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A B S T R A C T

The all armyworm (FAW), Spodoptera frugiperda J.E. Smith, has caused massive maize losses
since its attack on the Arican continent in 2016, particularly in east Arica. In this study, we
predicted the spatial distribution (established habitat) o FAW in ve east Arican countries viz.,
Kenya, Tanzania, Rwanda, Uganda, and Ethiopia. We used FAW occurrence observations or three
years i.e., 2018, 2019, and 2020, the maximum entropy (MaxEnt) model, and bioclimatic, land
surace temperature (LST), solar radiation, wind speed, elevation, and landscape structure data (i.
e., land use and land cover and maize harvested area) as explanatory variables. The explanatory
variables were used as inputs into a variable selection experiment to select the least correlated
ones that were then used to predict FAW establishment, i.e., suitability areas (very low suitability
– very high suitability). The shared socio-economic pathways, SSP2-4.5 and SSP5-8.5 or the
years 2030 and 2050 were used to predict the eect o uture climate scenarios on FAW estab-
lishment. The results demonstrated that FAW establishment areas in eastern Arica were based on
the model strength and true perormance (area under the curve: AUC = 0.87), but not randomly.
Moreover, ~27% o eastern Arica is currently at risk o FAW establishment. Predicted FAW risk
areas are expected to increase to ~29% (using each o the SSP2-4.5 and SSP5-8.5 scenarios) in the
year 2030, and to ~38% (using SSP2-4.5) and ~35% (using SSP5-8.5) in the year 2050 climate
scenarios. The LULC, particularly croplands and maize harvested area, together with temperature
and precipitation bioclimatic variables provided the highest permutation importance in deter-
mining the occurrence and establishment o the pest in eastern Arica. Specically, the study
revealed that FAW was sensitive to isothermality (Bio3) rather than being sensitive to a single
temperature value in the year. FAW preerence ranges o temperature, precipitation, elevation,
and maize harvested area were observed, implying the establishment o a once exotic pest in
critical maize production regions in eastern Arica. It is recommended that uture studies should
thus embed the present study’s modeling results into a dynamic platorm that provides near-real-
time predictions o FAW spatial occurrence and risk at the arm scale.
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1. Introduction

Globally, maize (Zea Mays L.) supports the ood and nutrition requirements o about 900 million people [1, 2]. In sub-Saharan
Arica (SSA), maize is one o the most planted crops among other cereals, principally grown by small-scale armers or subsistence
and income generation [3]. However, maize productivity in SSA has signicantly declined in the past decade [4]. This is mainly
attributable to a combination o yield constraints, including low adoption and uptake omodern maize production technologies, insect
pests, diseases, weeds, climate change, moisture stress, low soil ertility, and archaic cultural practices, among others [5–7]. Conse-
quently, depending on the region, these constraints account or approximately 21%–53% omaize yield losses annually in SSA [8] with
arthropod pests being among the most devastating maize yield constraints causing combined yield losses o approximately 31% [9].

The all armyworm (FAW); Spodoptera frugiperda (J.E. Smith), which is indigenous to the north and south America, has vigorously
invaded most SSA countries since 2016 [10] exceeding the eects o other already existing endemic pests and causing maize yield
losses o 33%–100% across the entire Arican continent [11]. Economically, annual losses in crops like maize, sugarcane, rice, and
sorghum due to FAW are approximately US$13 billion every year in SSA [12]. However, earlier studies have established that FAW is a
complex pest belonging to the Noctuidae amily o insects whose developmental stages and timing are irregular across seasons, hence
the complexity o its distribution mechanism [13]. Additionally, the FAW lie cycle length exhibits unique variations in development
across seasons i.e., in summer it is about a month while in spring and autumn it takes approximately two months, and three months
during winter [14,15]. Furthermore, FAW populations increase rapidly under warm, humid conditions with moderate rainall and an
optimal temperature range between 11 ◦C and 30 ◦C with the emale moth laying approximately 1000 eggs in its lietime in masses
varying rom 50 to 200 eggs at each lay [14]. Moreover, FAW is a migratory pest with the potential to cover long fying distances o
approximately 1000 km in its lietime [11,14]. For instance, Re. [16], reported that in 30 h, FAW covers a distance o~1600 km rom
the southern state o Mississippi in the United State o America (USA) to southern Canada. Also, the FAW is a polyphagous pest that
eeds on about 350 plants with a huge preerence or species o grasses [17–19]. These phenomena enhance the complexity o un-
derstanding the FAW biogeographic ecologies in the dierent regions as the dynamics change according to the geographical location.

This generates challenges to customize strategies or FAW management using contemporary methods or pest control such as in-
tegrated pest management (IPM) [12,20]. Thus, accurate on-arm scale mechanisms are essential to inhibit the invasion o new areas
within the rst ew days o detection [12,21,22]. However, these control technologies require spatially explicit landscape-scale in-
ormation that shows potentially suitable sites or FAW occurrence and establishment to enable localized interventions [23,24].
Regrettably, landscape-scale necessary inormation on pest occurrence, spatial inestation extents, and abundances remain rudi-
mentary in SSA, particularly in eastern Arica, which is the hub o cereal crop production [12,25].

