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A B S T R A C T   

Desert locust (Schistocerca gregaria) plagues threaten agricultural production, food security and the environment 
across Africa, the Middle East, and Southwest Asia. Control methods targeting adult desert locusts present sig
nificant challenges and financial costs. Recognizing this, we developed a ground-breaking fuzzy set Mamdani 
type inference model that provides an innovative solution for early warning alerts. The model aids in predicting 
the juvenile stages of locust development, thereby preventing wide-scale locust swarming and mitigating its 
extensive damages and socioeconomic costs. The novelty of our approach lies in our unique application of 
environmental variables relevant for locust breeding to estimate the timing and location of desert locust 
hatching. Additionally, we improved the algorithmic handling of these variables, with localized desert locust 
bands data used as a proxy for hatching timing with a temporal offset of 35 days. The model’s boundary con
ditions were determined using a training area in Sudan, where comprehensive ground data was available. This 
rule set was subsequently applied to Turkana County in Kenya, a data-scarce region, demonstrating the model’s 
applicability and success in different contexts. The model’s accuracy, assessed by data from the Sudan training 
site, demonstrated a remarkable score of 82% for true predictions. Furthermore, the model correctly identified 
the months of highest hatching probabilities in Turkana during 2020, demonstrating its real-world effectiveness 
and practical value. A correlation analysis affirmed that hatching was associated with increases in chlorophyll 
levels and precipitation accumulations. Our study marks a significant advancement in predicting the timing of 
hatching using fuzzy logic in data-scarce environments. By operationalizing more targeted early responses to 
desert locust infestations, our model facilitates more effective locust control. This study stands as an important 
contribution to locust management strategies, with substantial implications for agricultural production and food 
security in affected regions.   

1. Introduction 

Desert locusts (Schistocerca gregaria; family Acrididae) are a locust 
species, that occur in semi to arid regions in Africa, the Middle East, and 
Southwest Asia. As swarms they sometimes invade countries and areas 
far away from their breeding grounds. The life cycles of desert locusts 
are initiated with egg laying in deep sandy soil, with incubation periods 
being 10 to 65 days (Cressman, 2021). Hatching and molting 

subsequently occur, and as they mature, individuals can transform from 
a harmless solitary state to the destructive gregarious phase, whereby 
hoppers (juveniles in their early, wingless stages) march together in 
bands. Desert locust development phases vary due to the phenotypic 
plasticity of the pest that can be abruptly triggered by environmental 
changes (Nevo, 1996), such as successive above-average rainfall (Sym
mons and Cressman, 2001). The polymorphisms of the species, thus, 
influences localized timing of hatching and subsequent unified 
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swarming of the adults, even across continents (Pflüger and Bräunig, 
2021). 

Swarms can travel up to 120 kms per day and near completely 
consume croplands, rangelands and natural vegetation, within a short 
time (Rowell and Hemp, 2017). As such, desert locusts are often 
considered one of the most devastating and unpredictable pests in dry
lands (Van Huis, 2007). A total of 65 countries in Africa and Asia have 
been found to be affected by desert locust plagues (Skaf et al., 1990). 
Desert locusts are a risk factor for agro-pastoral communities in 
semi-arid to arid regions that are already vulnerable to climate stressors 
(Spinage, 2012). 

Widespread plagues can be intensified by extreme weather events 
because of climate change and climate variability. For instance, the 
tropical cyclone “Laban”, which occurred off the coast of eastern Africa 
in 2019, resulted in excessive and persistent seasonal rainfall (>400% 
over the long-term mean), not experienced over several decades. This 
caused breeding and swarming of desert locusts across the region (Chen 
et al., 2020). In Kenya, about 107,000 km2 (or 20% of the total land 
surface area of Kenya) was impacted by the 2019–2021 locust plagues 
(Kimathi et al., 2020). 

The development of hopper bands in eastern Africa is amplified by 
the continuous availability of dense “green” vegetation and suitable soil 
conditions because of rainfall anomalies over various seasons. However, 
the spatio-temporal interactions between climate and vegetation, and 
how changes in biotic factors and land use dynamics affect this inter
action are not well understood (Tratalos, 2001). This poses challenges 
for early warning and risk forecasting models. 

