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Simple Summary: Host-associated gut bacteria influence the eco-physiological functions of their
hosts, for example, how they interact with natural enemies in their ecosystems, and hence the outcome
of biological pest management regimes. Here, we assessed the effect of three common gut bacteria of
the oriental fruit fly, Bactrocera dorsalis, on the biological control of this pest using parasitoid wasps.
We found that some gut bacteria increased parasitoid emergence and positively impacted the size
and fecundity of the emerging parasitoid offspring. We, therefore, conclude that some bacteria can be
used as probiotics in the mass rearing of parasitoids to boost the biological control of the oriental
fruit fly.

Abstract: Parasitoids are promising biocontrol agents of the devastating fruit fly, Bactrocera dorsalis.
However, parasitoid performance is a function of several factors, including host-associated symbiotic
bacteria. Providencia alcalifaciens, Citrobacter freundii, and Lactococcus lactis are among the symbiotic
bacteria commonly associated with B. dorsalis, and they influence the eco-physiological functioning
of this pest. However, whether these bacteria influence the interaction between this pest and its
parasitoids is unknown. This study sought to elucidate the nature of the interaction of the para-
sitoids, Fopius arisanus, Diachasmimorpha longicaudata, and Psyttlia cosyrae with B. dorsalis as mediated
by symbiotic bacteria. Three types of fly lines were used: axenic, symbiotic, and bacteria-mono-
associated (Lactococcus lactis, Providencia alcalifaciens, and Citrobacter freundii). The suitable stages of
each fly line were exposed to the respective parasitoid species and reared until the emergence of
adult flies/parasitoids. Thereafter, data on the emergence and parasitoid fitness traits were recorded.
No wasps emerged from the fly lines exposed to P. cosyrae. The highest emergence of F. arisanus and
D. longicaudata was recorded in the L. lactis fly lines. The parasitoid progeny from the L. lactis and
P. alcalifaciens fly lines had the longest developmental time and the largest body size. Conversely,
parasitoid fecundity was significantly lower in the L. lactis lines, whereas the P. alcalifaciens lines
significantly improved fecundity. These results elucidate some effects of bacterial symbionts on host–
parasitoid interactions and their potential in enhancing parasitoid-oriented management strategies
against B. dorsalis.

Keywords: Diachasmimorpha longicaudata; Lactococcus lactis; Citrobacter freundii; Fopius arisanus;
Tephritidae; fruit fly; biological control; gut symbionts; fitness

1. Introduction

The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a major
horticultural pest that infests numerous fruit and vegetable crops across Asia, Africa,
Oceania, and the Americas, resulting in hefty losses to the horticultural sectors of affected
countries [1–4]. The management of this invasive pest is largely dependent on chemical
insecticides, with far-reaching consequences on human and environmental health [5].
Furthermore, the overreliance on these chemicals very often results in the development of
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pest resistance. To ameliorate these effects, integrated pest management (IPM) is slowly
being embraced in various parts of the world [6–8]. One of the IPM tactics being deployed
is the use of biological control agents such as parasitoids [9–12], which, when released in
sufficient numbers under ideal conditions, can significantly suppress pest populations [11–13].

The egg-prepupal parasitoid Fopius arisanus (Sonan) (Hymenoptera: Braconidae) and
the larval-prepupal parasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera:
Braconidae) are co-evolved, natural enemies of B. dorsalis [14–16]. These parasitoids have
been credited with the most outstanding successful biological control programs against
tephritids in Hawaii [11,12] and French Polynesia [13,17]. Fopius arisanus and D. longicaudata
were imported into Africa for the classical biological control of B. dorsalis [9,18,19], especially
because the pest lacked efficient resident parasitoid species on the continent [20]. One of the
native parasitoid species of Africa, Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae),
has also been investigated for possible use in the management of this invasive pest alongside
D. longicaudata and F. arisanus [8].

Previous research has shown great variations in parasitism success by these three par-
asitoids on B. dorsalis. Successful development has been recorded for D. longicaudata and
F. arisanus [14,16,18,21] but none for P. cosyrae [15,22]. While these variations in parasitism
success could be due to the ability of the parasitoids to surmount their hosts’ defense mecha-
nisms [22], there has been an increasing appreciation of other factors such as host-associated
symbionts and their roles in shaping the dynamics of host–parasitoid interactions [23–28].

Bacterial symbionts have been shown to alter the outcomes of host–parasitoid inter-
actions, with the majority of the bacteria showing host-protective functions [23,26,29–33].
These symbiont-conferred protective phenotypes have been linked to the symbionts’ ability
to synthesize endotoxins [34–36] or alter host immune and metabolic processes [37,38].
As a result, the development of the parasitoid offspring is hampered. In addition to their
protective roles, symbiotic bacteria have been shown to affect host selection and ovipo-
sition cues by parasitoids, as well as the fitness parameters of parasitoid progenies, by
influencing their developmental times, sex ratios, size, and survival [39–44]. The ability
of bacterial symbionts to alter the dynamics of host–parasitoid interactions is significant
for the ecological dynamics of the host insects and parasitoids. This relationship could
be exploited to develop symbiont-based biocontrol management strategies for pests of
agricultural importance, such as the invasive B. dorsalis.

