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ABSTRACT 

Animal African Trypanosomiasis (AAT) is a devastating parasitic disease caused by a variety 

of haemoflagellate extracellular protozoa of the genus Trypanosoma. It is endemic in 37 of 

the 55 countries in Africa and is transmitted by the obligate blood feeder of the genus 

Glossina. It affects both domestic and wild animals causing huge economic losses and severe 

health problems. Chemotherapeutic and prophylactic agents such as Isometamidium chloride 

(ISM) are used to prevent the progression of AAT in endemic areas. These agents face 

limitations such as resistance, toxicity, low efficacy, and unknown mechanisms of action. 

Therefore, it is crucial to develop new, safe and effective trypanocides or optimize those in 

current use by understanding their mechanism of action (MOA) through untargeted 

metabolomics. In this study, the MOA of ISM was first investigated through statistical and 

metabolomic analysis and molecular docking. Statistical analysis was done through Principal 

Component Analysis (PCA), one-way Analysis of Variance (ANOVA), and Tukey’s HSD

post hoc analysis, cluster, and fold change analysis. Significant perturbations were observed 

in glycolysis, acetate: succinate CoA transferase succinyl CoA synthetase (ASCT/SCS), and 

energy metabolites indicating that ISM may have an inhibitory effect on the glucose 

transporter. Molecular docking assays showed ISM interacting with the glucose binding site 

of the transporter. Isometamidium chloride interacted with amino acid residues known to be 

conserved in all sugar transporter members and to play an important role in transport of 

hexoses and formation of the exofacial substrate binding site. Secondly, to increase the drug 

arsenal against AAT, new or existing drugs used against biologically and biochemically 

similar kinetoplastids have been probed for their novel activity against Trypanosoma species. 

In this study, the MOA of novel anti-trypanosomatid compounds dubbed JYH and VMS were 

elucidated through the aforementioned analyses. The novel compounds are toxic to 
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kinetoplastid protozoa with activity recorded against Leishmania mexicana. For one of the 

compounds (VMS), statistical and metabolomic analysis showed possible perturbations to T. 

congolense metabolism, particularly in energy metabolism, aromatic amino acid metabolism, 

and cellular redox.  However, from the analyses, it was not possible to readily assign 

candidate target proteins in T. congolense.  In L. mexicana, inhibition of the Coenzyme A 

biosynthesis pathway at dephospho-CoA kinase (DPCK) or phosphopantetheine 

adenylyltransferase (PPAT) enzymes was evident for the two novel compounds. Molecular 

docking assays showed a possible inhibition of dephospho-CoA kinase by the drugs 

interacting with the CoA binding domain where the native substrate dephospho-CoA binds. 

On phosphopantetheine adenylyl transferase the drugs seemed to interact with the active site 

where adenosine triphosphate (ATP) binds. This study identified potential drug targets for

ISM, JYH and VMS. These findings provide new insights into the mechanisms of action of 

these drugs and suggest avenues for future drug development efforts.  
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background 

African Animal Trypanosomiasis (AAT) is a serious and fatal parasitic disease that is 

endemic in 37 of the 55 countries found on the African continent (Yaro et al., 2016). Millions 

of animals in the sub-Saharan region are grossly affected leading to losses that equate to 

approximately 4.5 billion USD per annum in food, dung, and drafting power (Yaro et al., 

2016). The disease is transmitted by an obligate blood feeder of the genus Glossina 

commonly referred to as the tsetse fly. Tsetse flies are exclusively found within the African 

continent, and are distributed within the tropics between latitudes 12°N and 25°S (Dorn et 

al., 2011). A combination of biological and mechanical factors is responsible for the 

confinement of AAT within the tropics such as equable climates and infestation by the tsetse 

fly vector (Shereni et al., 2021). Animal African Trypanosomiasis is characterised by fever, 

weakness and lethargy, weight loss, anaemia, staring coat, and discharge from the eyes 

among other symptoms depending on the extracellular protozoan responsible for the 

infection (Spickler, 2003). 

According to the Food and Agriculture Organization (FAO), various protozoan species of 

the genus Trypanosoma are responsible for AAT including Trypanosoma congolense, 

Trypanosoma vivax, Trypanosoma simiae, and Trypanosoma brucei (African Animal 

Trypanosomiasis; Selected Articles from the World Animal Review, n.d.). T. congolense is 

known to cause a majority of infections in domestic animals, causing fatal chronic disease 

that leads to death if left untreated (Coustou et al., 2010). These pathogenic African 

trypanosomes, including T. congolense, have complex life cycles that involve the tsetse 

vector and mammalian host (Peacock et al., 2012). The procyclic form (PCF), confined to 
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the tsetse fly and the bloodstream form (BSF) confined to the mammalian host are the two 

important replicating stages (Colasante et al., 2006). The best-studied trypanosome is 

Trypanosoma brucei where the two life forms differ significantly in their metabolic 

requirements. For example, BSF are completely reliant on glycolysis and substrate-level 

phosphorylation for their energy requirements while PCF favour proline as their main energy 

source (Eyford et al., 2011; Steketee et al., 2021). For T. congolense however, the BSF appear 

to be less dependent on glucose and their metabolism has key differences when compared to 

T. brucei, as shown in a thorough metabolome overview of T. congolense blood stream form 

by Steketee et al., (2021).  

Although there are other methods for controlling progression of AAT in endemic areas, 

several interventions target the BSF form of the parasite. They include prophylactic and 

chemotherapeutic trypanocides that are administered parenterally by either intramuscular 

(IM) or subcutaneous (SC) routes (Richards et al., 2021). The most common trypanocides 

available in African markets include homidium chloride (Novidium), homidium bromide 

(Ethidium), diminazene aceturate (Berenil), quinapyramine sulfate (Antrycide), and 

isometamidium chloride (Samorin, trypamidium) (Richards et al., 2021).  

Diminazene aceturate (DZ) was discovered in 1955 (Kuriakose & Uzonna, 2014). It is the 

first-line treatment for AAT (Giordani et al., 2016) and is administered IM/SC. There is 

reported resistance to diminazene aceturate following high accessibility, limited knowledge, 

and improper use (Joshua et al., 1995; Moti et al., 2015). Isometamidium chloride is an 

amphiphilic cationic phenanthridine used in veterinary medicine for prophylaxis and 

chemotherapy. Its trypanocidal action was first described by Wragg et al., (1958). The 

mechanism of action of ISM is poorly understood and resistance to it is thought to be due to 
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recurrent exposure to the drug as well as frequent under-dosing (Delespaux & de Koning, 

2007). 

Due to the aforementioned challenges as a result of toxicity and resistance, there is a pressing 

need to discover and develop new prophylactic and chemotherapeutic agents against AAT as 

well as optimize the ones in current use. Drugs used against neglected diseases caused by 

taxonomically related kinetoplastids have been used in an effort to increase the drug arsenal 

against AAT (Alkhaldi et al., 2019; Croft et al., 1996; Papagiannaros et al., 2005). Such drugs 

include those used against Leishmaniasis. Leishmaniasis is a parasitic disease that is endemic 

in 98 countries in Asia, Africa, Central America and southern Europe (Barrett & Croft, 2012). 

The disease is caused by infection with Leishmania parasites, which are spread by the bite of 

infected female phlebotomine sand flies (Barrett & Croft, 2012). Leishmaniasis manifests in 

two major forms; visceral and cutaneous Leishmaniasis.  

The process of optimizing and developing new drugs for AAT is complex and difficult. The 

process is enhanced through analysis of the mechanism of action (MOA) of existing drugs 

(Creek & Barrett, 2014) as well as advancing knowledge of how T. congolense develops 

resistance. One approach to achieve this is through an untargeted overview of cellular 

metabolism following drug exposure through metabolomics. 

Metabolomics is a relatively new ‘omics’ technology that refers to the study of small

biomolecules that are the intermediates or end products of metabolic processes (Hendriks et 

al., 2011; Patti, 2011). Metabolomics can be targeted (hypothesis-driven) or untargeted 

(hypothesis-generating). Untargeted metabolomics is particularly advantageous when 

finding drug-mediated responses in biological systems as it can classify metabolic identities 

and biochemical pathways involved in trypanocidal effects (Creek & Barrett, 2014). This 

approach has been used in previous studies to give insight on the MOA of eflornithine 
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(Vincent et al., 2010), a trypanocide used against T. brucei that inhibits the ornithine 

decarboxylase enzyme (Mbekeani et al., 2019) as well as the antileishmanial 

alkylphospholipid, miltefosine (Armitage et al., 2018). 

This study is aimed at profiling the cellular metabolome of T. congolense parasites upon 

exposure to selected antiprotozoal drugs; including isometamidium (ISM) and novel drug 

candidates (here dubbed JYH and VMS) (Hammill et al., 2021; Ortiz et al., 2017) with 

metabolomics based on liquid chromatography-mass spectrometry (LC-MS). The 

metabolomes of T. congolense and Leishmania mexicana, two related kinetoplast parasite, 

were studied. A comparison of the metabolome outputs of T. congolense and L. mexicana 

treated with one of the novel compound was conducted with the aim of seeking differences 

and similarities in the MOA.  Furthermore, protein structure predictions for the target 

candidates were conducted and evaluated, in silico, to determine docked poses of the drugs 

to the identified targets. 

1.2 Problem statement 

Trypanosoma congolense is the major causal pathogen of the economically and socially 

important disease AAT (Coustou et al., 2010). Animal African Trypanosomiasis causes high 

morbidity and mortality, as well as huge economic losses in Africa (Kasozi et al., 2022; 

Richards et al., 2021; Spickler, 2003). A majority of the efforts to decrease disease burden 

and eliminate the disease rely on the use of chemotherapeutic drugs, especially 

isometamidium chloride which is used for both chemoprophylaxis and cure (Kasozi et al., 

2022; Stevenson et al., 1995; Tihon et al., 2017). Efforts to eliminate this disease, through 

the use of trypanocides, have been hindered by resistance, toxicity, poor efficacy, unsuitable 

pharmacokinetics, and unaffordable costs (Creek & Barrett, 2014). The aforementioned 

limitations, coupled with lack of proper and well-funded pharmaceutical research, as well as 
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limited knowledge, or lack thereof, of the MOA of existing drugs, contribute to the persistent 

progression of AAT. There is, therefore, an urgent need for new and improved drugs.   

Compared to its counterpart, T. brucei, little is known about T. congolense biochemistry 

(Steketee et al., 2021). Understanding its metabolism, especially in a host environment that 

contains trypanocides, can contribute to understanding drug MOA, the parasite’s mechanism

of drug resistance and identifying unknown drug targets. The discovery of the MOA sheds 

light and allows optimization of the pharmacokinetics of current chemotherapeutic 

compounds thus allowing monitoring of efficacy, resistance and toxicity.  

1.3 Justification 

Many routinely used antiprotozoal drugs act by uncertain mechanisms of action, making 

appropriate clinical use and monitoring for efficacy, toxicity, and resistance difficult (Creek 

& Barrett, 2014). The process of drug discovery, development, and appropriate use of 

trypanocides is substantially aided by understanding the mechanism of action of drugs.  

The neglected diseases Leishmaniasis and Trypanosomiasis are caused by taxonomically, 

structurally, and biochemically related kinetoplastid haemoflagellates (Barrett & Croft, 2012; 

Stuart et al., 2008). Owing to the structural and biochemical relatedness, previous studies 

have probed for novel activity of antileishmanials in Trypanosoma spp (Alkhaldi et al., 2019; 

Bouton et al., 2021; Croft et al., 1996; Papagiannaros et al., 2005). This has been done in an 

effort to increase the drug arsenal against AAT. This study investigated how a novel 

compound known to be active against Leishmania parasites perturbs the metabolome of T. 

congolense and L. mexicana. 

Elucidating the mechanism of action of drugs used against AAT is crucial for improving 

treatment outcomes, reducing drug resistance, identifying new drug targets, and advancing 
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the understanding of the parasite's biology (Giordani et al., 2016; Yang et al., 2014). Previous 

studies have indicated that understanding the mechanism of action of drugs can help in 

developing new and more effective drugs, leading to better treatment outcomes (Giordani et 

al., 2016). Additionally, T. congolense and other AAT causing parasites have developed 

resistance to drugs used for treatment, and understanding how drugs work against the parasite 

can help in developing strategies to prevent or slow down the development of resistance. 

Identifying new pharmacological targets is essential, and studying the mechanism of action 

of drugs used against AAT can provide insights into the biology of the parasite, leading to 

new strategies for disease control. Therefore, elucidating the mechanism of action of drugs 

used against AAT is crucial for the development of effective treatments and disease control. 

The University of Glasgow has generated metabolomics data of T. congolense parasites 

treated with isometamidium chloride, and T. congolense and L. mexicana treated with novel 

antiprotozoal agents, VMS and JYH, for this investigation. In this study, changes in 

metabolite levels relative to untreated parasites were analysed in order to elucidate the drugs’

mechanisms of action.  

 

1.4 Objectives 

1.4.1 Overall objective 
To analyze the metabolic effects of isometamidium chloride and two novel drug candidates, 

VMS and JYH, on Trypanosoma congolense and Leishmania mexicana and identify potential 

drug targets in silico. 

1.4.2 Specific objectives 
1. To investigate the effects of isometamidium chloride on the metabolome of 

Trypanosoma congolense for identification of potential drug targets.  
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2. To compare the effects of VMS on the metabolome of Trypanosoma congolense and 

Leishmania mexicana for identification of potential drug targets.  

3. To infer the interaction mechanisms of isometamidium chloride, VMS and JYH 

agents against the identified drug targets through in silico modeling.  
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CHAPTER TWO 

2.0 LITERATURE REVIEW 

2.1 The life cycle of Trypanosoma congolense and Leishmania mexicana 

Trypanosoma congolense is the major causal agent of the economically and socially 

important disease called Animal African Trypanosomiasis (AAT) also known as Nagana 

(Coustou et al., 2010). Although knowledge about this parasite is comparatively limited 

compared to its counterpart T. brucei, evidence to date suggests that it also undergoes a 

complex developmental cycle spanning two hosts; the tsetse fly vector and the mammalian 

host (Bringaud et al., 2006; Peacock et al., 2012). Most of the developmental stages are found 

in the insect vector. Bloodstream forms (BSF) that actively divide and multiply in the blood 

of an infected mammalian host are ingested by the tsetse vector during a blood meal. In the 

insect vector, they differentiate into procyclic forms (PCF) in the insect’s midgut then

migrate to the proboscis where they attach to the labrum and proliferate into epimastigotes. 

The parasites finally transform into metacyclic forms (MF) which are non-dividing and have 

a variant surface glycoprotein (VSG) coat. Metacyclic forms are infective when transferred 

to a mammalian host during the next blood meal (Hirumi & Hirumi, 1984). T. congolense’s

life cycle is illustrated in Figure 1 below.  
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Figure 1: The developmental life cycle of Trypanosoma brucei showing its life stages both 
in the tsetse fly vector and the mammalian host (Stein et al., 2014).  

Leishmania mexicana is a kinetoplastid hameoflagellate that is taxonomically, structurally, 

and biochemically related to T. congolense (Barrett & Croft, 2012; Stuart et al., 2008). L. 

mexicana causes the cutaneous form of the neglected disease Leishmaniasis. According to 

Damianou et al., (2020), Leishmaniasis creates significant public health issues and accounts 

for 20,000 – 40,000 annual deaths in 98 tropical and subtropical nations. Leishmania spp. 

and Trypanosoma spp. belong to the phylum Euglenozoa, family Trypanosomatidae and 

class Kinetoplastida (Kaufer et al., 2017; Kostygov et al., 2021). The developmental cycle 

of Leishmania spp. involves two primary morphological forms, intracellular amastigotes in 

the mammalian host and motile promastigotes in the sand fly vector. Infection to humans 

occurs when infective metacyclic promastigotes are injected into the body when an infected 

female phlebotomine sandfly draws a blood meal. The promastigotes are phagocytized by 
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macrophages and other types of mononuclear phagocytic cells. The promastigotes transform 

into amastigotes which multiply by simple division in the mononuclear phagocytic cells. In 

turn sand flies become infected when they ingest these amastigotes during a blood meal. The 

amastigotes transform into promastigotes and develop in the midgut. This life cycle is 

illustrated in Figure 2 below. 

The most well-known types of promastigotes, known as the mammal-infective phases of 

metacyclic promastigotes, have been described in sandfly infections. Gossage et al., (2003) 

evidenced two unique, consecutive growth cycles with four distinct life cycle phases occur 

during development in Lutzomyia longipalpis sand fly larvae for L. mexicana. Procyclic 

promastigotes start the first growth cycle. These promastigotes then divide in the bloodmeal 

of the abdominal midgut and give rise to nectomonad promastigotes, which do not divide. 

Nectomonad forms control the infection's anterior migration; they later change into 

leptomonad promastigotes, which start a new growth cycle in the anterior midgut. In order 

to be transmitted to a mammalian host, leptomonad promastigotes later differentiate into non-

diverging metacyclic promastigotes. 
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Figure 2: The developmental cycle of Leishmania mexicana in the human host and the 
sandfly vector. Adapted from (CDC - Leishmaniasis - Biology, 2020) 

 

2.2 The Trypanosoma congolense and Leishmania mexicana metabolomes 

The metabolome refers to the collection of small molecules known as metabolites in a cell, 

organ or organism (Wishart et al., 2007). According to the metabolic profiles of the best-

studied trypanosomatids including T. brucei, T. cruzi and Leishmania spp., the metabolic 

complexities of these expressed forms differ significantly due to the different environments 

found in hosts (Bringaud et al., 2006). For example, T. brucei and T. cruzi trypomastigotes 

depend heavily on glucose catabolism for their energy requirements because their vertebrate 

host environment is rich in glucose. However, in the insect vector haemolymph where 

glucose is scarce, their energy is prominently from L-proline or L-glutamine (Steketee et al., 
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2021). Observations from a comparative metabolomics and transcriptomics study of T. 

congolense and T. brucei conducted by Steketee et al., (2021) showed that T. congolense’s

metabolic consumption and output differed from that of T. brucei. In the glycolytic pathway, 

contrary to T. brucei where the major output is pyruvate, T. congolense did not produce high 

levels of this metabolite but instead showed increased levels of succinate, acetate and malate. 

This is in line with previous observations seen by Agosin & von Brand, (1954). Although 

these tricarboxylic acid (TCA) cycle intermediates were found, further results from the 

Steketee et al., (2021) study showed that in addition to glycolysis and the TCA cycle, the 

reversal of the glycosomal succinate shunt is also involved in their generation. In addition, 

the study suggested ATP generation could also be from the acetate: succinate CoA transferase 

succinyl-CoA synthetase (ASCT-SCS) cycle for T. congolense as the uptake of D-glucose in 

this parasite was decreased compared to T. brucei. Further, increased mitochondrial activity 

was observed that resulted in high levels of acetate (Steketee et al., 2021). Regarding 

transcriptomics, T. congolense showed increased levels in transcripts associated with 

gluconeogenesis, the succinate shunt and the acetate generation pathway. Moreover, the 

study proposed that T. congolense relies on alternative sources to obtain ribose instead of 

pentose phosphate pathway (Steketee et al., 2021). Finally, it showed reduced levels of fatty 

acids derived from threonine and glucose suggesting that T. congolense scavenges fatty acids 

as opposed to synthesizing them.  

Similarly, metabolome studies of Leishmania parasites have revealed distinct metabolic 

profiles in different life stages. An integrated metabolomics and proteomics investigation by 

Akpunarlieva et al., (2017) sought to study molecular variations of wild-type and mutant 

models of Leishmania. The study identified a number of variations, including a lack of 

glucose transport and several phenotypic changes in the mutant model. Additionally, the 
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findings showed that, in response to oxidative stress, metabolic pathways of glycoconjugate 

production and redox homeostasis involved in glucose metabolism underwent a series of 

changes. These changes demonstrated compatibility with the loss of sugar uptake capacity 

and explained the mutant's low virulence among the hosts. Another study by Westrop et al., 

(2015) found that in vitro cultures of logarithmic and stationary phase promastigotes of 

Leishmania parasites exhibit distinct metabolic profiles, suggesting increased differentiation 

into metacyclic forms. These differences included changes in nucleoside and nucleobase 

levels, as well as alterations in membrane glycerol phospholipid structure that affect 

membrane fluidity. The study which made a comparison between promastigotes and axenic 

amastigotes (cultured amastigotes) of L. mexicana revealed that promastigotes consume 

more glucose and amino acids, releasing partially catabolized products into the medium 

(Westrop et al., 2015). Metabolomic analysis using labeled substrates showed the release of 

specific metabolites by promastigotes, whereas axenic amastigotes exhibited a more 

conservative metabolic response characterized by decreased glucose and amino acid uptake 

and increased fatty acid catabolism. These metabolic differences were also observed in 

amastigotes derived from animal lesions, indicating their natural occurrence. Furthermore, a 

comparison of different strains of L. donovani with varying susceptibility to sodium 

stibogluconate identified metabolic differences related to oxidative stress protection and 

membrane fluidity (Westrop et al., 2015). However, analysis of L. infantum promastigotes 

treated with miltefosine did not show significant alterations in membrane phospholipids but 

indicated increased turnover of internal membrane lipids (Westrop et al., 2015). 

These differences in the metabolism with respect to the parasite's environment are 

advantageous in studying how they survive and thrive (Steketee et al., 2021). In this study, 

this underlying knowledge of metabolic differences was applied to investigate how the 
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metabolome of T. congolense and L. mexicana is altered when they encounter 

chemotherapeutic compounds as a way of: 1) explaining how these drugs work, 2) 

determining potential targets of these drugs.  

2.3 Use of trypanocides to control animal African Trypanosomiasis 

Animal African Trypanosomiasis jeopardizes the lives of about 50 million cattle and causes 

approximately 3 million cattle deaths every year (FAO, 2019). To prevent the risk to 

development and food security caused by this disease, appropriate control measures need to 

be taken (Richards et al., 2021). A systematic review on Trypanosomiasis and tsetse fly 

control options conducted by Meyer et al., (2016) stated that prior to the 1950s, control 

primarily consisted of practices that had significant environmental consequences, such as 

bush clearing, dichlorodiphenyltrichloroethane (DDT) ground spraying, and elimination of 

wildlife that exhibited undesirable qualities both in terms of traits and economic production 

through a process referred to as wildlife culling. Since the 1980s, however, more 

environmentally and politically acceptable approaches, such as selective bush clearing, 

sequential aerial spraying (SAS), insecticide-treated traps and targets (ITT), insecticide-

treated cattle (ITC) used as live baits, and the sterile insect technique (SIT), were developed 

(Meyer et al., 2016). 