Recent strides have been made to discern outbreak and breeding 
areas (e.g., Kimathi et al., 2020; Klein et al., 2022) and characterize 
phase dynamics (changes from solitary to harmful gregarious state) 
(Topaz et al., 2012). However, there are still many specific factors and 
unknowns that are yet to be identified to improve real time detection 
and early warning. For instance, one of the key challenges is detecting 
early states of swarming which is still impossible in remote and vast 
areas where locusts breed (i.e., desert, and arid areas in Africa and the 
Middle East). This is exacerbated by political insecurity in most regions 
where the desert locust occurs and breeds as well as the deficiency of 
on-site expertise needed for continuous, and long-term monitoring and 
early detection (Gay et al., 2020). As a result, the United Nations (UN) 
Food and Agriculture Organization (FAO) initiated the Desert Locust 
Information Service (DLIS) platform to provide early warning of 
swarming (Symmons, 1992). However, the DLIS provides information at 
a coarse scale (0.25◦ grid cell resolution). Yet ground-based breeding 
sites monitoring systems are needed that make use of explicit informa
tion encompassing the early life cycle stages of the pest (Meynard et al., 
2020). This entails making use of spatially and temporally explicit 
environmental variables that are known to sustain hatching over larger 
areas. Therefore, characterizing early life cycle stages of the pest (i.e., 
hatching) using spatial and temporal variables explaining their life cycle 
dynamics, would enable the early anticipation of swarming (even before 
field teams “observe” hopper bands in the field) (Salih et al., 2020). 
Hence, spatially modeling hatching regions and timing will help to offset 
the already constrained limited resources needed to conduct ground 
surveys (Meynard et al., 2020). 

Some local to regional studies were designed to predict hatching 
triggers and tie them to the time of hatching. However, due to the 
complexity of the ecological processes, some ambiguity and inconsis
tency were observed in other modeling work in this regard. For instance, 
some studies have shown contradictory results in terms of variables 
importance (Rhodes and Sagan, 2021). While soil temperature and 
moisture were observed as an important variable (Nishide et al., 2017), 
it can also inhibit hatching when excessive rainfall occurs (Cressman, 
2013). Essentially, from previous studies, it can be summarized that over 
vast tracts of largely inaccessible land, solitary hoppers and bands are 
difficult to consistently monitor using field surveys. Hoppers also often 
exhibit a sedentary behavior, before swarming spontaneous and rapidly 

occurs (Brader et al., 2006). Early life cycle stages of the pests (i.e., 
bands and hoppers) can be easily missed. Current desert locust moni
toring is largely associated with assessing periods of rainfall and green 
vegetation upsurges that sustain bands or hoppers (Mongare et al., 2023; 
Wang et al., 2021). There is clearly a gap, in that geospatial desert locust 
occurrence monitoring routines have evidently, thus far, excluded 
considering modeling hatching suitability, before the bands and hoppers 
life cycle stages. 

In view of the above gaps, the objective of this study was to use 
spatio-dynamics variables and a data driven knowledge-based fuzzy 
logic model to predict timing and location of desert locust hatching. The 
model rules are applied to Turkana County in Kenya to predict egg 
hatching occurrence probabilities in time and space. In targeting the 
early life stages, we hope to contribute to the development of early 
warning systems, important for remote areas within semi-arid and arid 
regions of Africa. 

The model choice (fuzzy logic) is tailored to the data characteristics 
found in the study areas, i.e., deducing rules from available desert locust 
ground observations (here we used bands data as a proxy for hatching, 
given a temporal offset). Moreover, we used fuzzy logic rules over other 
modeling approaches because of the ability of this method to deal with 
data gaps, in our case data gaps on bands and hatching in the Kenyan 
target area. The developed rules use straightforward ecological princi
ples related to the knowledge of the life cycle changes of the pest 
(Ricotta, 2000). Zadeh (1965) developed the first fuzzy logic model and 
theory based on linguistic principles based on vagueness or fuzziness 
and expressed in membership functions. 

2. Method 

2.1. Study site(s) 

The primary study site used to develop the model rules was north- 
eastern Sudan, specifically the coastal area of the Red Sea that 
stretches between Port Sudan (19.42◦N/37.26◦E) and Aqig (17.79◦N/ 
38.42◦E) (Fig. 1a). This study site was selected because it provided the 
most consistent and highest multi-temporal field data on desert locusts’ 
bands spanning the period 2013 to 2021. 

The Sudan desert locust recession and training area is characterized 
by frequent occurrence, breeding and outbreaks of the pest. The Sudan 
study site covers a spatial area of 70.900 km2 and is characterized by a 
large spatial variability in rainfall amounts, from 39 mm per annum in 
the inland areas to 164 mm on the southern coast with an annual mean 
of approximately 111 mm (El Gamri et al., 2009). Rainfall occurs in the 
“winter” months, from November to February. The daily maximum 
temperatures are often > 30 ◦C, with daytime averages from 20 to 27 ◦C. 
The area is characterized by semi-desert vegetation, that readily re
sponds to rainfall events (Halwagy, 1961). These areas contain different 
desert locust habitats, such as plains and wadis. Furthermore, these 
habitats vary in soil type (fine silty, sandy dunes and sometimes 
inter-mixed with fine gravel), vegetation density (low, medium and 
dense). Moreover, this zone is quasi-permanent habitats for desert locust 
breeding and development and considered as most frequent for desert 
locust outbreaks during the rainy season. The study area is dominated by 
several of the main annual vegetation species preferred by desert locust 
such as Tribulus spp., Dipterygium glaucum, Heliotropium spp., Pennisetum 
typhoideum) and some perennials e.g. Panicum turgidum, Acacia spp., 
Suaeda spp. and Callotropis procera. 

