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Abstract

In this era of global climate change, intrinsic rapid and evolutionary responses of invasive
agricultural pests to thermal variability are of concern given the potential implications on
their biogeography and dire consequences on human food security. For insects, chill coma
recovery time (CCRT) and critical thermal minima (CTmin), the point at which neuromuscu-
lar coordination is lost following cold exposure, remain good indices for cold tolerance. Using
laboratory-reared Spodoptera frugiperda (Lepidoptera: Noctuidae), we explored cold tolerance
repeated exposure across life stages of this invasive insect pest. Specifically, we measured their
CTmin and CCRT across four consecutive assays, each 24 h apart. In addition, we assessed
body water content (BWC) and body lipid content (BLC) of the life stages. Our results showed
that CTmin improved with repeated exposure in 5th instar larvae, virgin males and females
while CCRT improved in 4th, 5th and 6th instar larvae following repeated cold exposure.
In addition, the results revealed evidence of cold hardening in this invasive insect pest.
However, there was no correlation between cold tolerance and BWC as well as BLC. Our
results show capacity for cold hardening and population persistence of S. frugiperda in cooler
environments. This suggests potential of fall armyworm (FAW) to withstand considerable
harsh winter environments typical of its recently invaded geographic range in sub-Saharan
Africa.

Introduction

Repeatability or reproducibility experiments are profound tools that were originally developed
for independent testing of the precision of experimental protocols. In biological research,
the repeatability of observational data can be used to track organismal plastic and genetic
responses to stress factors at the individual or population level at various temporal scales
(Avargues-Weber et al., 2015; Niemelä and Dingemanse, 2017; Näslund, 2021). Given the
escalated attention on climate change in recent years, repeatability studies (though controver-
sial) can be pivotal in investigating basal and plasticity of thermal tolerance (Morgan et al.,
2018; O’Donnell et al., 2020; O’Neill et al., 2021) where both environmental and genetic
phenotypic variation effects can be used to determine within-individual trait variability
(Grinder et al., 2020). If the thermal tolerance of a tested organism is consistent over time,
denoting high repeatability, it indicates that the adaptive potential of the trait is high while
the converse is true for low repeatability (Morgan et al., 2018).

For insects, body temperature depends on ambient conditions mediating biochemical
and physiological processes therein (Chown and Nicolson, 2004; Sinclair et al., 2015).
Subsequently, such organismal responses mediate development and can cascade to population
level through factors such as seasonality, geographic distribution and voltinism (Du Plessis
et al., 2020; Phophi et al., 2020; Tarusikirwa et al., 2020; Nyamukondiwa et al., 2022). Of inter-
est is how the magnitude and frequency of thermal extremes in the form of heat waves and
cold snaps wrought by the changing climates influence pest physiology, survival and key life-
history traits (Tollefson, 2014) as it has direct implications on their population dynamics
(Chidawanyika et al., 2012, 2020) and ultimately food security (Gregory et al., 2009). Thus,
apart from magnitude of thermal exposure, insects experience different mode of thermal fluc-
tuations (e.g. acute vs. chronic, rapid vs. slow fluctuations and/or repeated exposures) typical of
diel and seasonal changes (Colinet et al., 2007). Such extremes, and not average temperatures
drive several organismal responses including evolutionary adaptations within and across gen-
erations (Cox et al., 2010; Travis 2014; Buckley and Huey, 2016) and define geographic ranges
via various demographic tipping points (Lynch et al., 2014).
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Indeed, insects have evolved diverse morphological, physio-
logical and behavioural adaptations to withstand and colonize
otherwise lethal novel environments (Bale, 2002; Neal et al.,
2021). For example, overwintering insects are known to survive
stressful low temperatures through employing cold tolerance
strategies such as rapid cold hardening (RCH), freeze tolerance
and freeze avoidance (Sinclair et al., 2015; Feng et al., 2018).
Freeze-tolerant insects survive intracellular ice formation through
use of cryoprotectants, removal of ice nucleators and anti-freeze
heat shock proteins synthesis (Elnitsky et al., 2008; Storey and
Storey, 2012; Toxopeus et al., 2019). On the contrary, freeze-
intolerant/avoidant insects cannot withstand internal ice
formation but survive through keeping their body fluids under
a supercooled condition (Sinclair et al., 2015; Andreadis and
Athanassiou, 2017). RCH, a form of phenotypic plasticity, confers
survival advantages at low lethal temperature after brief pre-
treatment to a prior sub-lethal temperature shock (Lee et al.,
1987; Teets and Denlinger, 2013). Over longer time scales such
prior exposure to sublethal temperatures also confer advantages
to identical future identical thermal stress in what is referred to
as beneficial acclimation (Leroi et al., 1994).