Thus far, interventions to keep the disease at bay have included: 1) area-wide elimination and 

control of the tsetse fly vector (Schofield & Kabayo, 2008), 2) use of trypanocidal 

compounds as prophylactic and chemotherapeutic agents (Hargrove et al., 2012; Prayag et 

al., 2020), and 3) pyrethroid insecticide spraying of cattle (Muhanguzi et al., 2015). These 

control options are summarized in Figure 3 below. A review by Richards et al., (2021) stated 

that control against AAT relies heavily on anti-trypanosomal chemotherapy. Furthermore, 
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FAO stipulates that 35 million doses of trypanocides are administered to cattle annually to 

prevent the progression of this disease in endemic areas (FAO, 2019). 

Figure 3: A summary diagram of the control options available for controlling AAT. Methods 
highlighted in yellow emphasize the use of trypanocides (adapted from Meyer et al., (2016)). 

Six veterinary trypanocidal compounds are licensed for use against AAT. These trypanocides 

include homidium bromide (ethidium), homidium chloride (Novidium), diaminazene 

aceturate (Berenil), quinapyramine sulfate (Antrycide), isometamidium chloride (Samorin)

and suramin sodium. Isometamidium chloride (ISM), Diminazine aceturate (DZ) and 

homidium salts are frequently used in Africa (Giordani et al., 2016).  

The phenanthridine ISM and the diamidine DZ are the most commonly used drugs against 

AAT caused by T. congolense (and T. vivax) (FAO, 2019). Diminazine aceturate is the first 

line treatment for AAT. Its mechanism of action has been proposed to involve host effects, 
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including altering pathways associated with cytokine production reducing the production of 

interleukin-6 (IL-6), interleukin-12 (IL-12), and tumor necrosis factor (TNF) in macrophages 

(Kuriakose et al., 2012; Kuriakose & Uzonna, 2014). Additionally, binding to the parasite’s

kinetoplast (mitochondrial DNA) has also been proposed (Brack et al., 1972).  Resistance to 

DZ has been observed in areas where there is continuous use of the trypanocide. In a study 

conducted by De Koning et al., (2004), it was observed that DZ resistance is due to its loss 

as it is transported across the plasma membrane, as previously suggested by Barrett et al., 

(1995) in Trypanosoma equiperdum. Further, a study by Carruthers et al., (2021) observed 

that DZ resistance in T. congolense seems to be associated with reduced mitochondrial 

membrane potential.  

Isometamidium chloride is the most recent drug developed for control of AAT and has been 

in use since it was first introduced six decades ago (Richards et al., 2021). It is the only 

recommended prophylactic trypanocide at higher doses. The typical dose for treatment is 

0.25-1.0 mg/Kg while that for prophylaxis is 0.5-1 mg/Kg (Giordani et al., 2016). Despite 

the popularity of ISM, Onyeyili & Egwu, (1995) credited its narrow use to low safety margins 

and severe reactions at inoculation sites. Furthermore, research conducted by Tihon et al., 

(2017) indicates that 17 out of the 37 countries where AAT is endemic have reported 

resistance towards ISM. Further contraindications for its use have been attributed to toxicity 

(Kaminsky et al., 1997). The mechanism of action (MOA) of ISM is not properly known. 

However, previous studies have ascribed its ability to inhibit kinetoplast topoisomerase type 

II (TOPO II) which is involved in the linking and unlinking of the dense minicircle DNA 

network essential for encoding guide ribonucleic acid (RNAs) (Kaminsky et al., 1997). The 

cleaving of deoxyribonucleic acid (DNA) has also been proposed (Delespaux & de Koning, 

2007).  The homidium salts (homidium chloride and homidium bromide) have been halted 
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for use in certain countries where AAT is endemic such as Nigeria due to widespread 

resistance (Kasozi et al., 2022). However, they are used in areas where resistance to ISM and 

DZ is observed (Onyeyili & Egwu, 1995).  

Due to the low-profit market in the African continent, high costs in design, development, and 

licensing of new drugs, limited funding for vaccine research, and little interest in neglected 

diseases it is vital to optimize the use of current trypanocides (Geerts et al., 2001). The 

mechanism of action of most of the drugs used to control AAT is not fully understood (Creek 

& Barrett, 2014) which hinders surveillance on mechanisms that render them toxic, and their 

modes of resistance. 

Besides the known trypanocides, other bioactive compounds against related pathogens have 

been assessed for cross-species potency in Trypanosoma species (Alkhaldi et al., 2019; Croft 

et al., 1996; Ortiz et al., 2017). The neglected diseases Leishmaniasis and Trypanosomiasis 

are caused by taxonomically, structurally, and biochemically related kinetoplastid 

haemoflagellates (Barrett & Croft, 2012; Stuart et al., 2008). Owing to the structural and 

biochemical relatedness, previous studies have probed for novel activity of antileishmanials 

in Trypanosoma spp (Alkhaldi et al., 2019). Two such compounds (JYH and VMS) are 

evaluated in this study.  

The p-chloronitrobenzamide scaffold JYH was identified through phenotypic screening and 

showed strong potency against all Trypanosoma species in vitro (Hwang et al., 2013) and 

efficacious against T. congolense and T. brucei in vivo (Ortiz et al., 2017). Ortiz et al., (2017) 

previously assessed JYH’s potency against L. mexicana. It’s mechanism of action prior to 

this study was unknown despite its evidence of great potency, acceptable metabolic stability 

in both human and rat microsomal models, modest solubility, and reasonable permeability 
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(Hwang et al., 2013). Additionally, the presence of microtubule-interacting and vimentin-

like proteins in Leishmania parasites led to the evaluation of 3-arylquinolines, which were 

previously studied as oncogene leads, in Leishmania parasites and resulted in the 

modified arylquinolone VMS (Hammill et al., 2021). From the study by Hammill et al., 

(2021), VMS was identified as an early lead against Leishmaniasis since it possessed good 

intracellular amastigote activity (EC50 = 120 nM) and a 30-fold selectivity index. In the 

study by Hammill et al., (2021), it was also shown that VMS retained activity against several 

patient-derived antimony-resistant strains of the parasite L. donovani that causes visceral 

Leishmaniasis (Hammill et al., 2021). In this study, the MOA of VMS against T. congolense 

and L. mexicana was compared and the MOA of both JYH and VMS was evaluated in L. 

mexicana. 

2.4 Metabolomics-based strategies for drug target identification 

Metabolomics is a relatively new ‘omics’ technology that involves the identification and

quantification of the cellular metabolome of a particular system (Vincent et al., 2012). Unlike 

other omics technologies, namely proteomics and genomics, which are frequently 

complicated by modifications such as epigenetic and post-translational modifications, 

metabolomics provides unique molecular profiles of activities that occur at the cellular level 

hence allowing easier correlation with observable physical metabolic outputs (Patti, 2011). 

Metabolomics is usually conducted with nuclear magnetic resonance (NMR) or mass 

spectrometry (MS) to analyze highly abundant biomolecules or for wide coverage 

metabolome analyses respectively (Vincent et al., 2016). Mass spectrometry is advantageous 

over NMR in terms of sensitivity and accuracy when detecting the mass of hundreds to 

thousands of metabolites in a single sample (Vincent & Barrett, 2015). There are two general 

approaches in metabolomics; the hypothesis-driven approach known as targeted 
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metabolomics, and the hypothesis-generating approach also known as untargeted 

metabolomics (Creek & Barrett, 2014). 

Targeted metabolomics quantifies a list of targeted metabolites discriminately while 

untargeted metabolomics aims to quantify as many small biomolecules as possible in an 

unbiased manner (Patti, 2011). Untargeted metabolomics is often conducted with liquid 

chromatography-mass spectrometry (LC/MS) because of: 1) its ability for global profiling 

(Vincent & Barrett, 2015), 2) its high sensitivity (Gertsman & Barshop, 2018; Patti, 2011), 

and 3) its ability to proceed without chemical derivatization (Cui et al., 2018). Untargeted 

metabolomics has a wide range of applications including in drug discovery to elucidate the 

MOA of drugs that act by unknown means (Creek & Barrett, 2014; Li et al., 2016), 

identifying disease biomarkers, finding mechanisms of toxicity, and determining 

mechanisms of resistance (Vincent et al., 2016). 

Pharmaceutical drug discovery programs have relied heavily on high throughput screening 

(HTS) (Halouska et al., 2011) and phenotypic screening (Vincent & Barrett, 2015). High 

throughput target-based screening involves screening for lead compounds in large chemical 

libraries to find those that interact with specific targets while eliminating compounds that do 

not show significant interactions (Jahnke, 2007). Phenotypic screening, on the other hand, 

aims to find compounds that kill parasites in cell-based systems, irrespective of the 

knowledge of the target. While these methods are widely applied, they suffer various 

challenges which mean additional refinement of compounds is necessary to create useful 

drugs. High throughput screening against targets has high failure rates because compounds 

that inhibit particular targets often fail to cross membranes to enter parasites or might be 

metabolically unstable (Halouska et al., 2011). Phenotypic screening, which by definition is 

finding compounds that kill parasites, is unable to pinpoint the toxic and synergistic effects 
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of lead compounds since drug MOAs are not known (Vincent & Barrett, 2015). Untargeted 

metabolomics can therefore help elucidate the mechanisms by which drugs cause cellular 

responses, making it an attractive and advantageous route. 

Untargeted metabolomics has been previously studied for anti-protozoan MOA research. 

Vincent et al., (2012) conducted a study that aimed to ascertain the mechanism of action of 

the ornithine decarboxylase inhibitor, eflornithine. The study showed how metabolomics can 

be applied to such research, especially if the drug’s mechanism of action involves enzyme 

inhibition. In the study, an increase in ornithine decarboxylase’s (ODC) substrate, L-

ornithine was observed with a concomitant decrease in its product, putrescine, showing that 

the drug acted by a single means that was inhibition of ODC (Vincent & Barrett, 2015). The 

same study also analysed the T. brucei metabolome to study the synergistic effects of 

nifurtimox and eflornithine and showed that the two drugs were mildly antagonistic in vitro. 

Another study by Armitage et al., (2018) designed to investigate the effect of miltefosine on 

the metabolome and lipidome of treated Leishmania amastigotes, hypothesized the 

importance of sphingolipids and ergosterol for the drug’s sensitivity although not able to

pinpoint a single target. 

2.5 Metabolomics data preprocessing and pretreatment 

Metabolomics experiments are typically designed to assess the abundances of endogenous 

biomolecules in biological systems (Bartel et al., 2013). These abundances are unique

molecular signatures that infer the physiological state of the biological system (Saccenti et 

al., 2013). The resulting metabolic profiles usually consist of huge amounts of data that pose

a challenge when making relevant biological inferences from the data (Worley & Powers, 

2013). Two broad statistical analysis approaches, namely univariate and multivariate

methods, are used to extract meaning from metabolomics datasets depending on experimental 
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design (Saccenti et al., 2013; Worley & Powers, 2013). Univariate methods focus on the 

observation and analysis of individual variables (Saccenti et al., 2013) while multivariate 

methods consider multiple variables simultaneously along with underlying relationships 

between the variables (Vinaixa et al., 2012). Biological systems and processes, as well as 

LC/MS, are inherently multivariate in nature (Vinaixa et al., 2012) rendering many 

metabolomics analyses multivariate, although picking individual metabolites whose 

abundance is affected in different situations is fundamental. Univariate methods only focus 

on mean and variance (Saccenti et al., 2013) and include t-tests or analysis of variance 

(ANOVA) (Saccenti et al., 2013) for data that comes from a normal distribution and Kruskal-

Wallis, Mann-Whitney, Wilcoxon signed-rank and Friedman tests for data that is not 

normally distributed (Vinaixa et al., 2012). Multivariate analyses, in contrast, besides 

focusing on simultaneous analysis of all variables, also focus on covariance and correlations 

(Saccenti et al., 2013). In metabolomics, two routinely applied multivariate analyses are 

dimensionality reduction models such as principal component analysis (PCA) and partial 

least squares (PLS).  

Before metabolomics datasets are analyzed they have to undergo pre-processing and 

pretreatment (Hendriks et al., 2011; van den Berg et al., 2006). Data preprocessing refers to 

the generation of clean data by removing noise. Specifically, in untargeted metabolomics 

through MS, it refers to dealing with artifacts and other noise in the data, retention time shifts, 

and baseline drifting (Hendriks et al., 2011; van den Berg et al., 2006). Data preprocessing 

of the datasets used in this study was done using Identification and Evaluation of 

Metabolomics data from LC/MS (IDEOM). The IDEOM platform is a user-friendly Excel 

based template with many macros that enable pre-processing of raw LC/MS data to annotated 

and hyperlinked metabolite lists (Creek et al., 2012). The template does not require any 



22 

installation and can be loaded directly onto the latest version of Microsoft Excel (Creek et 

al., 2012). Many other freely available applications exist for alignment, deconvolution, 

detection, integration and identification (Blekherman et al., 2011). Many of these 

applications are, however, built on statistical software and require some expertise to navigate 

them (Creek et al., 2012). The IDEOM template on the other hand has a GUI with R-based 

msconvert, XCMS and MzMatch for preprocessing, and additional automated filtering and 

annotation to remove artefacts in LC/MS (Creek et al., 2012) which is a major problem in 

LC/MS data (Blekherman et al., 2011). The IDEOM template also conducts automated 

identification of putative metabolites based on their retention time and mass and then 

annotates the metabolites with confidence levels. Figure 4 is a representation of how IDEOM 

pre-processes the data and outputs annotated and identified putative metabolites with 

confidence levels to allow quick and easy data analysis and visualisation that can be used to 

make biological inferences. 
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Figure 4: A representation of LC/MS data alignment, identification and annotation of 
putative metabolites using IDEOM. On the left is raw peaks obtained after LC/MS while on 
the right is a comparison sheet obtained after data preprocessing using IDEOM (Creek et al., 
2012; MzMatch/PeakML: Metabolomics Data Analysis, n.d.).  

The output obtained from IDEOM consists of several Excel sheets including: 1) “Alldata”

that contains information about every peak set in the peak list, 2) “Rejected” that contains

metabolites whose confidence level is below 5 (these peaks represent noise and artefacts), 3) 

“Identification” that contains metabolites whose confidence level is above 5, 4)

“AllBasepeaks” that contains all base peaks from MzMatch, and 5) “Comparison” that

contains the output from the comparison of peak intensities and has many evaluation and 

visualisation functions. 

The comparison sheet contains information on the mass of the putative metabolite, its 

retention time, its putative formula, number of isomers in the database with the exact mass 

and retention time, the name of the putative metabolite, the confidence level with which it 

was identified and annotated, the metabolic pathway that it maps to as well as information 
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about the samples used to generate the data as shown in Figure 5. The information contains 

hyperlinks to their source databases (Creek et al., 2012). 

Figure 5: A screenshot of the comparison sheet in IDEOM containing lists of hyperlinked 
lists of important metabolite information (Creek et al., 2012). 

After data pre-processing and metabolite identification, data is pretreated for downstream 

data analysis. Data pretreatment aims to showcase the biological relevance of clean data by 

emphasizing the differences in the relative peak areas of metabolites in different samples. 

This is done by relating these differences to physiological states of the biological systems in 

which they occur (van den Berg et al., 2006). Methods for pretreating data include scaling, 

centering and normalization (Karaman, 2017; van den Berg et al., 2006).  Centering ensures 

all metabolite concentrations are fluctuations, not around a central mean, but around zero 

therefore large differences between highly and lowly abundant metabolite concentrations are 

adjusted (van den Berg et al., 2006). This adjustment minimizes the high offsets in the data 
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leaving biologically relevant variations only (Karaman, 2017; van den Berg et al., 2006). 

Centering is vital in metabolomics as seen in studies conducted by Ducruix et al., (2008), 

Narduzzi et al., (2020), among many others. Scaling involves division of metabolite relative 

peak areas observed by a scaling factor which can be mean or standard deviation (van den 

Berg et al., 2006). Scaling aims to convert the differences observed in metabolite 

concentrations to values that are relative to the scaling factor (Karaman, 2017). Different 

scaling techniques exist including autoscaling, Pareto scaling, range scaling, vast scaling and 

level scaling. All scaling techniques with the exception of level scaling, which uses mean as 

a scaling factor, use standard deviation (Karaman, 2017; van den Berg et al., 2006). 

Autoscaling is the best known and most used scaling technique in metabolomics (Gromski 

et al., 2014). 

Transformations are often applied to metabolomics datasets to convert multiplicative effects 

to additive relations, therefore correcting for heteroscedasticity in the data (Karaman, 2017; 

van den Berg et al., 2006). Two common transformation methods used in metabolomics 

include log and power transformations (van den Berg et al., 2006). Log transformation 

corrects data heteroscedasticity. However its disadvantages include: 1) inability to deal with 

zero characters as their transformed values begin to approach negative infinity and 2) over 

emphasis of low concentration metabolites (van den Berg et al., 2006). Power 

transformations on the other hand are able to deal with zero values but their inability to turn 

multiplicative effects into additive effects make them undesirable (Karaman, 2017; van den 

Berg et al., 2006). 

2.6 Metabolomics statistical analysis software 

For downstream metabolomics data analysis, many metabolomics analyses are now 

performed locally using commercial statistical software tools such as MatLab, MS-Excel, 
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SigmPlot, and SIMCA-P (Xia et al., 2009). The metabolomics community, in particular, 

makes extensive use of SIMCA-P (Umetrics) due to its great graphic capabilities and 

comprehensive analytic choices (Xia et al., 2009). SIMCA-P is, however, quite expensive 

offering only one month of free trial. Software used for metabolomics analysis that do not 

require installation include MeltDB and MetaboAnalyst. MeltDB is a web-based software 

platform that focuses on the storage, administration, analysis, and annotation of MS-based 

metabolomics data (Neuweger et al., 2008; Xia et al., 2009). MeltDB allows user access 

control and a more flexible ontology-based metabolomics experiment annotation. It also 

provides the ability to integrate and parameterize preprocessing procedures and 

methodologies that can be uploaded to a compute cluster (Neuweger et al., 2008). 

Unfortunately, a number of popular browsers (Firefox, Netscape) appear to have security 

certificate difficulties with this server, and access requires a user login and password (Xia et 

al., 2009). Furthermore, the statistical capabilities of MeltDB such as t-tests, volcano plots, 

PCA, and heat maps are limited to GC/LC-MS data only (Xia et al., 2009). 

MetaboAnalyst version 5.0 is a user-friendly web application frequently used in analysis of 

metabolomics datasets (Xia & Wishart, 2016) with over 300,000 users according to the 

metaboanalyst.ca website. The application can handle data from both NMR and MS 

platforms either in their raw form containing spectral bins or in the preprocessed form 

containing metabolite concentrations (Xia & Wishart, 2016). The platform allows for both 

univariate and multivariate data analysis depending on one’s experimental design and study

goals. It also has the capability of recording R commands used in data analysis and generation 

of various outputs such as heatmaps, PCA plots, PLS plots and receiver operating 

characteristic (ROC) curves. Furthermore, MetaboAnalyst is also available as a package for 

use in R programming, that allows users flexibility in commands for their desired output. 
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Compared to other software tools, MetaboAnalyst supports a wider range of data types, and 

more complex data analysis methodologies, data annotation tools, and automated report 

generating utilities. In addition, it includes a number of other methods not available in 

SIMCA-P, such as volcano plots, Significance Analysis of Microarrays (and Metabolites) 

(SAM), k-means, self-organizing maps (SOM), random forest, and support vector machine 

(SVM). While MetaboAnalyst lacks the graphical versatility of SIMCA-P, it is more 

accessible (through the web), free, and simple to use even on R. MetaboAnalyst also includes 

its own metabolite and route identification tools, which are not available in any other 

statistical software package. However, because of its reliance on the Human Metabolome 

Database (HMDB) infrastructure, MetaboAnalyst's coverage of plant and microbial 

metabolism is limited.  

Several studies have shown the use of MetaboAnalyst and MetaboAnalystR for 

metabolomics data analysis (Cadena-Zamudio et al., 2022; Costanzo et al., 2022). In this 

study, MetaboAnalystR package was used for statistical data analysis. 

Figure 6 below shows the general metabolomics workflow from data generation to statistical 

analysis. 
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Figure 6: A general metabolomics workflow. Text within parentheses show the different 
methods available for the process. Metabolomics data is generated through NMR or MS, it 
is then preprocessed and pretreated before it is analysed using different statistical tools. 

 

2.6 Molecular docking

The metabolomics analysis aims to identify changes in abundance of metabolites in drug 

treated cells – which, it is hoped, will point to metabolic enzymes inhibited by the drugs. 

Upon identification of such enzymes, in silico predictions of drug binding potential can be 

performed. Molecular docking is a prominent in silico structure-based drug design (SBDD) 

method that predicts the interaction between small molecules known as ligands and their 

biological macromolecules also known as target (Pinzi & Rastelli, 2019). The main aim of 

molecular docking is to find ligands that have particular electrostatic and stereochemical 
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properties to acquire the greatest binding affinity to the biological receptor (Ferreira et al., 

2015). The process typically begins with obtaining the molecular pose of the ligand within 

its target and then establishing if the ligand and the receptor are complementary to each other 

through the use of a scoring function (Pinzi & Rastelli, 2019). In the context of drug design, 

the ligands are usually drugs while the targets could be proteins (enzymes, cell surface 

receptors, ion gated channels, membrane transport proteins) or nucleic acids (McMasters, 

2018; Santos et al., 2016; Singh et al., 2006). Prior to docking it is necessary to first generate 

a three-dimensional structure of the target.  This can be achieved through a number of 

methods such as crystallography on purified targets then exposed to X-rays, nuclear magnetic 

resonance (NMR) or through computational structure prediction using various software 

packages.  Increasingly, molecular modelling is used to generate structures in silico and most 

recently an Artificial Intelligence based algorithm, called Alpha-fold 2.0, was released by 

DeepMind and produces robust structures from protein amino acid sequences (Jumper et al., 

2021). 