Diverse communities of symbiotic bacteria are associated with B. dorsalis [4,45,46].
Some of these bacteria have been shown to alter the development, foraging behavior,
mating, and immunity of their host [46–50]. Specifically, Lactococcus lactis, Providencia
alcalifaciens, and Citrobacter freundii are among the most common gut bacteria associated
with B. dorsalis [46,51,52]. These bacteria have been implicated in the detoxification of
insecticides, performance of irradiated flies, host fly fitness, and susceptibility to ento-
mopathogenic fungi [5,46,51]. Therefore, microbial symbionts are key mediators of the
physiological and ecological roles of B. dorsalis. However, whether they affect the out-
come of the interactions between B. dorsalis and its associated parasitoids has not been
fully elucidated.

Since such bacterial symbionts present considerable physiological and ecological
benefits to their host, B. dorsalis, it is of interest to determine whether they promote host-
protective phenotypes against parasitic wasps and if they influence the fitness parameters
of the parasitoid progeny. Hence, the current study aimed at determining whether L. lactis,
P. alcalifaciens, and C. freundii, the symbionts commonly associated with B. dorsalis, (1) affect
parasitoid oviposition behaviors, (2) confer general protection against the braconid par-
asitoids associated with B. dorsalis, and (3) alter the fitness parameters of D. longicaudata,
F. arisanus, and P. cosyrae progeny.
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2. Materials and Methods
2.1. Bactrocera dorsalis and Parasitoid Rearing

The Bactrocera dorsalis flies used in this study were reared on ripe, insecticide-free
mangoes, as previously described [22], in the insectary of the International Centre of Insect
Physiology and Ecology (icipe). The flies were derived from the eggs collected from a 15th-
generation, laboratory-reared colony, which was initiated with field collections and was
regularly infused with field collections and maintained, as previously described [53]. The
eclosed adult flies were fed on yeast and water ad libitum [15]. The parasitoids used in
this study, F. arisanus, D. longicaudata, and P. cosyrae, were also reared in the insectary at
icipe at a temperature range of 25–27 ◦C, 60–70% relative humidity, and a 12:12 day:light
photoperiod. Psyttalia cosyrae was reared on a laboratory colony of Ceratitis cosyra Walker
(Diptera: Tephritidae) [54], while D. longicaudata and F. arisanus were reared on B. dorsalis
as described by Mohamed et al. [9] and Mohamed et al. [18], respectively. The parasitoids
D. longicaudata, F. arisanus, and P. cosyrae used in this study were at the 183rd, 164th, and
177th generations in the laboratory, respectively.

2.2. Bacteria Culturing

The bacteria P. alcalifaciens, L. lactis, and C. freundii used in this study were retrieved
from glycerol stocks (stored at −80 ◦C) previously isolated from B. dorsalis [46]. Using
a sterile tip, individual species, each 5 µL, were retrieved from the glycerol stocks, spread
on a nutrient-rich medium, i.e., brain heart infusion (BHI) agar (Thermo Scientific™ Oxoid,
Hampshire, UK), and incubated at 37 ◦C for 14 h. They were then re-cultured in BHI broth
(Thermo Scientific™ Oxoid, Hampshire, UK) at 37 ◦C for 14 h in a shaking incubator.

The bacteria were harvested by centrifuging at 12879 RCF for five minutes, and the
precipitate containing the bacteria was diluted in distilled water to 1 × 108 concentration.

2.3. Generation of Axenic, Symbiotic, and Mono-Associated Bacterial Lines

The generation of bacteria-free fly lines was performed as described by Gichuhi
et al. [46]. Briefly, freshly laid B. dorsalis eggs were collected from perforated mango
domes (used as oviposition sites), surface-sterilized in 70% ethanol, dechorionated in a 7%
v/v sodium hypochlorite solution for three minutes and rinsed in distilled water thrice.
To confirm the elimination of bacteria from the flies, the dechorionated embryos were
inoculated in autoclaved liquid larval diets [55] (modified by excluding streptomycin and
nipagen) and left to develop until the 2nd instar. Consequently, 10 2nd instar larvae were
randomly selected and individually homogenized in 100 µL of phosphate-buffered saline
(PBS), and the homogenate was plated on BHI agar plates. The plates were incubated at
37 ◦C for 14 h and observed for bacterial growth. There was no bacterial growth observed
on the plates, and this confirmed the axenic state of the larvae.

