of awareness regarding water pollution, especially in
Sub-Saharan countries, further compromises water quality. The enforcement of policies and
regulations regarding the discharge of pollutants from agricultural sectors, urbanization,
waste-water treatments, and industries needs to be strengthened. This will promote
sustainable water quality, watershed management and improve global economies.
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3.4. The Role Played by Remote Sensing Platforms in Assessing and Monitoring LULC Changes
and Their Impacts on Water Resources
Seasonal and Long-Term Monitoring

The effects of LULC changes on water quality differ spatially and temporarily due
to climatic conditions (e.g., temperature and rainfall), and topography (e.g., slope and
landscape patterns). The hydrological factors (e.g., flow) also play an important role in
the movement and transportation of the pollutants into rivers and the degree to which
they disrupt the ecosystems. Remote sensing platforms, with different image acquisitions
(Table 2), offer an opportunity for the seasonal and long-term monitoring of the effects of
LULC changes on water resources. Long-term monitoring offers the important data needed
to measure the changes in natural water resources over time and predict trends; this is in
order to implement, plan, monitor and manage water quality. The tabulated information
below is helpful in designing an assessment evaluating the effects of LULC changes on
water resources and may be used in the selection of appropriate sensors.

Table 2. Available sensors that can be applied for assessing and monitoring the effects of LULC
changes on water resources.

Sensor/Platform Resolution
(m) Spectral Bands Swath Width (km) Revisit Time (days) Acquisition Cost

AVHHR 1100 5 2900 1 Free
IKONOS 4 5 11 1–2 High
ASTER 15, 30, 90 144 60 16 Free
GRACE 10 Free

Hyperspectral <1 >100 Very high
Landsat ETM+ 30 8 185 16 Free

Landsat TM 30 7 185 16 Free
Landsat OLI 30 11 185 16 Free

LIDAR 0.45 5 1–2 Very high
MODIS 500, 1000 7 2330 1 Free
MERIS 300 15 1150 3 Free
Radar 0.3, 0.56 2 Very high

Rapid Eye 5 5 77 5.5 High
Sentinel 1 SAR 5, 5 × 20, 20 × 40 4 20, 80, 250, 400 6–12 Free
Sentinel 2 MSI 10, 20, 60 13 290 5 Free

SPOT 10, 20 4 120 26 High
Quickbird 2.4 5 16.5 1–3.5 High
Worldview <1 8 16.4 1–3.7 Very high

The long-term monitoring of the effects of LULC changes on water resources has
used aerial photographs due to their long period of existence. For example, the study
by Schilling et al. [86] used aerial photographs to map LULC, and the results indicated
that the change in grassland to row crop increased nitrate levels up from 8.0 to 11.6 mg L
in two Squaw creek subbasins in the USA for a period of ten years. Aerial photographs
offer a high spatial resolution and are very good for analyzing ground surface events and
detecting different LULC [87]. However, they are limited to a smaller scale compared
to satellite data, and the images lack repeatable acquisition. They require qualified and
experienced personnel to interpret the image [88], and interpretating the images is costly
and time-consuming.

Landsat ((Thematic Mapper (TM), Multispectral Scanner System (MSS), Enhanced
Thematic Mapper (ETM)) multispectral sensors have been widely used to conduct long-
term monitoring of the impacts of LULC changes on water quality at regional and local
scales. The study by Kibena [89] used Landsat TM to map the effects of LULC change on
water quality from the year 1995 to 2012. They observed that the LULC, namely grassland,
forest and bare land, had been converted into settlement and agricultural land, which
had increased pollution in Lake Chevero in Zimbabwe. The results showed that the total
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phosphorus (TP) increased from 130 to 376 kg/day, the total nitrogen (TN) increased
from 290 to 494 kg/day, the DO increased from 0.1 to 6.8 mg/L, the chemical oxygen
demand (COD) increased from 11 to 569 mg/L, the biochemical oxygen demand (BOD)
increased from 5 to 341 mg/L, Phosphate Phosphorus (PO4-P) increased from 0.01 to
4.45 mg/L, Ammonia Nitrogen (NH3-N) increased from 0.001 to 6.800 mg/L and the
electrical conductivity (EC) increased from 38 to 642 mg/L. Similarly, Zhang et al. [90]
further observed that grassland, forest, water, and bare land were converted into farmland
and constructed land from 1990 to 2016, which increased the level of chemical oxygen
demand, manganese variant (CODMN) from 0.92 to 1.09 mg/L, BOD from 0.63 to 0.85 mg/L,
TP from 0.006 to 0.007 mg/L, and TN from 0.12 to 0.20 mg/L. The temporal range of the
Landsat images provided the researchers with the ability to predict the effects of LULC on
water quality; hence, there are still challenges related to the use of the Thematic Mapper
(TM) and Multispectral Scanner (MSS), in that they are no longer operating, and with
the Enhanced Thematic Mapper Plus (ETM+) images, which are persistent with the Scan
Line Corrector (SLC). The malfunctioning of the sensor’s SLC leads to a data loss of
approximately 22% of the normal scene area [91]. Therefore, these medium-resolution
sensors (i.e., Landsat TM and MSS) fail to deliver real-time images; in addition, the loss of
data for the operational ETM+ sensor has resulted in considerable challenges regarding the
estimation of the impacts of LULC change on water quality.