A number of different software packages have been developed to allow docking. AutoDock 

is a popular example alongside DOCK, GLIDE, GOLD, FlexX (Pakpahan et al., 2013), and 

LUDI (Morris et al., 2008) among others. AutoDock is a freely available suite of C programs 

that perform computational docking and virtual screening (Forli et al., 2016). The C programs 

work in tandem and they include: 1) AutoDock Tools (ADT) – graphical user interface (GUI) 

for preparation of receptor and ligand coordinates and thereafter docking and analysis, 2) 

AutoDock Vina – a relatively new program to AutoDock that performs both screening and 

docking with increased speed and accuracy (Trott & Olson, 2010), 3) AutoDock - for docking 

simulations between the ligand and receptor, 4) Raccoon2 - for virtual screening 5) 

AutoLigand - for prediction of suitable binding pockets for the ligand (Forli et al., 2016) and 
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6) AutoGrid that predetermines a grid box onto where the ligand binds on the receptor based 

on the interaction of energies (Morris et al., 1996). The current distribution of the original 

AutoDock suite (AutoDock 4) is available in two main distributions, AutoDock and 

AutoDock Vina and they both contain ADT and AutoGrid. 

Docking programs generally culminate in two components: 1) ligand poses in a binding 

pocket, and 2) ranked poses based on binding affinities (Tanchuk et al., 2016). The programs 

use a scoring function to predict the affinity of a ligand (or many ligands) binding to a 

receptor’s binding site (Pakpahan et al., 2013). Most scoring functions are designed to score 

interactions between a flexible ligand and a rigid receptor meaning that the receptor does not 

undergo any changes during the docking process. However, for protein targets, it is widely 

known that once a ligand binds, they undergo conformational changes to facilitate this 

binding and therefore increase the number of interactions (Anderson et al., 2001). Ensemble 

docking is therefore desired for protein targets to generate ensemble candidates upon binding 

of the ligand (Amaro et al., 2018). AutoDock and AutoDock Vina use quite different scoring 

functions (Tanchuk et al., 2016). The empirical scoring function of AutoDock Vina is a 

machine learning algorithm compared to AutoDock’s that is physics-based (Quiroga & 

Villarreal, 2016). The AutoDock Vina scoring function calculates the contribution of several 

individual forces such as gauss1, gauss2, hydrogen bonding, hydrophobic and repulsion 

forces to the target-ligand binding (Quiroga & Villarreal, 2016).  The Scoring function is as 

follows: 

ΔG binding = ΔG vdW + ΔGelec + ΔGhbond + ΔGdesolv + ΔGtors 

Where ΔGvdW is the Leonard-Jones potential, ΔGelec is the coulombic with Solmajer-

dielectric, ΔGhbond is the Goodford directionality, ΔGdesolv is the Stouten pairwise atomic 
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solvation parameters and ΔGtors is the number proportional to rotatable bonds (Pakpahan et 

al., 2013). 

The AutoDock Vina scoring function slightly outperforms AutoDock 4 (Tanchuk et al., 

2016). AutoDock and AutoDock Vina were used in this study for the identification and 

scoring of binding poses of the drugs to the identified drug targets. Prior studies have used 

molecular docking to validate leishmanicidal and trypanocidal compound activities against 

their molecular targets (Ibezim et al., 2018; Ogungbe & Setzer, 2009; Rock et al., 2021) . 

Molecular docking studies were therefore performed to infer interaction mechanisms 

between the drug compounds and their macromolecular targets. 
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CHAPTER THREE 

3.0 MATERIALS AND METHODS 

3.1 Experimental design 

Materials used in this study comprise of three global metabolomics datasets profiling the

chemical perturbations of Trypanosoma congolense and Leishmania mexicana parasites 

which were treated with anti-parasitic molecules. The three datasets were as follows: 

Isometamidium chloride treated T. congolense, T. congolense treated with VMS-7-25 and L. 

mexicana treated with VMS-7-25 and JYH-G-52-1. 

Data generation which involved cell cultures of the parasites exposed to the anti-parasitic 

drugs and data preprocessing was previously performed at Glasgow Polyomics (2020) prior 

to this study. Metabolomics data was generated as described below:  

For T. congolense treated with ISM, BSF T. congolense parasites were grouped into three 

groups representing three types of sample groups (Untreated, Low dose, High dose). The 

three sample groups were cultured in SCM-6 minimal media at different drug concentrations 

as follows: Untreated – 0 nM ISM, Low dose – 0.6 nM ISM, High dose – 6.0 nM ISM. The 

samples were made in 4 replicates of 60 ml each (total of 12 replicates) that were incubated 

at 34˚ C and monitored in different concentrations of ISM as stated above for 24 hrs.  

For T. congolense treated with VMS-7-25 from Kip Guy & Scott Landfear (USA), the 

parasites were treated with 7.6-8 µl of 19.5 µM VMS-7-25 (Hammill et al., 2021) for 15 min 

at 34°C. Samples were grouped into control and VMS with 4 replicates in each sample group. 

For L. mexicana treated with JYH-G-52-1 and VMS-7-25 from Kip Guy & Scott Landfear 

(USA), 38 µl of 25mM JYH-G-52-1(Ortiz et al., 2017) and 1.09 µl of 100 mM VMS-7-25 

and 37.91 µl of DMSO was added to 10 ml of culture. Cells were incubated at 25 °C for 10 
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min with JYH-G-52-1 and 15min with VMS-7-25. Samples were grouped into control and 

treated with 4 replicates in each sample group. 

Metabolites were then detected using Orbitrap mass spectrometry and data in the form of 

mass peaks as well as retention times was obtained (Kamleh et al., 2008). Metabolomics data 

was generated and automatic metabolite annotation and identification was performed using 

Identification and Evaluation of Metabolomics data (IDEOM) software (Creek et al., 2012). 

3.2 Study materials 

The materials used in this study included four datasets and three compounds. A summary of 

samples that were used in this study as well as the total putative metabolites identified in the 

samples and their dataset assignment are detailed in Table 1 below.  

Table 1: Summary of samples of the datasets 

Dataset Number of samples used Number of putative 
metabolites identified 

ISM T. congolense IL3000 12  776 

VMS-7-25 T. congolense 8 565 

VMS-7-25 L. mexicana 8 830 

JYH-G-52-1 L. mexicana 8 830 

 

The structure of the compounds evaluated i.e. isometamidium chloride, JYH-G-52-1 and 

VMS-7-25 are shown in Figure 7.  
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Figure 7: The two-dimensional structure of isometamidium chloride (ISM), VMS and JYH. 

3.3 Data preprocessing and quality control 

The three datasets were preprocessed before downstream data analysis using IDEOM (Creek 

et al., 2012). Preprocessing included data filtering to remove baseline noise, as well as 

centering fluctuations around zero. This step was also performed at Glasgow Polyomics 

(2020) prior to statistical and metabolomic analysis. 

ISM 
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3.4 Statistical and metabolomic analysis  

Data was analysed using the MetaboAnalystR package version 3.2.0 in R (Chong & Xia, 

2018). Baseline noise was filtered using the interquartile range robust measure of scale 

because of its efficiency, robustness to estimate both symmetric and asymmetric data as well 

as its relatively higher breakdown point of 0.25. Data was then normalized through scaling 

using autoscaling to adjust for fold changes in different metabolites and transformation using 

log transformation (log10) to correct for heteroscedasticity and multiplicative effects in the 

data (van den Berg et al., 2006). Dimension reduction was performed using unsupervised 

PCA and supervised PLS-DA and to investigate discriminate clustering between the samples 

as well as metabolites that contributed to the discriminate clustering. A one-way ANOVA 

with Tukey’s HSD post hoc test was conducted to compare the effects of the different drug 

concentrations on the metabolites’ levels for the ISM treated dataset. For the novel compound

(JYH-G-52-1 and VMS-7-25) datasets, fold change analysis and t-test were used to analyse 

the metabolic effects of the drugs on the parasite. Cluster analysis was then performed based 

on Euclidean distance using k-means and hierarchical clustering to further identify 

discriminate clustering of dysregulated metabolites. From the above analyses, dysregulated 

metabolites were identified and further metabolomic analysis conducted to identify the drug 

targets. 

3.5 Retrieval and analysis of primary protein sequence

The primary sequence of the annotated putative drug targets was retrieved from the TriTryp 

database (https://tritrypdb.org/tritrypdb/app) in FASTA format. A similarity search using 

Blastp was performed against the NCBI database (https://blast.ncbi.nlm.nih.gov/) for 

sequence confirmation and further functional and molecular analyses on the sequences were 

conducted using Conserved Domain Database (CDD), InterPro and Pfam

(https://pfam.xfam.org/).  
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3.6 Three dimensional structure prediction 

The secondary structures of the retrieved sequences were predicted using Psipred 

(http://bioinf.cs.ucl.ac.uk/psipred/). The retrieved sequences were used to model the 3-

Dimensional structure of the predicted drug targets using Alphafold2 

(https://alphafold.ebi.ac.uk/)  (Jumper et al., 2021). The obtained models were refined using 

GalaxyRefine server (https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE) (Heo et 

al., 2013). The validity of the predicted structures was evaluated using Protein Structure 

Analysis web server (https://prosa.services.came.sbg.ac.at/prosa.php) as well as ERRAT, 

PROCHECK, and  VERIFY 3D from Structural Analysis and verification server 

(https://saves.mbi.ucla.edu/). Structures with high quality factor in ERRAT (> 90%), 

minimal stereochemical errors in PROCHECK analysis and 3D model compatibility with the 

protein primary sequence of > 80% on VERIFY 3D proceeded to molecular docking analysis.  

3.7 Ligand Retrieval and Optimization  

The 3D structure of isometamidium chloride in structural data format (SDF) was retrieved 

from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/compound/Isometamidium-

chloride). The 3D SDF file was converted to MOL2 format using OPEN BABEL graphical 

user interface (GUI) software. The structures of JYH-G-52-1 and VMS-7-25 were drawn 

using MarvinSketch from Marvin suite programs on Chem axon (https://chemaxon.com/). 

The resulting MDL molfiles were optimized through energy minimization on UCSF chimera. 

The 1000 steps of Steepest descent minimization were performed first to relieve highly 

unfavorable clashes, followed by 500 steps of conjugate gradient minimization, to achieve a 

conformation with the lowest energy minimum after severe clashes had been relieved (Das 

et al., 2020; Pettersen et al., 2004). The optimization was necessary to achieve conformations 

with the lowest energy that illustrate stability since 2D structures of ligands are not

energetically stable. 
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3.8 Preparation of the ligand and receptor for molecular docking 

The predicted macromolecules were prepared using AutoDock 1.5.7. Polar hydrogens were 

added and Gasteiger charges were computed for the receptors. AD4 atom types were assigned 

to the receptor defining aromatic and aliphatic amino acids as well as hydrogen bond donors 

and acceptors. The resulting structures were saved as PDBQT files. The ligands were also 

inputted into AutoDock, torsion tree detected and the resultant structures saved as PDBQT 

files. 

3.9 Grid parameters and prediction of binding pockets 

Three-dimensional grid boxes for the receptors were created by the AutoGrid algorithm to 

evaluate the binding energies on the macromolecule coordinates. The grid maps representing 

the intact ligand in the actual docking target sites were calculated with AutoGrid (part of the 

AutoDock package). The DoG (difference of Gaussian) site scorer from ProteinPlus 

(https://proteins.plus/) was used to predict the receptors’ binding pockets (Volkamer et al., 

2010). The DoG site scorer utilises 3D difference of Gaussian to filter grid representations 

of the protein to recognise patterns which resemble spherical structures (Volkamer et al., 

2010). This filter approximates the second derivative of the Gaussian function (Laplacian of 

gaussian) to identify invaginations of the protein surface which are suitable to accommodate 

ligands (Volkamer et al., 2010). The druggability score was calculated based on the linear 

contribution of the 3D descriptors describing volume, hydrophobicity and enclosure. The 

higher the drug score the more druggable the pocket is. The hydrophobicity ratio is dependent 

on the most occurring residues in the pocket while enclosure is dependent on if the pocket is 

closed or open and near the protein’s surface. The top 5 ranked binding pockets were

investigated. 



38 

3.10 Molecular docking assay 

Rigid receptor-flexible ligand docking was performed using AutoDock Vina version 1.2.0 

using the computed grid parameters from AutoDock Tools and pocket centers computed from 

Protein plus. The configuration file was created as follows: 

receptor = name_of_receptor.pdbqt 

ligand = name_of_ligand.pdbqt 

out = name_of_output_file.pdbqt 

log = name_of_log_file.txt 

center_x = x coordinate computed from ProteinPlus 

center_y = y coordinate computed from ProteinPlus 

center_z = z coordinate computed from ProteinPlus 

size_x = number of points in x dimension computed from AutoGrid 

size_y = number of points in y dimension computed from AutoGrid 

size_z = number of points in z dimension computed from AutoGrid 

exhaustiveness = 16 

num_modes = 20 

The configuration file was then used to perform docking by running the following command 

on the command line: 

C:\Program Files (x86)\The Scripps Research Institute\Vina\vina.exe - - config config.txt  

The output of the command was ligand binding poses compiled in the 

name_of_output_file.pdbqt file. 

3.11 Post-docking interaction analysis and visualisation 

Obtained ligand poses within the receptor with the lowest binding energy were analysed and 

visualized using the Discovery Studio client v21.1.0.20298, Dassault Systèmes Biovia Corp, 

to illustrate receptor-ligand 3D interaction profiles with their corresponding 2D diagrams. 

Further analysis and visualisation was performed using UCSF Chimera version 1.15 and 
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PyMOL software (The PyMOL Molecular Graphics System, Version 2.5.2 Schrödinger, 

LLC, San Diego, CA, USA). 

3.12 Screening of pharmacodynamics and pharmacokinetic parameters for JYH and
VMS 

Candidate drug compounds fail to proceed in drug development pipelines due to unsuitable 

pharmacokinetics and toxicity (Xiong et al., 2021). Absorption, distribution, metabolism, 

excretion (ADME) and toxicity have been longstanding parameters that should be evaluated 

early drug design. Molecular physicochemical descriptors, drug-likeness and ADME 

properties of the novel compounds JYH-G-52-1 and VMS-7-25 were analysed using the 

freely accessible web tools SwissADME (Daina et al., 2017) and ADMETlab2.0 (Xiong et 

al., 2021). JYH and VMS were loaded onto SWISS ADME (http://www.swissadme.ch/) in 

their SMILES (Simplified Molecular Input Line Entry System) format and their descriptors 

computed automatically using the tool. 
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CHAPTER FOUR 

4.0 RESULTS 

4.1 Trypanosoma congolense treated with isometamidium chloride  

4.1.1 Data preprocessing and transformation 
Data provided as an IDEOM file from Glasgow Polyomics was exported to R for further 

analysis using the MetaboAnalystR package version 3.2.0. The data contained 12 samples 

and 775 processed peaks for each sample as tabulated in Table 2 below. The samples were 

grouped into three sample groups; control (TcISM_0001, TcISM_0002, TcISM_0003, 

TcISM_0004), low dose (TcISM_0005, TcISM_0006, TcISM_0007, TcISM_0008) and high 

dose (TcISM_0009, TcISM_0010, TcISM_0011, TcISM_0012). Positive features indicated 

peaks that had recorded peak intensity values while processed features indicated all the 

features that were used in subsequent analysis after zero and missing values were corrected 

with 1/5th of the smallest value in the sample group.  

Table 2: Summary of data processing results for T. congolense treated with isometamidium 
chloride 

 Sample Features (positive) Missing/Zero Features 
(processed) 

Control TcISM_0001 765 10 775 
TcISM_0002 765 10 775 
TcISM_0003 763 12 775 

TcISM_0004 760 15 775 
Low dose 
ISM 

TcISM_0005 773 2 775 
TcISM_0006 768 7 775 

TcISM_0007 772 3 775 
TcISM_0008 772 3 775 

High dose 
ISM 

TcISM_0009 768 7 775 
TcISM_0010 766 9 775 

TcISM_0011 752 23 775 
TcISM_0012 766 9 775 
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4.1.2 Global metabolomics profiles of the control and isometamidium chloride treated 
Trypanosoma congolense samples 
Multivariate analyses PCA and PLS-DA were used in this instance. From PCA analysis, the 

first two PCs (PC 1 and PC 2) were chosen explaining 49.8% and 13% of the variance in the 

data respectively, both totaling to 62.8% (Figure 8). Preliminary PCA clustering showed that 

the drug caused significant perturbation to the T. congolense metabolome with the control 

samples clustering discriminately from the low and high dose indicating that the groups are 

distinct.  

 

Figure 8: Principal component analysis (PCA) score plots of the isometamidium chloride T. 
congolense treated dataset.  
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Further feature selection was done using PLS-DA, a supervised multivariate statistical 

analysis technique. The PLS-DA scores graph in Figure 9, clearly distinguishes between the 

control and treatment groups. Through internal cross validation, which determines the 

accuracy and the model's predictive power and goodness of fit parameter (R2), the 

effectiveness of these PLS-DA models was assessed (Q2). High R2 and Q2 values were 

observed, and the difference between R2 and Q2 was 0.20969. Together, these findings 

demonstrated significant metabolic perturbations caused by isometamidium chloride on the 

metabolome of the T. congolense parasite. 

Figure 9: Partial least squares discriminant analysis (PLS-DA) scores plot between 
component 1 (30.5%) and component 2 (13%) (accuracy = 0.91667, R2 = 0.9995, Q2 = 
0.78981) scores plot with their explained variance. 
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4.1.3 Identification of statistically significant metabolites 
Dysregulated metabolites in the low (0.6 nM) and high (6.0 nM) isometamidium chloride 

treatment groups were identified by comparing the metabolite relative peak intensities in the 

two groups upon exposure to the drug. One-way ANOVA with Tukey’s post hoc analysis 

revealed 23 metabolites that showed significant differences (adjusted FDR < 0.05, P ≤ 0.05) 

when the treatment groups were compared to the control group (Figure 10, Table 3). 

Figure 10: Significant features selected by one-way ANOVA analysis (adjusted FDR < 0.05, 
P ≤ 0.05). Statistically significant features are shown as red dots. The details of the significant
features are shown in Table 3. 
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Table 3: Important features identified by one-way ANOVA and Tukey’s HSD post-hoc 
analysis. The metabolites are color coded depending on whether they increased or decreased 
following exposure to ISM 

Metabolite f.value p.value -log10(p) FDR 
PI(14:1(9Z)/22:6(4Z_7Z_10Z_13Z_16Z_19
Z)) 

267.82 9.5857E-9 8.0184 7.4289E-6 

Adenine.1 103.58 6.1319E-7 6.2124 2.3761E-4 
[ST hydroxy(2:0)] (5Z_7E)-(1S_3R)-22-(3-
hydroxyphenyl)-23_24-dinor-9_10-seco-
5_7_10(19)-cholatriene-1_3-diol 

89.653 1.1408E-6 5.9428 2.947E-4 

UTP 46.577 1.7882E-5 4.7476 0.0031431 
ATP 17.39 8.0978E-4 3.0916 0.034866 
[SP (16:0)] N-(hexadecanoyl)-sphing-4-
enine-1-phosphate 

20.353 4.5733E-4 3.3398 0.020849 

CDP-choline 14.27 0.001618 2.7911 0.034004 
Palmiticamide 13.859 0.001787 2.7479 0.046926 
Uracil 13.702 0.001858 2.731 0.046926 
Guanosine 43.909 2.2767E-5 4.6427 0.0031431 
O-Acetyl-L-homoserine.1 43.198 2.4334E-5 4.6138 0.0031431 
Trp-Trp-Asp 34.003 6.379E-5 4.1952 0.0070624 
AMP 30.743 9.4982E-5 4.0224 0.0092014 
Adenine 29.56 1.1075E-4 3.9557 0.0095368 
Hydroxymethylphosphonate 28.767 1.2314E-4 3.9096 0.0095434 
Asn-Met-Asn-Gln 28.034 1.3613E-4 3.866 0.0095912 
Adenosine 23.273 2.7745E-4 3.5568 0.015716 
Deoxyadenosine 23.131 2.8389E-4 3.5468 0.015716 
3-Ethylmalate 21.89 3.4911E-4 3.457 0.018037 
dAMP 21.108 3.9975E-4 3.3982 0.019363
Cytidine 16.344 0.0010093 2.996 0.040784 
Dodecanamide 16.151 0.0010525 2.9778 0.040784 
4-deoxypyridoxine 15.669 0.0011705 2.9316 0.043199 

KEY 

Metabolites with decreasing peak intensity 

Metabolites with increasing peak intensity 

A volcano plot analysis (fold change 0.5 ≥ (x) ≥ 2, t-test threshold (y) > 0.1) between the 

control samples and the high dose samples revealed similar changes as evidenced in Figure 
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11. Unphosphorylated nucleobases exemplified by Uracil and Guanosine had x ≥ 2 fold

changes while nucleotide triphosphates exemplified by UTP had x ≤ 0.5 fold changes. 

Figure 11: Features selected by volcano plot with fold change threshold (x) 2 and t-tests 
threshold (y) 0.1. The pink circles represent features above the threshold. 

The clustering heat map of the dysregulated metabolites illustrated in Figure 12 showed 

distinct clustering between the control and treatment groups wherein UTP, ATP, 2-

methylcholine and PI (14:1(9Z)/22:6(4Z_7Z_10Z_13Z_16Z_19Z)) underwent consistent 

decrease in relative peak intensity as the treatment dosage increased. In contrast, cytidine, 

AMP, and guanosine underwent increase in relative peak intensity. 



46 

Figure 12: Clustering heatmap of the dysregulated metabolites showing distinct clustering 
between the control and treatment groups. Distinct clusters indicate 1) metabolites that 
underwent consistent decrease upon exposure to isometamidium chloride at both low and 
high dose, 2) metabolites that spiked on exposure to low dose and then decreased at high 
dose and 3) metabolites that steadily increased over the treatment dosages.  

The one-way ANOVA with Tukey’s HSD post hoc and clustering statistical analyses 

identified significant alterations in metabolites of the nucleotide metabolism pathway. 