Earlier studies have concentrated on the bio-ecological insights o the FAW i.e., the ecologically preerred conditions, migratory
behavior, morphology, and biological development [12,26,27]. Again, more literature has ocused on FAW surveillance and moni-
toring [28], its potential impacts on crop production [8,14,25], the potential management strategies including arming systems [15],
modeling the potential pest population growth [23] and detecting crop damage caused by the pest using remotely sensed data [29,30].
Besides, most research that have predicted FAW habitat suitability have used the maximum entropy (MaxEnt) and CLIMEX ecological
niche modeling (ENM) approaches at global or continental scales [22,31–33]. However, there is still a need to predict the spatial
distribution and establishment o FAW at a more localized landscape-scale mainly targeting data decient regions such as eastern
Arica. Moreover, The MaxEnt is the widely used algorithm to simulate suitable habitats or a diverse number o species in dierent
taxa by many earlier studies worldwide (e.g., Res. [22,34–36]. Specically, MaxEnt is consistently superior in its predictive capacity,
adaptability, practicality, and robustness as supported by the over 2000 ecological studies that have used MaxEnt since 2006 [37].
Also, the MaxEnt algorithm was selected in most o these studies because it can comparatively work with a small sample size o
presence-only observations unlike other algorithms [38]. Furthermore, previous studies have mostly utilized climatic, edaphic, and
irrigation variables to predict FAW habitat suitability without testing the landscape structure eect and relevance on the spatial
distribution and establishment o the pest. Landscape structure includes natural or semi-natural habitats that could be conducive to or
hinder the insect pests (e.g., FAW) build-up [12]. For instance, hedges and grasses neighboring croplands can provide pathways or
FAW in an agroecosystem and probably act as secondary hosts or the pest, depending on the specic plant species compositions [31].
Moreover, land surace temperature (LST) can vary as a unction o landscape structure and positively or negatively aects the
occurrence and establishment o crop pests like FAW [39]. Hence, establishing the potential risk posed by FAW involves setting up
ecologically signicant and uncorrelated explanatory variables [40,41]. To include less correlated variables in species distribution
models (SDM), an elimination procedure o some o the correlated variables should be conducted to reduce the chances o model
overtting and variable infation [42]. Commonly, bioclimatic variables such as the ones obtained rom the WorldClim [43] are highly
correlated because they are all derived rom similar data [44]. These bioclimatic variables are widely used in habitat suitability models
like the one employed in this study.

Thereore, the present study aimed to predict the occurrence and establishment o FAW in ve east Arican countries viz., Kenya,
Tanzania, Rwanda, Uganda, and Ethiopia using a SDM i.e., MaxEnt and bioclimatic, LST, wind speed, elevation, and landscape
structure metrics (i.e., LULC andmaize harvested area) as explanatory variables. Also, the study assessed the relevance and infuence o
each o the studied variables on the FAW spatial distribution and establishment. We hypothesized that FAW invaded almost the entire
SSA since it was rst reported in 2016, hence the suitable niches (habitats) that can be conducive to its build-up and establishment
should be predicted. Furthermore, the impact o simulated uture climate change scenarios or the years 2030 and 2050 on FAW spatial
distribution patterns and pest establishment using the medium shared socio-economic pathway (SSP2-4.5) and the highest (SSP5-8.5)
emission scenarios were evaluated. The SSP concept was coined by the intergovernmental panel on climate change (IPCC) using the
radiative orcing level o 4.5, and 8.5 W m2 [45]. Specically, our study is unique and innovative as it predicts FAW establishment
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risks at a landscape scale in ve east Arican countries using relevant climatic and landscape structure variables (metrics) and a
machine learning SDM. In addition to the 19 bioclimatic variables [43], we used wind speed, solar radiation, LULC and the main FAW
host crop area (i.e., maize) in eastern Arica as the most relevant explanatory variables.

2. Study area

The study was conducted in Kenya, Tanzania, Rwanda, Uganda, and Ethiopia (Fig. 1). These countries lie between latitudes 16◦ N
and 11◦ S and longitudes 30◦ E and 48◦ E. In general, all these countries are characterized by various climatic conditions (arid to
tropical monsoon) and span across dierent agro-ecological regions. Temperatures are generally high throughout the year in the
highlands o Ethiopia and Kenya, while Tanzania experiences relatively cooler temperatures. The mean annual temperature in the
region is highly variable with a range o5 ◦C–31 ◦C, and an average value o 22.9 ◦C [43]. The high temperature variability is mainly
due to various climate types in the region such as equatorial, moist and dry tropical and semi-arid and arid climates. In general, the
region became relatively warmer by 0.7–1 ◦C between the years 1973–2013 [46]. Likewise, the altitude in East Arica varies between
1082 and 5780 m (above sea level). In the period rom June to August, December to February, and October to April, the Northern and
Southern regions o eastern Arica receive much o the rains whilst the areas around the equator experience two rainall seasons, rom
March to May (the long rainy season) and rom October to December (the short rainy season), respectively [47]. The region records an
average annual rainall range o approximately 150mm in semi-arid and arid areas to around 2000mm in the highlands. The rainall in
the region is enough to support sustainable agriculture, despite the dynamism in the climatic conditions that adversely impact crop
productivity.

The common cropping systems in these eastern Arican countries range rom monocropping, mixed cropping, and crop rotation to
sequential cropping systems [48]. Maize is the staple ood crop in these countries, thus is the most planted crop and is oten planted as
an intercropping system with leguminous crops such as bean, pigeon pea, cowpea, groundnut, and soybean. Intercropping and other
crop husbandry practices that have been widely adopted in eastern Arica can alleviate pest inestation and build-up such as FAW.