In 1986, the French government launched the Satellite Pour L’Observation de la Terra
(SPOT), and it was the first earth resource satellite to have a pointable optic with high
resolution, which increases the high opportunity of the imaging areas [92]. The SPOT
sensor has the ability to obtain information every day at any time due to the frequency
revisit time, and can map LULC change, ranging from the regional scale to global scale [93].
Plessis et al. [94] used Landsat TM and SPOT for classification and successfully predicted
the future concentration of the water quality for the years 2015, 2020, 2030 and 2050, which
increased with changes in the LULC. However, SPOT imagery is costly, which often hinders
the adoption of its products in many studies.

Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments use NASA
Aqua and Terra satellites, thus providing nearly daily repeated coverage of the Earth’s
surface with 36 spectral bands and a swath width of approximately 2330 km [87]. MODIS
plays a significant role in mapping LULC change and dynamics at a coarse spatial resolu-
tion [88]. The sensor is freely available and presents an opportunity for the long-term and
seasonal monitoring of LULC changes at a large scale due to its long period of existence and
its revisit time [93]. For example, the study by Juma [95] used MODIS to map LULC change
and demonstrated an increase in agriculture and residential growth due to population
growth from 1990 to 2008. The results showed that Nitrate Nitrogen (NO3-N) increased
from 10 µg−1 to 98 µgL−1, PO4-P increased from 4 µgL−1 to 57 µgmL−1 and chlorophyll
also increased due to poor practices in agriculture, which resulted in the proliferation of an
alien invasive water hyacinth species. However, the limitation of using the MODIS sensor
is the difficulty involved in linking the coarse spatial resolution with field data, and the
difficulties involved in monitoring small areas using the sensor.

On the other hand, the Advanced Very High-Resolution Radiometer (AVHRR) is freely
available and has a high probability of obtaining a cloud-free view of the land surface
compared to multispectral sensors (e.g., Landsat) [96], and is very useful for long-term
monitoring. The coarse spatial resolution of AVHRR can cover large areas and fails to
distinguish the earth’s features. This makes it difficult to detect or view detailed infor-
mation about features. However, AVHRR has not been used at a national or global scale
because of the difficulties involved in linking coarse spatial resolution data and field mea-
surement [97]. Still, not all LULC changes affect water quality, as demonstrated by the
study by Kaushal [98]. The authors found that the transformation of row crop cover to
perennial grassland decreased the amount of NO3-N. Also, Khare et al. [99] indicated that
between 1974 and 2007, residential areas increased from 10% to 21%, while agriculture
decreased from 36% to 19%, and forest decreased from 13% to 8%. This conversion de-
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creased the TN from 2 mg/L to 1.5 mg/L. In addition, the expansion of residential areas
may cause an increase in fecal coliform in water bodies since they pave the way for the
entry of pollutants into rivers. On the contrary, the expansion of forest cover decreases the
number of pollutants entering into rivers, although it increases dissolved oxygen, which is
important for the lives of fish and macroinvertebrates [100]. Therefore, many studies agree
that the expansion of forest and grassland cover is important an mitigation strategy for
improving water quality [101,102].

The seasonal monitoring of the river catchment plays a substantial role in evaluating
the temporal variations in river pollution due to LULC changes for effective land use
management and watershed management. This is important for developing proper man-
agement strategies for water resources. The seasonal monitoring of the quality of pollution
can further indicate the current, ongoing, and emerging problems. Most studies, for in-
stance those by Tahiru et al. [7], Namugize et al. [14] and Beck et al. [71], have observed
that built-up areas are positively correlated with most of the water quality parameters; this
is due to increased surface runoff caused by impervious surfaces, which create paths for
the transportation of contaminants including TP, TN, NH3-N. Thus, policies pertaining
to land use planning, especially in urban areas, should be implemented and enforced in
order to sustain water resources. Forests and grasslands have a relationship with DO, and
cultivated land/agriculture are positively associated with TN, TP, turbidity, and pH due to
various farming practices, such as the use of pesticides, herbicides, and fertilizers. As such,
most concentrations of these contaminants are higher during the dry season than in the
wet season. However, DO is higher in the wet season than the dry season, while TP and
TN are higher in both seasons (dry and wet). The high quantities of contaminants observed
in the dry season may be driven by high water discharge and low water retention [71].

For instance, Pullanikkatil et al. [103] seasonally monitored the impacts of LULC on the
Likangala river catchment in Malawi and found that turbidity increased in the wet season,
with 190.5 NTU downstream in the area dominated by wetland and settlement. Meanwhile,
the pH increased during the dry season, with 880.83 mg/L, and decreased by 218.72 mg/L
in the wet season downstream, which was dominated by wetland and settlements where
people nearby practice fishing. The EC varied from 4 to 466 µs cm−1 during the wet season
and between 40 and 3520 µs cm−1 in the dry season in the upstream and downstream,
respectively. The TDS varies from 20 to 1760 mg−1 in the dry season and from 2 to 233 mg−1