Turkana county in Kenya was the target or invasion area (with 
infrequent outbreaks), used to project the developed rule set to (Fig. 2). 
Turkana county covers an area of approximately 68.500 km2. This area 
is characterized by a large inter-annual rainfall variability with two 
rainy seasons, from April and July (long rains) and then between 
October and November (short rains). The annual average is 200 mm, 
and average daytime temperatures are between 20 and 35 ◦C (MoALFC, 
2021). The vegetation is more diverse than in the Sudan area, and is 
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characterized by savanna and semi-desert vegetation, mostly annual 
grasses (mostly genera Aristida) and dwarf shrubs, with large Acacia 
trees in some places. The area is dominated by haplic xerosols soils with 
sandy loam or loamy sand texture in some places (MoALFC, 2021). 

2.2. Datasets 

The data used in this study are field occurrences of hopper bands, 
which were collected in Red Sea area in Sudan, as daily observations 
from 2013 to 2021. The collection was conducted by the desert locust 
survey and control officers of the Plant Protection Directorate (PPD) of 
Sudan. This activity is part of a regular runtime activity to conduct 
ground survey operations in summer and winter desert locust breeding 
areas. These well-trained field observers collect data on the desert locust 
presence, habitat type, breeding sites, locust density, growth phases, 
stages and relative behavior at the time of observation. The surveys data 
are saved in reconnaissance and monitoring system of the environment 
of Schistocerca (RAMSES). This is a computerized GIS-based platform (i. 
e., RAMSES), through which desert locust occurrence observations at a 
national scale can be retrieved (Cressman and Hodson, 2009). 

We retrieved monthly georeferenced observation points from 2013 
to 2021 from the RAMSES platform. The data were cleaned (i.e., absence 
observations and other hopper stages were excluded) and used in the 
modeling experiments. The 8-year band data showed some data gaps in 
certain months due to non-collection of data, however, annual patterns 
could be established in areas where bands were present and not present. 
The highest number of band observations were made in the last five 

years, that is, 2017 to 2021 (i.e., infestation by year, Fig. 1b). The 
highest presence was observed in 2019 (255) and the lowest in 2017 
(15). Observations corresponding to 2018 had the second highest 
presence midway between 2017 and 2019 (145) (Table 1, supplemen
tary material). Hence, the data obtained in these consecutive years were 
analyzed using descriptive statistics (Fig. 1–33 in the supplementary 
material section). These results facilitated the development of the rules 
embedded into the model. 

Furthermore, the obtained data for the priority period (2017–2019) 
presented intra-annual patterns demonstrating that the highest presence 
of bands was observed between January to March corresponding to the 
1st quarter of the year and from October to December (4th quarter) in at 
least 2 of all 3 years (Fig. 1c). In the 2nd and 3rd quarters in each year, 
respectively, occurrence was lower. The rule-based relationships be
tween infestation and the climate and environmental variables were 
thus developed for these priority years (2017–2019). The data from the 
most relevant quarters of each year were used to establish the re
lationships between the bands and the climate and environmental 
variables. 

The Terra-Climate (Terra-Clim) data provided at ~4-km grid/pixel 
resolution (https://www.climatologylab.org/) were used as the main 
climate data (the variables used under terraclim) (Table 1). The 
“greenness” data were obtained from Vlaamse instelling voor tech
nologisch onderzoek (VITO) at a pixel size of 250-meter. The “green
ness” datasets were resampled to 1-km pixel resolution, and the monthly 
means for the priority period were also produced at this resolution. The 
Terra-Clim grid data over Africa show a good match with station data 

Fig. 1. (a) Location of study area in Sudan (East Africa). The spatial and temporal distribution of locust bands on the ground in the Sudan “training” area is used for 
rule development. The heat map shows concentrations, that is densities of hopper bands that were observed over the sampling period (2013–2021). Brownish-reddish 
areas exhibit high data densities. (b) Infestation (bands counts) presence (red) and not present (orange) over each year in the 8-year period. (c) Monthly bands 
observations for the years 2017- 2019 (priority period), according to observed presence (red) and non-present (light yellow). Precipitation (blue line) denotes the 
mean annual precipitation (mm) over the same period. 
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over various biomes (Abatzoglou et al., 2018; Jain et al., 2022). The 
vegetation “greenness” data (categorized in decade since greening 
onset) is a compilation of middle infrared, near infrared and red 

wavebands information, from various satellite platforms, that is cloud 
corrected and available as 10-day composites (Pekel et al., 2010). The 
“greenness” variable was specifically developed for arid and semi-arid 
biomes and suitable for vegetation dynamics in relation to locust 
breeding (Kimathi et al., 2020). For the implementation site (Turkana), 
the variables were computed as monthly means from 2017 to 2019. 