Unphosphorylated nucleobases and nucleoside monophosphates underwent significant 

increase in relative peak intensity while a concomitant decrease in nucleoside diphosphates 

and nucleoside triphosphates was observed. In addition to ATP and ADP, UTP, UDP, GTP 

and GDP underwent the following sample relative intensity changes 1.00/0.18/0.27, 

1.00/0.82/0.92, 1.00/0.27/0.61, 1.00/0.77/0.94 in 0.0nM, 0.6nM and 6.0nM ISM treatment 

groups respectively. In stark contrast, AMP, dAMP, CMP, GMP, adenosine, guanine, 

cytidine, cytosine, uracil, and guanosine showed significant increase with the following 
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sample relative intensity changes recorded 1.00/4.80/4.53, 1.00/4.97/3.84, 1.00/3.40/3.06, 

1.00/3.64/2.88, 1.00/36.69/2.24, 1.00/1.99/2.22, 1.00/1.89/2.16 and 1.00/1.93/1.84 in 0.0nM, 

0.6nM and 6.0nM ISM treatment groups respectively. This observation points to a 

hypothetical nucleoside kinase system (Figure 13) (Miranda et al., 2022) similar to that 

proposed in other organisms (Appanna et al., 2016) that could be observed in these parasites. 

In the study by Appanna et al., (2016), Pseudomonas fluorescens appeared to invoke the 

participation of pyruvate orthophosphate dikinase (PPDK) and phosphoenol pyruvate 

synthase (PEPS) to fuel production of adenosine triphosphate (ATP) in stressed cells in an 

oxygen independent manner. Since PPDK and PEPS necessitate utilization of adenosine 

monophosphate (AMP) as a substrate, this substrate was readily obtained from adenylate 

kinase (AK) which is in high abundance in oxidatively stressed cells (Appanna et al., 2016). 

Adenylate kinase converts adenosine diphosphate (ADP) to ATP and AMP. ADP is in turn 

in constant supply due to increased activity of nucleotide diphosphate kinase (NDPK) – 

which mediate the conversion of ATP and NDP to ADP and NTP – and acetate kinase (AK) 

– which transforms acetate to acetate phosphate and ADP (Appanna et al., 2016). This 

process is illustrated in Figure 13 below. It is then possible that when the parasites use up 

ATP, they resort to other NTPs, transferring their high energy phosphates to ADP to sustain 

ATP for energy. This process is mediated by NDPK (Miranda et al., 2022). In that case when 

the NTPs are used up, the parasites resort to NDPs.  This leads to an accumulation of NMPs 

(with a lower energy phosphate) with further knock-on impacts on unphosphorylated 

nucleosides and nucleobases which rise in abundance.   
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Figure 13: The nucleotide phosphorelay system in Pseudomonas fluorescens. Adapted from 
Appanna et al., (2016). 

 

Additionally, metabolomic analysis revealed seven metabolites within carbohydrate 

metabolism showing significant alterations upon exposure to isometamidium chloride 

wherein six of them showed significant decrease while one showed an increase. Specifically, 

metabolites of glycolysis e.g. D-glucose, D-glucose-6-phosphate, glycerol, D-

glyceraldehyde-3-phosphate and D-fructose-1,6-bisphosphate all decreased. There was also 

a concomitant decrease in metabolites related to the TCA and ASCT/SCS cycles such as 

malate, fumarate, cis aconitate and citrate which showed the following relative peak intensity 

observations 1.00/0.67/0.78, 1.00/0.69/0.77, 1.00/0.77/0.71, 1.00/0.65/0.53 in the control, 

low and high groups respectively. No significant changes were observed in succinate. 

Adenosine diphosphate and ATP of the energy metabolism pathway exhibited consistent 

decrease in the low and high doses. The decrease in glycolysis, including a decrease in 

intracellular glucose, TCA and ASCT/SCS cycles and energy metabolites indicates that 

isometamidium chloride may have an inhibitory effect on the glucose transporter as shown 
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in Figure 14. Glucose enters the parasite through the T. congolense hexose transporter 1 

(TcoHT1) and is metabolized further in the glycosome to its end products. If inhibition of 

glycolysis came after the transporter then glucose levels would increase inside the cell as has 

been seen with some inhibitors of hexokinase (Barrett, personal communication).   
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Figure 14: Classic glycolysis in PCF T. brucei that is hypothesized to resemble BSF T. 
congolense (adapted from Michels et al., (2021)).  
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4.1.4 Glucose transporter sequence identification and structure prediction  
The protein sequence of the annotated putative glucose/hexose transporter identified by gene 

ID TcIL3000_10_7310 was obtained from TriTrypDB database (https://tritrypdb.org)  in 

FASTA format. The putative sequences were validated using CDD (conserved domain 

database) ((M. Yang et al., 2020), https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) 

and Integrative protein signature database InterPro (Hunter et al., 2009). The CDD results 

predicted that the sequence belonged to the major facilitator superfamily (MFS), cd06174 

while InterPro predicted GO terms GO:005585 (transmembrane transport) and GO:0022857 

(transmembrane transporter activity) for the sequence’s biological and molecular functions 

respectively. The retrieved sequence was used to model the structure of the T. congolense 

glucose transporter using Alphafold2 (https://alphafold.ebi.ac.uk/). The resultant structure is 

as shown in Figure 15. The structure passed the VERIFY 3D check with 85.52% of the 

residues averaging a 3D-1D score of ≥ 0.2. No errors were detected in the residue-by-residue 

geometry and overall structure geometry. Further, 93.4% of the residues were within the

allowed regions and 0.0% of the residues were in the disallowed regions. According to 

ProSA, the structure had a Z-score of -7.38 which is within the range of energy distribution 

for proteins within the same size. The PDB format of the predicted structure was downloaded 

to be used in subsequent docking steps.  
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Figure 15: The predicted structure of the T. congolense glucose transporter (TcoHT1) 
visualized on PyMol. (a) side view of the transporter and (b) axial view. 

4.1.5 Molecular docking analysis 
Potential binding pockets of the predicted T. congolense glucose transporter were predicted 

by the DoGsite scorer function on ProteinPlus. The predicted binding pockets are as shown 

in Table 4 indicating their volume, surface area, drug score and simple score.   

Table 4: Details of the top five predicted binding pockets as identified by ProteinPlus 
based on drug score. 

Name Volume Surface Drug score Simple score 
P_0 1076.11 861.28 0.82 0.65 
P_1 567.03 949.12 0.8 0.43 
P_2 445.39 719.43 0.71 0.24 
P_3 181.09 218.7 0.64 0.0 
P_4 262.19 382.66 0.63 0.03 
 

The largest pocket was selected with a hydrophobicity ratio of 0.40 and xyz coordinates

(4.32, -0.10, -1.66). The binding pocket contained residues predicted to be on the active site 

of the protein according to CDD. These values were used to create the Vina configuration

file describing the xyz centres, a grid size of 60 x 60 x 60 A0, exhaustiveness = 8 and 

num_modes = 20. 

a. b.
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The output files from AutoDock Vina were analysed based on the absolute docking energies 

of isometamidium chloride and glucose on the predicted glucose transporter when docked. 

The docking energies were compared between isometamidium chloride and glucose. The 

binding affinities are as shown in Table 5 below.  

Table 5: Binding energies between isometamidium chloride and glucose and the predicted 
T. congolense hexose transporter 1 

Mode ISM affinity (kcal/mol) Glucose affinity (kcal/mol)
1 -10.1 -5.7 
2 -10.0 -5.6 
3 -10.0 -5.5 
4 -9.7 -5.4 
5 -9.7 -5.4 
6 -9.7 -5.3 
7 -9.5 -5.2 
8 -9.5 -5.1 
9 -9.2 -5.1 
10 -9.1 -4.9 

4.1.6 Docking visualisation 
Figure 16 and Figure 17 illustrates the binding results of isometamidium chloride and 

glucose to the predicted glucose transporter at the predicted binding pockets. The protein is 

represented as a cartoon and colored in rainbow from N-terminal to C-terminal. The ligands 

are represented in stick format while the bonds between the ligand and protein are depicted 

in dashed lines that are color-coded depending on the type of bond formed. Glucose 

interacted with Ile 53, Gln 216, Ile 219, Leu 313, Gln 314, Ile 318, Asn 319, Phe 411, Glu 

412, Phe 420, Gln 443, Phe 444 and Asn 447 while isometamidium chloride interacted with 

Ile 53, Gly 54, Val 56, Ala 57, Ala 124, Met 127, Ile 128, Gln 216, Ile 219, Thr 220, Ile 223, 

Leu 313, Gln 314, Ile 318, Asn 319, Met 322, Asn 347, Phe 411, Glu 412, Gly 416, Phe 419, 

Phe 420, Gln 443 and Asn 447. Further, Figure 18 shows the residues interacting with 
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glucose and ISM respectively while Figure 19 shows the positioning of the docked glucose 

and ISM on the predicted transporter. 

Figure 16: Interaction of isometamidium with the predicted T. congolense glucose 
transporter. Interactions within the 3D molecule are shown in (a) while 2D interactions are 
shown in (b). 

a.

b.
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Figure 17:Interaction of glucose with the predicted T. congolense glucose transporter. 
Interactions within the 3D molecule are shown in (a) while 2D interactions are shown in (b). 

a.

b.
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Figure 18: Structure of the predicted T. congolense glucose transporter 1 (TcoHT1) showing 
residues that interact with (a) glucose and (b) isometamidium chloride. The interacting 
residues are shown as red sticks and are labelled while the rest of the protein is shown as a 
green cartoon 

Figure 19: Structure of the predicted T. congolense glucose transporter 1 (TcoHT1) showing 
(a) glucose and (b) ISM docked. Glucose is shown in red spheres and ISM is shown in blue 
spheres while the rest of the protein is shown as a green cartoon. 

a. b. 

a. b. 
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This modelling data indicates the possibility that ISM can bind the TcoHT1 transporter at a 

site overlapping with the exofacial glucose binding site (Figure 18, Figure 19).  The binding 

energy (-10.1 kcal/mol) is compatible with relatively avid binding that could lead to 

inhibition of glucose uptake by the transporter. This in turn could explain the metabolomics 

data which indicated inhibition of glucose uptake into T. congolense with knock-on effects 

on the production of ATP, triggering a phosphorelay system that then consumed phosphate 

from other nucleotides in attempting to restore ATP homeostasis.   

4.2 Trypanosoma congolense treated with VMS 

4.2.1 Data preprocessing and transformation 
The untargeted metabolomics data was analysed using MetaboanalystR package version 

3.2.0 in R. Data details from the T. congolense dataset is presented in Table 6 below. The 

samples were in two sample groups; control (FG0663, FG0667, FG0671, FG0675) and VMS 

(FG0662, FG0666, FG0670, FG0674). Positive features indicated peaks that had recorded 

peak intensity values while processed features indicated all the features that were used in 

subsequent analysis after zero and missing values were corrected with 1/5th of the smallest 

value in the sample group. Features were preprocessed and normalized as explained in 

Section 3.3. 

Table 6: Summary of data processing results of the T. congolense treated with VMS  

 Sample Features (positive) Missing/zero Features (processed) 
Control FG0663 563 2 565 

FG0667 561 4 565 
FG0671 560 5 565 
FG0675 563 2 565 

VMS treated FG0662 561 4 565 
FG0666 558 7 565 
FG0670 560 5 565 
FG0674 561 4 565 
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4.2.2 Global metabolomics profiles of the control and VMS treatment Trypanosoma 
congolense samples 
Multivariate analysis using unsupervised PCA was performed on eight samples to get an 

overview of the metabolic variations between the control and treatment groups. The first two 

principal components (PC1 and PC2) were used, explaining 43% and 19.3% variance 

respectively. The PCA scores plot effectively distinguished between the control and 

treatment groups, as illustrated in Figure 20. The metabolic characteristics contributing to 

the metabolic differences between the control and treatment samples were then determined 

using the PCA loadings plot. The top 20 loadings having positive influence on PC1 and the 

bottom 20 loading having negative influence on PC1 are as shown in Table 7 below. Features 

that had positive influence on PC 1 drove the clustering of the treated groups while those that 

had negative influence drove clustering of the control groups.  

 

Figure 20: PCA Scores plot between PC 1 covering 43% variance and PC 2 covering 19.3% 
variance. The control groups are marked by red triangles while the treatment groups are 
marked by green crosses. 
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Further feature selection was done using supervised PLS-DA. The PLS-DA scores graph in 

Figure 21, clearly distinguishes between the control and treatment groups. In PLS-DA 

analyses, metabolic features with VIP scores ≥ 1.5 were extracted as significant metabolic

characteristics for further study. Through internal cross validation, which determines the 

model's predictive power and goodness of fit parameter (R2), the effectiveness of these PLS-

DA models was assessed (Q2). High R2 and Q2 values were observed, and the difference 

between R2 and Q2 was less than 0.2, which excludes model overfitting. Together, these 

findings demonstrated significant metabolic perturbations caused by VMS on the 

metabolome of the T. congolense parasite. 

 

Figure 21: PLS-DA scores plot between component 1 (42.7%) and component 2 (18.3%) , 
R2 = 1.0, Q2 = 0.89258. The control groups are marked by red triangles while the treated 
groups are marked by green crosses. 
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Table 7: Top 20 and bottom 20 loadings on PC1 identified by PCA loadings plot. 

 Name Loadings 1 Loadings 2 
1 Eseramine 0.072483 -0.010578 
2 Leu-Pro-Tyr 0.072317 -0.011547 
3 NADP+ 0.072151 -9.17E-05 
4 Sodiumlaurylsulfate 0.072046 0.002054 
5 Acetoacetate 0.071958 -0.016713 
6 (R)-2-Hydroxyglutarate 0.071734 1.10E-04 
7 2-Oxoglutarate 0.071478 -0.022448 
8 3-(4-Hydroxyphenyl)lactate 0.071404 -0.022577 
9 (S)-2-Aceto-2-hydroxybutanoate 0.070923 -0.022751 
10 O-Butanoylcarnitine 0.070627 0.010882 
11 NG_NG-Dimethyl-L-arginine 0.070618 0.0254 
12 3-Methyl-2-oxobutanoic acid 0.070408 -0.029751 
13 [PC (14:0)] 1-tetradecanoyl-sn-glycero-

3-phosphocholine 
0.070217 0.018909 

14 N-Butyryl-L-homoserine lactone 0.069977 -0.013797 
15 (S)-3-Methyl-2-oxopentanoic acid 0.069882 -0.025071 
16 Hypoxanthine 0.06942 0.0051487 
17 Ascorbate 0.069305 -0.024627 
18 Diacetyl 0.069072 -0.031215 
19 3-Methylguanine 0.068811 -0.020526 
20 Uracil 0.068329 -0.035128 
21 L-Tryptophan -0.072939 0.0011074 
22 Ala-Gly-Ser -0.072784 0.0014926 
23 Thr-Ser -0.072634 0.0048685 
24 beta-Alanyl-L-arginine -0.072583 0.0038874 
25 Lys-Pro-Pro -0.072522 0.0027299 
26 Gly-Ser -0.072438 0.014259 
27 Phenylacetonitrile -0.072398 0.0020062 
28 Indole -0.072384 -0.0040705 
29 L-Ala-L-Glu -0.072376 0.0065254 
30 L-Leucine -0.072304 -0.0071934 
31 Ala-Ser -0.072253 0.014253 
32 Piperidine -0.072206 -0.0081839 
33 N2-Succinyl-L-arginine -0.072204 0.0055231 
34 Thr-His -0.072128 0.01643 
35 Quinoline -0.072125 0.015942 
36 Indoleacrylicacid -0.072124 0.0020418 
37 2-Naphthylamine -0.072066 0.0061523 
38 L-Phenylalanine -0.071999 0.0085359 
39 Ala-Gly-His -0.07199 0.013891 
40 Gly-Pro-Arg -0.071961 0.015943 

  

 

Key 
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 Top 20 loadings on PC 1 

 Bottom 20 loadings on PC 1 

 

4.2.3 Identification of statistically significant metabolites 
Further identification of statistically significant metabolite features between the two sample 

groups was performed using fold change analysis (FC ≥ 2 or ≤ 0.5) and two sample t-tests (P 

≤ 0.05). Fold change analysis identified 94 significant features, 73 undergoing significant 

depletion and 21 undergoing significant increases (Table 8) while t-tests identified 138 

statistically significant metabolites (Figure 23). A large portion of the decreased-abundance 

metabolites were small peptides, metabolites of the aromatic amino acids metabolism 

pathways such as L-tryptophan, L-phenylalanine and indole, and pseudouridine and its 

derivatives. The top 50 features identified by fold change analysis are summarized in Table 

8 below in descending order relative to fold change and visualized in the volcano plot in 

Figure 22.  
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Figure 22: Important features selected by volcano plot with a fold change (x) 2 and t-test 
threshold (y) 0.1. Red circles represent features above the threshold while the blue circles 
represent features below the threshold. Both fold change and P values are log transformed.  
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Table 8: Top 50 features identified by fold change analysis 

 Peaks(mz/rt) FC log2(FC) raw.pval -log10(p) 
1 Leu-Pro-Tyr 13.17 3.7192 2.10E-07 6.6772 
2 Eseramine 5.9281 2.5676 2.16E-07 6.6656 
3 Sodiumlaurylsulfate 5.769 2.5283 6.59E-08 7.1814 
4 NADP+ 2.1651 1.1145 5.31E-05 4.2746 
5 Proclavaminic acid 0.49321 -1.0197 7.53E-05 4.1231 
6 Dethiobiotin 0.48604 -1.0409 5.02E-05 4.2996 
7 Ala-Pro-Ser 0.44623 -1.1641 1.04E-05 4.9817 
8 (S)-AMPA 0.42027 -1.2506 4.46E-05 4.351 
9 Asn-Asp-Pro 0.4085 -1.2916 4.26E-05 4.3708 
10 Asn-Ser 0.39898 -1.3256 1.22E-06 5.9125 
11 Glu-Ser 0.39486 -1.3406 9.96E-06 5.0019 
12 pentane-1 3 4 5-tetracarboxylate 0.3909 -1.3551 8.84E-05 4.0537 
13 Pseudouridine 0.38167 -1.3896 5.00E-05 4.3012 
14 Coformycin 0.35538 -1.4926 9.44E-06 5.0253 
15 Gly-Pro-Arg 0.35055 -1.5123 3.75E-06 5.4256 
16 Leu-Asp-Ser 0.3349 -1.5782 4.46E-06 5.3506 
17 Glu-Thr 0.33452 -1.5798 1.04E-05 4.981 
18 L-Ala-L-Glu 0.33411 -1.5816 4.32E-05 4.3641 
19 Phe-Tyr 0.33003 -1.5993 2.30E-05 4.6391 
20 4-Nitrophenyl-3-ketovalidamine 0.32279 -1.6313 2.91E-05 4.5354 
21 Leu-Lys-Ala 0.30982 -1.6905 3.36E-05 4.4732 
22 Phe-Ala 0.30944 -1.6923 2.43E-06 5.6142 
23 Asn-His 0.30783 -1.6998 2.18E-05 4.6624 
24 Ala-Asn 0.2985 -1.7442 1.53E-06 5.8162 
25 Phenylacetonitrile 0.29649 -1.754 6.85E-05 4.164 
26 L-Phenylalanine 0.28549 -1.8085 4.05E-05 4.3923 
27 Ala-Pro.1 0.27208 -1.8779 2.64E-05 4.5779 
28 N-Acetyl-beta-D-

glucosaminylamine 
0.25975 -1.9448 4.38E-05 4.3584 

29 Thr-Ser 0.25477 -1.9727 2.72E-06 5.566 
30 Ala-Gly-Ser 0.24591 -2.0238 4.40E-06 5.3565 
31 His-His 0.23701 -2.077 2.87E-06 5.5419 
32 Ala-Ser 0.23678 -2.0784 4.63E-06 5.3345 
33 Phe-Val 0.23648 -2.0802 1.89E-05 4.7237
34 Isoquinoline 0.23641 -2.0806 1.06E-05 4.9757 
35 Gly-Ser 0.23576 -2.0846 3.81E-07 6.4195 
36 Skatole 0.23217 -2.1067 1.28E-05 4.8921 
37 L-Tryptophan 0.22979 -2.1216 1.02E-05 4.9924 
38 Thr-Ala 0.22594 -2.146 5.15E-06 5.2878 
39 beta-Alanyl-L-arginine 0.22326 -2.1632 1.12E-05 4.9521 
40 Indoleacrylicacid 0.22315 -2.1639 1.67E-05 4.7783 
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 Peaks(mz/rt) FC log2(FC) raw.pval -log10(p) 
41 Indole 0.22122 -2.1765 1.77E-05 4.7516 
42 2-Naphthylamine 0.2167 -2.2062 9.59E-06 5.0183 
43 Thr-His 0.2003 -2.3197 4.46E-07 6.3504 
44 Quinoline 0.17233 -2.5368 5.12E-08 7.2909 
45 Thr-Ala-Ser 0.16669 -2.5848 1.52E-06 5.8185 
46 Ala-Gly-His 0.16283 -2.6186 8.49E-07 6.0712 
47 N2-Succinyl-L-arginine 0.16281 -2.6187 4.98E-06 5.3027 
48 Thr-Tyr 0.16276 -2.6192 7.85E-07 6.1054 
49 Lys-Pro-Pro 0.15834 -2.6589 3.62E-05 4.4412 
50 Leu-Thr 0.1447 -2.7889 2.06E-05 4.687 

Figure 23: Important features selected by t-tests with a threshold of 0.1. Purple dots represent 
features above the threshold. The P values have been transformed to -log10 so that the more 
significant features (with smaller P values) are plotted higher on the graph. The features are 
labelled as follows: 1. Sodiumlaurylsulphate, 2. Leu-Pro-Tyr, 3. NADP+, 4. (R)-2-
hydroxyglutarate, 5. NG_NG_Dimethyl-L-arginine, 6. [PC(14:0)]1-tetradecanoyl-sn-
glycero-3-phosphocholine, 7. Quinoline, 8. Gly-Ser, 9. Asn-Ser, 10. Gly-Pro-Arg, 11. Glu-
Ser, 12. N(6)-[(Indol-3-yl)acetyl]-L-lysine, 13. Leu-Asn, 14. Pseudouridine-5’-phosphate, 
15. L-glutamine, 16. Gly-His, 17. L-1-pyrolline-3-hydroxy-5-carboxylate 
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Further metabolomic investigations revealed induction of the pentose phosphate pathway 

marked by increase in metabolites of this pathway specifically glucose-6-phosphate, ribose-

5-phosphate (or other pentose phosphates), fructose-6-phosphate and glyceraldehyde-3-

phosphate (Figure 24).  