during the wet season. Similarly, the study by Zhang [101] seasonally monitored the effect
of land use on water quality and observed that water quality parameters such NH3-N
and CODmn were higher in the dry season (7.29 mg/L and 7.8 mg/L) and lower in the
wet season (0.048 mg/L and 2.2 mg/L) in built-up areas (dominated by urban areas).
Meanwhile, the DO was lower in the wet season (3 mg/L) in the built-up area and higher
in the dry season (12.9 mg/L) in the forest–grassland area. However, the TP was higher
both seasons, with (0.28 mg/L) in the wet season and (0.29 mg/L) in the dry season. The
study concluded that the high levels of NH3-N and CODmn were influenced by urban areas,
which increased the surface runoff of contaminants into the water bodies. Meanwhile,
studies such as those by Kaushal et al. [98] and Rothenberger et al. [97] found that NO3-N
and NH4-N, respectively, are higher in the wet season than in the dry season. The high
concentration of pollutants in the wet season may be attributed to an increased run-off that
washes off the soil, releasing a large amount of sediment, nutrients, and pesticides into
surface water. An in-depth understanding of LULC change and seasonal factors can help
to implement effective catchment management strategies for the protection of these water
resources.

Progress has been noted in detecting, mapping, and monitoring LULC change and
its effects on water quality using remotely sensed data over the years (Figure 3a). The
use of satellite remote sensing in mapping and modelling the impact of LULC change
on water quality has recently attracted increased attention, as evidenced in the number
of publications between the years 2001 and 2021 (Figure 1). According to our analysis,
extensive research has been conducted mostly using multispectral sensors; these include a
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range of Landsat sensors (TM, MSS, ETM+), and a few studies have used Sentinels, SPOT
and MODIS (Figure 3b).
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The advancement of this research could be attributed to the significant increase in earth
observation technologies, their relatively low cost and their time efficiency when managing
large areas [9]. For instance, remote sensing has the ability to perform the spatiotemporal
monitoring of LULC change, water quality, and natural resources, which is also important
for assessing water quality and quantity in terms of river pollution. However, Landsat TM,
MSS and ETM+ have been the most used sensors [104,105]. This could be attributed to
the fact that Landsat is the longest mission (since 1972) that has been supplying remotely
sensed data for a wide variety of applications without charges. However, the Landsat
sensors have been useful for assessing and monitoring the impacts of LULC change on
water quality. It cannot be denied that medium- and low-spatial-resolutions can limit the
detection and mapping of LULC and water quality when the area affected is smaller than
the pixel size [91].

Advances in earth observation technology with improved image acquisition character-
istics have progressively expanded our ability to distinguish features of the earth. Platforms
such as Sentinel 1 synthetic aperture radar (SAR) provide an opportunity to integrate opti-
cal and radar data to improve the mapping capacity on cloudy days [50]. This is necessary
for monitoring areas such as semi-arid environments, which receive most of their rainfall
seasonally (wet season). Therefore, Sentinel 1 uses multiple sensors and sensing periods to
accurately map heterogeneous LULC [51]. Schulz et al. [51] and Hu et al. [106] combined
an ensemble Sentinel 1 and 2 Multispectral Instrument (MSI) to map LULC at a local to
regional scale and achieved improved results compared to using only the optical sensor
exclusively. The water quality parameters that were assessed using sentinel 1 were TN,
TSS, COD and TP. Munthali et al. [66] and Chen et al. [78] used Sentinel 2 and normalized
the vegetation index to monitor the TSS concentration at various buffer scales and showed
that a 300 m scale most effectively explained the variation in TSS concentrations (R2) of
0.83, p < 0.001). Sentinel (SAR and MSI) sensors are freely available and have successfully
monitored LULC and water quality separately. However, they have not been used to their
full capacity in assessing and monitoring the relationship between LULC and water re-
sources [77]. Other studies have used the LULC prototype supplied by the European space
agency (ESA) for instance, Copernicus global land cover (100 m × 100 m pixel size) [107]
and Globcover (300 m × 300 m pixel size) [32]. Although the LULC prototypes provide
useful data, they are need to be updated frequently for effective management since the
LULC changes over time. The development of hyperspectral sensors presents a unique op-
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portunity for the extraction of the LULC [108], biological and physicochemical parameters
of water quality [77,109].

Specifically, hyperspectral remote sensing provides several narrow and quasi contigu-
ous bands that enhance discrimination among different land uses and land covers. Thus,
the narrow band of hyperspectral sensors provides an opportunity to generate spectral
reflectance curves for each pixel, which are unique in order to differentiate different classes
of LULC, including water and pollutants [17,110]. Hyperspectral sensors have been re-
ported in the literature to capture unique spectral signatures of water quality indicators,
such as salinity, chlorophyll content (chla), turbidity, TSS and colored dissolved organic
matter (CDOM) [21]. This may help us to understand and quantify the relationships among
the spatial, structural, biological, and chemical processes occurring in the natural water
ecosystem. The narrow bands of the sensors have allowed researchers to develop and
implement water quality indices that have been effective in estimating water quality, thus
including the Maximum Chlorophyll Index (MCI), Normalized Difference Turbidity Index
(NDTI), and Green Normalized Difference Vegetation Index (GNDVI). The study by Elhag
et al. [111] used water quality parameter indices to estimate water quality, including MCI,
NDTI and GNDVI. They achieved an outstanding coefficient of correlation (R) result of
0.96 with MCI, an R of 0.94 with NDTI, and an R of 0.94 with GNDVI. Although water
quality indices are effective for monitoring water, they have been widely used in semi-arid
tropical environments. The lack of robust and reliable water and quantity data needed to
parameterize models remains a challenge.