Fig. 1. The distribution o all armyworm (FAW) occurrence data in eastern Arica. The blue dots show the areas where the occurrence o FAW was
recorded. These data are overlayed on the agro-ecological zone layer o the ve countries.
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Unortunately, most o the populace in eastern Arica aected by the FAW are themillions o small-scale armers who are mostly reliant
on an agriculture-based economy or their livelihood and sustenance. Thereore, there is a need to monitor FAW and nd sustainable
solutions to manage the pest at scale.

3. Methodology

3.1. Fall armyworm (FAW) occurrence data

The FAW occurrence (presence-only locations) dataset comprised 2621 reerence points that were obtained rom three secondary
sources i.e., the Food and Agriculture Organization (FAO) o the United Nations, the Center or Agriculture and Bioscience (CABI), and
the Global Biodiversity Facility (GBIF). The long-term FAW eld data collected through the FAO monitoring and collection initiative
using the FAW monitoring and early warning system (FAMEWS: n = 2531) mobile application was used as the core reerence data
source. The data are available or 2018, 2019, and 2020 and reely downloadable on the FAO platorm (http://www.ao.org/all-
armyworm/en/). Again, additional data (n = 80) were acquired rom the GBIF (https://www.gbi.org), an online database that
hosts over a billion global biological records. The third data source, i.e., CABI (n = 10), provides one o the world’s most compre-
hensive datasets on crop pests with over 27,000 datasheets already available in their crop protection and compendium (CPC) database
(https://www.cabi.org/cpc/). The data rom these three sources were standardized and cleaned to remove samples o the same co-
ordinates and the ones without coordinates. Furthermore, a single sample was retained within a 1 km × 1 km unit to reduce sampling
bias and to meet the spatial resolution o the environmental variables ollowing [49]. The retained samples (n = 1190) were validated
or location accuracy using Google Earth (https://www.google.com/earth/). These retained FAW presence-only reerence points were
used as independent response data in the MaxEnt modeling approach as well as or producing the sampling bias le [49,50].

3.2. Dependent explanatory variables

The dependent explanatory variables that were used in this study included bioclimatic, elevation, LULC, LST, wind speed, maize
harvested area, and solar radiation. These variables were obtained rom dierent sources at diering spatial and temporal resolutions.
This step is critical as these spatial and temporal dynamics determine a dataset’s suitability or use in modeling as their inclusion oten
infuences the observed patterns o the analysis [51]. However, the objectives o a study ultimately determine the appropriateness o
the spatial and temporal resolutions o the explanatory variables, hence there is no absolute best resolution or all modeling experi-
ments [52]. In this study, the variables’ spatial resolution varied rom a pixel size o approximately 20 m× 20 m (or LULC) to 10 km×
10 km (or maize harvested area). Such dierences inhibit the integration o multi-resolution variables in the model experiments,
particularly or the MaxEn approach. Thereore, in this study, the spatial resolution dierences among the dependent explanatory
variables were counteracted by matching and resampling all the datasets to the bioclimatic variables (1 km × 1 km grid cells), and all

Table 1
Dependent explanatory variables considered in the predictive modeling o all armyworm (FAW) spatial distribution in ve countries in eastern
Arica.
Variable Description Units

Bio1 Annual mean temperature ◦C
Bio2 Mean diurnal range (mean o monthly (max temp - min temp)) ◦C
Bio3 Isothermality (BIO2/BIO7) ( × 100) NUa
Bio4 Temperature seasonality (standard deviation × 100) ◦C
Bio5 Maximum temperature o warmest month ◦C
Bio6 Minimum temperature o coldest month ◦C
Bio7 Temperature annual range (BIO5-BIO6) ◦C
Bio8 Mean temperature o wettest quarter ◦C
Bio9 Mean temperature o driest quarter ◦C
Bio10 Mean temperature o warmest quarter ◦C
Bio11 Mean temperature o coldest quarter ◦C
Bio12 Annual precipitation mm
Bio13 Precipitation o wettest month mm
Bio14 Precipitation o driest month mm
Bio15 Precipitation seasonality (Coecient o Variation) NUa
Bio16 Precipitation o wettest quarter mm
Bio17 Precipitation o driest quarter mm
Bio18 Precipitation o warmest quarter mm
Bio19 Precipitation o coldest quarter mm
Land surace temperature Surace temperature and emissivity K
Land use/Land cover Land cover classes in the area NUa
Elevation The terrain o the land surace m
Wind speed Speed o the wind m s1
Solar radiation Top-o-atmosphere incident solar radiation kJ m2 day1
Maize area Maize harvested area ha
a NU = no unit.
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datasets were matched to the boundary o the study area (the ve counties in eastern Arica). The ‘raster’ package [53] in R sotware
[54] was used or all resampling and re-sizing o the study area. This procedure was perormed using the ‘crop’ and ‘mask’ unctions.