Figure 24: Cluster heatmap of the top 50 metabolites identified by volcano plot. The heatmap 
visualizes the reordered data matrix and the trees separately as dendrograms in the margins. 
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It is possible that treatment with VMS could have induced the parasite’s pentose phosphate

pathway to increase circulating NADPH and ribose-5-phosphate. Two points of increase are 

especially important i.e. glucose-6-phosphate and 6-phosphogluconate. Although, marked 

increase was not observed with 6-phosphogluconate, there was consistent increase in 

downstream metabolites of this pathway. NADPH was not identified in the analysis, 

however, its oxidized form, NADP+, was seen to be undergoing significant increase (Figure 

23 and Figure 24). Increases in NADP+ occur when NADPH is consumed, for example in

protecting against oxidative stress.  NADP+ also triggers the pentose phosphate pathway 

which could explain the increased flux through this pathway.  However, there might also 

have been regulation in processes that mediate conversion of NAD+ to NADP+ therefore 

modulating the intracellular level of NADPH. A possible reason for the increase in NADP+ 

would be activation of NAD+ kinases to convert NAD+ to NADP+ which was evidenced in 

the data by an observed increase in NADP+ with a decrease in NAD+ or an inhibition of 

NADPases that would yield the same observation (Singh et al., 2007). The activation of 

NAD+ kinases to synthesise NADP+ would have a positive influence on the metabolic 

modules involved in the production of NADPH thereby providing the reductive environment 

essential for neutralizing oxidative stress. Furthermore, metabolites in the glutathione 

biosynthesis pathway were depleted after treatment, specifically γ-glutamyl cysteine and 

glutathione indicating possible disruption in the parasite’s anti-oxidant arsenal. This was 

further evidenced by slight decrease in ovothiol and increase in trypanothione disulfide, 

possibly as a result of oxidation of dihydrotrypanothione. Ascorbate, a non-enzymatic 

mechanism of defense against free radicals, accumulated (Figure 24) possibly due to 

inhibition of ascorbate peroxidase that is also involved in protection against oxidative stress. 

In the aromatic amino acids metabolism pathway, aromatic amino acids (phenylalanine, 
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tyrosine and tryptophan) all underwent depletion while their catabolic products (e.g. 

phenylpyruvate, 3-(4-hydroxyphenyl)lactate)) increased. These pathways involve NADH-

dependent dehydrogenases that utilize NADH and in turn produce NAD+ (Cazzulo et al., 

1999; Marchese et al., 2018). 

The metabolomics data revealed significant perturbations to T. congolense metabolism, 

particularly areas of energy metabolism, aromatic amino acid metabolism and cellular redox.  

However, it was not possible to readily assign candidate target proteins for VMS in T. 

congolense.  

4.3 Leishmania mexicana treated with JYH and VMS 

4.3.1 Data preprocessing and transformation 
Data preprocessing and transformation was carried out as described in aforementioned 

sections using MetaboanalystR package version 3.2.0 in R and the data details are as shown 

in Table 9 below. The JYH and VMS treatment groups were analysed concurrently as the 

dataset contained both treatment groups and a control group. The samples were in three 

sample groups; control (LM2101, LM2102, LM2103, LM2104), VMS (LM2105, LM2108, 

LM2107) and JYH (LM2109, LM2110, LM2111, LM2112). Positive features indicated 

peaks that had recorded peak intensity values while processed features indicated all the 

features that were used in subsequent analysis after zero and missing values were corrected 

with 1/5th of the smallest value in the sample group. Features were preprocessed and 

normalized as described in Section 3.4. 
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Table 9: Summary of data processing results of the L. mexicana dataset 

 Sample Features (positive) Missing/zero Features (processed) 
Control LM2101 801 28 829 

LM2102 805 24 829 
LM2103 798 31 829 
LM2104 802 27 829 

JYH LM2109 783 46 829 
LM2110 791 38 829 
LM2111 770 59 829 
LM2112 778 51 829 

VMS LM2105 801 28 829 
LM2107 808 21 829 
LM2108 791 38 829 

 

4.3.2 Global metabolomics profiles of the control and JYH and VMS treatment 
samples 
Multivariate analysis was conducted using unsupervised PCA and supervised PLS-DA to 

assess drug perturbations on the metabolome of the parasite. The first two components, PC 

1 and PC 2, were chosen explaining 47% and 20.5% of the variance respectively. Distinct 

clustering was observed in the two treatment groups and the control group (Figure 25).  
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Figure 25: PCA scores plot between PC1 covering 47% variance and PC2 covering 20.5% 
variance. Control groups are marked by red triangles, the JYH treatment groups by green 
crosses and VMS treatment groups by blue crosses. 

Further summary of the data was conducted using PLS-DA analysis (accuracy = 1.0, R2 = 

0.99619, Q2 = 0.88574). The difference between R2 and Q2 was < 0.2 excluding model 

overfitting and consistent with PCA showed that the drugs had effects on the metabolome of 

L. mexicana. 
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Figure 26: PLS-DA scores plots between component 1 (37.7%) and component 2 (29%). 
Control groups are marked by red triangles, the JYH treatment groups by green crosses and 
VMS treatment groups by blue crosses.

4.3.3 Identification of statistically significant metabolites 
Significantly altered metabolites were identified using one-way ANOVA with Tukey’s post 

hoc analysis. Table 10 shows 50 of the identified metabolites with their corresponding F 

value and P value. Most of the metabolites identified were phospholipids and 

lysophospholipids. 
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Table 10: Significantly altered metabolites as identified by one-way ANOVA with Tukey’s
post hoc analysis 

Peaks(mz/rt) f.value p.value -log10(p) FDR Tuk 
1 [PC acety] 1-acetyl-sn-glycero-3-

phosphocholine 
2350.9 8.32E-12 11.08 5.17E-09 VMS 

2 CMP-3-deoxy-D-manno-
octulosonate 

1440.8 5.88E-11 10.231 1.82E-08 JYH 

3 Tetradecanoyl-CoA 1184.9 1.28E-10 9.8924 2.65E-08 JYH 
4 Sinalbin 773.4 7.01E-10 9.1543 1.09E-07 JYH 
5 Deoxyinosine 623.55 1.65E-09 8.7823 2.05E-07 JYH 
6 Xanthine 587.25 2.09E-09 8.6788 2.17E-07 JYH 
7 [PC (18:3)] 1-(9Z 12Z 15Z-

octadecatrienoyl)-sn-glycero-3-
phosphocholine 

525.82 3.25E-09 8.4883 2.48E-07 JYH

8 [SP] Sphinganine-1-phosphate 520.09 3.39E-09 8.4694 2.48E-07 JYH 
9 2-Aminoethylphosphocholate 512.83 3.59E-09 8.4451 2.48E-07 JYH 

10 1-(beta-D-Ribofuranosyl)-1 4-
dihydronicotinamide  

492.41 4.22E-09 8.3751 2.50E-07 JYH 

11 [FA (6:0)] R-hexanoyl CoA 486.2 4.43E-09 8.3533 2.50E-07 JYH 
12 [PC (22:6)] 1-(4Z 7Z 10Z 13Z 16Z 

19Z-docosahexaenoyl)-sn-glycero-
3-phosphocholine 

392.04 1.04E-08 7.9827 5.39E-07 JYH 

13 [PC (18:2)] 1-(9Z 12Z-
octadecadienoyl)-sn-glycero-3-
phosphocholine 

374.76 1.24E-08 7.9052 5.52E-07 JYH 

14 S-Acetyldihydrolipoamide 374.64 1.25E-08 7.9046 5.52E-07 JYH 
15 L-Tyrosine methyl ester 352.94 1.58E-08 7.8021 6.53E-07 JYH 
16 Alpha-Linoleoylcholine 328.23 2.10E-08 7.6775 8.01E-07 VMS 
17 425.5869874 324.69 2.19E-08 7.6589 8.01E-07 JYH 
18 [PC (18:0)] 1-octadecanoyl-sn-

glycero-3-phosphocholine 
312.12 2.56E-08 7.5912 8.84E-07 JYH 

19 [PE (16:1/16:1)] 1 2-di-(9Z-
hexadecenoyl)-sn-glycero-3-
phosphoethanolamine  

300.85 2.96E-08 7.5281 9.39E-07 JYH 

20 [PC acetyl(12:2)] 1-dodecyl-2-
acetyl-sn-glycero-3-phosphocholine 

299.32 3.02E-08 7.5194 9.39E-07 JYH 

21 LPA(0:0/18:2(9Z_12Z)) 277.3 4.09E-08 7.3884 1.21E-06 JYH 
22 Phe-Thr 265.35 4.86E-08 7.313 1.37E-06 VMS 
23 LysoPC(20:3(5Z_8Z_11Z)) 255.67 5.63E-08 7.2494 1.52E-06 JYH 
24 LysoPE(0:0/18:1(11Z)) 244.39 6.73E-08 7.1723 1.74E-06 JYH 
25 Leucyl-leucine 240.81 7.13E-08 7.147 1.77E-06 JYH 
26 Hypoxanthine 234.01 7.98E-08 7.0982 1.85E-06 JYH 
27 LysoPC(22:5(4Z_7Z_10Z_13Z_16

Z)) 
233.63 8.03E-08 7.0954 1.85E-06 JYH 
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Peaks(mz/rt) f.value p.value -log10(p) FDR Tuk 
28 1-Oleoylglycerophosphocholine 230.36 8.49E-08 7.0713 1.85E-06 JYH 
29 (2E)-Octadecenoyl-CoA 227.73 8.88E-08 7.0517 1.85E-06 JYH 
30 coronatine 227.26 8.95E-08 7.0482 1.85E-06 VMS 
31 2-Deoxy-D-ribose-5-phosphate 214.91 1.11E-07 6.9528 2.23E-06 JYH 
32 LysoPC(20:2(11Z_14Z)) 180.95 2.19E-07 6.66 4.18E-06 JYH 
33 5-6-Dihydrouridine 180.27 2.22E-07 6.6536 4.18E-06 JYH 
34 Val-Tyr 177.52 2.36E-07 6.6274 4.31E-06 JYH 
35 sn-glycero-3-Phosphocholine 164.73 3.16E-07 6.5006 5.60E-06 JYH 
36 Uracil 161.56 3.41E-07 6.4676 5.88E-06 JYH 
37 1-18:3-

lysophosphatidylethanolamine 
159.43 3.59E-07 6.4451 6.02E-06 JYH 

38 Cys-Met-Phe-His 154.62 4.04E-07 6.3932 6.61E-06 JYH 
39 Nicotinate 153.2 4.19E-07 6.3776 6.67E-06 JYH 
40 L-Aspartate 150.45 4.50E-07 6.3469 6.98E-06 JYH 
41 CMP 144.89 5.21E-07 6.2832 7.89E-06 JYH 
42 Trimetaphosphate 137.86 6.32E-07 6.1992 9.13E-06 JYH 
43 LysoPC(22:4(7Z_10Z_13Z_16Z)) 137.37 6.41E-07 6.1931 9.13E-06 JYH 
44 Adenosine 137.04 6.47E-07 6.1892 9.13E-06 JYH 
45 Westiellamide 135.71 6.72E-07 6.1726 9.21E-06 JYH 
465’-Deoxyadenosine 135.19 6.82E-07 6.1662 9.21E-06 JYH 
47 Leu-Thr-Pro 134.16 7.03E-07 6.1532 9.28E-06 VMS 
48 [PC (14:0)] 1-tetradecanoyl-sn-

glycero-3-phosphocholine 
130.21 7.89E-07 6.1029 1.02E-05 JYH 

49 histidine methyl ester 123.59 9.66E-07 6.015 1.22E-05 JYH 
50 [PC (16:0)] 1-hexadecanoyl-sn-

glycero-3-phosphocholine 
121.91 1.02E-06 5.992 1.27E-05 JYH 

 

Further metabolic signatures were identified using volcano plot analysis (Figure 27) and fold 

change analysis (Table 11). Most of the metabolites that were being depleted in the JYH 

treatment group seemed to belong to lipid pathways exemplified by CoA, tetradecanoyl-

CoA, hexanoyl-CoA as well as various phospholipids. 
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Figure 27: Volcano plot showing metabolites altered upon exposure to JYH. Metabolites 
marked by red dots increased while those marked in blue dots decreased. 
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Table 11: Metabolic signatures identified by fold change analysis between the control and 
JYH treatment group. 

 Peaks(mz/rt) Fold Change log2(FC) 
1 Xanthine 125.7 6.9738 
2 Hypoxanthine 82.879 6.3729 
3 Propanoyl phosphate 47.308 5.564 
4 [PI (18:1)] 1-(9Z-octadeconyl)-sn-glycero-3-

phosphoethanolamine 
42.839 5.4209 

5 Cassyfiline 38.7 5.2743 
6 1-(beta-D-Ribofuranosyl)-1 4-

dihydronicotinamide 
36.33 5.1831 

7 [Fv] Okanin 4’-(2" 4"-diacetyl-6"-p-
coumarylglucoside) 

20.916 4.3865 

8 [PE (18:1)] 1-(9Z-octadecenoyl)-sn-glycero-3-
phosphoethanolamine 

20.648 4.3679 

9 LysoPE(18:2(9Z 12Z)/0:0) 19.77 4.3053 
10 [PC (14:0)] 1-tetradecanoyl-sn-glycero-3-

phosphocholine 
16.908 4.0796 

11 2-Aminoethylphosphocholate 16.483 4.0429 
12 Adenosine 16.159 4.0142 
13 [PC (16:1)] 1-(9Z-hexadecenoyl)-sn-glycero-3-

phosphocholine 
16.071 4.0064 

14 Nicotinate 15.374 3.9425 
15 [PC (22:6)] 1-(4Z 7Z 10Z 13Z 16Z 19Z-

docosahexaenoyl)-sn-glycero-3-
phosphocholine 

14.743 3.882 

16 LysoPC(22:5(4Z 7Z 10Z 13Z 16Z)) 14.733 3.881 
17 [PC (18:3)] 1-(9Z 12Z 15Z-octadecatrienoyl)-

sn-glycero-3-phosphocholine 
14.706 3.8783 

18 LPA(0:0/18:2(9Z_12Z)) 12.988 3.6991 
19 [PC (18:2)] 1-(9Z 12Z-octadecadienoyl)-sn-

glycero-3-phosphocholine 
12.68 3.6645 

20 LPA(0:0/18:1(9Z)) 11.936 3.5773 
21 [Fv] Okanin 4’-(3" 4"-diacetyl-6"-p-

coumarylglucoside) 
11.415 3.5129 

22 Uracil 10.71 3.4209 
23 Asn-Leu-Trp-Tyr 10.661 3.4142 
24 Pantetheine 10.482 3.3898 
25 LysoPE(0:0/18:2(9Z_12Z)) 10.224 3.354 
26 LysoPC(20:3(5Z_8Z_11Z)) 10.057 3.3301 
27 Pantetheine 4’-phosphate 10.023 3.3253 
28 LysoPC(22:4(7Z 10Z 13Z 16Z)) 9.9865 3.32
29 L-methioninamide 9.7588 3.2867 
30 1-Oleoylglycerophosphocholine 9.7353 3.2832 
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 Peaks(mz/rt) Fold Change log2(FC) 
31 Methylenediurea 9.7205 3.281 
32 2-methylphosphinoyl-2-hydroxyacetate 9.5406 3.2541 
33 LysoPC(20:2(11Z_14Z)) 9.4859 3.2458 
34 [PC (16:0)] 1-hexadecanoyl-sn-glycero-3-

phosphocholine 
9.3002 3.2173 

35 Thiamin monophosphate 9.2445 3.2086 
36 5-Guanidino-2-oxopentanoate 9.2305 3.2064 
37 L-Aspartate 0.11083 -3.1736 
38 Aspartyl-L-proline 0.10566 -3.2424 
39 PC(18:3(9Z 12Z 15Z)/22:6(4Z 7Z 10Z 13Z 

16Z 19Z)) 
0.099958 -3.3225 

40 [PC (18:2/18:2)] 1 2-di-(9Z 12Z-
octadecadienoyl)-sn-glycero-3-phosphocholine 

0.089742 -3.4781 

41 Acetyl-CoA 0.078115 -3.6783 
42 Palmiticamide 0.07488 -3.7393 
43 UTP 0.067334 -3.8925 
44 UDP-glucose 0.066268 -3.9156 
45 13 14-Dihydro- lipoxin A4 0.062376 -4.0029 
46 prostaglandin H1 0.054124 -4.2076 
47 CoA.1 0.039487 -4.6625
48 3-Methylbutanoyl-CoA 0.038751 -4.6896 
49 3-heptaprenyl-4-hydroxy-5-methoxybenzoate 0.02967 -5.0748 
50 5’-Deoxyadenosine 0.009729 -6.6835 

 

 

Key 

Increasing metabolites

 Decreasing metabolites 

 

4.3.4 Pathway enrichment analysis 
To further understand significantly altered metabolites at the pathway level, MetaboAnalyst 

5.0 (https://www.metaboanalyst.ca) was used to carry out pathway enrichment analysis using 

the pathway analysis feature. The T. brucei (KEGG) pathway library was used for prediction 

analysis. For the over representation analysis and the pathway topology analysis, 

respectively, the hypergeometric test and relative-betweenness centrality were chosen to 
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determine whether the pathway was significant. Findings from pathway enrichment analysis 

are projected in Figure 28 below.  

Figure 28: The top 25 metabolic pathways identified with pathway significance P ≤ 0.05. 
Pantothenate and CoA biosynthesis, pentose phosphate pathway, and phenylalanine, tyrosine 
and tryptophan metabolism were identified to be significantly altered metabolic pathways. 

Analysis of the perturbed pathways revealed large increases in lysophopholipids (single acyl 

chain) and decreases in selected phospholipids (two acyl chains). There is a dynamic 

interplay between lysophospholipids and phospholipids with single chains cleaved from 

phospholipids to yield lysophospholipids which regain a second chain after transfer of an 

acyl group from an acyl-CoA. The TCA cycle intermediates were also of diminished 

abundance with knock-on effects on ATP since ATP synthesis depends upon the TCA cycle 

feeding the electron transport chain. The TCA cycle depends upon Acetyl CoA which was 
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also diminished. Sphingolipids which depend on palmitoyl CoA were also diminished. 

Coenzyme A itself was diminished, however, key metabolites in its biosynthesis via the 

pantothenate pathway increased. The combined data indicated that the drastic impact of JYH 

and VMS on the L. mexicana metabolome could have been due to loss of coenzyme A 

synthesis which has knock-on effects across the metabolome. An increase in pantothenate 

pathway intermediates is consistent with inhibition of either phosphopantetheine 

adenylyltransferase (PPAT) or dephospho-CoA kinase (DPCK) (Figure 29).  Since 

dephospho-CoA was not found in the dataset it was not possible to distinguish the two, hence 

from the analysis either enzyme could be targeted. 

 

Figure 29: The Coenzyme A biosynthesis pathway, glycolysis, pentose phosphate pathway 
and the TCA cycle.  Metabolites in red increased after treatment of L. mexicana with VMS 
and JYH while those in blue decreased.   
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4.3.5 Target validation 
To perform further target validation, screening VMS and JYH targets was done using the 

online reverse docking tool, PharmMapper (http://lilab.ecust.edu.cn/pharmmapper/). 

PharmMapper uses pharmacophore mapping to find probable targets for specified small 

compounds. Both VMS and JYH were used as query structures in a PharmMapper search to 

locate potential targets. The 16159 druggable pharmacophore models and 52431 ligandable 

pharmacophore models were employed in this instance as the search databases, with a limit 

of 300 reserved matching targets. Dephospho-CoA kinase (Rank 153) as verified in the 

DrugBank database was identified by PharmMapper. 

4.3.6 Receptor sequence identification and structure prediction  
Leishmania mexicana Dephospho-CoA kinase and PPAT sequences were retrieved from the 

TriTryp database (LmxM.22.1530, putative dephospho-CoA kinase and LmxM.31.2070 

cytidyltransferase). The sequence used to generate the PPAT structure was annotated as 

cytidyltransferase. To confirm the possibility of the sequence being PPAT, annotated 

putative PPAT sequence from Leishmania major (LmjF.32.2070) was blasted against the L. 

mexicana on Blastp. Blastp identified the sequence LmxM.31.2070 (GenBank accession 

number: XP_003878055.1) with 87.72% sequence similarity. The putative sequences were 

validated using CDD which predicted that these proteins belong to the nucleoside/nucleotide 

kinases (cd02019) and nucleotidyltransferases (cl00015) superfamilies respectively. Similar 

findings were identified from InterPro searches, where the protein sequences for the InterPro 

family signatures IPR001977 (dephospho-CoA kinase) and IPR001980 (phosphopantetheine 

adenylyltransferase) were found. Additionally, GO:0015937 (CoA biosynthetic process) was 

predicted by InterPro for the biological process and molecular function of DPCK and PPAT. 

Using the primary sequence of the proteins their three dimensional structures were predicted 
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using AlphaFold2 with subsequent refinement using GalaxyRefine. The results were 

visualized in Pymol and are as shown in Figure 30 below.   

Figure 30: Predicted structure of L. mexicana (a) DPCK (b) PPAT 

The structures’ validity was evaluated and the results are as shown in Table 12 below. 

Table 12: DPCK and PPAT structure validity evaluations 

 DPCK PPAT 
ERRAT 95.339 99.2674 
VERIFY 3D (% of residues that 
have averaged 3D-1D score >= 
0.2) 

84.84 86.83 

% residues in allowed regions 95.9 96.3 
% residues in additional allowed 
regions 

4.1 4.0 

% residues in generously allowed 
regions 

- 0.7 

ProSA z-score -7.29 -9.23 

The PDB format of the predicted structures were downloaded to be used in subsequent 

docking steps.  

4.3.7 Molecular docking analysis 
Parameters stated in Table 13 below were used to carry out molecular docking. The centres 

were determined from binding pocket predictions obtained from ProteinPlus and active sites 

confirmed using CDD analysis. 

a.
b.