The optimal spectral and spatial resolution remains a major challenge to the remote
sensing community since not all water quality parameters can be detected and monitored
using remotely sensed data because they are not optically active. Hyperspectral image
analysis has not been fully explored due to its high cost and complex pre-processing
procedure [109]. Regardless of their outstanding performance, only a few studies have
attempted to use hyperspectral sensors to assess and monitor the relationship between
LULC and its associated impacts on water resources. Advanced modern technologies
such as Unnamed Aerial Vehicles (UAVs), commonly known as drones, have emerged
as a potential alternative for mapping and monitoring LULC and water resources at a
local scale [112,113]. They are flexible, affordable, and offer a very high spatial resolution.
However, drones are limited to small areas and many of the affordable drones exclusively
cover the true color (RGB) section, which does not offer sufficient data for extensive
application in areas such as characterizing water quality [113,114]. These have never been
fully explored in understanding the relationship between LULC and water quality. Based
on the findings of this study, the growing interest in assessing and mapping the relationship
between LULC and its impact on water resources in semi-arid areas has focused on using
the Landsat image platform. Meanwhile, advanced earth observation platforms such as
sentinels, UAVs, and hyperspectral technology have not been fully explored in assessing
and monitoring the relationship between LULC changes and their impact on water quality
and quantity. The use of advanced earth observation could be viable in monitoring the
impacts of LULC on water resources in semi-arid tropical environments.

3.5. Algorithms Used for Quantifying the Effects of LULC Changes on Water Resources (Quality
and Quantity)

Different algorithms are available for estimating the effects of LULC change on water
quality using remotely sensed data. The techniques use different statistical modelling
approaches that provide relatively accurate results and are easier to understand when
compared to hydrological water quality modelling approaches. Most machine learning
(ML) algorithms developed for remotely sensing the effect of LULC changes on water
quality can be categorized as parametric or non-parametric. The most frequently used
methods by researchers for modelling the relationship between LULC change and water
quality parameters are the parametric machine learning algorithm (PMLA), which assumes
the linear relationship between variables. Parametric algorithms, such as linear [115], mul-
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tilinear [7,116] and Stepwise multilinear (SML) regression [117], have shown satisfactory
performance. However, PMLA, such as linear and multilinear regression, have the limita-
tions of multicollinearity and the overfitting of large data. Although the SML regression
algorithm attempts to reduce the collinearity problems, it also eliminates variables that are
ecologically and statistically important [117]. Seilheimer [118] used the linear mixed-effect
model (LMEM) algorithm approach, which enables the robust simultaneous evaluation
of the association and environmental gradient. Meanwhile, it accounts for the repeated
measures embedded in the data structure and indicates a better prediction performance
when compared to multiple linear regression. The LMEM assumes that observation with
the cluster is always positively correlated and that some individuals competing in the
cluster for the scarce resources are negatively correlated. Thereby, it ignores a small neg-
ative correlation, resulting in a deflated type-1 error, and an invalid standard error and
confidence interval in regression analysis [119].

Researchers have introduced more advanced non-parametric machine learning al-
gorithms (NPMLA), including Partial Least Square Regression (PLSR) and multivariate
statistics, which have been reported to be robust and efficient when aiming to overcome the
problems of overfitting and multicollinearity with high accuracy. The algorithms include
Principal Component Analysis (PCA) [120,121], Discriminant analysis (DA) [122], Cluster
analysis (CA), Redundancy Analysis (RDA) [123] and Hierarchical cluster analysis [122]
(Figure 4). The NPMLA works well with large volumes of data. Singh et al. [124] reported
that multivariate statistical techniques (CA, DA, and PCA) are important for evaluating
and interpreting large and complex datasets and obtaining better information regarding
water quality and the design of monitoring. Besides the robustness of the NPMLA, there
are limitations associated with some of the machine learning (ML) algorithms.
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The limitation of these multivariate statistical methods shows an existing relationship
between water quality and LULC pattern, which may neglect some of the important spatial
characteristics and hide local variation [101,125]. ML algorithms, including Ordinary Least
Squares (OLS) and Geographically Weighted Regression (GWR), were introduced to address
spatial non-stationary issues and to examine spatial autocorrelation, which is neglected by
multivariate algorithms [122,125]. OLS is important for developing a relationship between
independent LULC and water quality variables at a large scale by selecting the most
significant variables in the regression [18]. The coefficient from the OLS model provides the
most influential parameter of different water quality parameters. However, OLS requires a
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large dataset to obtain reliable results [126]. The GWR considers the spatial variation and
determines the relationship by incorporating the coordinates of location into the regression
equation. The GWR model uses a single land use indicator as the independent variable
and excludes the selection model because of the high potential of multicollinearity among
different land-use variables; this would result in an invalid GWR model when variables
experiencing multicollinearity are selected [127]. However, GWR statistical analysis is
limited to small scales. Therefore, the implementation of models that cover large areas is
required. Bayesian Network (BN) is an effective method for spatiotemporal analysis as
it enables the interaction of variables in space and time [18], and is suitable for handling
missing data prediction [18,128]. The model is essential for evaluating the complicated
LULC change in water quality at various scales. However, the model is too complicated,
too difficult to automate, requires specific software to run the model and qualified statistical
expertise, and is sensitive to probabilities [129].