Furthermore, a total o 19 bioclimatic variables together with wind speed and solar radiation were acquired rom the Worldclim
data portal (https://worldclim.org/data/index.html). These variables were initially used together with the other explanatory variables
to select the most optimum variables to use in the subsequent modeling experiment. The bioclimatic variables rom theWorldclim data
portal comprise gridded spatial climate parameters at a resolution o 1 km× 1 km comprising annual trends, seasonality, precipitation
o the wet and dry quarters, and extreme climatic events generated rom long-term average climate data records that ranged
temporally rom 1970 to 2000 [43]. Again, the LULC data at 20 m × 20 m pixel size was obtained rom the European space agency
(www.esa-landcover-cci.org), while the elevation o 30 m × 30 m pixel size was sourced rom the shutter radar topographic (SRTM)
mission (https://www.usgs.gov/). Day and night Terra-satellite-based LST observations were acquired rom the MODIS instrument
(product MOD11) (https://modis.gsc.nasa.gov/data/dataprod/mod11.php). As previously mentioned, LULC, LST, and elevation will
likely aect the incidence and spread o FAW by modiying precipitation patterns and amounts, temperature dynamics, the type o
vegetation, cropping patterns, and the direction, angle, and intensity o the sun on the Earth’s surace [55,56].

Additionally, to ensure that the models were run within the maize cropping area, which is the main FAW host crop in eastern Arica,
a 10 km × 10 km gridded dataset on maize harvested area was sourced rom the spatial production allocation model (MapSPAM) data
center by HarvestChoice (https://www.mapspam.ino/data/), and used in our model experiment.

3.3. Dependent explanatory variable selection

A two-stage variable removal criterion utilizing the cluster analysis o the 19 bioclimatic variables and their variance infation
actor (VIF) was perormed to acilitate the decision o variable retention or exclusion in the model. The rst step or variable selection
involved the exploration o the variable clusters (Supp. 1) using Pearson’s correlation coecient and the cluster tree provided in the
‘virtual species’ package [57] in R [54]. O the nineteen bioclimatic variables, only twelve were selected rom this procedure. The
excluded variables include Bio7, Bio8, Bio11, Bio13, Bio14, Bio18, and Bio19, and a cuto o |r| = 0.7 was used [58]. The twelve
selected bioclimatic variables were also selected due to their ecological signicance in predicting the suitability o other insect pests,
including the FAW as evidenced by previous studies [59].

The bioclimatic variables obtained rom the cluster analysis step were combined with other six explanatory variables (Table 1) and
were urther tested or correlation using the VIF approach provided in the “usdm” package [60] in R. The “vicor” unction was used to
eliminate variables with the highest VIF (VIF ≥10) [23,42,60]. The VIF iteratively perorms multiple linear regression analysis and
detects multicollinearity by regressing each explanatory variable against the other variables [61]. Visualization and analysis o the
correlation matrix were then used to urther evaluate the variables (Supp. 2). A total o eighteen variables were retained or the MaxEnt
modeling experiment to simulate the spatial distribution o FAW.

3.4. Maximum entropy (MaxEnt) model settings and accuracy assessment

The MaxEnt model (version 3.4.1) [62] was used to simulate the establishment areas or FAW in ve countries in East Arica. The
optimal settings (tuning and parameter) or the MaxEnt model used in this study were derived rom the ‘ENMevaluate’ unction in the
package ‘ENMeval’ [63] available in R [54]. The ‘ENMevaluate’ unction has been recommended by earlier studies as it calculates
numerous measures and parameters that aid in choosing the most appropriate model settings that ensure a balance between the
goodness-o-t and model complexity. This is achieved using the actual presence-only data points o the target species [38,63,64]. The
most optimum modeling parameters established rom the “ENMeval” or the FAW were: hinge: 0.5, beta-multiplier: 5.0, categorical:
0.3, threshold: 1.6, linear/quadratic/product: 0.2, clamping, extrapolate, ade with clamping and the multivariate environmental
similarity surace (MESS) analysis. The MESS analysis computes the uncertainty o the prediction by estimating the dierences o each
pixel in the projected region to a set o reerence points [65], in our case into the uture where the occurrence validation data can not be
obtained.

We utilized the ‘kde2d’ unction o the ‘MASS’ package [66] which estimates the kernel density using the ‘block’ sampling method
in R [54] or sampling bias reduction. The ‘kde2d’ unction achieves bias reduction by creating a two-dimensional kernel density
estimate using the longitude and latitude rom the reerence points [66]. The generated bias le was then systematically included in
the MaxEnt model to acilitate the generation o background data with similar bias as the occurrence points.

Additionally, the sub-sampling method was used together with the above-mentioned setting parameters to develop three replicates
or the MaxEnt model. These were then averaged to dene the best possible suitability and perormance o the model. Following earlier
studies, the approach o using 70% (n = 833) o the FAW occurrence points or training and 30% (n = 357) or testing the goodness o
t o the model was adopted in the current study. The signicance o each explanatory variable was evaluated using the permutation
importance, percentage contribution, and the Jackknie test [62]. Herein, we reported the area under the curve (AUC) o the present
climatic conditions, because there are no uture FAW occurrence points to corroborate our orecasting. Thus, we assumed that i the
model is robust and accurate using the present data, it would replicate the same precision in uture orecastings [40].