From these dechorionated embryos, negative (axenic) and positive (symbiotic) con-
trols, as well as the bacterial mono-associated lines (BMALs) (L. lactis or P. alcalifaciens
or C. freundii), were generated. Axenic lines were generated by inoculating the dechori-
onated embryos on autoclaved artificial liquid larval diets [55] (modified by excluding
streptomycin and nipagen) supplemented with distilled water only. The BMALs were
generated by directly inoculating the dechorionated eggs on autoclaved artificial liquid
larval diets [55] (modified by excluding streptomycin and nipagen) supplemented with
1000 µL of 1 × 108 CFU/mL inoculum of the respective bacterial isolates, individually.
Symbiotic fly lines were generated by directly inoculating the dechorionated embryos
on non-autoclaved larval diets previously fed upon by larvae with an intact microbiome,
i.e., from a non-dechorionated embryo fly line reared under normal laboratory conditions.
This unsterilized/recycled diet was selected because it would contain microbiota from the
frass of the previously reared larvae. For each type of fly line, inoculations per replicate
were carried out as previously described [46], with a slight modification in the size of
tubes used: flat-based glass tube cylinders (75 × 25 mm). The tubes were capped with
autoclaved cotton wool and maintained in a microbiological safety cabinet) at 25–27 ◦C,
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60–70% relative humidity, and 12:12 day:light photoperiod. To minimize confounding
effects, all fly lines were generated from the same batch of collected embryos that were
dechorionated in the same batch before the respective inoculations and then reared under
the exact same conditions.

2.4. Parasitic Wasp Infection of BMALs and Axenic and Symbiotic Fly Lines

For D. longicaudata and P. cosyrae parasitization assays, B. dorsalis larvae were used.
Briefly, B. dorsalis embryos were dechorionated and raised as described above for each
experimental group until the larvae reached the 2nd instar stage. Using soft forceps, a set
of a hundred 2nd instar B. dorsalis larvae were randomly selected from each fly line and
individually transferred to larval oviposition units containing autoclaved carrot diets [56]
(modified by excluding nipagen). The carrot diets for the BMALs and axenic and symbiotic
lines were supplemented with 500 µL (1 × 108) of the respective bacterial species, distilled
water, or a liquid diet previously fed on by larvae with an intact microbiome, respectively.
The oviposition units were transferred to a Perspex cage (12 × 12 × 12 cm) holding
10 D. longicaudata or P. cosyrae mated female parasitoids for parasitization. In a recent study,
Gwokyalya et al. [22] demonstrated that D. longicaudata achieved oviposition above 90%,
whereas P. cosyrae achieved similar oviposition rates when host exposure was carried out
for six hours. Consequently, in this study, exposure to D. longicaudata was implemented for
two hours, while exposure to P. cosyrae was carried out for six hours. Post-parasitization,
the host larvae were retrieved from the oviposition units and transferred to the autoclaved
carrot diets. The carrot diets were supplemented with 500 µL of the respective bacteria
inoculum for the BMALs, a regular liquid larval diet for the symbiotic lines, or distilled
water for the axenic lines. The host larvae were left to feed and subsequently pupariate. The
puparia were transferred to four-liter transparent lunch boxes (18 × 11 × 15 cm) covered
with a cotton mesh and monitored until fly and/or parasitoid emergence.

Fopius arisanus parasitization assays were conducted using B. dorsalis eggs. Briefly,
150 dechorionated embryos were transferred to a filter paper laid on an agar plate and
moistened with a 1000 µL (1 × 108) inoculum of the respective bacteria species for each
BMAL. For the axenic lines, distilled water was used to moisten the filter paper, whereas,
for the symbiotic lines, 1000 µL of the liquid diet used to raise normal laboratory flies
was used. The agar plates were incubated for one hour (to allow for efficient bacterial
infection in mono-associated and symbiotic lines), after which the oviposition units were
transferred to individual Perspex cages (12 × 12 × 12 cm) containing 10 mated F. arisanus
females for parasitization, for six hours. Post-parasitization, B. dorsalis eggs were retrieved
from the oviposition units and transferred to autoclaved liquid larval diets [55] (excluding
streptomycin and nipagen) supplemented with 500 µL of the respective bacteria inoculum
for the BMALs, a normal larval liquid diet for the symbiotic lines, or distilled water for the
axenic lines and left to feed and subsequently pupariate. Consequently, the puparia were
transferred to transparent 4-liter lunch boxes (18 × 11 × 15 cm) covered with a cotton mesh
and monitored for fly and/or parasitoid emergence.

The parasitization experiments for each fly line and parasitoid were conducted individ-
ually in sterile conditions. All the wasps used in these assays underwent parasitization by
exposing them to bacteria-free B. dorsalis larvae or eggs prior to parasitization assays. The
wasps that did not exhibit oviposition behavior within 15 min were removed and replaced
with new ones. All fly lines and parasitoids were kept at 25–27 ◦C, 60–70% humidity, and
12:12 day:light photoperiod.

2.5. Effect of Bacterial Symbionts on Host Acceptability for Oviposition by Parasitoid Females

To check for possible variations in acceptability by parasitoids across the different
fly lines, host larvae and/or eggs from all fly lines were exposed to parasitoids, as de-
scribed in Section 2.4, in no-choice assays and dissected to check for oviposition success.
Diachasmimorpha longicaudata- and P. cosyrae-parasitized fly lines were dissected six hours
post-parasitization, while those exposed to F. arisanus were dissected after four days. The
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host larvae containing parasitoid egg(s)/larva(e) were recorded and expressed as a percent-
age of the total number of exposed hosts to reflect host acceptability. These experiments
were replicated five times.