On the other hand, Artificial Intelligence (AI) has gained considerable attention be-
cause of its potential to leverage big data and solve the problems faced in traditional
techniques (mathematical models). AI refers to the simulation of human intelligence in
machines that are programmed to think, reason, learn, and perform tasks that typically
require human intelligence [130]. The goal of AI is to create machines or systems that can
mimic human cognitive functions, such as problem solving, pattern recognition, language
understanding, and decision making [131]. Moreover, AI encompasses a broad range of
techniques, algorithms, and methodologies to enable machines to perform intelligent tasks.
AI computing technologies are on the edge of becoming the prevalent alternative to con-
ventional data processing techniques [131]. Some of the key subfields of AI that are used in
remote sensing include ML and DL. ML developed for earth observation data can support
the challenges of spatial and temporal realm adaptations, hyperspectral data, the integra-
tion of multisource information and large-volume data analyses [132,133]. Advances in ML
technology have created a unique opportunity for the development of accurate large-scale
prediction and prescriptive models [134]. DL is used to improve results due to its accuracy
in classification and prediction when trained with extremely big data; in addition, it can
extract features from raw data. DL helps to capture the potential relationship between
environmental variables for remote sensing retrieval, fusion, downscaling and superiority
in multiscale and multilevel feature extraction. However, it is not clear how to best use ML
or DL for expanding the range of increasingly accessible satellite data for LULC change
research, particularly under environmental and socioeconomic impacts.

3.6. Multi-Spatial Scale Relationship between LULC Changes and Water Quality and Quantity

Water quality monitoring often relies on the conventional methods of conducting
in situ measures using a handheld multiparameter instrument and laboratory analysis.
However, the accuracy and precision of collected in situ data may be questionable due
to human error in the field and laboratory [77]. The use of in situ data provides an
accurate measure; therefore, integrating them with remote sensing data provides accurate
measurements for the cost- and time-effective management of water pollution. Therefore,
remote sensing has been widely used to assess and monitor the environmental effects
had by LULC change on water quality at both the local and global scales [89,93,135,136].
However, when determining the relationship between LULC change and water quality,
it is important to consider scale (spatial and temporal). Scale plays an important role in
reflecting the different impacts of LULC changes on water quality. Therefore, in order to
better manage the impacts of LULC changes on water resources, it is essential to consider
streams as a complex ecosystem that operate at different spatial and temporal scales [136].
Three types of spatial scale, namely the buffer, sub-catchment, and catchment scale, have
been used to estimate the impacts of LULC changes on water quality. However, there
is no consensus regarding which of the abovementioned spatial scales explains a better
relationship between LULC changes and their impacts on water quality and quantity.
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Buffer zones are strongly influenced by water from the upslope, which is divided into
three categories: surface flow and shallow subsurface flow [137,138]. When choosing a
buffer scale, one should consider the structure and the function of the catchment, since there
are two types of buffer scale; these include a circular and riparian buffer [135]. Riparian
buffers are determined by the soil, vegetation and hydrology characteristics of the buffer
and the interaction with the upslope and downslope. Meanwhile, circular buffers are
effective for the diversity of water bodies such as lakes, streams, and dams in the lakeshore
areas [139]. Most studies use a riparian buffer rather than a circular buffer to measure
the influence of LULC change on water quality and quantity. For example, the study
by [139] observed that many impacts came from all land uses, such as constructed land
(CL), wetland (WL), original forest (OF), artificial forest (AF), and original land (OL), which
reflected TN at 2 km; meanwhile, WL and CL continued to affect TN at the 4 km buffer.
Moreover, Song et al. [135] found that urban areas influenced TN in all buffers from 500 m
to 1000 m. Similarly, Li et al. [140] further indicated that a 300 m buffer is the strongest
for the land use type to affect COD. Riparian buffers are storage areas that can be both
the source and the sink of pollutants if no degradation process exists in the buffer zone.
However, the drawback of using riparian buffers is that there is no uniform way of defining
the width of a riparian zone [84]. Overcoming this problem requires a wider use of a
riparian buffer to maximize its effectiveness in improving the water quality. The other
problem with using a riparian buffer is the inability to address all water-related problems,
since they are only effective in buffer areas that are not degraded. In the case of a degraded
buffer zone, the scale may fail to reflect some of the impacts of land use on water quality
and quantity.