2.3. Key assumptions 

• The absence of observation represents periods of non-optimal con
ditions for bands occurrence  

• Hatching occurs 35 days prior to band formation. This assumption is 
based on the fact that the duration of the sequence of favorable 
environmental conditions, that are known to proliferate hatching 
prior to the sighting of bands in the field, is usually set at 35 days 
(Symmons and Cressman, 2001). 

2.4. Overall modeling approach 

Overall, we applied Fuzzy Mamdani to estimate the hatching timing 
through a combination of membership functions. These are based on 
environmental variables with hyperparameters derived from rules 
derivation and descriptive analysis of the available datasets (see sup
plementary). The overall approach is illustrated in Fig. 3, and each 
specific step is described below. 

Step 1 consisted of the identification of the problem, which, in this 
case, is predicting the location and timing of desert locust hatching 

Fig. 2. The location of Turkana County, i.e., the model implementation target area in Kenya. Land use data source: © ESA WorldCover project / Contains modified 
Copernicus Sentinel data (2020) processed by European Space Agency (ESA) WorldCover consortium. 

Table 1 
Input data summary overview, showing data source and pixel/grid cell resolu
tion, temporal resolution, data type, measurement unit and data description.  

Data (Unit) Source Spatial 
Resolution 

Year Description 

Precipitation 
(mm) 

https://www. 
climatologylab. 
org/ 

1/240 
(~4 km) 

1958–2020 Precipitation, 
monthly total 

Temperature 
(Min/Max) 
(◦C) 

https://www. 
climatologylab. 
org/ 

1/240 
(~4 km) 

2013–2021 Mean 
temperature, 
monthly 
average 

Sand content 
(cm) 

https://data. 
isric.org 

250m 2021 Sand in depth 
of 5–15 cm (g/ 
kg) 

Soil moisture 
(cm) 

https://www. 
climatologylab. 
org/ 

1/240 
(~4 km) 

1958–2020 Soil moisture, 
total column - 
at end of month 

Greenness 
(Daily) 

http://irid. 
ldeo.columbia. 
edu/SOURCE 
S/.EU/.VITO/. 
DevCoCast/. 
greenness 

250m 2013–2020 Dekads since 
vegetation 
onset  
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probability. We further identified climatic and vegetation variables 
(Table 1). These variables were chosen for analysis because they have 
been reported by earlier studies to trigger egg laying, hatching and 
sustain the development of the band phases (Gomez et al., 2019; 
Kimathi et al., 2020). 

In Step 2, we defined the linguistic variables and their membership 
functions (Fig. 4a-e). Sigmoid, gaussian, trapezoid and triangular func
tions were selected to convert the input variables into fuzzy sets. Our 
selection was based on how best the function represents the input var
iables. Each membership function was iterated with a combination of 

Terra- Clim., 
“greenness”, 
Desert locust 

Bands

Model output-
binary hatching 

for primary 
study site  

Data explora�on - linguis�cs 

Define domains-according to 
variables and bands link

Membership func�ons 

Development rule set –
primary study site 

Model extrapola�on 
with Python

Model output-
binary hatching 
maps for target 

area

Target area grid 
with (QGIS)

Valida�on

Input data 
primary 

study site 

Rules development
process Process Visualize/defuzzify Input 

data
Extract: domains, linguis�c variables 

Fig. 3. Overall workflow summarizing the different steps used in the model development.  

Fig. 4. Membership function curves for variables/bands data for 0–1 memberships, and linguistic categories using sigmoid, gaussian, trapezoid and triangular 
memberships. Membership grades increase from the left to the right for each domain/variable. 
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different membership functions. The optimum combination that gives 
the highest accuracy was adopted for each variable. For the priority 
years, the monthly value ranges, means, and medians were calculated 
for each climatic and environmental variable (Fig. 5). These statistics 
were used to define and adjust the hyperparameters of the membership 
functions, such as the center and width. 

Step 3 entailed the creation of the fuzzy rules, which use the set 
relationship between the input variables and the output variables. They 
are expressed in the form of "if-then" statements, where the antecedent 
(if-part) contains one or more fuzzy sets defined on the input variables, 
and the consequent (then-part) contains a fuzzy set defined on the 
output variable. An example of fuzzy rule is, “if the temperature is high 
and the soil moisture is low, then the insect hatching probability is likely to be 
low”. A total of 81 rules were developed to account for the different 
combinations of the linguistic language rules. Once developed, the rules 
were combined using fuzzy logic operators. The most common operators 
are AND, OR, and NOT; however, we opted for AND operator as it 
represents best the relationships between our selected input variables 
and the output variable. 