80 

Table 13: Docking parameters used in AutoDock Vina for docking JYH and VMS on 
DPCK and PPAT 

Receptor DPCK PPAT 
Grid centre (xyz coordinates) -0.021, 0.163, 1.964 -10.027, -3.34, -1.564 
Number of modes generated 20 20 
Exhaustiveness 16 16 

Grid size (xyz) JYH 100 100 
VMS 100 100 

Output from AutoDock Vina were analysed based on the absolute docking energies of JYH, 

VMS and the corresponding endogenous substrate. The binding affinities (kcal/mol) of ten 

generated binding poses of the compounds and endogenous substrates on the protein 

macromolecules are as shown in Table 14 and 15 below.  

Table 14: Binding affinity of dephospho-CoA, JYH and VMS on the predicted L. mexicana 
DPCK 

Mode Dephospho-CoA affinity 
(kcal/mol) 

VMS affinity (kcal/mol) JYH affinity (kcal/mol) 

1 -6.2 -8.1 -7.9 
2 -5.9 -7.4 -7.4 
3 -5.9 -7.2 -7.3 
4 -5.7 -7.1 -7.0 
5 -5.5 -6.9 -7.0 
6 -5.5 -6.8 -7.0 
7 -5.5 -6.6 -7.0 
8 -5.5 -6.5 -6.8 
9 -5.4 -6.3 -6.8 
10 -5.3 -6.3 -6.8 
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Table 15: Binding affinity of ATP, JYH and VMS on the predicted L. mexicana PPAT 

Mode ATP affinity (kcal/mol) VMS affinity (kcal/mol) JYH affinity (kcal/mol) 
1 -7.7 -8.2 -9.7 
2 -7.0 -8.2 -9.4 
3 -6.9 -8.1 -8.8 
4 -6.9 -8.1 -8.8 
5 -6.9 -8.1 -8.7 
6 -6.8 -8.1 -8.2 
7 -6.8 -7.8 -8.1 
8 -6.7 -7.7 -7.8 
9 -6.7 -7.7 -7.7 
10 -6.6 -7.5 -7.5 

4.3.8 Docking visualisation 
The output from AutoDock Vina were visualized on Biovia discovery studio as shown in 

Figures 31 - 34 below. The figures show interactions between the compounds and the 

predicted L. mexicana DPCK and PPAT proteins. The protein is depicted as a cartoon and 

colored according to secondary structures while the ligand is depicted in stick format where

(a) shows 3D visualisation of interactions between residues in the binding pocket and the 

ligand compounds. Interacting residues are also depicted in stick format and bonds are shown

as color-coded dashed lines (b) shows a 2D illustration of the ligand interactions with their 

corresponding distances. The ligand is shown as a stick figure while the interacting residues 

are shown as color-coded balls, while (c) shows the positioning of ligand within the protein.  

Key 

 Alkyl bonds

 Conventional hydrogen bond 

 Hydrophobic bond 

 Pi-sigma bond 

 Pi-Pi T shaped 
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Figure 31: Interactions between VMS ligand and the predicted L. mexicana DPCK 
protein. VMS interacted with Ala 32, Val 36, Asn 89, Ile 92, Phe 93, Ile 96, Ala 124, Pro 
125, Thr 126, Thr 130, Thr 132 and Phe 133 

a.

b.
c.
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Figure 32: Interactions between JYH ligand and the predicted L. mexicana DPCK 
protein. JYH interacted with Ala 32, Val 36, Gln 40, Leu 65, Arg 67, Ala 68, Leu 70, Gly 
71, Val 74, Phe 75, Leu 84, Met 88, Asn 89, Ile 92, Ala 124, Pro 125, Thr 126, Thr 130 and 
Phe 133. 

a.

b. c.
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Figure 33: Interactions between JYH ligand and the predicted L. mexicana PPAT 
protein. JYH interacted with Gly 191, Gly 192, Thr 193, Gly 200, His 201, Leu 204, Thr 
221, Leu 225, Lys 229, Ile 266, Glu 284, Ser 282, Thr 285, Ser 288, Ile 310, Ile 321, Ser 322, 
and Ser 323 

a.

b.

c.
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Figure 34: Interactions between VMS ligand and the predicted L. mexicana PPAT 
protein. VMS interacted with Gly 191, Ile 192, Thr 193, Gly 200, His 201, Leu 204, Thr 
221, Lys 229, Ile 263, Glu 265, Ile 266, Leu 279, Val 281, Ser 282, Glu 284, Thr 285, Ser 
288, 292, Ser 322 and Ser 323.  

a.

b.

c.
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4.4 Comparison of Leishmania mexicana and Trypanosoma congolense dephospho-
CoA kinase and phosphopantetheine adenylyltransferase  

4.4.1 Pairwise protein sequence alignment  
From Section 4.2 and Section 4.3, different mechanisms of action were identified for VMS 

– inhibition of either DPCK or PPAT in L. mexicana and oxidative stress in T. congolense. 

Having identified these different mechanisms of action for VMS, pairwise protein sequence 

alignment was performed on the DPCK and PPAT sequences of the respective parasites 

(Figure 35 - 36) using EMBOSS and BLASTp. This was done to identify any changes in the 

active sites or substrate binding sites that might have dictated the different mechanisms of 

action – binding to DPCK or PPAT in L. mexicana and not in T. congolense. The sequences 

of T. congolense DPCK (Gene bank accession number: CCC90800.1) and PPAT (Gene bank 

accession number: CCC96024.1) were obtained from NCBI database. 

The pairwise protein sequence alignment of the T. congolense DPCK enzyme against that of 

L. mexicana (Figure 35) showed amino acid variations in the CoA binding domain in 11 

positions which include, 4 non-conservative mutations (P90F, I96T, T126L and T132I), 5 

conservative mutations (L65I, V74I, T130S, K131D and F133Y) and 2 semi-conservative 

mutations (A32C and G85R). The pairwise protein sequence alignment of the T. congolense 

PPAT enzyme against that of L. mexicana (Figure 36) showed amino acid variations at four 

positions on the active site namely E265D, I266R, I321V and S88A while the rest of the 

amino acids that interacted with VMS were conserved between the two sequences. 

 

 

 

L.mexicana 1 MILIGLTGGIACGKSSVSRILRDEFHIEVIDADLVVRELQTPNSACTRRI 50
|:|:|||||||||||:||.||:...||.|:|.|.:||.||.|.|||.|||
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T.congolense 1 MLLVGLTGGIACGKSTVSTILQGRHHITVVDCDKLVRNLQQPFSACARRI 50

L.mexicana 51 AARWPLCVHPETGELNRAELGKVVFSDARARRELGKVMNPAIFKAILKRI 100
|.|||.||:|.:||::||.||.::|.|..|||:|.::||..||.|.:|.:

T.congolense 51 ARRWPQCVNPLSGEIDRAALGGIIFGDPIARRDLARIMNFPIFCATMKLL 100

L.mexicana 101 AAAWWRDLWRSGAVSSPSIVVLDAPTLFETKTFTYFISASVVVSCSEQRQ 150
...||..|.|......|.:||||||.|:|:..:|:.:...:||:|.|::|

T.congolense 101 LGLWWESLCRQLKGGEPLLVVLDAPLLYESNIYTWIVDCVMVVACREEQQ 150

L.mexicana 151 IERLRSRDGFSREAALQRIGSQMPLEAKCRLADYIIENDCADDLDALRGG 200
:||:..|:|.:||.|:||:.:|||:..||:.||.:|.|:| .|..|...

T.congolense 151 VERIMKRNGLNREQAVQRVSAQMPISEKCKRADQVIFNEC--PLSELEQL 198

L.mexicana 201 VCACVAWMSRQSNKRLTYMFGTVAVGAVGVAAAVGYACYRLLLA 244
|...|.||.:||.|::|.:....|...:|.||...|..:|..:

T.congolense 199 VDDAVLWMRQQSGKQVTRILLATATAGIGFAAVTAYIVFRFFV- 241

Figure 35: Protein sequence alignment of T. congolense DPCK (CCC90800.1) and L. 
mexicana DPCK (LmxM.22.1530.1). The sequences had 46% sequence identity. The 
nucleotide binding GGXXXGK[T/S] motif is underlined. Amino acids predicted to interact 
with VMS on L. mexicana DPCK are highlighted. 

 

 

 

 

 

 

 

L.mexicana 1 MTPLVLLSTSRGKDANAKSLVAYLTRSVLTPIATKAATAADSASTASESS 50
|.|| .|:||.|.:.|.|.|.::| |:| .||....|||
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T.congolense 1 MHPL-RLNTSAGIENNRKLLFSHL--SLL-----------GSAKPVGESS 36

L.mexicana 51 KYRCSSTELQCGYGGGVDVYLAIHNQHRSTFLEHSVYLYSAALEVCPQLS 100
: .:.|.|.:.:..|.|.|:|...||.|:|:..|:.:

T.congolense 37 E--------------PLHVQLLVDDGRRDTALQHIKALYDASLQHHPETA 72

L.mexicana 101 ISIVPVIGTAEAVACDTTNKEKTYAPAASSSPSARSKQQEQQLDGMQGGS 150
::::|. |:...:.|.| ..|:...|

T.congolense 73 VTVIPF-----ALGRLSGNTE--------GGPNTEKK------------- 96

L.mexicana 151 SDVIELYDDAAAVLREWKLVDKAFMRDAAGFQPHYKYVAVGGTFDHFHSG 200
.|..|...:.|...|.|.|.||.||:|||||..|:|

T.congolense 97 --------------NEMSLFTPSLMTHGAAFDPLYKSVALGGTFDRLHAG 132

L.mexicana 201 HKVLLSTAALNAMQKLRVGVTDASLLTQKRFAESLQSIELRMENVAQFLH 250
||:|||||.|.|...:|:|||...||:.|..|:.::..::|.|.|::|:.

T.congolense 133 HKLLLSTALLYATHFVRIGVTLPPLLSTKAHADLIEPFDVRTEAVSRFVR 182

L.mexicana 251 KMRPDLELELAPISEISGGTKSIPDVEALVVSPETAKSLGIINEMRAANG 300
.:||||::::|.|.:.|||....|.:||||||.||..:|..|||.| .:.

T.congolense 183 LLRPDLDVDIAGIEDRSGGADQDPALEALVVSSETVGALSFINEAR-VSA 231

L.mexicana 301 GLAPMVGITIPQVESPTGES--ISSTALRECQTQAD- 334
|:.|:..:.:|.|.|..||. :|||.||....:..

T.congolense 232 GMKPLEAVVVPYVGSREGEEGRVSSTDLRARGREGAR 268

Figure 36: Protein sequence alignment of T. congolense PPAT (CCC96024.1) and L. 
mexicana PPAT (LmxM.31.2070.1). The sequences had 33.97% sequence identity and 77% 
query cover. The HXGH motif that contacts the adenine ring of ATP is underlined. Amino 
acids predicted to interact with VMS on L. mexicana PPAT are highlighted. 

4.4.2 Molecular docking analysis of Trypanosoma congolense dephospho-CoA kinase  
The structure of T. congolense DPCK was predicted and refined as described in Section 4.3.6. 

Blind docking was performed using AutoDock Tools 1.5.7 and AutoDock Vina and the 

output is shown in Table 16 and Figure 37 below. 
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Compared to L. mexicana, the visualisation on Figure 37 shows that VMS would interact 

with a different binding pocket in the T. congolense enzyme, which could indicate how the 

apparent selectivity comes about based on the metabolomics data. 

Table 16: Binding affinity of VMS on the predicted T. congolense DPCK  

Mode DPCK VMS affinity (kcal/mol) 
1 -6.5 
2 -6.4 
3 -6.3 
4 -6.2 
5 -6.1 
6 -6.0 
7 -5.8 
8 -5.8 
9 -5.6 
10 -5.5 
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Figure 37: Interactions of VMS with the T. congolense DPCK enzyme. VMS interacted 
with Ala 68 via carbon-hydrogen bond, Phe 75 via pi-pi stacked bond, Ala 168 and Ala 171 
via pi-pi T shaped bond, Gln 164 via hydrogen bond (2.84 A, 2.98 A) and Gly 71, Gly 72, 
Gln 167 and Leu 160 via Van der waals forces. (a) shows 3D visualisation of interactions 
between residues in the binding pocket and the ligand compounds. Interacting residues are 
also depicted in stick format and bonds are shown as color-coded dashed lines (b) shows a 
2D diagram of the ligand interactions with their corresponding distances. The ligand is shown 
as a stick figure while the interacting residues are shown as color-coded balls, while (c) shows 
the positioning of ligand within the protein. 

a. 

b. 

c.
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4.4 Pharmacokinetics and pharmacodynamics properties of JYH and VMS 

In Sections 4.2 and 4.3 above, consideration is made as to how the JYH and VMS compounds 

might inhibit CoA synthesis in Leishmania, and probably different targets in T. congolense. 

Bioinformatics can also provide key data as to the possible suitability of compounds to 

progress as drugs based on pharmacokinetic parameters. The results of computing the 

physicochemical descriptors, ADME parameters, pharmacokinetic characteristics, drug-like 

nature, and medicinal chemistry friendliness of JYH and VMS are provided in the Table 17 

below. 

 

 

 

 

 

 

 

 

 

 

 

Table 17: Pharmacokinetics and pharmacodynamics properties of JYH and VMS 

 JYH VMS 
Physicochemical properties  
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Canonical SMILES CN1CCN(CC1)c1cc(Cl)c(cc1[N
+](=O)[O-
])C(=O)Nc1cc(ccc1C)c1nc2c(s1)
cccc2 

Nc1nc2cc(ccc2cc1c1cn(c
2c1cccc2)C)N(=C)=C 

Chemical formula C25H23ClN5O3S C20H18N4 
Molecular weight 522.02 314.38 
Number of heavy atoms 36 24 
Number of aromatic heavy 
atoms 

21 19 

Fraction Csp3 0.23 0.05 
Number of rotatable bonds 6 2 
Number of H-bond 
acceptors 

5 1 

Number of H-bond donors 1 1 
Molar refractivity 154.33 104.67 
TPSA 122.53 55.52 
Pharmacokinetics  
GI absorption Low High 
BBB permeant No Yes 
Pgp substrate No Yes 
CYP1A2 inhibitor No Yes 
CYP2C19 inhibitor Yes Yes 
CYP2C9 inhibitor Yes No 
CYP2D6 inhibitor No Yes 
CYP3A4 inhibitor Yes Yes 
log Kp (cm/s) -5.49 -4.45 
Drug-likeness  
Lipinski violations 1 0 
Ghose violations 2 0 
Veber violations 0 0 
Egan violations 0 0 
Muegge violations 1 1 
Bioavailability Score 0.55 0.55 
Medicinal chemistry  
PAINS alerts 0 0
Brenk alerts 2 1 
Leadlikeness violations 2 1 
Synthetic accessibility 3.78 2.9 
 

Key 

TPSA  Topological Polar Surface Area  
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BBB  Blood-Brain barrier 

GI  Gastrointestinal 

Pgp substrate P-glycoprotein substrate 

CYP  Cytochrome P450 

Log Kp Skin permeation coefficient 

SMILES Simplified Molecular Input Line Entry System 

 

The SwissADME platform was used to evaluate the probability of JYH and VMS to possess 

drug-likeness. Drug-likeness is a qualitative evaluation of therapeutic candidate compounds 

to qualify as drugs with respect to oral availability (Halder & Elma, 2020). The Lipinski rule 

of 5 directs that the best drug candidates should demonstrate a molecular weight of ≤ 500,

number of hydrogen bond donors ≤ 5, number of hydrogen bond acceptors ≤ 10, lipophilicity

expressed as (logP) ≤ 5 and a molar refractivity of between 40 and 130  (Lipinski, 2000; 

Sarkar et al., 2019). In this respect, JYH had one violation while VMS had no violations. 

According to the Ghose filter (Ghose et al., 1999), the molecular weight, molar refractivity, 

and total number of atoms must all fall within certain ranges: computed log P must be 

between -0.4 and 5.6, molecular weight must be between 160 and 480, and the molar 

refractivity must be between 40 and 130. JYH violated two Ghose drug-likeliness rules (in 

terms of molecular weight which was 522.02 and molar refractivity that was 154.33). The 

Muegge filter instructs that therapeutic compounds should have molecular weight beween 

200 and 600, log P values should range between -2 and 5, topological polar surface area 

(TPSA) ≤ 150, the number of rings ≤ 7, the number of carbons > 4, the number of heteroatoms

> 1, the number of rotatable bonds ≤ 15, number of hydrogen bond acceptors ≤ 10 and

hydrogen bond donors ≤ 5 (Muegge et al., 2001). Both JYH and VMS violated Muegge rules 

in terms of log P values where both compounds exhibited log P values > 5. 
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CHAPTER FIVE 

5.0 DISCUSSION 

Understanding how a drug impacts upon the metabolome of a parasite offers a path to 

understanding its mechanism(s) of action. These drug-metabolome interactions have been 

clarified by recent progress in discovering the mechanisms of action for anti-kinetoplastid 

medicines already in clinical use (Armitage et al., 2018; Vincent & Barrett, 2015) or in 

development pipelines. For isometamidium chloride, the mechanism of action has generally 



95 

been unclear but through the years, hypotheses of it affecting the kinetoplastid DNA, where 

the drug accumulates, have been proposed (Delespaux & de Koning, 2007). This study was 

set out to elucidate the mechanism of action of isometamidium chloride and two newly 

discovered compounds through hypothesis-generating untargeted metabolomics by 

examining the drug’s interactions with T. congolense and L. mexicana parasites in vitro to 

uncover impacts on their metabolome. 

5.1 Isometamidium chloride analysis 

Results from statistical and metabolomic analysis revealed significant perturbations in 

metabolites belonging to nucleotide and energy metabolism pathways with decreases in tri-

phosphorylated and di-phosphorylated nucleosides such as ATP, UTP, UDP, GDP, ADP. 

The analyses also showed increases in mono-phosphorylated and un-phosphorylated 

nucleosides such as AMP, dAMP, guanosine, adenosine, adenine and cytidine (Figure 10, 

Figure 12, Table 3). Adenosine triphosphate is critical for sustaining cell division and 

growth in all life forms and its reduction or depletion would arrest growth. In some 

Trypanosoma species such as T. brucei there is complete reliance on glucose for the parasite’s

energy needs with one molecule of glucose being catabolized to yield two molecules of ATP 

under aerobic conditions and one molecule of ATP under anaerobic conditions. Previous 

work by Steketee et al., (2021), pointed to T. congolense requiring lower concentrations 

(2mM compared to T. brucei’s 5mM) of glucose to maintain growth, morphology and 

motility although glucose was vital for the parasite’s energy needs and survival as complete

deprivation or inhibition of the glycolytic flux led to cell death within 48h. In Trypanosoma 

parasites, glucose is shuttled into the cell via a transmembrane glucose transporter (Figure 

14) of which T. congolense possesses two isoforms; TcoHT1 in bloodstream and metacyclic

forms and TcoHT2 in procyclic forms. These two isoforms are 92.4% similar (Vedrenne et 
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al., 2000). Glucose then enters a membrane bound organelle, the glycosome, probably via a 

relatively non-specific pore at the organelle’s membrane. The significant decrease of ATP as 

revealed by statistical analysis is indicative of interference with the glycolytic pathway that 

is well known to yield this metabolite. As evidenced by further analysis, there were indeed 

noteworthy decreases in D-glucose and other metabolites of the glycolytic pathway, followed 

by a decrease in metabolites of the TCA cycle and the acetate: succinate CoA-transferase 

succinyl-CoA synthetase (ASCT/SCS) cycle. In the ASCT/SCS cycle, pyruvate – the end 

product of glycolysis – is catabolized to succinate, alanine and acetate. Further breakdown 

of ASCT/SCS cycle metabolites has been hypothesized to play a role in mitochondrial ATP 

production in the related parasite, T. brucei (Michels et al., 2021). Data from a previous study 

suggested that T. congolense does not rely on oxidative phosphorylation for ATP production 

(Steketee et al., 2021). Since the main entry point of glycolytic flux is through the TcoHT1 

hexose transporter, it is possible that isometamidium chloride may impact the uptake of 

glucose into the parasite by inhibiting its transporter.  

According to a previous study by Girgis-Takla & James (1974), observations that 

isometamidium chloride uptake into T. brucei parasite increased with complete glucose 

privation of the parasites. This observation was attributed to cellular damage that provided 

access of the parasite’s kinetoplast to isometamidium chloride. Findings from this study 

suggest it is possible that the privation could possibly allow more uptake of isometamidium 

chloride. If the drug enters via this particular transporter, lack of glucose to compete for 

binding to the transporter can allow more access for isometamidium chloride binding at the 

transporter’s active site. 

The observed pattern, where decrease in triphosphate and diphosphate nucleosides with a 

corresponding increase in their monophosphates could be due to a hypothetical nucleoside 
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phosphorelay system (Figure 13) (Appanna et al., 2016; Miranda et al., 2022). With the 

inhibition of the transporter – hence reduced glucose available for ATP formation through 

glycolysis, TCA cycle and respiratory chain – it is possible that the parasites resort to other 

NTPs to transfer phosphate ultimately to ADP creating ATP for their energy needs. In that 

case when the NTPs are used up, the parasites could have resorted to NDPs for energy and 

subsequently NMPs. Since these measurements were made over a short period of time, this 

cycle is evidenced by the decrease in NTPs and NDPs and increase in NMPs, non-

phosphorylated nucleosides and nucleobases.  

The largest binding pockets predicted by DoGsite scorer, when aligned to the Homo sapiens 

glucose transporter 1 (GLUT1, SLC2A1), revealed common residues defining the substrate 

binding site (Galochkina et al., 2019) (Appendix 1).  