Graphic maps o the prediction were generated using the MaxEnt model to illustrate the FAW spatial distribution patterns
(established habitat) with values ranging rom 0 (unsuitable) to 1 (most suitable). Five suitability categories o FAW establishment, i.e.,
very low (0–0.1), low (0.2–0.3), moderate (0.4–0.5), high (0.6–0.7) and very high (0.8–1) were used. The FAW establishment areas
under current and uture (2030 and 2050) climatic conditions or these ve suitability categories were thereo calculated. The abstract
workfow adopted in this study is shown in Supp. 3.
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4. Results

4.1. MaxEnt model evaluation

The replicated ‘testing’ and ‘training’ MaxEnt models to predict FAW habitat suitability indicated a balanced goodness-o-t and
complexity. Specically, results revealed that the prediction o FAW establishment areas in eastern Arica using the MaxEnt model
were based on the model strength and true perormance (AUC = 0.87), and not a random chance (Supp. 4). The high AUC value
obtained rom the replicated MaxEnt models encourages the application o the model or examining FAW establishment areas under
current and uture climatic conditions.

4.2. Analysis of variable importance and contributions

The importance o bioclimatic, LULC, andmaize area explanatory variables that accounted or the level o established FAW habitats
is shown in Table 2 and Supp. 5. The table shows that the most contributing variable to the model perormance was LULC, which
contributed 30%. This was ollowed by Bio17 (precipitation o driest quarter), Bio3 (isothermality), maize harvested area, and solar
radiation, which all contributed more than 7% each. The ve most contributing variables had a combined contribution o 67.7%
leaving the remaining 32.3% to the rest o the 13 variables selected to predict FAW occurrence (Table 2). The lowest percentage
contribution to the model was observed or Bio6 (minimum temperature o the coldest month). While the analysis o percentage
contribution demonstrated that LULC had the highest relevance, the model permutation importance showed that Bio12 (annual
precipitation) had the highest importance ollowed by LULC, solar radiation, andmaize area. The results showed that essentially LULC,
maize harvested area, solar radiation, precipitation, and temperature are undamental in dening the spatial occurrence o FAW and its
established habitat.

The results showed that all the variables had relatively high AUC values (Supp. 5) when used in isolation (AUC >0.55). However,
three variables particularly stand out i.e., maize harvested area, LULC, and Bio12 (annual precipitation) as the most dominant vari-
ables, which can be used in isolation and still provide an accurate model (AUC >0.7). However, only maize harvested area and LULC
showed the greatest reduction in the model accuracy i they were to be excluded rom the model (±0.2 reduction in AUC). The
bioclimatic actors also showed high levels o importance with Bio17 (precipitation o driest quarter), Bio12 (annual precipitation),
and Bio3 (isothermality) having high contributions to the AUC in determining FAW establishment in eastern Arica. The variables with
the least AUCwhen used in isolation were LST, Bio2, Bio16, wind speed, and solar radiation. Although solar radiation showed low AUC
values using the Jackknie test, the percentage contribution and permutation importance (Table 2) proved that it is an important
variable in determining the established habitat or FAW in East Arica.

The curves in Supp. 6 demonstrate the minimal infuence o altering a single variable on the perormance o the MaxEnt model.
They showed how the FAW simulated established habitat varies because o a specic variable, while maintaining all the other variables
at their mean sample value. Supp. 6 demonstrates the response o the six most contributing variables (i.e., LULC, maize harvest area,
elevation, Bio3, Bio17, and solar radiation) to the MaxEnt model perormance. The response o the LULC variable showed that built-up
area (class number 8) and cropland (class number 4) were the most important classes or determining the established habitat or the
occurrence o FAW in eastern Arica (Supp. 6a). Furthermore, the results showed that as the area covered by maize increased the area
o FAW establishment also increased, with maize areas o 4000–16000 m2 having suitability scores >0.75 (Supp. 6b). Similarly, a
broad range o elevations were suitable or FAW establishment, and the level o pest occurrence generally increased with increasing
altitude (Supp. 6c). The response obtained rom Bio3 showed that FAW occurrence could take place across a range o isothermality

Table 2
The average permutation importance and percentage contribution o the explanatory variables used or predicting
all armyworm (FAW) establishment and habitat suitability in eastern Arica.
Variable % contribution Permutation importance

LULC 30.0 20.4
Bio17 12.1 03.4
Bio 3 09.4 01.7
Maize area 08.8 10.1
Solar radiation 07.4 11.1
Elevation 06.6 04.6
Bio15 06.1 07.2
Bio12 03.9 27.9
Bio5 03.5 00.4
Bio2 02.6 02.0
Land surace temperature 02.4 00.5
Bio16 02.0 00.6
Bio9 01.9 02.9
Bio4 01.1 00.5
Bio1 00.8 00.8
Bio10 00.7 00.2
Wind speed 00.5 01.4
Bio6 00.2 04.2
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with the level o occurrence steadily increasing at an isothermality range o 45–87 (Supp. 6d). This indicates that large fuctuations in
mean monthly temperatures relative to annual temperatures are conducive conditions or FAW establishment. On the other hand, the
results demonstrated that wetter conditions and high solar radiation reduced the level o occurrence o FAW (Supp. 6e and 6,
respectively).

4.3. Fall armyworm (FAW) establishment risk areas under current and future climate conditions

Notably, most sites in eastern Arica where FAW establishment risk is high are within the semi-humid to humid agroclimatic zones,
where maize is the most grown eld crop (Fig. 2). In contrast, arid to semi-arid climates exhibited the lowest FAW establishment risk.
The areas o high establishment level or the pest are mostly in central Ethiopia along the highlands, the Lake Victoria regions o Kenya,
Uganda, and Tanzania, and also within the central, western, and eastern regions o Rwanda. Although the locations and patterns o the
uture (2030 and 2050) potential FAW risk areas that are demonstrated in Fig. (3) look relatively similar to those o the current
scenario, our models’ results suggested that the level o establishment and magnitude o FAW risk would generally increase under the
two tested climate change scenarios (SSP2-4.5 and SSP5-8.5). This change in the magnitude o the pest establishment risk is also
demonstrated in Table 3. This holds, particularly or the maize growing regions in the ve study countries.