Step 4 was made of 3 sub-steps: the mapping of the input crisp values 
to fuzzy values using the membership functions defined above (such as 
"very high", "high", "medium”,"low," and "very low"); then applying the 
fuzzy rules to the fuzzy inputs to obtain a fuzzy output; followed by the 
conversion of the fuzzy output into a crisp value. Although this last sub- 
step can be done using various methods such as centroid, maximum, or 
mean of maximum, for simplicity we used the centroid approach for the 
conversion. 

The model was tested and validated (step 5) by comparing its output 
with the expected output for a set of input values i.e., 2020 that were not 
used while developing the rules. We expressed these values in the form 
of probability in which the probability of hatching = 1 and no hatching 
= 0. When the results were not satisfactory, they were refined by 
adjusting the membership functions or the fuzzy rules. 

The developed rule-based model was applied (step 6) to provide a 
spatial visualization of the probability of hatching timing for a given 
month and year. 

2.5. Mathematical computing of the fuzzy logic model 

The Fuzzy Logic system script was written in Python using the fuz
zylogic library. It reads input data related to various environmental 
conditions and predicts whether or not hatching will occur. 

The mathematical model were defined using fuzzy logic membership 
functions and fuzzy logic rules. The key components are as follows: 

Domains and Membership Functions: The program defines a 
number of domains, which are essentially the environmental variables 
with ranges and resolutions. For each domain, there are several mem
bership functions. These functions assign a degree of membership to 
each value in the domain. They are used to define fuzzy sets. For 
example, the temperature domain was defined as:  

The fuzzy sets for the temperature domain were "cool", "warm", and 
"hot". The degree of membership to each of these sets was determined by 
the respective membership functions (Fig. 4). Other variables domains 
are provided in the supplementary files (Supplementary Figures 29–34). 

Fuzzy Logic Rules: These rules map combinations of fuzzy sets in 
the input domains to fuzzy sets in the output domain. The goal of these 
rules is to predict whether locusts will hatch or not based on the input 
conditions. For example, one of the rules was:  

This rule stated that if the temperature is "cool", the precipitation is 
"low", the soil moisture is "dry", and the greenness is "bad", then there 
will be no hatching probability. 

As stated, there were 81 such rules in the script (see supplementary 
materials section on computing rules), each addressing a different 
combination of input conditions and resulting in a prediction of either 

"no hatching" or "hatching". 
In the computing, the rules are not explicitly defining a traditional 

"if-then" logic but rather creating a multidimensional mapping between 
the input conditions and the output prediction, which can be thought of 
as a kind of multidimensional interpolation or pattern recognition. 

Prediction: The script reads in data from a csv file “terra_green200. 
csv”, transforms some data to a numerical format, and then utilizes this 
data along with the established fuzzy logic rules to make predictions. 

Plotting: The script contains functions to plot the membership 
functions of each domain. These plots help to visualize how the fuzzy 
sets are defined within each domain. 

3. Results 

The FIS model developed exhibited an accuracy of 82% of true 
prediction based on the model result for the Sudan training area, and the 
validation data from the year 2020. Using the centroid approach for the 
conversion of the developed rules (Fig. 4), the model was applied to the 
target area, Turkana County. The spatio-temporal visualizations for 
Turkana were produced as monthly binary maps for the priority period 
(2017–2020) (Fig. 6), depicting hatching probability. Areas of high 
hatching probability or high risk are shown as reddish colored pixels (or 
“true”) and blue illustrates “false” or no risk. The northern part of Tur
kana has overall the highest hatching probability in each year, especially 
in an average to below average rainfall year such as 2017. From 
November to December in 2019 onwards, there is a marked increase in 
hatching probability throughout the Turkana target area. This trend is 
sustained until May 2020. This period corresponds to the severe desert 
locust outbreak in Kenya in 2020. 

Based on the binary outputs for the priority period, a 5-km grid cell 
frequency of hatching events “heat map” could be produced for Turkana 
County (Fig. 7, left image). These maps help to visualize hatching suit
ability risk areas. The aggregated frequency “heat map” map (0–1) 
shows large frequencies of predicted desert locust egg hatching over the 
northern and the southern parts of Turkana County, respectively. The 
pixels with a dark redish fill and light green boundaries indicate loca
tions with a frequency of monthly hatching >0.5. These locations can 
provide suitable zones hatching at medium to high probabilities and 
make up >40% of the total land surface area of Turkana County. “High 
hatching suitability” or high hatching risk areas (>0.75 frequency 
scores) were found to make up 8% of the total area of the county. 