The top ranked ligand pose of isometamidium chloride bound to TcoHT1 exhibited a binding 

affinity of -10.1 kcal/mol while the top ranked ligand pose of glucose exhibited -5.7kcal/mol 

(Table 5). The degree of interaction between a ligand and a receptor is dependent on binding 

affinity. The stronger the ligand-receptor interaction, which shows a more accurate the 

molecular docking prediction, is exhibited by a more negative binding affinity (Pantsar & 

Poso, 2018). Owing to the lower energy of binding displayed by isometamidium chloride it 

is possible that isometamidium chloride has a higher competitive affinity for TcoHT1 

compared to glucose and occupies the same binding site that the endogenous substrate 

glucose occupies (Figure 18 and Figure 19). Isometamidium chloride formed three 

hydrogen bonds with TcoHT1 and additional hydrophobic interactions (Figure 16). Both 

isometamidium chloride and glucose interacted with Gln 216 (Figure 16 and 17) through 

hydrogen bonding. This particular Gln 216 (Gln 161 in GLUT1) is conserved in 28 members 

of the sugar transporter superfamily and in all 20 members that transport hexose and pentose 
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sugars i.e. glucose, galactose, xylose, arabinose and fructose (Galochkina et al., 2019; 

Mueckler et al., 1994). The conservation of this residue strongly suggests that it plays an 

important role in transport of hexose sugars and formation of the exofacial binding site 

(Mueckler et al., 1994). Substitution of this residue with leucine or asparagine in a previous 

study indicates reduced transport activity by 50 and 10 fold respectively (Mueckler et al., 

1994). As isometamidium chloride and glucose both interact with this residue it is possible 

that once isometamidium chloride occupies the substrate binding site of TcoHT1 and forms 

a strong hydrogen bond it blocks glucose access and transport into the cell. Trp388 (Phe 420), 

Trp412 (Phe 444), and Phe379 (Phe 411) play crucial roles in GLUT1's ability to transport 

glucose (Almahmoud et al., 2019). Particularly, Trp388 (Phe 420) plays an important role in 

the access of GLUT1 between the outward open conformation and the inward open 

conformations and mutations such as W388L reduced the activity of glucose influx. A study 

by Almahmoud et al., (2019) showed most GLUT1 inhibitors interacted with Asn 34 (Ala 

57), Gln 37 (Leu 60), Gln 161 (Gln 216), Gln 172 (Ala 227), Gln 282 (Leu 313), Gln 283 

(Gln 314), Asn 288 (Asn 319), Tyr 292 (Met 322), Asn 317 (-), Phe 379 (Phe 411), Glu 380 

(Gln 412) in the outward open conformation and a further Trp 388 (Phe 420), Trp 412 (Phe 

444) in the inward open conformation.   

Among the other kinetoplastids the T. vivax glucose transporter can form similar 

isometamidium chloride interactions as T. congolense with a hydrogen bond at Gln 215 

(equivalent to Gln 216 in T. congolense) (Appendix 2) suggesting that the drug may work in 

a similar fashion in this parasite. The hydrogen bond between the Gln 215 and the T. vivax 

glucose transporter is, however, larger in distance (2.62 A˚) compared to the bond with

TcoHT1 that is (2.11 A˚) showing less tight binding at this residue. While in T. brucei, 

isometamidium chloride seems to sit at the same glucose substrate binding site, it does not 
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form a hydrogen bond with Gln 215 (Gln 216), instead predicted to bind to Gln 244 

(equivalent to Gln 443 in T. congolense and Asn 411 in GLUT1) (Appendix 3). This residue 

is also involved in glucose transport according to GLUT1 studies (Galochkina et al., 2019) 

and its substitution in other glucose transporters reduces the binding affinity of glucose to the 

transporters.  

It is possible that isometamidium chloride is not entirely selective to the parasite glucose 

transporters as the drug seems to bind to some residues of the glucose binding site in animals 

when docking simulations were performed (Appendix 4). In the Capra hircus GLUT1 model 

(GenBank accession number: NP_001301152.1), both isometamidium chloride and glucose 

interact with Gln 161 (Gln 161 in human GLUT1 and Gln 216 in T. congolense). The docking 

simulation showed ISM exhibiting a binding affinity of -12.5 kcal/mol in the Capra hircus 

model. In the Bos taurus model (GenBank accession number: NP_777027.1), although 

isometamidium chloride seemed to interact with some residues that define the substrate 

binding site, it did not form interactions with the residues known to bind glucose e.g. Gln 

216, Gln 282, Gln 283, Asn 288, Phe 291, Asn 317, Phe 379, Glu 380, Trp 388 (Galochkina 

et al., 2019; Ung et al., 2016). Therefore, in spite of ISM’s ability to bind to both host and

trypanosome glucose transporters, anti-parasite specificity could be due to the parasites 

having a greater dependency on glucose for energy production (Steketee et al., 2021). This 

could also be because of the drug having additional modes of action, such as binding to the 

kinetoplast and preventing its replication (Delespaux & de Koning, 2007). 

With respect to resistance, a study on the genomic analysis of isometamidium chloride 

resistance did not identify changes in the glucose transporter gene. The study attributed 

resistance to a GAA insertion in a gene coding for an ATP-binding cassette (ABC) 

transporter (energy-dependent transport of different substrates across biological membranes) 
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in a variety of ISM resistant parasites (Tihon et al., 2017). This suggests that while the uptake 

of the drug may be through the transmembrane glucose transporter, drug efflux mechanisms 

are involved in cases of resistance. 

5.2 JYH and VMS analysis 

For the Leishmania mexicana dataset, statistical analyses using one-way ANOVA with 

Tukey’s post hoc test (Table 9), fold change analysis (Table 10) as well as pathway 

enrichment analysis (Figure 28) revealed significant perturbations in metabolites belonging 

to lipid metabolism pathways exemplified by phospholipids, lysophospholipids, 

sphingolipids and metabolites with CoA moieties. Acetyl-CoA, CoA and 3-methylbutanoyl-

CoA were seen to be depleted. Further metabolomic analysis from the raw dataset showed 

an interplay in increases in lysophospholipids with a decrease in phospholipids. This 

interplay is shown in the Land’s cycle where acyl CoA moieties are transferred to 

lysophospholipids mediated by lysophospholipid acyltransferases to yield phospholipids. In 

turn, the acyl CoA moieties are cleaved from phospholipids by phospholipase A 2 to yield 

lysophospholipids (O’Donnell, 2022). Since CoA was being depleted it is possible that this 

led to the depletion of acyl-CoAs in the parasite which would then not be transferred to 

lysophospholipids to yield phospholipids. Precursors of CoA biosynthesis were also seen to 

be increasing while CoA itself was being depleted showing alteration in this pathway at the 

point of DPCK or PPAT, since the metabolite dephospho-CoA was not detected in the

dataset, as shown in Figure 29. CoA is a cofactor that is essential for cell survival and growth 

as it is involved in many metabolic processes, including the biosynthesis of phospholipids,

synthesis and degradation of fatty acids, and the operation of the TCA cycle (Leonardi & 

Jackowski, 2007), Trypanocyc (http://vm-trypanocyc.toulouse.inra.fr/). There are various 

registered drugs and potential inhibitors against Leishmaniasis that target lipid and fatty acid 
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metabolisms such as amphotericin B, sodium stibogluconate, miltefosine, imipramine, 

myriocin and tamoxifen (de Aquino et al., 2021) and the compounds from Kip Guy and Scott 

Landfear, coded as JYH and VMS are potential additions to this list. 

Dephospho-CoA Kinase (DPCK) catalyses the last step of Coenzyme A biosynthesis while 

phosphopantetheine adenylyltransferase (PPAT) catalyses the penultimate step. Unlike in 

mammalian cells where these two steps are catalyzed by a 62-kD bifunctional enzyme, in 

Leishmania parasites the steps are carried out by distinct enzymes (Opperdoes & Michels, 

2008). Other protozoa, e.g. Entamoeba histolytica are known to contain more than one DPCK 

related enzyme (Nurkanto et al., 2018) and in L. mexicana the genes that encode these 

enzymes are annotated as LmxM.22.1530 and LmxM.18.0290 in the TriTryp database 

(https://tritrypdb.org). The structure predicted by AlphaFold2 (Figure 30) was characteristic 

of other DPCK crystal structures from Escherichia coli (O’toole et al., 2003), H. influenzae 

(Obmolova et al., 2001) and predicted structures of Entamoeba histolytica (Nurkanto et al., 

2018). The DPCK enzyme and its homologs contain the highly conserved P-loop also known 

as the Walker A sequence motif. The motif is encoded by the sequence GXXXXGKT/S 

(where X is any residue) responsible for nucleotide binding. The enzyme also contains a LID 

domain that forms a lid over the active site during catalysis to prevent transfer of the 

phosphate group to water and a CoA binding domain known to bind CoA during feedback 

inhibition (Figure 30) (O’toole et al., 2003). In this study, JYH and VMS seemed to interact 

with the CoA binding domain within the substrate binding site (Figure 31) which in previous 

studies has been identified to be the deep cleft between the LID domain and the CoA domains 

opposite the P-loop (Nurkanto et al., 2018; O’toole et al., 2003; Obmolova et al., 2001). In 

similar studies with the E. coli DPCK key amino acids identified to be involved in binding 

of CoA are Thr 8, Asp 33, His 89, Pro 113, Leu 114 and Gln 159 (O’toole et al., 2003) while 
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in E. histolytica amino acids involved in CoA binding include Thr-10, Asp 35, Try 90, Ala 

117, Leu 118 and Glu 163 (Nurkanto et al., 2018). These residues align to Thr 7, Asp 33, 

Asn 89, Pro 125, Thr 126 and Gln 172. Collectively JYH and VMS interacted with Ala 32, 

Asp 33, Val 36, Gln 40, Leu 65, Arg 67, Ala 68, Leu 70, Gly 71, Val 74, Phe 75, Leu 84, 

Met 88, Asn 89, Ile 92, Ala 124, Pro 125, Thr 126, Thr 130, Thr 132 and Phe 133 (Figure 

31 and 32).  

A previous study by Obmolova et al., (2001) that involved modelling dephospho-CoA into 

the Haemophilus influenza DPCK revealed the dephospho-CoA adenine base interacts with 

the hydrophobic environment created by the side chains of Ile 92, Val 112, Leu 114, Leu 

120, and Met 96, in the cleft known to bind dephospho-CoA in other studies. The study by 

Obmolova et al., (2001) also indicated the possible formation of hydrogen bonds between 

the base and the His 89 and Asn 118 residues at the bottom of the binding site with the 3-

hydroxyl group of the ribose unit of dephospho-CoA possibly interacting with Asp 33 via 

hydrogen bonding. The JYH benzothiazole group from this study’s model (Figure 32) 

interacted with Ile 92, Ala 124, and Ala 32 which align with Ile 92, Val 112 and Asp 33 

respectively in H. influenza indicating interactions with the same residues that the indigenous 

substrate dephospho-CoA interacts with. In the VMS model, similar interactions were 

formed between the compound and Ala 32 (4.79 A˚), Ala 124 (5.07 A˚) and Ile 92 (4.37 A˚) 

via Pi-alkyl, with Val 36 (4.90 A˚) and Ile 92 (4.61 A˚) via alkyl bonds, with Thr 132 via a 

pi-donor hydrogen bond (2.59 A˚), with Asn 89 via a conventional hydrogen bond (2.04 A˚) 

and with Phe 93, Pro 125, Ile 96, Thr 126, Thr 130, and Phe 133 via hydrophobic interactions 

(Figure 31). Molecular docking analysis with the native substrate dephospho-CoA showed 

interactions with Phe 133, Asp 33, Arg 67, Gln 40, Met 88, Phe 75, Thr 130, Arg 81, Asn 89, 

Thr 126, Pro 125, Thr 132, Val 36, Ile 92 (Appendix 5). The model 6ARI 
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(https://www.rcsb.org/structure/6ARI) depicting an inhibitor of the E. coli DPCK shows the 

N-(methylsulfonyl)-3-{[(thiophen-2-yl)sulfanyl]methyl}benzamide (BQV) inhibitor 

interacting with the same substrate binding site in the CoA binding domain. Furthermore, 

JYH and VMS had lower binding energies to DPCK (-7.9 kcal/mol and -7.4 kcal/mol 

respectively) compared to dephospho-CoA (-6.2 kcal/mol). This indicates higher affinity of 

the compounds to DPCK than dephospho-CoA (Table 13) as well as formation of a more 

stable complex when JYH and VMS bind to DPCK. It is therefore possible that the metabolic 

effects observed on the metabolome of L. mexicana parasites upon exposure to the two drugs 

might have been due to inhibition of the DPCK enzyme via competitive inhibition with 

dephospho-CoA. This is especially true because in further wet lab analyses when Coenzyme 

A was added to cells exposed to VMS they were rescued.  Dephospho-Coenzyme A addition, 

however, could not rescue the cells.  This is consistent with DPCK as the target since 

dephospho-CoA cannot be converted to CoA if DPCK is inhibited (Barrett, personal 

communication). 

Molecular docking analysis was also done using the predicted PPAT 3D structure (Figure 

30). The predicted structure was similar to PPAT crystal structures from E. coli 1H1T  (Izard, 

2003), 1QJC (Izard, 2002), Archaeoglobus fulgidus 3DO8 (https://www.rcsb.org/), and 

Staphylococcus aureus 4NAU (De Jonge et al., 2013) with a characteristic Rossmann fold 

that forms the canonical nucleotide binding site and the T/HXGH (where X is any residue) 

motif that plays an important role in stabilizing the pentaco-ordinate transition state of ATP 

(De Jonge et al., 2013). In this study, VMS was predicted to interact with Gly 191, Gly 192, 

Thr 193, Gly 200, Lys 229, Thr 285, Ser 322 and Ile 292 via hydrophobic interactions with 

Leu 204 (5.41 A˚) and His 201 (4.19 A˚) via alkyl interactions and with Thr 193 (2.58 A˚) 

via hydrogen bonding (Figure 34). The JYH compound interacted with Gly 191, Gly 192, 
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Thr 193, Gly 200, Leu 204, Lys 229, Leu 279, Val 281, Ser 282, Glu 284, Ile 292, Ser 322, 

and Ser 323 via hydrophobic interactions and His 201 via pi-pi stacked bond, with Thr 285 

and His 201 via Pi-sigma bond, with Ile 263 via alkyl bonding, with Leu 204 via pi-alkyl 

bonding, with Ser 288 via pi-donor hydrogen bonding and with Thr 221, Ile 266 and Glu 265 

via carbon hydrogen bonding (Figure 33).  These interactions were similar to the ones 

formed by the native substrate ATP (Appendix 6). From NCBI CDD and InterPro analysis 

the active site on the L. mexicana PPAT was predicted to involve Gly 192, Thr 193, Thr 221 

and Val 281 and the HXGH motif lied on His 198, Ile 199, Gly 200 and His 201 showing 

that the drugs interacted with both the active site and the ATP binding site represented by the 

HXGH motif. In PPATs fully conserved residues thought to bind CoA in CoaD found in E. 

coli are His 18, Lys 42, Arg 51, Arg 91, Asp 95 and Glu 99 (Geerlof et al., 1999) which align 

with His 201, Asp 222, Glu 243, Glu 247, Glu 257 respectively in L. mexicana. Besides His 

201, these interactions were not observed in the JYH and VMS interactions therefore pointing 

to them interacting with the ATP binding active site. In a previous study by Izard, (2002) 

ATP bound to E.coli PPAT was shown to interact with Tyr 7, Gly 9, Thr 10, Phe 11, Gly 17, 

His 18, Ile 21, Gly 89, Arg 91, Glu 99, Pro 120, Trp 124, Ile 127, Ser 128, Ser 129 and Ser 

130 which align to Val 190, Gly 192, Thr 193, Phe 194, Gly 200, His 201, Leu 204, Arg 241, 

Glu 243, Pro 283 and Lys 287. The VMS and JYH collectively interacted with 6 of these 

residues. The sequence used did not contain the characteristic KMSKS motif also known to 

form part of the enzyme active site (Ser 128-130) although this is mostly identified in class I 

amino-acyl tRNA synthetases where the motif is important in stabilization of the aminoacyl-

adenylate. The top ranked predicted binding pose of JYH displayed a binding affinity of -9.7 

kcal/mol and VMS had -8.2 kcal/mol. Compared to the native ATP whose top ranked ligand 

pose had a binding affinity of -6.7 kcal/mol (Appendix 6), JYH and VMS had higher binding 
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affinity for the PPAT enzyme. Findings from this study therefore indicate a possible binding 

of the antileishmanial compounds to the active site of the PPAT enzyme causing competitive 

inhibition with ATP. Further studies, however, will be required to prove this hypothesis.  It 

is of note that the fact that modelling predicted potential interactions between VMS and JYH 

with both DPCK and PPAT, which could indicate that docking algorithms are relatively 

relaxed in how they enable ligands to bind to proteins. This emphasizes the necessity to 

follow up such predictions with experimentation e.g. purifying the Leishmanial proteins and 

testing whether activity is inhibited by drugs and crystallising the proteins for structural 

analysis including with drugs bound. 

The mechanism of action of VMS appeared to differ between L. mexicana and T. congolense 

parasites (Section 4.2) based on metabolomics experiments. While a possible inhibition of 

either DPCK or PPAT was seen in L. mexicana, in T. congolense the compound seemed to 

alter energy metabolism, aromatic amino acid metabolism as well as cellular redox systems 

with no impact on CoA synthesis evident. Protein sequence alignment of the enzymes from 

the respective parasites (Figure 35 and 36) showed amino acid variations in the amino acids 

that form the substrate binding sites and active sites. In a pairwise DPCK sequence alignment, 

although 18 amino acids that form the substrate binding site and active site were conserved, 

amino acid variations occurred in CoA binding domain at 11 positions which include, 4 non-

conservative mutations (P90F, I96T, T126L and T132I, 5 conservative mutations (L65I, 

V74I, T130S, K131D and F133Y) and 2 semi-conservative mutations (A32C and G85R). A 

multiple sequence alignment of other Leishmania and Trypanosoma species using Clustal 

Omega alignment program (https://www.ebi.ac.uk/Tools/msa/clustalo/) (Appendix 7) 

showed a semi-conservative A32S substitution in T. vivax and T. b. brucei as opposed to the 

A32C substitution. At positions 126 and 132 the hydrophilic threonines were substituted with 
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hydrophobic leucine and isoleucine respectively in the trypanosome species. Furthermore, a 

structure comparison and surface binding analysis of the L. mexicana and T. congolense 

enzymes showed differences in their conformations (Appendix 8 and Appendix 9).  

The results of this study could explain the different binding interactions observed in the 

molecular docking analysis of the compound into the T. congolense DPCK enzyme that were 

dissimilar to those seen in the L. mexicana (Figure 37). The VMS compound seemed to dock 

into a separate site on the enzyme that was neither the nucleotide binding site where ATP 

binds nor the CoA domain where dephospho-CoA binds.  Given the possibility that docking 

is not always accurate, it is possible that the compounds do not bind effectively to the T. 

congolense enzyme if at all. Future work including enzyme assays in the presence of drug, 

crystallization and structural analysis and also site directed mutagenesis – for example, 

replacing the Cys 32 in the T. congolense enzyme with Ala and vice versa for the Leishmania 

enzyme then testing ability of the compound(s) to bind need to be conducted. In silico site 

directed mutagenesis performed at A32C, T126L and T132I on the predicted L. mexicana 

DPCK using UCSF Chimera version 1.15 however did not show alterations to how the 

compounds bound to the enzyme. 

The DPCK and PPAT enzymes are suitable drug targets because of their low percent identity 

with the human counterpart. A protein sequence alignment between the Homo sapiens 

bifunctional CoA synthetase (AAM19996.1) and L. mexicana DPCK (XP_003875607.1) and 

L. mexicana PPAT (XP_003878055.1) showed a sequence similarity of 26.29% and 42.61% 

respectively. This < 50% alignment similarity makes the two proteins pharmacologically 

attractive because they present lower risk for adverse effects (dos Santos Vasconcelos & 

Rezende, 2021).  
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Upon assessing the pharmacological suitability of the VMS and JYH, pharmacokinetics and 

pharmacodynamics analysis showed possible suitability of VMS, but not of JYH (Table 17). 

In particular, a compound likely to be active and permeable should have < 5 hydrogen bond 

donors, < 10 hydrogen bond acceptors, < 500 molecular weight and a calculated logP value 

of < 5 (Benet et al., 2016). The JYH compound had violations in terms of molecular weight 

and may therefore require modification to create a more drug-like derivative. 

CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion 

From this study, untargeted metabolomics and in silico modeling hypothesized the potential 

drug targets of the widely used isometamidium chloride against Animal African 

Trypanosomiasis (AAT) and the two recently discovered antileishmanials discovered by the 

groups of Kip Guy and Scott Landfear known as JYH and VMS. Statistical and metabolomic 

analysis of the drugs’ perturbations on the parasites’ metabolomes identified alteration in the 

glycolysis and energy metabolism pathways when isometamidium chloride was administered 

to Trypanosoma congolense and in CoA biosynthesis when the new drugs were administered 

to Leishmania mexicana. Further metabolomic analysis identified possible competitive 

inhibition of the T. congolense glucose transporter in the case of isometamidium chloride 

which was further evidenced in the molecular docking assay where isometamidium chloride 

seemed to interact with the same substrate binding site that glucose interacts with. 

Isometamidium chloride also exhibited lower binding energy indicating higher affinity of 

isometamidium chloride for the TcoHT1 compared to glucose.  For JYH and VMS, statistical 

and metabolomic analysis indicated possible inhibition of either dephospho-CoA kinase 

(DPCK) or phosphopantetheine adenylyltransferase (PPAT). Molecular docking analysis 
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showed possible competitive inhibition with dephospho-CoA, with JYH and VMS binding 

to the CoA binding domain of L. mexicana DPCK. The compounds also exhibited lower 

binding energies and higher binding affinities for the enzyme compared to dephospho-CoA. 

In PPAT both drugs seemed to interact with the enzyme active site that binds ATP. However, 

JYH had higher binding affinity for the enzyme while VMS had lower binding affinity 

compared to the native substrate ATP. The mechanism of action of VMS in L. mexicana 

differed with that of T. congolense where alterations were observed in energy metabolism, 

aromatic amino acid metabolism and cellular redox. Additional research is needed to find out 

which of the two, if not both, enzymes is targeted by the two compounds. This study has 

identified new targets in L. mexicana that have potential for drug development. This will 

hopefully lead to the discovery of other highly effective compounds with low resistance 

potential that can be used to treat Leishmaniasis for which current therapies often require 

lengthy hospitalization of at least 21 days (Hammill et al., 2021). Even when the oral 

miltefosine is used in combination with sodium stibogluconate, the length of hospitalization 

is only marginally reduced (Omollo et al., 2011). Therefore, the need for novel drugs is 

urgent. 