2.6. Parasitoid Emergence and Fitness Assays

To investigate the effect of bacterial symbionts on parasitism success and fitness of
the emerging parasitoids, the host fly lines were generated and parasitized, as described
in Section 2.4. The parasitized fly lines were reared until pupation, and the pupae were
collected, transferred to transparent four-liter lunch boxes (18 × 11 × 15 cm) covered with
a cotton net cloth, and monitored for host fly and parasitoid emergence. The emerging
host flies were collected, counted, and killed by freezing, while the parasitoids were
transferred to separate transparent four-liter lunch boxes (18 × 11 × 15 cm) and fed on
50% honey solution ad libitum. The emerged wasps from each line for each parasitoid
species were counted and sexed, and the number of each sex was recorded. On day 28
of post-exposure to parasitoid wasps, the host cadavers (unhatched host puparia) were
dissected to check for the presence of dead parasitoid offspring. If found, these were
recorded as parasitoid deaths.

The total number of emerging parasitoids was expressed as a percentage of the total
recovered puparia to reflect parasitoid emergence. The total number of emerging host flies
was expressed as a percentage of the total recovered puparia to reflect fly emergence. The
total number of host puparia containing a dead parasitoid was expressed as a percentage
of the total recovered puparia to reflect parasitoid death. Sex ratios were calculated as the
proportion of female wasps out of all the emerged parasitoids.

2.7. Effect of Bacterial Symbionts Parasitoid Offspring’s Fitness Traits
2.7.1. Parasitoid Progeny Developmental Time

In a separate set of experiments, B. dorsalis larvae and eggs were exposed to D. longi-
caudata and F. arisanus for two and six hours, respectively, and treated in a similar manner
as described in Section 2.4. The host puparia were transferred to four- liter lunch boxes and
monitored until the onset of parasitoid emergence upon which the number of emerging
male and female parasitoids was recorded daily until the last parasitoid emerged. These
data were used to calculate the developmental time of the parasitoids, which was computed
using the formula below [14]. These experiments were replicated 10 times.

Developmental time =
∑n

i=1 nDi ∗ nFi
∑n

i=1 nFi

where i signifies an individual of a total of n insects; nFi is the daily individual insect
(parasitoid) emergence; and nDi is the duration in days for the development of the ith
insect (parasitoid) from oviposition to adult emergence.

2.7.2. Parasitoid Progeny Body Size

The hind tibia of the F1 parasitoid progeny of D. longicaudata and F. arisanus were
used as a proxy to measure the parasitoid progeny size. Briefly, one hind leg of each
of the 10-day-old F1 parasitoids was removed, mounted on a microscope slide using
entellanTM rapid mounting medium for microscopy (Merck, Darmstadt, Germany), and
layered with coverslips. The hind tibiae (one tibia from each parasitoid) were measured
under a stereomicroscope (Zeiss Stemi 508, Zeiss, Oberkochen, Germany). From each fly
line, 10 individuals (five males and five females) of each parasitoid species were randomly
selected for the assays, and this was replicated five times.

2.7.3. Longevity of Host-Deprived F1 Parasitoid Progeny

From the same groups of emerging parasitoids described in Section 2.7.1 above,
five replicates were randomly selected for the parasitoid progeny survival analysis. From
each selected replicate of each F1 parasitoid line, 10 male and 10 female parasitoids were ran-
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domly selected, transferred to sterile transparent four-liter lunch boxes (18 × 11 × 15 cm),
and fed on 50% honey solution ad libitum, but they were not provided with hosts for ovipo-
sition. The parasitoids were monitored daily for mortality until the last parasitoid died.
For each F1 progeny line within a parasitoid species, the survival data were obtained for
50 males and 50 females.

2.7.4. Fecundity of F1 Female Parasitoid Progeny

In a separate set of assays, 100 host larvae or 150 eggs from the axenic line, symbiotic
line, and BMALs were exposed to 10 mated female D. longicaudata or F. arisanus for 2 and
6 hours, respectively, and incubated until parasitoid emergence, as described in Section 2.5.
The emerging F1 parasitoids of each species from each fly line were used to investigate
the symbiont-mediated effects on F1 parasitoid fecundity. Briefly, 10 randomly selected
5-day-old, mated females of D. longicaudata or F. arisanus from each fly line were transferred
to four-liter lunch boxes (18 × 11 × 15 cm) and exposed to axenic larvae or eggs for two or
six hours, respectively. The exposure was carried out once every day for 15 consecutive
days. A 1:10 parasitoid: host ratio was maintained throughout the experiment. If a female
parasitoid died, the number of host larvae/eggs offered daily was adjusted to maintain this
ratio. The Diachasmimorpha longicaudata-parasitized larval groups were dissected 48 h after
parasitization, while the F. arisanus-parasitized groups were dissected after four days, under
a stereomicroscope (Zeiss Stemi 508, Zeiss, Oberkochen, Germany). The total number of
parasitoid eggs and/or larvae in each host larva was recorded daily, and this was presented
as the number of eggs laid per female parasitoid per day. These assays were performed in
four independent replicates for each parasitoid species from each fly line.