Three randomly selected “high frequency” (>0.75 frequency scores) 
hatching probability pixels (IDs 834, 1011, 1914) were extracted from 
the frequency heat map (Fig. 7, left). Graphs were produced to illustrate 
timeline profiles for egg hatching probability for each of the three pixels 
(IDs) (Fig. 7, right). The three randomly selected IDs are located within 
the north, center and south of the Turkana area. For the two northerly 
pixels (IDs 834 and 1011; north to center of the study area), hatching 
suitability/probability was predicted to be highest between March to 
May over all years, while in the south (pixel ID 1914), hatching suit
ability was predicted to occur mostly between October and November 
for all years. Temporal frequencies were also more varied in the 
southern part. For the outbreak year 2020, however, high hatching 
suitability’s were consistently found between January and May, over all 
IDs. 

The associations between hatching suitability and rainfall and 
“greenness” were well established by the rule set using the Sudan bands 
data, especially over the priority period 2017–2019 (Fig. 4, and Figs. 1 
and 36 in the supplementary materials). Specifically, the highest rainfall 
skewness and distribution upwards (29.9 mm rainfall) was found to 
match the highest bands occurrence and with that hatching, given the 
used time lag of 35 days. Similarly, cumulative “greenness” over the 
eight-year and over the three-year priority period, because of higher 
rainfall in December, was found to be a factor for bands occurrence and 
hence hatching (e.g., Figs. 1, 35 and 36 in the supplementary materials). 
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Fig. 5. Mean statistics of terra-climatic and “greenness” variables from 2017 to 2019 (priority period) according to months indicated as numbers (1–12) that are 
within the 1st and the 4th quarters. These values were used to develop the hyperparameters for the model. 
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4. Discussion 

4.1. Novelty of the study 

The novelty of this work is that location and timing of desert locust 
hatching probability/suitability could be modeled, which is a critical 
variable needed for locust early warning and early response, especially 
in data scarce environments (Cressman, 2013). Hatching events over 
longer periods are indicative for subsequent swarming and large-scale 
desert locust outbreaks, e.g., as was the case in eastern Ethiopia in 
2019 (Salih et al., 2020). In other similar work, such as by Kimathi et al. 
(2020), hatching was predicted by using varied ecological variables to 
monitor seasonal desert locust breeding grounds. This included the 
hoppers and other adult stages. However, monitoring specifically juve
nile life stages and hatching has not been yet systematically performed 
or considered (Maeno et al., 2020). The spatial and temporal patterns we 
found for hatching (Figs. 7 and 9) correspond well to the lagged presence 
of hopper bands; Sun et al. (2022) found that May 2020 exhibited the 
highest abundance of bands (that this is hatching activities) throughout 
north-western Kenya. 

Another novelty was the implementing of a data-driven fuzzy logic 
model that encapsulates data science and knowledge related to the 
ecology of the pest. For instance, the membership functions (Fig. 4) are 
determined based on the spatial-temporal dynamics of the environ
mental variables in relationship to the presence and non-presence of 
bands using data exploration (bands were used as a proxy for hatching, 
given a temporal offset of 35 days). These domain specific relationships 
can be linear or rather follow a gaussian membership function 
(Babuška, 2012). Here, we assumed that phase dynamics are related to 
hatching, that is the presence of bands. The Fuzzy rule-based system is 
ecologically stable from location to location because they do not rely on 
specific data points or hard-coded rules. Instead, they use fuzzy logic to 
create rules based on linguistic variables that are expressed in natural 
language. These rules are designed to capture the uncertainty and 
imprecision that are often present in real-world systems, which renders 
them more adaptable to different environments (Hagras et al., 2012). 
Furthermore, fuzzy rule-based systems are better suited for situations 
where data is scarce or unreliable because they do not require precise 
input data (Rahim et al., 2018). Instead, they can operate with 
approximate or incomplete data, making them more robust in situations 
where data are difficult to obtain, or the quality of the data is poor. This 
is because fuzzy logic allows for degrees of truth, rather than binary 
true/false decisions, which allows the system to make decisions even 
when there is uncertainty or ambiguity in the data. Overall, fuzzy 
rule-based systems are a powerful tool for modeling complex, uncertain 
systems, and they are well-suited for applications where data are sparse 
or unreliable. 