Table 3 shows area coverage and percentage o FAW established habitat (level o occurrence) in the ve east Arican countries. In
general, the results showed that in the uture there will be an increase in the moderate, high, and very high FAW occurrence and
establishment areas, with the highest occurrence area or these three classes (38% o the area) predicted under the SSP2-4.5 climate
scenario in 2050. In 2030, the total area o the three above mentioned suitability clases was 29% o the total area or each o the two
climate scenarios. Interestingly, the moderate to very high suitable areas or FAW establishment were progressively increased over
time (current, 2030 and 2050), except the slight decrease in area o the very high class under SSP5-8.5 climate scenario o 2050
(Table 3). Moreover, in the uture the suitable FAW establishment areas will increase to about 29% under each o climate scenario o

Fig. 2. Fall armyworm (FAW) level o occurrence (establishment risk areas) in eastern Arica under current climate conditions. The red color shows
the highest probability o occurrence and establishment, while the green color shows the lowest probability. The yellow and orange colors show
moderate and high FAW levels o occurrence, respectively.
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2030, and to 38% and 38% under SSP2-4.5 and SSP5-8.5 climtate scenarios o 2050, respectively as opposed to the one under the
current climate conditions (27% o the area). On the contrary, there will be a decrease in the least suitable (very low class) areas o
FAW establishment under the uture climate change scenarios in comparison to the current climate conditions. This could indicate that
a large proportion o the least suitable areas o establishment shall develop a susceptibility to FAW invasion under uture climate
change scenarios. In other words, the currently very low FAW established areas would shit to the low, moderate, high, and very high
levels o pest establishment as a result o climate change.

5. Discussion

The study presents a SDM model that predicted the geographical distribution o the potential FAW establishment area in ve east
Arican countries. The results showed that FAW suitable establishment localities are distributed across a wide range o agro-ecologies
in eastern Arica based on the investigated climate scenarios and landscape structure (i.e., LULC). This is supported by earlier studies,
which have predicted that tropical and subtropical climates such as those experienced in eastern Arica are the most t or the all-year-

Fig. 3. Fall armyworm (FAW) level o occurrence (establishment risk areas) in eastern Arica under uture climate scenario using the shared socio-
economic pathways (SSP2-4.5) o 2030 (A), and 2050 (B); and SSP5-8.5 o 2030 (C) and 2050 (D). The red color shows the highest level o
occurrence and established habitat while the green color shows the lowest. The yellow and orange colors show moderate and high FAW levels o
occurrence, respectively.
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round invasion o FAW compared to temperate regions, which are likely unsuitable or at low risk o seasonal invasions [32] since FAW
does not diapause [67]. Despite the act that FAW can migrate to uninhabitable areas during its population booms, it is not necessary
the conditions in these areas are suitable or the pest to survive. In such a case, the pest cannot complete its cycle even or one
generation. Thereore, it is expected that the FAW will continue to invade new areas and cause considerable production losses to crops
like maize, but not necessarily to build-up and establish unless the conditions are suitable. We recommend that FAW population
build-up and spread should eciently be monitored and managed to reduce such crop losses [68]. Thus, our study becomes extremely
critical and timely as it predicts the spatial variability o FAW occurrence on a wider scale, leading to coordinated regional and
inter-country planning and collaboration to better manage the pest. Particularly, this requires that policymakers and stakeholders in
East Arica should strengthen their exchange and cooperation to jointly slow the urther spread o FAW in the region.

Predicting establishment areas or highly mobile pest species such as the FAW is a demanding and complex task that involves a
selection o very relevant explanatory variables, which best mimic the environmental conditions o the pest. Also, modeling the spatial
distribution o such a highly mobile pest requires multi-year occurrence data at a landscape scale. In the present study, we utilized FAW
occurrence observations that were collected over three years (2018–2020). This period coincided with the peak o FAW invasion in
Arica [20]. Furthermore, in our modeling experiment, we included the most preerred FAW host crop i.e., maize [31], which provides
ood and nutrition security to most o the populace in sub-Saharan Arica including eastern Arica [68]. Moreover, we tested the
infuence o long-term bioclimatic, and 3-year elevation, solar radiation, and wind speed, as well as LULC variables/indicators on
predicting FAW establishment. Our multi-year FAW observations and long-term average bioclimatic and climatic variables reinorce
the reliability and robustness o our modeling approach as multi-date observations are usually more valuable than snapshot obser-
vations. This reduces the expected intermediate (year-to-year) variability and noise in the data, hence enhancing the model peror-
mance [69]. Notwithstanding, we did not use near-real-time bioclimatic variables that might have better explained the year-to-year
spatial variability in the FAW occurrence data points. On the other hand, multi-year biological data at larger scales (e.g., region or
continent-wide) are commonly collected through citizen science approaches, which allow public engagement in data collection and
sharing to improve scientic knowledge [70]. However, citizen science observations could be spatially biased and lack inormation on
survey eorts as the observers may tend to oversample accessible areas (e.g., maize elds next to main roads). This was countered in
the present study by creating a sampling bias le in the MaxEnt modeling experiment [50,71,72].