2.8. Data Analysis

All analyses were performed using R software (version 4.0.1) [57].
The data obtained from host acceptability bioassays were analyzed using a generalized

linear model (GLM) with quasi-Poisson distribution considering parasitoid species and
host infection status as fixed factors. Data from the host suitability (parasitoid and fly
emergence as well as parasitoid mortality) bioassay and the parasitoid progeny fitness
trait (sex ratio, developmental time, body size, fecundity, and longevity) bioassay were
analyzed separately for each parasitoid species. Since they were collected from the same
batch of host fly lines, parasitoid and fly emergence, as well as parasitoid mortality data,
were analyzed using multivariate analysis of variance (MANOVA), with host infection
status as a fixed factor. In cases in which a significant effect of host infection status was
detected, a univariate one-way analysis of variance (ANOVA) was conducted to check for
significant differences within the response variables (parasitoid emergence, fly emergence,
and parasitoid death), and this was followed by Student–Neuman–Keuls (SNK) post hoc
multiple comparisons tests.

The sex ratios of D. longicaudata and F. arisanus F1 progeny were analyzed using
a GLM with a binomial error distribution, considering host infection status as a fixed
factor. Parasitoid progeny developmental time was analyzed using a GLM assuming
a Gamma error distribution with host infection status as a fixed factor. Parasitoid progeny
body size (hind tibia length) was analyzed using a linear mixed-effect model from the
‘lme4’ package (version 1.1.27.1) [58], considering host infection status and the sex of the
parasitoid progeny as fixed and random factors, respectively. A generalized, linear mixed-
effect model (using the ‘glmer’ function from the ‘lme4’ package [58]), with a Gamma
error distribution, was fitted to analyze the fecundity of the female parasitoid progeny of
F. arisanus and D. longicaudata, considering host infection status and replicate population
as fixed and random factors, respectively. A Cox proportional hazards model using the
“coxme” function from the “survival” package (version 3.2.13) [59] was fitted to determine
the effect of bacterial symbionts on the longevity of the F1 progeny of both parasitoid
species. In the model, both host infection status and replicate population were included as
fixed and random factors, respectively. The significance of all these models was determined
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using analysis of deviance with chi-square tests, and mean separation was determined
using Tukey’s multiple comparison tests at α ≤ 0.05.

3. Results
3.1. Effect of Bacterial Symbionts on Host Acceptability for Oviposition by Female Parasitoids

The no-choice assays revealed that host acceptance by all the parasitoid species was not
affected by symbiotic bacteria (χ2 = 0.518, df = 3, p = 0.775), parasitoid species (χ2 = 0.246,
df = 2, p = 0.769), or the interaction between these two factors (χ2 = 0.343, df = 6, p = 0.994)
(Figure 1).
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Figure 1. Acceptability by three parasitoid species (Diachasmimorpha longicaudata, Fopius arisanus,
and Psyttalia cosyrae) for Bactrocera dorsalis fly lines (axenic, Lactococcus lactis, Providencia alcalifaciens,
Citrobacter freundii, and symbiotic) (mean ± standard error of the mean (SEM)). n.s denotes non-
significant differences (Tukey’s tests, α ≤ 0.05, n = 500).

3.2. Effect of Bacterial Symbionts on Host Suitability for Development of the Immature Stages of
the Parasitoids

We recorded a significant effect of symbiotic bacteria on parasitoid emergence, fly
emergence, and parasitoid mortality in the F. arisanus-parasitized fly lines (MANOVA:
F12,135 = 5.913, p < 0.001). Further, analysis using ANOVA showed significant effects of
bacterial symbionts on parasitoid emergence (F4,45 = 24.122, p < 0.001; Figure 2a) as well
as host fly emergence (F4,45 = 33.708, p < 0.001; Figure 2b) but not parasitoid mortality
(F4,45 = 0.872, p = 0.488; Figure 2c). The flies inoculated with L. lactis yielded the highest
percentage of parasitoid wasps and the lowest percentage of eclosed host flies, while the
reverse was true for those inoculated with P. alcalifaciens (Figure 2a,b).
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freundii, and symbiotic) on the outcome of Bactrocera dorsalis and Fopius arisanus interaction. Within
each category ((a) parasitoids, (b) host flies, and (c) parasitoid mortality), boxes capped with different
letters indicate significant statistical differences; n.s denotes nonsignificant differences (Student–
Neuman–Keuls (SNK) test, α ≤ 0.05, n = 1000). Within each box, horizontal bars denote the median
values, and the ends of each boxplot whisker represent the minimum and maximum values of the
data. Each data point represents the percent individuals (emerging parasitoids and host flies as well
as dead parasitoids) recorded for a single replicate.