The hatching probability frequency in Turkana (“heat map”, Fig. 7) is 
driven and triggered by persistent rainfall and associated and lagged 
vegetation “greenness” (to a lesser degree by soil moisture, e.g., Fig. 5 
and membership function in Fig. 4).These three variables have been 
confirmed by prior studies to be of utmost relevance for biological 
processes to induce hatching and breeding in eastern Africa (Nishide 
et al., 2017). Although extended flooding (> 14 days) has been found to 

adversely affect hatching (Woodman, 2015), this has been controversial. 
In yet other arid regions with sandy and clay soils, extended flooding 
was profoundly associated with high hatching activities and subsequent 
swarming (Gomez et al., 2019). Moreover, using primarily rainfall as a 
proxy for hatching can lead to erroneous model outcomes since land
form, run off and evaporation may locally affect moisture collection and 
egg hatching as a life cycle responds (Dinku et al., 2010). “Greening” due 
to vegetation chlorophyll activity and density, even if patchy, inter
rupted and fine scaled, seems to be more profound determinant for 
monitoring hatching location and timing and the phenotypic plasticity 
of the species (Salih et al., 2020). As shown in the associations of vari
ables with locusts bands, time-line remote sensing observations can be 
effectively integrated to indicate and monitor “greening” events over 
large areas (Klein et al., 2022). The availability of vegetation further 
sustains the development of hopper bands since, at this life stage, they 
require vegetation for nutrition and shelter (Sun et al., 2022). 

The general monthly binary hatching probability patterns (Fig. 6) 
illustrated that, just like the frequency map, the center of Turkana 
County is to a lesser degree affected by hatching within the modeled 
period. In inspecting a reference vegetation map for the region (Alkhalil 
et al., 2020), it became clear that high hatching probability areas (red 
pixels) are largely characterized by sparse vegetation (i.e., grasslands or 
open shrublands). Denser vegetation and very sparse to bare areas, as 
found in the center of Turkana County, were modeled as being low risk 
areas (Figs. 6 and 7). This is corroborated by Dong et al. (2023) who 
stated that desert locust life cycles in arid areas, including hatching, are 
supported by sparsely vegetated areas (i.e., grasslands or open shrub
lands) given appropriate edaphic conditions. The hatching patterns, 
moreover, largely follow rainfall and “greening” patterns. From 
December to April rainfall amounts are enhanced compared to the latter 
part of the year (Kinyua, 2021). Consequently, hatching probability is 
most prevalent from January to April which is preceded by a period of 
higher annual precipitation. 

Pest ecology principles and how environmental variables determine 
ecological processes are characterized by heuristic relationships and 
require intrinsic knowledge (Nestel et al., 2004). Because of this, and 
since our timeline data is short (from 2013 to 2020) while the bands 
occurrence data were not well spread over the training region, a fuzzy 
logic model was most appropriate (Kecman, 2001). As we expect the 
pest ecology to be stable from location to location, extrapolating the 
rules to the target areas is thus appropriate despite the data scarcity 
(bands data) in Turkana County. Rules based on pest ecological princi
ples provide more ecologically stable and replicable outputs, than out
puts based on machine learning modeling; these require “big data” to 
create probabilistic outputs from random statistical relationships (Zhou 
et al., 2017). This means that statistical machine learning model outputs 
are best suited to that specific training data only (and their statistical 
relationships) and do necessitate data to be accurately extrapolated over 
other areas under consideration (Landmann et al., 2020). This limits the 
transferability of the model to other areas where training data were/are 
not available. Conversely, the advantage of knowledge representation 
algorithms (i.e., fuzzy logic models) is that ecological processes can be 
considered using data science and knowledge about the pest’s bio
ecology, and we expected that the results would not change significantly 

temperature = Domain ("Temperature", − 2, 40, res=0.1) temperature.cool = triangular(− 2, 22) temperature.warm = gauss(24, 0.1) temper
ature.hot = trapezoid (26, 28, 40, 42)  

R1 = Rule ({(temperature.cool, precipitation.low, soilMoisture.dry, greenness.bad): insect.noHatching})  
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Fig. 6. Monthly binary hatching probability for the observation period 2017 to 2020 (5-km grid data). High hatching susceptibility (red) is found towards the north 
and south of Turkan, and most notably in early 2020. 
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over space. Therefore, a fuzzy approach is more appropriate since it 
better mimics ecological processes compared to conventional 
data-driven machine learning, especially in the African context where 
political instability renders difficult the assess to remote areas. Our re
sults showed that even if the based data are collected elsewhere and 
rules are local specific (Sudan), these can be accurately applied to other 
areas albeit this prerequisites similar agro-ecological conditions in both 
the rule development (Sudan) and the rule implementation sites 
(Turkana). 

To instigate an early warning system for locust hatching, fuzzy rules 
should be developed for quasi real time and spatially explicit soil 
moisture, “greenness” and rainfall data (i.e., Mohanty et al., 2017). 