Meanwhile, Gyawali et al. [141] indicated that the sub-catchment scale is more effective
in reflecting the impacts of land use on water than the buffer and the whole catchment.
Their results indicated that agriculture influenced dissolved oxygen (DO), and that urban
and water bodies influenced dissolved solids (DS), biological oxygen dissolve (BOD), and
temperature at the sub-catchment scale. Wan et al. [96] further revealed that LULC showed
varied impacts of the same LULC category over different sub-catchments. However, other
LULCs that are not nearby sub-catchments may have an influence on or contribute to
impacts on the water quality, because pollutants from LULC in the upper catchment may be
transported downstream. The scale of the stream reach might be improper as the pollutants
are diluted by the flow or absorbed by plants [38,142]. Other studies propound that the
whole catchment plays an important role in influencing the impacts of LULC on the water
quality [12,136,143]. However, it is difficult to sample larger catchments at an appropriate
spatial and temporal resolution. In addition, the spatial scale between LULC change and
water quality differs spatially, and the characteristics of the stream, human disturbance and
data accuracy all have different degrees of influence in multi-scale studies [135]. Therefore,
for the better management of pollution, the application of different spatial scales may
provide an effective method by which to understand the relationship between LULC and
its impacts on water quality and quantity. Gyawali et al. [141] revealed that all LULCs, i.e.,
agriculture, forest, urban, and water bodies, affect temperature, DO, BOD, solid sediments
(SS), DS, Fecal Coliform (FC) and EC at all three spatial scales. Similarly, Tanaka et al. [143]
also confirmed that water quality indicators have a different response to LULC patterns
when evaluated at different spatial scales.

4. Discussion

The findings based on the search keywords indicate that the use of remote sensing in
assessing and monitoring land use and land cover (LULC) changes has been significant.
Remote sensing techniques have undergone significant advancements, particularly with
the introduction of advanced algorithms such as machine learning (ML) and deep learning
(DL), which offer increased opportunities to explore and effectively manage environmental
issues. Numerous studies [33,39,66,70] have focused on accurately mapping and detecting
LULC changes using remote sensing. However, the utilization of machine learning and
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deep learning classifiers remains relatively limited compared to the traditional use of
methods like maximum likelihood classification (MLC). Over the decades, the assessment
and monitoring of LULC changes have extensively employed geographic information
systems (GIS) and remote sensing. Earlier methods involved the use of aerial photographs
and field observations for the interpretation of LULC to produce maps. With time, there
have been notable advancements in LULC classification techniques, leading to improved
mapping accuracy facilitated by advanced satellite imagery. Accurate LULC maps play a
crucial role in informing decision-making processes for the planning and management of
natural land resources.

4.1. Challenges in Remote Sensing the Effects of LULC Changes on Water Resources

Identifying the non-point source of pollution is still a challenging task due to an
ongoing discussion and varying thoughts regarding the scale. Some studies argue that
sub-catchment influences can be used [141], others suggest that the whole catchment would
be the most optimum to use [116], and others have supported that riparian buffer [101]
play an important role in influencing the water quality. Therefore, separating the impacts
of LULC on water resources remains problematic, due to the extensive time scale over
which impacts from LULC spread through the hydrologic system. The confounding effects
of climate and weather, as well as large-scale observation field studies, often lack control,
thus making it difficult to assign the temporal changes to causal mechanisms [144]. Thus
far, most of the remote sensing techniques have been applied to LULC changes using a
statistical model that links the relationship to in situ water quality parameters. However, the
statistical models do not consider physically based hydrologic models, which are important
in representing hydrological processes using spatially distributed data such as climate
parameters (e.g., precipitation, temperature, and evapotranspiration), vegetation and soil
moisture, and slope distribution [145]. The data contain crucial information about surface
water flow and the integration of surface and ground water and can be used to describe
the land surface topography characteristics [43]. Hydrological process models, such as
the soil and water resources tool (SWAT), have been presented by many reviewers as an
effective management tool for watershed models, simulating the stream flow better than
other models [75,145,146]. The integration of these models with remote sensing data will
provide effective management for monitoring the impacts of land use on water resources
in semi-arid tropical environments. The reviews by Dwarakish and Ganasri [43], as well
as Dong et al. [147], elaborate more on integrating remotely sensed data and hydrological
models in LULC and water resources.

Efficient and accurate LULC using remote sensing therefore requires a high spatial
detailed image for the classification method [125]. However, it is important to note that
factors such as image resolution, radiometric conditions, and atmospheric effects can impact
the effectiveness and accuracy of classification algorithms in remote sensing. Radiometric
and atmospheric corrections play a crucial role in mitigating these challenges. However,
performing accurate corrections can be complex, particularly due to the dynamic and
spatially varying nature of atmospheric conditions. To address this issue, it is essential for
users to have access to suitable atmospheric correction software that aligns with the specific
requirements of their study and the chosen approach. Selecting the correct or appropriate
atmospheric correction method is crucial in order to ensure reliable and accurate results in
remote sensing analyses. By carefully considering the data needs and research objectives,
users can make informed decisions and choose the most suitable atmospheric correction
software for their specific study [108]. The accurate assessment of LULC change is crucial,
particularly when it comes to capturing small classes such as roads and built-up areas,
as they can have significant impacts on water quality. Achieving precise results for these
classes requires the use of sensors with a very high spatial resolution, typically less than 5 m.
While sensors like LiDAR, WorldView-2, and Quickbird offer the required level of detail for
accurate LULC mapping, their utilization in studies has been limited. The main challenges
associated with these sensors are their cost and low temporal resolution. Acquiring data
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from these sensors for long-term studies can be expensive, and their restricted availability
may limit their use to smaller study areas. To conduct the effective long-term monitoring of
LULC change, it is necessary to analyze time series of remotely sensed imagery. However,
obtaining and analyzing consistent time series data from multiple sensors pose challenges.
It is essential to ensure that the acquired images are captured under similar environmental
conditions, such as the same time of the year, sun angle, and spectral bands, to minimize
errors and maintain data consistency. Overcoming these challenges in acquiring and
analyzing time series and multi-sensor data is crucial for improving our understanding of
LULC change and its impact on water resources. Efforts should be made to address these
limitations and develop methodologies that enable the accurate and consistent analysis of
LULC change over time [60,148]. To minimize errors, the accuracy of a fraction of a pixel
must be attained, meaning that variations in solar illumination atmospheric scattering and
absorption and detector performance must be normalized, i.e., the radiometric properties
of each image must adjust to those of the reference image [60,148].