The above-mentioned explanatory variables proved very relevant or predicting FAW establishment areas under current and uture
climate regimes. The relevance o these explanatory variables was demonstrated by their contribution to the predictive model per-
ormance and the relatively accurately (AUC= 0.87) predicted FAW establishment maps. It is interesting to note that our study was the
rst attempt to investigate the infuence o localized LULC, wind speed, and solar radiation on the distribution and risk o FAW.

The LULC in general, and maize harvested area, in particular, contributed the most to the perormance o our FAW predictive
model. This is in agreement with other study ndings that landscape structure infuences insect pest occurrence and abundance
through the “scale dependence” concept [73]. This means that FAW infuence/presence and interactions at a eld scale, or instance,
could be aected by spatially explicit landscape patterns, like the proportion coverage o certain LULC classes (e.g., grassland,
bushland, etc.) [74]. In particular, surrounding and specic LULC classes could orm secondary hosts or FAW, specically during
cropping season breaks [32]. Also, landscape structure could aect the prevailing bioclimatic or micro-climatic conditions that in-
fuence the development, survival, and abundance o the pest at the eld scale [74]. The highest contribution omaize harvested area
to FAW predictive model perormance is expected since maize is the pest’s main host crop and the most grown crop in the study area
[20,75]. It is known that FAW is a polyphagous pest, which eeds on over 350 plants although maize is among its most preerred hosts
[18,76]. The high importance o LULC and maize harvested area in our MaxEnt model results, thereore, indicated that i the secondary
host plants are available at a landscape scale, FAW may remain active throughout the year even when the maize crop at a eld scale is
seasonally unavailable. Hence, the pest should also be managed in the surroundings o the elds o the main host crop (e.g., maize),
particularly during cropping season breaks. However, in eastern Arica there are two maize growing seasons supported by the ‘short’ 
and ‘long’ rains seasons, making the management o the pest more challenging. Specically, this can lead to FAW carryover rom
primary host crops to secondary host plants, and rom one season to another enhancing the pest propagation. The high infuence o the
build-up class (urban or rural settlement clusters) on our FAW habitat suitability could be due to the association o built-up areas with

Table 3
The predicted coverage (km2) and percentages o the established area o all armyworm (FAW) risk (level o occurrence) in eastern Arica using
current and uture shared socio-economic pathways i.e., SSP2-4.5 and SSP5-8.5 climate scenarios or the years 2030 and 2050.
Level o
occurrence

Area (km2)
under
current
climate
conditions

% o
suitable
area

Area (km2)
under uture
SSP2- 4.5
climate
scenario in
2030

% o
suitable
area

Area (km2)
under uture
SSP2- 4.5
climate
scenario in
2050

% o
suitable
area

Area (km2)
under uture
SSP5- 8.5
climate
scenario in
2030

% o
suitable
area

Area (km2)
under uture
SSP5- 8.5
climate
scenario in
2050

% o
suitable
area

Very low 934,261 41 867,192 38 637,720 28 834,461 37 712,427 31
Low 716,413 31 759,143 33 803,309 35 786,449 34 784,764 34
Moderate 304,701 13 311,712 14 403,755 18 311,453 14 381,527 17
High 159,213 07 165,670 07 240,612 11 168,266 07 267,267 12
Very high 168,877 7 179,746 08 200,110 9 184,879 08 139,521 6
Total 2,283,465 100 2,283,465 100 2,285,506 100 2,285,506 100 2,285,506 100
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intensive maize arming areas in eastern Arica, particularly in small-scale arming areas. Consequently, uture studies should include
maize planting period in FAW establishment prediction experiments, should a geospatial (gridded) maize planting time dataset is
available. This will allow the prediction o FAW actual hazard level in east Arica as a unction o maize planting season.

The second most contributing variables to our MaxEnt model were temperature, precipitation o the driest quarter, and solar ra-
diation. In general, studies have reported that climate variability considerably aects the distribution and abundance o insect pests
such as FAW [33,77,78]. This was demonstrated by the response curves (Supp. 6) and how an increment in temperature increased the
FAW potential invasion scores (habitat suitability). These climate responses could have triggered the massive FAW migration rom its
endemic region in South America. Specically, temperature-based variables were described by previous studies as a vital aspect o the
insects’ development cycle, survival, and abundance [23,79]. Although temperature variables substantially aect insect abundance
[79], they do not determine migration patterns on their own. Insect migration patterns are also highly sensitive to seasonal variations
and interactions in other environmental and bioclimatic variables occurring over the years [80,81]. Thus, it was clear in this study that
FAW establishment was more sensitive to isothermality (Bio3). This, however, complicates the understanding o the FAW spatial
distribution as temperature and precipitation across the seasons o the year infuence the FAW potential establishment risk [82]. The
infuence o the precipitation on the predictive model could be twoold; (i) indirectly through boosting the vegetative growth and
development o the FAW primary and secondary host crops/plants , which results in FAW population build-up [83], and (ii) directly
through its infuence on the pest occurrence, its survival and development [31]. However, FAW larvae can be washed away by
raindrops. In general, our study shows that the spatial occurrence o FAW largely depends on optimum interactions o a wide range o
explanatory variables. But their mechanisms o interaction are nonetheless currently vague [83,84]. These variables vary rom eld
size and geographical location to the cropping calendar and the FAW host plants as well as the pest management technologies adopted
by the armers [25]. Thereore, there is a need or a holistic FAW early warning and monitoring system in Arica.