4.2. Limitations of the study and potential improvements 

Given the inherent uncertainty and fuzziness in environmental and 
ecological data, there are several potential improvements that could 
enhance the performance of specifically the Fuzzy Mamdani system in 
this context. Firstly, enhancing the robustness of the system against 
noisy and incomplete data could significantly improve its performance. 
This could be achieved through the integration of adaptive noise 
filtering techniques within the fuzzification process. Secondly, the use of 
advanced optimization algorithms for tuning the parameters of the 
membership functions could result in more accurate models. Genetic 
algorithms, particle swarm optimization, or gradient descent methods 
could be employed for this purpose. 

Furthermore, boundary conditions in a Fuzzy Mamdani system play 
a pivotal role as they define the range and scope of the membership 
functions. Adjusting these boundary conditions can significantly impact 

the performance of the model. For instance, overly broad boundary 
conditions can lead to models that are too general and lack specificity. 
On the other hand, excessively narrow boundary conditions might result 
in overfitting, where the model performs well on training data but 
poorly on unseen data. Adjusting the boundary conditions based on the 
data distribution and the specific characteristics of the ecological or 
environmental system under study can lead to improved performance as 
observed in this study. The optimal range for these boundary conditions 
can often be found using cross-validation techniques or through sensi
tivity analysis depending on the phenomena under study. 

Overall the proposed improvements and modifications can serve as a 
foundation for further studies. Future research could focus on imple
menting and evaluating these enhancements within a Fuzzy Mamdani 
system for ecological and environmental management. Experimental or 
simulation studies could be designed to analyze the impacts of these 
modifications on the model’s performance. For instance, researchers 
could compare the performance of models with and without adaptive 
noise filtering techniques, or between models that use different opti
mization algorithms for parameter tuning. By systematically adjusting 
the boundary conditions, researchers could perform sensitivity analyses 
to determine their optimal ranges. Experimental studies could then be 
carried out to compare the performance of models with different 
boundary condition settings. These studies would not only provide 
valuable insights into the impacts of these improvements but could also 
further our understanding of how best to apply Fuzzy Mamdani systems 
within the field of ecology and environmental management. The results 
of these studies could then serve to guide future research and applica
tions of fuzzy modeling approaches in this field. 

Fig. 7. Aggregated 5-km resolution “heat map” of hatching frequency suitability over Turkana in Kenya (left). Dark reddish and green outlined pixels illustrate high 
frequency of hatching suitability, over the priority time frame in which major outbreaks occurred (1 = predicted hatching, 0 = no hatching). Per pixel monthly 
hatching timelines are shown for randomly selected pixels as graphs for 2017 (continuous gray fade line), 2018 (orange long-dashed fade line), 2019 (blue short- 
dashed), and 2020 (red dashed, validation year). Every pixel in the frequency maps was also uniquely identified by a number, to demarcate a precise location on 
ground (i.e., ID_XXXX, where X stands for 1 to 2500 pixels within the gridded Turkana extent). 
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5. Conclusions 

In conclusion, this study has provided valuable insights into various 
ecological factors and their influence on spatio-temporal hatching dy
namics of desert locusts. We showed that the juvenile stages of desert 
locusts in eastern Africa can be monitored, explicitly the probability of 
their hatching timing and location in remote and inaccessible areas, and 
over large tracts of land. Using data exploration, we developed a fuzzy 
rule set by linking desert locust occurrence data (bands data linked to 
hatching), to associated ecological factors (accumulated rainfall, soil 
moisture, temperature regimes and vegetation greenness) and their 
dynamics. Since bands data were readily available for Port Sudan in 
Sudan, we used data from this site for rule development. A true pre
diction accuracy of 82% could be achieved using the Sudan training 
data. 

Through the data exploration part, high occurrence of bands 
(hatching) could be statistically linked to preceding rainfall and vege
tation greenness responds (from 250-meter satellite data). Based on the 
developed rules in the training areas, the model was successfully 
implemented for Turkana and monthly hatching probability and overall 
(2017–2020) hatching frequency maps could be developed. The prob
ability map indicated high hatching activity in early 2020; this period 
also corresponds to the desert locust swarming and outbreak period in 
Kenya. Our fuzzy logic model showed how sparse data for one site can be 
effectively used for rule set implementation (mapping) in other 
ecologically similar sites. Mapping of a subtle ecological phenomena 
such as desert locust hatching will help to instigate timely control and 
“on the ground” monitoring responses. This is a first step in operation
alizing a more targeted early response to desert locust infestations for 
their more effective control. 

Further research is needed to explore the use of other high-resolution 
factors such as soil moisture dynamics (when available in future), that 
may also influence hatching rates, as well as photoperiod and genetic 
variations. Ideally, in future research, a system dynamics modeling 
approach should be tested to comprehensively understand individual 
feedback between various hatching risk dimensions, including long term 
climate change. 
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