One drawback of minimizing the issue of radiometric calibration is that any errors
identified in the classification maps of individual dates will also be present in the final
change detection map. To validate the results, it is important to compare the classified
maps with ground-truth data. Researchers often utilize a confusion matrix as the preferred
method for validation, which includes metrics such as overall accuracy, user accuracy,
producer accuracy, and the Kappa coefficient. However, the Kappa coefficient has been
criticized for its limitations in accurately assessing the results. It fails to convert the sample
confusion matrix into an estimated population matrix, which can affect the reliability of
the assessment [149,150]. To perform this hardware, software and qualified personnel
are required for processing and analyzing the dataset. This hinders the application of
remote sensing in monitoring the effects of LULC on water quality. Moreover, open-source
software solutions, such as R-software, QuantumGIS or GRASS [151], are freely available
to manipulate remote sensing products. However, these open-source software lack clear
documentation and steep learning curves that hinder their adoption and use. Therefore,
offering training across the discipline could potentially increase the adoption of these
software [152]. The lack of reliability in ground-truth data has also inhibited the progress
of classification in remote sensing.

Different algorithms have different strengths and require different input parame-
ters [18]. Many factors, such as the spatial resolution of the remotely sensed data, the
scale of the study area, the availability of software, the capacity of the analyst skills and
knowledge, affect the modelling approach [149]. The developed model from remote sensing
data requires adequate calibration and validation using in situ measurement and can only
be used in the absence of clouds [149]. ML algorithms rely on a large number of training
samples, which are difficult to obtain in the real world. However, remote sensing big data
may provide significant solutions to the lack of data, although they often cause compu-
tational challenges, for instance, the need for scalable data storage, dynamic workflow
management, and flexible computing resource provisioning [149].

The Google Earth Engine (GEE) [153], which is a cloud-based semi-automated plat-
form that offers basic calculation functions for both raster and vector data, can successfully
handle remote sensing big data on the cloud [153,154]. These advancements offer new
possibilities for integrating and combining techniques to assess and monitor the connection
between LULC change and water resources. However, the Google Earth Engine (GEE)
platform has its limitations. It does not support the execution of deep learning algorithms
due to computational constraints and the unavailability of such algorithms on the platform.
Consequently, users can only gather the data on the platform and perform deep learning
algorithms outside of the GEE platform. Additionally, using the platform requires a robust
internet connection, which can be challenging in developing countries and may result
in limited adoption [155,156]. GEE can cause an error with large computation complex-
ity because of the memory limitation [146]. Remote sensing data are often multimodal,
which requires the development of a novel ML model to extract joint features from the
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heterogeneous spectral, spatial, and temporal information. The integration of hydrologists,
statisticians and expert remote sensing analysts is limited, leading to satellite remote sens-
ing data regularly being underutilized and undervalued [152]. The limited sharing of data,
particularly in Sub-Saharan Africa, significantly hampers our capacity to examine land
function changes beyond land use and land cover alterations. Understanding the spatial
variability in the land’s ability to offer unintended services and identifying the factors
influencing it are crucial for regional policy and spatial planning. Despite these challenges,
this review emphasizes the need to shift towards adopting satellite data applications in
assessing and monitoring the connection between LULC changes and water resources. This
shift involves leveraging multiple data sources and employing advanced data processing
techniques to enhance our comprehension of these complex systems.

4.2. Progress and Future Direction on Remote Sensing of LULC Changes on Water Resources

Progress has been made regarding the utility of remote sensing in semi-arid tropical
environments, particularly in long-term monitoring, with a limited number of studies on
seasonal monitoring. There is still a gap in the real-time use of modern earth observation
techniques, such as Sentinels, which are freely available. Sentinels, with improved spectral
resolution and revisit time (5 days), bring new opportunities for the biweekly and seasonal
monitoring of the effect of LULC on water quantity and quality. The assessment and
monitoring of LULC changes and their impacts on water resources using hyperspectral,
drones and balloons has not attracted much attention. Only a few studies have attempted
nonparametric machine learning algorithms [149,154]. Numerous researchers have found
that LULC change correlates with water quantity and quality; still, there is no clear under-
standing of how LULC changes affect water quantity and quality. The quantification of the
relationship between LULC change and water resources is a complex system. Understand-
ing the relationship between LULC and water resource dynamics cannot be solely based on
a single factor. Therefore, factors such as hydrology, spatial patterns and ecosystem services
are often overlooked when assessing and monitoring the impact of LULC changes on
water resources. Research efforts need to be promoted to evaluate the relationship between
LULC and spatial patterns, ecosystem services and hydrological processes, particularly in
semi-arid tropical environments that are susceptible to climate variability. This research
could be crucial to supporting LULC planning, effective watershed management, and
making informed decisions regarding water resource management in order to ensure the
sustainable management of landscape composition and configuration, ecosystem services
and hydrological factors.