In general, the effect of bacterial symbionts on the three response variables in the
D. longicaudata-parasitized host fly lines (MANOVA: F12,135 = 2.666, p = 0.003) showed
a similar trend to that recorded for F. arisanus. Inoculating B. dorsalis with symbiotic bacteria
significantly influenced parasitoid emergence (F4,45 = 8.246, p < 0.001; Figure 3a) and fly
emergence (F4,45 = 11.527, p < 0.001; Figure 3b) but not parasitoid mortality (F4,45 = 0.304,
p = 0.874; Figure 3c). Overall, the L. lactis-infected fly lines yielded the highest percentage
of parasitoids when compared with other host fly lines (Figure 3a).
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 Figure 3. Effects of symbiotic bacteria (axenic, Lactococcus lactis, Providencia alcalifaciens, Citrobacter
freundii, and symbiotic) on the outcome of Bactrocera dorsalis and Diachasmimorpha longicaudata interac-
tion. Within each category ((a) parasitoids, (b) host flies, and (c) parasitoid mortality), boxes capped
with different letters indicate significant statistical differences; n.s denotes nonsignificant differences
(Student–Neuman–Keuls (SNK) test, α ≤ 0.05, n = 1000). Within each box, horizontal bars denote the
median values and the ends of each boxplot whisker represent the minimum and maximum values
of the data. Each data point represents the percent individuals (emerging parasitoids and host flies as
well as dead parasitoids) recorded for a single replicate.

We did not record any parasitoid emergence from P. cosyrae-parasitized larval groups
irrespective of the infection status. However, we found a significant multivariate ef-
fect of bacterial symbionts on host fly emergence and parasitoid mortality (MANOVA:
F8,90 = 4.667, p < 0.001). Further analysis revealed that host fly emergence significantly var-
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ied across all the host fly lines (F4,45 = 13.419, p < 0.001; Figure 4a), with the highest percent
fly emergence recorded in the symbiotic and P. alcalifaciens host fly lines (Figure 4a). Para-
sitoid mortality was not affected by symbiotic bacteria (F4,45 = 1.805, p = 0.145; Figure 4b).
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3.3. Effect of Bacterial Symbionts on Parasitoid Offspring’s Fitness Traits
3.3.1. Parasitoid Progeny Sex Ratio

The bacterial symbionts of B. dorsalis did not alter the sex ratios of the progeny of
F. arisanus (
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Figure 5. Sex ratios (mean ± SEM) of (a) Fopius arisanus and (b) Diachasmimorpha longicaudata progeny
emerging from different Bactrocera dorsalis lines (axenic, Lactococcus lactis, Providencia alcalifaciens,
Citrobacter freundii, and symbiotic). n.s denotes non-significant differences among the sex ratios of the
emerging parasitoids (Tukey’s tests, α = 0.05).
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3.3.2. Parasitoid Progeny Developmental Time

Developmental times significantly varied among host fly lines for both parasitoid
species (χ2 = 122.360, df = 4, p < 0.001; χ2 = 18.20, df = 4, p = 0.001, for F. arisanus and
D. longicaudata, respectively), being the longest for the wasps emerging from P. alcalifaciens
and L. lactis fly lines (Table 1). Overall, the average developmental time for F. arisanus was
23.56 ± 0.37 days, while it was 17.50 ± 0.21 days for D. longicaudata.

Table 1. Effect of bacterial symbionts on the developmental times of Fopius arisanus and Diachasmimor-
pha longicaudata progeny emerging from the different Bactrocera dorsalis fly lines (axenic, Lactococcus
lactis, Providencia alcalifaciens, Citrobacter freundii, and symbiotic). Within each column, means followed
by the same letter are not significantly different (Tukey’s tests, α = 0.05, n = 1000). SEM = standard
error of the mean.

Developmental Time Days (Mean ± SEM)

Parasitoid Species Fly Line Male Female Pooled

Fopius arisanus Axenic 19.96 ± 0.109 a 21.39 ± 0.118 a 20.76 ± 0.133 ab
L. lactis 20.30 ± 0.147 ab 21.86 ± 0.083 b 21.05 ± 0.174 bc

P. alcalifaciens 20.69 ± 0.077 b 21.80 ± 0.074 b 21.16 ± 0.210 c
C. freundii 19.99 ± 0.115 a 21.29 ± 0.122 a 20.78 ± 0.086 ab
Symbiotic 19.93 ± 0.078 a 21.12 ± 0.084 a 20.55 ± 0.118 a

Diachasmimorpha longicaudata Axenic 14.97 ± 0.977 a 17.65 ± 0.096 a 16.97 ± 0.107 a
L. lactis 16.91 ± 0.220 b 18.57 ± 0.243 c 17.89 ± 0.224 b

P. alcalifaciens 16.75 ± 0.101 ab 18.18 ± 0.048 bc 17.61 ± 0.052 b
C. freundii 15.81 ± 0.113 ab 17.56 ± 0.096 a 16.81 ± 0.106 a
Symbiotic 16.08 ± 0.117 ab 17.72 ± 0.097 ab 16.99 ± 0.096 a