6.2 Recommendations 

From the findings in this study, it is recommended that: 

i. Targeted metabolomics studies be conducted to confirm the results published in this 

study. The studies should target the affected metabolic pathways identified i.e. 

glycolysis and energy metabolism pathways for isometamidium chloride used against 

T. congolense and Coenzyme A biosynthesis pathways for JYH and VMS compounds 

used against L. mexicana. 
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ii. The JYH structure should be modified because the compound violates drug-likeness 

and lead-likeness rules (Table 17). This is especially necessary if the drug is ever to 

enter in vivo and eventually human clinical trials. 

iii. The protein sequence used to predict the structure of PPAT is annotated as a 

cytidylyltransferase. To ascertain the possibility that it is indeed the L. mexicana 

PPAT, the protein should be purified after overexpression assay with substrates 

known to bind onto cytidylyltransferases and in the presence of ATP or CTP. Activity 

with the compounds should then be evaluated. 

iv. The 3-Dimensional structures of the proteins used in this study be determined using 

experimental methods such as X-ray crystallography or Nuclear Magnetic Resonance 

(NMR) studies to fully characterize their catalytic mechanism. This is because high-

resolution experimentally determined structures maintain their active sites. 

Furthermore, JYH and VMS should be co-crystallised with the enzymes to determine 

whether they address the proteins as predicted. 

v. Enzyme assays for L. mexicana DPCK and PPAT should be carried out and JYH and 

VMS compounds tested for inhibitory activity.   

vi. Mutagenesis of key residues in the possible target enzymes should be performed to 

determine impact on activity and the ability of the compounds to inhibit activity. 
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APPENDICES 

Appendix 1: Multiple protein sequence alignment of glucose transporters 

Protein sequence alignment of glucose transporters

Amino acid residues defining the glucose substrate binding site on Homo sapiens solute 
carrier 2 A1 (SLC2A1) and their corresponding alignments with other glucose transporters. 
Bos taurus GLUT1 (BTGLUT1), Trypanosoma cruzi hexose transporter 1 (TcrHT), 
Trypanosoma brucei hexose transporter 1, (THT1) and Trypanosoma congolense hexose 
transporter 1 (TcoHT1). Transmembrane domains of TcoHT1 are underlined and labelled 
and residues forming the substrate binding site on SLC2A1 are highlighted in yellow. 

SLC2A1 --------------------------MEPS---SKKLTGRLMLAVGGAVLGSLQFGYNTG 31
BTGLUT1 --------------------------MEPT---SKKLTGRLMLAVGGAVLGSLQFGYNTG 31
TcrHT1 MPS---------KKQTDVSGGDRQPDETPTFCSLENLKVAQV-----QVVGGTLNGFSIG 46
THT1 MTERRDNVSHAPDAIEGPNDGAHAEDTSPGFFSLENLGVAQV-----QVVGGTLNGYVIG 55
TcoHT1 MSDAQEGRERAPDTVMVSPDE-VHEDNAPAFFSAENLGVVQV-----QVIGGTLYGFSIG 54

* ::* : *:*. *: *

SLC2A1 VINAPQ---------------------K------------VIEEFYNQTWVHRYGE---- 54
BTGLUT1 VINAPQ---------------------K------------VIEEFYNQTWVQRYGE---- 54
TcrHT1 FVAVYAYFYLMSTDCSMYKKEVACNRVLNAECSWNGTRGECGWNGFTCFWGHGKDKTPCL 106
THT1 YVAVYLLLYLTATECKFTT-EVACGGAKIYGCKWSGTT--------CKFENPKCSE---- 102
TcoHT1 FVAVYLMLYEVSTNCSLAKAEASCVGMKNVMCVWSPDV--------NCTWANACDS---- 102

: . ..

SLC2A1 -------------SILPTTLTTLWS-LSVAIFSVGGMIGSFSVGLFVNRFGRRNSMLMMN 100
BTGLUT1 -------------PIPPATLTTLWS-LSVAIFSVGGMIGSFSVGLFVNRFGRRNSMLMMN 100
TcrHT1 DDSRCKWVYSDEECKNPTGYSSSYNGIFAGAMIVGAMIGSIYAGQFAARFGHKVSFLIVG 166
THT1 ------GSDPSDSCKNEVAYTSVYSGIFACAMIVGSMVGSIIAGKCITTFGLKKSFIIVS 156
TcoHT1 ------I-RDPNVCLDKVGYDALHSGIFACSMIVGSMIGSIVTERFITMFGLKKSFLIVA 155

. : . : . : **.*:**: . ** : *::::

SLC2A1 LLAFVSAVLMGFSKLGKSFEMLILGRFIIGVYCGLTTGFVPMYVGEVSPTALRGALGTLH 160
BTGLUT1 LLAFVSAVLMGFSKLGKSFEMLILGRFIIGVYCGLTTGFVPMYVGEVSPTELRGALGTLH 160
TcrHT1 IVGVVSSVMYHVSSATNEFWVLCVGRLLIGVVLGLVNVACPMYVDQNAHPKFLHVDGVLF 226
THT1 ITCTIACVVVQVAIEYNNYYALCTGRVLIGLGVGILCSVCPMYVNENAHPKLCKMDGVLF 216
TcoHT1 IIGVVASAMNHIAVSTDEFWVLCPARLLMGLGLGILCSVCPMYVNENAHSKHRKVDGVMF 215

: ::..: .: ..: * .*.::*: *: ****.: : *.:.

SLC2A1 QLGIVVGILIAQVFGLDSIMGNK---D--LWPLLLSIIFIPALLQ---CIVLPFCPESPR 212
BTGLUT1 QLGIVVGILIAQVFGLDSIMGNQ---E--LWPLLLSVIFIPALLQ---CILLPFCPESPR 212
TcrHT1 QVFTTFGIMFAAAMGLAIGQSVNFDKDTKMDARMQGYCAFSTLLSVLMVALGIFLGESKT 286
THT1 QVFTTLGIMLAAMLGLILDKTGASKEEANMAGRLHVFSAVPLGLSVAMFLVGMFLRESTA 276
TcoHT1 QVFITFGIMLAALLGLALYYTVDYETNVAMVDRLHGFCAVSSILAVVMFIMGIFLRESKT 275

*: ..**::* :** : : : . * : * **

1

2

3 4

5 6
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SLC2A1 FLLINRNEENRAKSVLKKLRGTADVTHDLQEMKEESRQMMREKKVTILELFRSPAYRQPI 272
BTGLUT1 FLLINRNEENRAKSVLKKLRGTADVTRDLQEMKEESRQMMREKKVTILELFRSAAYRQPI 272
TcrHT1 KFTS-------------GKHEDDGTALD-------------PNE------YSYLQMLGPL 314
THT1 TFSQ-------------DDDGKADGGMD-------------PNE------YGWGQMLWPL 304
TcoHT1 VVVC-------------ENAGKTDGGLD-------------PNE------YSWGEMMWPL 303

. . * :: : *:

SLC2A1 LIAVVLQLSQQLSGINAVFYYSTSIFEKAGVQQPVYATIGSGIVNTAFTVV-SLFVVERA 331
BTGLUT1 LIAVVLQLSQQLSGINAVFYYSTSIFEKAGVQQPVYATIGSGIVNTAFTVV-SLFVVERA 331
TcrHT1 AMGLVTSGTLQLTGINAVMNYAPKIMGNLGMVPLVGNFV----V-MAWNFVTTLVSIPLA 369
THT1 FMGAVTAGTLQLTGINAVMNYAPKITENLGMDPSLGNFL----V-MAWNFVTSLAAIPLA 359
TcoHT1 FMGTMTAGTLQLTGINAVMNYAPKITENLGMDPPLGNFL----V-MMWNFVTALVAIPLA 358

:. : : **:*****: *: .* : *: : : * :..* :* : *

SLC2A1 GRRTLH--LIGLAGMAGCAILMTIALALLEQLP---WMSYLSIVAIFGFVAFFEVGPGPI 386
BTGLUT1 GRRTLH--LIGLAGMAGCAVLMTIALALLERLP---WMSYLSIVAIFGFVAFFEVGPGPI 386
TcrHT1 RVLTMRQLFLGASLVASVSCLLLCGVPVYPGVADKNVKNGVAITGIAIFIAAFEIGLGPC 429
THT1 SRFTMRQMFITCSFVASCMCLFLCGIPVFPGVAEEKVKNGVATTGIALFIAAFEFGVGSC 419
TcoHT1 SRFTMRQMFITCSFIASCTCLFLCGIPVFPGVAEESVKNGVATTGIALFIAAFEFGVGSC 418

*:: :: : :*. *: .: : : . :: ..* *:* **.* *

SLC2A1 PWFIVAELFSQGPRPAAIAVAGFSNWTSNFIVGMCFQYVEQLC-----------GPYVFI 435
BTGLUT1 PWFIVAELFSQGPRPAAIAVAGFSNWTSNFIVGMCFQYVEQLC-----------GPYVFI 435
TcrHT1 FFVLAQELFPRSFRPRGASFVLLTNFIFNVIINVCYPIATEGISGGPSGNQDKGQAVAFI 489
THT1 FFVLAQDLFPPSFRPKGGSFVVMMQFIFNILINLLYPITTEAISGGPTANQDKGQAVAFI 479
TcoHT1 FFVLAQDLFPPSFRPKGASFVVMMQFVFNILVNLLYPITTEAISGGASGNQDKGQAVSFI 478

:.:. :** . ** . :.. : :: *.::.: : . : **

SLC2A1 IFTVLLVLFFIFTYFKVPETKGRTFDEIASGFRQGGASQSDKTPEELFHPLGADSQ---- 491
BTGLUT1 IFTVLLVLFFIFTYFKVPETKGRTFDEIASGFRQGGASQSDKTPEELFHPLGADSQ---- 491
TcrHT1 FFGCIGLVCFVLQVFFLYPWEESTPQN-HGDAN------EESALPERQSPIEVATPGNRQ 542
THT1 LFGLIGLICSVLQFFYLYPYDANQDHE-ND---HGGEPVEQKTYPVEASP------RN-- 527
TcoHT1 LFGLIGLVCFVLQYFYLYPYEAKSSGD-SSEMQNGGSESK-PSEP-ANQP------AN-- 527

:* : :: :: * : . : . . : *

SLC2A1 V- 492
BTGLUT1 V- 492
TcrHT1 AA 544
THT1 -- 527
TcoHT1 -- 527

7 8

9 10

11

12
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Appendix 2: Molecular docking analysis of isometamidium chloride docked to the T. 
vivax glucose transporter 1 (TvHT1) 

Isometamidium chloride interactions with TvHT1 

Isometamidium chloride formed the following interactions: hydrogen bonds with Asn 322 
(2.35 A˚) and Ile 54 (2.22 A˚), alkyl interactions with Ile 222, Phe 410, Ile 317, Leu 312, Val
57, Ala 123, Met 321 and hydrophobic interactions with Met 126, Ile 127, Asn 318, Thr 218, 
Thr 219, Asn 346, Glu 411, Gly 415, Phe 418, Phe 419, Gln 442, Gln 313, Phe 443, Gly 55, 
Ala 58 and Asn 446. The best predicted ISM-protein pose displayed a binding energy of -
10.1 kcal/mol. 
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Appendix 3: Molecular docking analysis of isometamidium chloride docked to the T. 
brucei glucose transporter 1 (THT1) 

Isometamidium chloride interactions with THT1 

Isometamidium chloride formed the following interactions: hydrogen bond with Gln 444 
(2.12 A˚), hydrophobic interactions with Phe 412, Leu 314, Phe 445, Ile 129, Met 128, Gly
55, Asn 324, Leu 61, Asn 320, Asn 452, Gln 315, Asn 50 and Cys 193, pi-sigma interactions 
Ile 54 and alkyl interactions Ala 125, Val 57, Ala 58, Ile 224 and Met 323. The best predicted 
ISM-protein binding pose displayed a binding energy of -9.9 kcal/mol. 
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Appendix 4: Molecular docking analysis of isometamidium chloride docked to the Bos 
Taurus and Capra hircus glucose transporter 1  

Isometamidium chloride interactions with the (a.) Capra hircus and (b) Bos Taurus 
glucose transporter 1

(a) Capra hircus GLUT1 (uniprot entry I0BWL9_CAPHI) interactions with isometamidium 
chloride. The best ISM-protein predicted pose had a binding affinity of -12.5 kcal/mol while 
the best predicted glucose-protein pose had a binding affinity of -6.2 kcal/mol (not shown). 
(b) Bos Taurus GLUT1 interactions with isometamidium chloride and glucose. The best 
ISM-protein predicted pose had a binding affinity of -10.2 kcal/mol while the best predicted 
glucose-protein pose had a binding affinity of -6.3 kcal/mol. 

a. 

b. 
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Appendix 5: Molecular docking analysis of the dephospho-CoA bound to the 
predicted L. mexicana dephospho-CoA kinase enzyme (DPCK) 

Interaction of dephospho-CoA (dCoA) with DPCK 

Dephospho-CoA interacted with Thr 132, Gln 40 and Arg 67 through conventional 
hydrogen bonding, Gly 71, Met 88, Val 36, Arg 81, Asn 89 and Arg 37 via van der Waals 
forces, Phe 75 via pi-sulfur interaction, Ile 92 via pi-alkyl interaction, Asp 33 through 
interactive charge and an additional interaction Arg 37 through unfavorable positive-
positive hydrogen bonding (a). The best dCoA-DPCK predicted pose displayed a binding 
energy of -6.2 kcal/mol and was docked to the CoA binding domain (b). 

a. 

b. 
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Appendix 6: Molecular docking analysis of ATP docked to the predicted L. mexicana 
phosphopantetheine adenylyltransferase enzyme (PPAT) 

Interaction of ATP with PPAT 

ATP interacted with Ser 323, Thr 324, Thr 193, Lys 229, His 201 through conventional 
hydrogen bonding, Leu 204, Thr 221, Gly 192, Thr 285, Leu 225, Ile 292, Leu 279, Ser 
288, Gly 191, Leu 226 and Ser 322 via van der Waals forces, Ile 263 via pi-alkyl 
interaction, and an additional interaction Glu 284 through attractive charge interaction (a). 
The best ATP-PPAT predicted pose displayed binding energy of -6.4 kcal/mol and was
docked to the active site of the enzyme (b). 

a. 

b. 
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Appendix 7: Multiple protein sequence alignment of Trypanosoma and Leishmania 
DPCK sequences 
L.braziliensis MILIGLTGGIACGKSAVSRILREEYHIEVIDADLIVRELQAPNAACTRLIAARWPLCVHP 60
L.mexicana MILIGLTGGIACGKSSVSRILRDEFHIEVIDADLVVRELQTPNSACTRRIAARWPLCVHP 60
L.donovani MILIGLTGGIACGKSSVSRILRDEFHIEVIDADLVVRELQAPNSACTRRIAARWPLCVHP 60
L.infantum MILIGLTGGIACGKSSVSRILRDEFHIEVIDADLVVRELQAPNSACTRRIAARWPLCVHP 60
L.major MILIGLTGGIACGKSSVSRILRDEFHIEVIDADLVVRELQAPNSACTRRIAARWPLCVHP 60
T.vivax MLLVGLTGGIACGKSTVSTLLQGRHNTIVVDSDRIVRDLQRPCMSCTLKIARRWPNCVDA 60
T.cruzi MLLIGLTGGIACGKSTVSTMLEKQHHLTVIDADRVVRELQRPSMPCTRKIARRWPGCVNS 60
T.b.brucei MLLVGLTGGIACGKSTVSLLLKESHHIVVVDSDLVVRELQRPFMPCTRKIARRWPNCVDP 60
T.congolense MLLVGLTGGIACGKSTVSTILQGRHHITVVDCDKLVRNLQQPFSACARRIARRWPQCVNP 60

*:*:***********:** :*. .: *:*.* :**:** * *: ** *** **.

L.braziliensis ETGELNRAELGKIIFSDAQARRALGKIMNPIIFRVILRRIAAAWWGDLWRSGATSSPAIV 120
L.mexicana ETGELNRAELGKVVFSDARARRELGKVMNPAIFKAILKRIAAAWWRDLWRSGAVSSPSIV 120
L.donovani ETGELNRAELGKVVFSDAQARRELGKIMNPAIFKAILKRIAAAWWRDLWRSGAASSPSIV 120
L.infantum ETGELNRAELGKVVFSDAQARRELGKIMNPAIFKAILKRIAAAWWHDLWRSGAASSPSIV 120
L.major ETGELNRAELGKIVFSDAQARRALGEIMNPAIFKAILKRIAAAWWLDLWRSGAASSPSIV 120
T.vivax KTGEINRAALGSVIFSDPAARRELGRIMNTPIFLATMKVLIKLWWRSVWSQAKGESALMV 120
T.cruzi QTGEIDRAALGEIIFRDPQARRELARIMNFPIFSKVMLLLVRFWWESMKQRMRGEGPLLV 120
T.b.brucei QSGEVNRAALGSIIFSDPSARRALARIMNFPIFRATMKMVIGLWWQSLRQQLRGQGPLLV 120
T.congolense LSGEIDRAALGGIIFGDPIARRDLARIMNFPIFCATMKLLLGLWWESLCRQLKGGEPLLV 120

:**::** ** ::* * *** *..:** ** : : ** .: :*

L.braziliensis VLDAPTLFETKTFMYFISASVVVSCSEERQIERLRSRNGFSKEEALQRIGSQMALETKRR 180
L.mexicana VLDAPTLFETKTFTYFISASVVVSCSEQRQIERLRSRDGFSREAALQRIGSQMPLEAKCR 180
L.donovani VLDAPTLFETKTFMYFVSASVVVSCSEQRQIERLRSRDGFSKKEALQRIGSQMSLEAKRR 180
L.infantum VLDAPTLFETKTFMYFVSASVVVSCSEQRQIERLRSRDGFSKKEALQRIGSQMSLEAKRR 180
L.major VLDAPTLFETKTFTYFVSASVVVSCSEQRQIERLRGRDGFSKEEALQRIGSQMSLEAKRR 180
T.vivax VLDAPLLYESSIYTWFVDCVVVVSCTEEKQIARMKARNNLTTEQALQRVRSQMPVSEKCK 180
T.cruzi VLDAPLLYESNIYTWFIDRVVVVGCKEEEQLARLEKRNGFTREQAMQRVRAQMPIEEKCR 180
T.b.brucei VLDVPLLYESNIYTWLVDRVVVVSCSEEQQVERMAKRNGLTREQALQRINAQMPISEKCK 180
T.congolense VLDAPLLYESNIYTWIVDCVMVVACREEQQVERIMKRNGLNREQAVQRVSAQMPISEKCK 180

***.* *:*:. : :::. :**.* *:.*: *: *:.:. : *:**: :** :. * :

L.braziliensis LADYIIENDSADDFDQLRGSLRECVAWMSRQSNKRLTCIFV-TVAAAAAGVAAVVGYVGY 239
L.mexicana LADYIIENDCADDLDALRGGVCACVAWMSRQSNKRLTYMFG-TVAVGAVGVAAAVGYACY 239
L.donovani LADYIIENDCADDLDALRGVVCACVAWMSRQSNKRLTYMFG-TVAAAAVGVAAAVGYAGY 239
L.infantum LADYIIENDCADDLDALRGVVCACVAWMSRQSNKRLTYMFG-TVAAAAVGVAAAVGYAGY 239
L.major LADYIIENDYADDLDALRGVLCACVAWMSRQSNKRLTYMFG-TVATAAVGVAAAVGYVGY 239
T.vivax LADFVLQNDGS--LDELERLVDKSVNWMRAQRGGRMTKYIALVVL-GTVAVAVSSAYIAR 237
T.cruzi RADYVIHNSGT--LTELFFSVKDSVEWMRQQSGFKMNTIVFVSAAGGTVCLAAVVHLLCH 238
T.b.brucei RADRVIHNEES--LSELEHSVADTVAWMQQQSGGRVAFALSGALAVGV-SLGAVVVYCCL 237
T.congolense RADQVIFNECP--LSELEQLVDDAVLWMRQQSGKQVTRILLATATAGI-GFAAVTAYIVF 237

** :: *. : * : * ** * . :: . . ...

L.braziliensis RLLLP-- 244
L.mexicana RLLLA-- 244
L.donovani RLLLA-- 244
L.infantum RLLLA-- 244
L.major QLLLA-- 244
T.vivax QLLSSVF 244
T.cruzi LPW---- 241
T.b.brucei RIVF--- 241
T.congolense RFFV--- 241

Multiple protein sequence alignment of DPCK sequences.  

Conserved amino acids are undermarked with asterisks (*). Conservative amino acid 
substitutions are marked with a semi-colon (:) while semi-conservative amino acid 
substitutions are marked with a dot (.). Amino acids that form the CoA binding domain in 
the L. mexicana structure are highlighted in yellow. 
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Appendix 8: Comparison of the T. congolense DPCK and L. mexicana DPCK 

Superposed L. mexicana and T. congolense DPCKs.  

The L. mexicana structure is depicted in magenta while the T. congolense enzyme is depicted 
in blue. The structure of T. congolense DPCK and L. mexicana DPCK were superimposed 
upon each other using the MatchMaker tool on UCSF chimera (Ballante, 2018). Although 
both structures were similar; composed of the LID domain, as well as the CoA and nucleotide 
binding domains, the superimposition revealed a more relaxed and open structure of the L. 
mexicana DPCK compared to the T. congolense one. The T. congolense DPCK seemed to 
show a projected LID domain and a somewhat enclosed CoA binding domain.
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Appendix 9: Surface analysis of L. mexicana DPCK and T. congolense DPCK 

Surface analyses of the (a) L. mexicana DPCK and (b) T. congolense DPCK.  

A surface analysis on chimera showed an open “pore” on the L. mexicana structure that could 
explain why the compounds have access to the CoA binding domain compared to the rather 
hidden domains in T. congolense. On the L. mexicana structure the ATP binding site is 
marked with a red arrow and the CoA binding domain is marked with a yellow arrow while 
on the T. congolense the surface access to the nucleotide and CoA binding domains is marked 
with a red arrow. 

a. 

b. 