Multispectral sensors such as Sentinel 2 and Landsat images tend to be limited by
clouds and a relatively coarser spatial and temporal resolution [112,113]. Drone images are
not affected by clouds because they are flown at a lower altitude and can be used to collect
data over some inaccessible and remote areas [157]. As the fourth industrial revolution is
progressing, the adoption of drones is advised in future studies as an innovative source of
near real-time spatial data for mapping and monitoring the relationship between LULC and
water resources. Thus far, no studies have been conducted using drones and comparing
satellite sensors and drones in monitoring the impacts of LULC change on water quantity
and quality in semi-arid tropical environments. Balloons equipped with a digital camera
also have capabilities with regard to filling the gap between satellites and aircraft on
the earth observation platform. Balloons filled with helium gas can be flown at lower
altitudes than airplanes when detecting relatively small objects (small rivers, roads) with
minimal expense [158]. The limitations associated with balloons are that they need to
be appropriately used to avoid the geometrical distortion of images [158]. Geometrically
distorted images provide false locations for the objects detected. Due to minimal expense,
there is a need to also test this platform.

More research is needed to find the best variable and prediction model that can be
integrated with a free multispectral dataset [108]. Different algorithms have weaknesses
and strengths. Thus far, using an ensemble of different individual sensors and classifiers has
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been the most effective approach regarding the advance of LULC mapping. The use of more
advanced non-parametric algorithms in estimating the effects of LULC on water quantity
and quality has also been underutilized, despite their higher predictive accuracy, when
compared to parametric algorithms, even when using broadband multispectral sensors.
The application of the GWR and BN statistical model is robust; therefore, the use of this
model should be adopted in future studies since the algorithms alone could not determine
the physical processes of water resources. Integrating remotely sensed data with physical-
based hydrologic models is recommended in future studies for effective management and
decision making in watershed management. More research is needed to develop advanced
models using multi-source data, and improved algorithms and applications are vital and
required. The water quality parameter indices also showed effectiveness in estimating
water quality; therefore, integrating them with ML algorithms in future might improve the
models. There is also a need to assess the spatial pattern since it provides an understanding
of the spatial processes underlying the distribution. The use of AI capabilities enables
ML approaches to draw the complex nonlinear relationship between the land surfaces
variable and water quality parameters [47,49]. AI has shown much promise for a wide
range of physical environmental problems, from identifying critical situations, to aiding
human interpretation, to discovering new relationships in large datasets [49]. This provides
new opportunities with which to speed up the analysis process of large datasets, improve
models and successfully transform the exploitation of environmental data in the future.
In this regard, the use of multispectral sensor and parametric analysis in characterizing
the impacts of LULC on surface water is required if the sustainable utilization of water
management is to be achieved when aiming to address the rapidly growing population and
its water needs. This information holds great importance for water managers, catchment
managers, and land planners as it enables them to tailor their land and water management
strategies according to the spatial variability and seasonal changes in the impacts of LULC
on water quality and quantity. By understanding these relationships, it becomes feasible to
implement local to regional framework policies that promote the sustainable utilization of
land and water resources, thus facilitating effective land and water management practices.

5. Conclusions

The objective of this study was to conduct a systematic review to assess and monitor
the progress of remote sensing applications in mapping land use and land cover (LULC)
changes and their impacts on surface water quality and quantity. The literature indicates
that the use of remote sensing in this field has gained significant attention in recent years.
However, most studies have used multispectral Landsat images, while the potential of
other sensors with an improved revisit time, a medium spatial resolution, and enhanced
radiometric capabilities (e.g., Sentinel 1 and 2) has received less attention. These sensors
offer opportunities for seasonal monitoring. Additionally, the integration of multisource
remote sensing data, such as Sentinel 1, Worldview, radar, Quickbird, and LiDAR, has
expanded tour ability to obtain, although their limitations need to be assessed. Combining
data from different sensors enhances our understanding of the impact of LULC dynamics on
water resources. Platforms like drones and helium-filled balloons enable the near-real-time
acquisition of fine-resolution data, which can enhance the accuracy of LULC mapping via
improved training and validation processes. The use of advanced classification algorithms,
namely ML (e.g., SVM, ANN, RF, BN) and DL algorithms (e.g., RNN, CNN, DNN), which
improve the accuracy and efficiency of land cover classification, is recommended. Moreover,
the underutilization of advanced machine learning and deep learning algorithms in tropical
semi-arid regions and globally suggests the potential for adopting these approaches in
order to accurately estimate the effects of LULC changes on water resources. The use
of artificial intelligence (AI) technology can enhance the data processing capabilities of
big data analysis, thereby improving the quality of outcomes in future studies. The GEE
platform, known for its capacity to handle remote sensing big data, could be a valuable
and time-efficient tool for mapping LULC changes. To effectively manage water pollution
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resulting from different LULC patterns and improve water quality at local and regional
scales, it is crucial to fully embrace these innovative technologies and methodologies. These
advancements have enhanced our ability to assess and monitor the effects of land use
changes on water resources, enabling more effective planning and management strategies.
The progress made in remote sensing applications contributes to a better understanding of
the complex interactions between LULC and water resources, thus supporting sustainable
water management and environmental conservation efforts.
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