Similarly, other studies have carried out modeling experiments to predict the spatial distribution o FAW at various scales since it
was rst reported in Arica in 2016 [21,22,31,33,82,85]. In particular, these studies have employed SDMs to provide a quick un-
derstanding o the potential spatial dynamics o the pest. However, these studies mainly aimed at predicting FAW suitable ranges and
expansion at oten a global or continental level. Thereore, their results could not explicitly inorm FAW spatial distribution at a
regional or local scale due to spatial heterogeneity within the landscape, and a multitude o actors that infuence the pest occurrence
across dierent agro-ecological regions including adaptation [86]. Thus, the results o the present study, which showed the FAW
spatial distribution and establishment at a regional scale are useul to pinpoint intervention priority locations to manage the pest
within a specied, i.e., similar environmental conditions and landscape setup, geographical space.

Notably, the results indicated that high to very high-risk FAW establishment areas are mostly located in areas o relatively higher
rainall (i.e., semi-humid and humid agro-ecological zones in eastern Arica). Moreover, an in-depth analysis o the spatial distribution
o FAW in eastern Arica showed that FAW has adapted to the conditions o relatively higher temperatures and low windspeed. This
emphasizes the relevance and importance o precipitation regimes, and temperature and wind speed proles in predicting FAW
distribution. The areas o high establishment or the pest are mostly in central Ethiopia along the highlands, the Lake Victoria regions
o Kenya, Uganda, and Tanzania, and also within the central, western and eastern regions o Rwanda. Also, in the areas that were
predicted to have high and very high scores o FAW establishment (Fig. 2), maize is the most grown crop. Again, maize is the main FAW
host crop in the study area. Nevertheless, the results showed that only 14% o the study area had high to very high FAW suitability
scores under the current climatic conditions (Table 3). Since maize harvested area was among the most contributing variable to our
MaxEnt model, the low area coverage o these suitability scores was expected as the crop is mainly grown by smallholders in the ve
study countries [87]. Also, we did not use real-time climatic variables that could have timely explained the FAW risk o establishment.
In contrast, the regions where the climate is arid to semi-arid exhibited the lowest FAW establishment risk. Furthermore, our study
predicts that uture FAW risk o the establishment will increase as a result o climate change under both SSP2-4.5 and SSP5-8.5
scenarios. This is in accordance with other studies’ ndings that climate change increases the risk o FAW [32] and other maize
invasive insect pests like stemborers [88].

The outputs obtained in this study were FAW predictive analyses that might somewhat be dierent rom the actual situation in
eastern Arica. Also, the accuracy o our predictive models can be hindered by the expected inherent limitations and uncertainties o
the used SDM. Thus, the current predicted state o the FAW distribution needs to be urther veried by comparing its predictions with
the actual FAW distributions should up-to-date spatially explicit FAW occurrence observations are readily available. Future studies
should urther investigate whether FAW has adapted to new agro-ecologies that are dierent rom its native conditions. Also, uture
studies should consider embedding this study’s results into a platorm that provides near-real-time climate data or the timely pre-
diction o FAW spatial distribution and establishment risk at the arm scale. Besides, uture studies should look at estimating FAW
growth and population dynamics and eventually develop a decision support system to manage FAW at the arm scale. Such a system
allows the estimation o FAW economic injury level that determines the application o control measures to prevent the increment in the
pest population to a level that could cause severe crop damage.

6. Conclusions

The novelty o this study is that it predicts the establishment risk o the invasive FAW at a landscape scale in ve eastern Arican
countries using several relevant explanatory variables that include bioclimatic, climatic (wind speed, solar radiation), landscape
structure (LULC), andmaize harvested area. Also, our study is the rst attempt to utilize wind speed, solar radiation, and the area o the
main host crop in predicting the spatial distribution o an invasive insect pest. We demonstrated that LULC, precipitation o driest
quarter, isothermality, maize harvested area, and solar radiation are the main ecological indicators or FAW risk o establishment in
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eastern Arica. Specically, the results o the present study showed that FAWwas already established in several areas in eastern Arica,
with an accuracy o prediction (i.e., AUC) o 0.87. Other Arican countries with similar environmental conditions could also be at risk
or FAW establishment. This study demonstrated that climate change will potentially increase the geographical distribution range or
FAW. Ecologically, our study implies that FAW will continue building-up and spreading in the suitable areas in the region and SSA in
general, particularly given the expansion o maize arming systems in the region. Also, landscape structures, specically natural
landcover classes, could act as secondary hosts or FAW during cropping season breaks, and as corridors or the pest dispersal rom one
eld to another during the season. Overall, our results contribute, as an empirical warning approach, to ve countries in eastern Arica,
to employ adaptive strategies to manage FAW establishment risk. Thus, preventive measures should be taken to combat the pest spread
into areas where they have not yet been reported and/or established. Specically, phytosanitary strategies, and cultural and biological
control measures are necessary or areas that are currently at risk o FAW establishment. Future studies should estimate the abundance
(density/population) o FAW at the eld scale to develop a orewarning expert system that guides a precise application o IPM
technologies in hotspot areas.
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