3.3.3. Parasitoid Progeny Body Size and Longevity

Like other fitness parameters, the body size (as measured by the hind tibia length) of
the F1 progeny of both parasitoid species was significantly affected by bacterial symbionts
(F. arisanus: χ2 = 56.220, df = 4, p < 0.001; D. longicaudata: χ2 = 345.750, df = 4, p < 0.001).
Overall, the parasitoids emerging from L. lactis and P. alcalifaciens fly lines had longer tibia
than those emerging from other fly lines for both parasitoids (Figure 6). On the other hand,
there were no symbiont-mediated effects on the longevity of the parasitoid progeny of both
parasitoid species (χ2 = 0.006, df = 4, p = 1.000 and χ2 = 0.096, df = 4, p = 0.998 for F. arisanus
and D. longicaudata, respectively) (Figure 7a,b).
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Figure 6. Effect of Bactrocera dorsalis symbiotic bacteria (axenic, Lactococcus lactis, Providencia al-
califaciens, Citrobacter freundii, and symbiotic) on F1 parasitoid body size (hind tibia lengths (mm;
mean ± standard error of the mean (SEM)). Within each parasitoid species, scatter plots capped with
different letters are significantly different (Tukey’s tests, α = 0.05, n = 50). Each data point represents
the tibia length of a single adult parasitoid.
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Figure 7. Effect of Bactrocera dorsalis symbiotic bacteria (axenic, Lactococcus lactis, Providencia alcali-
faciens, Citrobacter freundii, and symbiotic) on the survival of F1 progeny of (a) Fopius arisanus and
(b) Diachasmimorpha longicaudata (Tukey’s tests, α = 0.05, n = 100). The data represent 100 (50 males
and 50 females) F. arisanus and D. longicaudata F1 offspring kept in four-liter lunch boxes and fed
with 50% honey solution ad libitum. Survival of both parasitoid species was recorded until the last
parasitoid died.

3.3.4. Fecundity of Female Parasitoid Progeny

The fecundity of the F1 progeny of both parasitoids was significantly affected by
symbiotic bacteria (χ2 = 11.698, df = 4, p = 0.020 and χ2 = 60.834, df = 4, p < 0.001 for
F. arisanus and D. longicaudata, respectively), with the parasitoid progeny emerging from
the P. alcalifaciens-inoculated fly lines ovipositing more eggs (F. arisanus = 6.18 ± 0.29 and
D. longicaudata = 6.74 ± 0.26 eggs/♀/day), whereas the least fecund parasitoid wasps
were those reared from the L. lactis-inoculated fly lines (F. arisanus = 5.44 ± 0.16 and
D. longicaudata = 5.30 ± 0.13 eggs/♀/day, Figure 8a,b).
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Figure 8. Cumulative fecundity of F1 female parasitoid progeny of (a) Fopius arisanus and (b) Di-
achasmimorpha longicaudata reared on different Bactrocera dorsalis fly lines (axenic, Lactococcus lactis,
Providencia alcalifaciens, Citrobacter freundii, and symbiotic) (Tukey’s tests, α = 0.05, n = 400). Error bars
reflect the standard error of the mean (SEM).
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4. Discussion

Augmentative biological control is a widely used approach for the management of fruit
flies in many countries [11–13,16,20]. This approach does not only require the production
of parasitoids on a large scale, but the produced parasitoid wasps also need to be of high
quality in terms of fitness, to ensure their optimal performance in the field. Symbiotic
bacteria could be exploited to enhance the quality of mass-reared parasitoids [41]. Indeed,
symbiotic bacteria have been reported to influence the physiological quality of their hosts,
inevitably influencing how they are perceived by parasitoids and their suitability for the
development of parasitoid immatures and, eventually, the fitness of the emerging parasitoid
progeny [39,41,42,60].

The comparable acceptability of the three parasitoid species (F. arisanus, P. cosyrae, and
D. longicaudata) across the B. dorsalis fly lines reported in this study might be an indication
that these symbiotic bacteria had no influence of the host cues used by the parasitoid females
to locate their hosts. Indeed, Sochard et al. [27] reported that Hamiltonella defensa and
Regiella insecticola did not alter the acceptability of Acyrthosiphon pisum (Harris) (Hemiptera:
Aphididae) by its parasitoid, Aphidius ervi Haliday (Hymenoptera: Braconidae). Likewise,
Xie et al. [32] showed that Spiroplasma sp. had no effect on the parasitism rates of Leptopilina
heterotoma Förster (Hymenoptera: Figitidae) in Drosophila melanogaster Meigen (Diptera:
Drosophilidae). However, the findings by Attia et al. [39] and Frago et al. [29] revealed
that symbionts influence the host acceptability by parasitoid wasps, a phenotype that
was attributed to the symbiont-mediated cues that influence host finding and ovipositing
behavior by the parasitoids.

Nonetheless, despite the similar outcome in host acceptability, parasitoid emergence
varied among the B. dorsalis fly lines, suggesting that bacterial symbionts had a profound
effect on parasitoid development. Most facultative bacteria described to date possess
protective roles where, in some instances, complete host protection against parasitoids is
realized [30]. These protective phenotypes are largely attributed to the symbiont-encoded
viruses that impair parasitoid development [35,36], the ability of the symbionts to alter
the host immune defenses [37], or their ability to compete for nutrients, which are needed
for the successful development of the parasitoids [38]. However, the high parasitism
rates recorded in the L. lactis-inoculated fly lines in the current study suggest that L. lactis
increases the susceptibility of B. dorsalis to attack by parasitoids. This susceptibility could
be associated with the suppression of immune defense mechanisms of B. dorsalis and/or
the L. lactis-mediated pathogenicity mechanism, previously highlighted in the B. dorsalis–
L. lactis–Metarhizium anisopliae interaction [46]. However, this mechanism remains poorly
understood.

Surprisingly, one evaluated symbiont, P. alcalifaciens, was found to confer protection
to B. dorsalis against F. arisanus but not D. longicaudata, suggesting that bacteria-mediated
protection against parasitoids is not universal across host–parasitoid systems. These
two parasitoids attack different stages of their host, with F. arisanus using the eggs and
D. longicaudata using the larvae as hosts, and this might have contributed to the discrep-
ancy in P. alcalifaciens-mediated protection. Alternatively, it is possible that P. alcalifaciens
produces toxins or engages pathogenic mechanisms to which only F. arisanus is susceptible.
Similar symbiont-specific host-protective phenotypes have been demonstrated in other
host–symbiont–parasitoid tripartite interactions [31,40,61,62].

Similar to earlier studies [40,42], we found that symbiotic bacteria did not affect the
sex ratios of the progeny of F. arisanus and D. longicaudata. It has been demonstrated
that parasitoids discriminate between good- and poor-quality hosts and, consequently,
allocate more female offspring to good-quality hosts [63–66]. The results obtained in the
current study showed that the F1 progeny of both parasitoid species from all fly lines were
female-biased. The bias may be caused by the parasitoids perceiving hosts across all fly
lines as good quality, thus choosing to oviposit more females in all of them. Furthermore,
the female parasitoids used in this study were newly mated and in their early stages of
oviposition, which may have contributed to this sex bias. Studies have shown that mated
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female parasitoids are likely to lay more females than males since most eggs at this stage
are diploid (fertilized) eggs that develop into female progeny [67,68].

Earlier studies suggested that the parasitoid progeny’s developmental time and size
are a function of host size [42,69], wherein the parasitoids emerging from smaller hosts take
longer to develop, especially for koinobiont parasitoid species [70,71]. Indeed, the B. dorsalis
pupae from the L. lactis and P. alcalifaciens fly lines were reported to have higher weights
than those from the other fly lines [46]. It was, therefore, expected that the parasitoid
progeny from these lines would emerge earlier. However, in this study, these parasitoids
emerged later than those reared on the, C. freundii, axenic, and symbiotic host fly lines
with associated lower puparia weights. This phenotype could be a symbiont-mediated
manipulation of host physiology such that the parasitoids developing in these lines delay
development and subsequent emergence until the hosts reach the desired physiological
state. Alternatively, it is known that the parasitoid rate of the consumption of its host is
inversely proportional to the size of the host, which may increase the development time of
the parasitoids, especially in tissue-feeding endoparasitoids [69,70]. It is, therefore, possible
that the parasitoids from the P. alcalifaciens and L. lactis fly lines had longer developmental
times, as they had to completely consume their relatively larger hosts prior to emergence.
These findings, however, contrast with a previous report that other Providencia species
shorten the developmental time and alter the sex ratio of D. longicaudata progeny [41].
Differences in bacteria strains used, inoculation strategy, and host species may account for
the contrast between our findings and the findings of that study, more so since in the latter,
bacterial isolates were supplemented in non-axenic diets, thus accommodating additive
effects from other native bacterial symbionts in the host larvae.

Moreover, the finding that the parasitoids emerging from the P. alcalifaciens and L. lactis
host fly lines were larger than those reared on the axenic, symbiotic, and C. freundii counter-
parts conforms with the host–parasitoid size theory, according to which larger hosts are
predicted to yield larger parasitoid progeny [69–73]. The larger body size of the parasitoid
progeny from these lines could, therefore, be an additive effect of these two symbionts on
the size of their hosts, a trait that could be attributed to symbiont-mediated effects on the
nutritional resources of the hosts reared on these bacterial lines.

Previous studies suggested that the size of a female parasitoid is directly proportional
to its fecundity and longevity, e.g., [72,74,75]. While this held true for the F1 parasitoid
progeny emerging from the P. alcalifaciens fly lines, the opposite was recorded for those
reared on the L. lactis fly lines, which, despite being larger than the parasitoids from the
axenic, symbiotic, and C. freundii fly lines, were less fecund. This finding suggests the
L. lactis-associated fitness costs in such a way that the female parasitoid progeny from this
fly line allocate more resources towards growth and adult maintenance at the detriment of
their reproductive potential. This symbiont may, therefore, have cryptic fitness costs on
the reproductive potential of parasitoids that supersede the progeny size benefits. Similar
symbiont-mediated tradeoffs in parasitoid fitness have been demonstrated in other host–
symbiont–parasitoid systems [39,62,76].

5. Conclusions

This study reveals a mixed nature of interactions: a general synergism with the para-
sitoids with L. lactis and a more beneficial role to the host flies in the case of P. alcalifaciens,
suggesting that symbiotic-bacteria could have significant consequences on host–parasitoid
dynamics. In this regard, these findings underscore the previously unknown role of bac-
terial symbionts in mediating the host–parasitoid interactions in B. dorsalis by providing
information vital for parasitoid mass rearing. For example, L. lactis can be harnessed as
a probiotic in mass-rearing programs of D. longicaudata and F. arisanus, hence enhancing the
performance of parasitoids in biological control programs targeting this pest. Nevertheless,
future studies are needed to elucidate the mechanisms underlying these symbiont-mediated
host–parasitoid interactions.
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