In nature, insects may thus face multiple stressors including
repeated cold stress during diel and seasonal thermal fluctuations
(Marshall and Sinclair, 2010) where the above-mentioned plastic
responses play a role (Nyamukondiwa et al., 2018). Mimicking
such repeated thermal exposure in manipulative experiments
allows investigation of the relationship between repeatability and
adaptive responses (Boake, 1989; Morgan et al., 2018; Grinder
et al., 2020). In this study, we used common measures of cold tol-
erance in critical thermal minimum (CTmin) and chill coma
recovery time (CCRT) as proxies for cold hardiness (Andersen
et al., 2015; Mutamiswa et al., 2018, 2019; Izadi et al., 2019).

CTmin is an organism’s lower thermal tolerance limit where an
insect is incapacitated due to compromised neuromuscular activ-
ity (Sinclair et al., 2015; Izadi et al., 2019). If low temperature
conditions persist, CTmin is followed by chill coma where paralysis
due to complete loss of neuromuscular function occurs (Hazell
and Bale, 2011; O’Neill et al., 2021). The time that an insect
requires to regain neuromuscular function following chill coma
is what is then regarded as CCRT (Sinclair et al., 2015). Given
their ubiquitous occurrence in nature and capacity to define limits
for organismal activity, these key indices provide valuable eco-
logically relevant measures of insect cold tolerance. Thus, under-
standing the evolutionary capacity following repeated exposure
provides important information on their adaptive capacity and
potential geographic range expansion in invasive insects such as
Spodoptera frugiperda.

S. frugiperda is a highly invasive insect pest native to the tro-
pics and sub-tropics of America (Goergen et al., 2016). The larvae
of this polyphagous insect cause significant economic losses in
several important crops but inflict the most damage in the
Poaceae family (Lu and Adang, 1996; Nboyine et al., 2020). In
Africa, S. frugiperda was first detected in Nigeria before rapidly
spreading to 47 countries across the African continent
(Goergen et al., 2016; Cock et al., 2017; Early et al., 2018;
Nboyine et al., 2020). It is highly destructive to maize, Zea
mays, which is a staple food in many parts of Africa (Day et al.,
2017; Kasoma et al., 2021).

S. frugiperda does not diapause, instead it is known to migrate
to environments with favourable conditions for survival (Du
Plessis et al., 2020; Vatanparast and Park, 2022). It has been
reported to survive in Africa, all year-round due to prevailing

conducive biophysical environment (Early et al., 2018; Du
Plessis et al., 2020; Keosentse et al., 2021). The upregulation of
glycerol-3-phosphate dehydrogenase and glycerol kinase genes
for increased synthesis of the cryoprotectant glycerol has been
attributed to the key physiological response to withstand cold
environments in S. frugiperda (Vatanparast and Park, 2022).
However, survival has been reported to be limited in some
cases in Asia where harsh winters decimate seasonal populations
while annual reinvasions provide new propagules (Vatanparast
and Park, 2022). Nevertheless, little is known about the role of
acquired/induced cold tolerance in the fitness of S. frugiperda fol-
lowing prior exposure. Yet, induced cold tolerance can play a key
role in preserving and improving key life-history activities at acute
temporal scales.

Here, we examined the consequences of repeated cold expos-
ure on low thermal tolerance (CTmin and CCRT) of S. frugiperda
life stages across 72 h. We hypothesized that CTmin and CCRT are
repeatable traits and may change over time because of cold hard-
ening. Since body water and lipid content is associated with basal
and induced cold tolerance in insects (or lack thereof), we subse-
quently assessed the two parameters following thermal exposure
to draw inferences on the performance of S. frugiperda and sub-
sequent management.

Materials and methods

Insect culture and maintenance

The initial colony of S. frugiperda was obtained as larvae from the
Agricultural Research Council, Plant Health Protection
(ARC-PHP) Pretoria, South Africa. Thereafter, the insects were
maintained on an artificial diet in the insectary under optimum
conditions of 28°C, 65 ± 5% relative humidity (RH) and
12L:12D photoperiod. Since cannibalism is reportedly predomin-
ant among late larval instars (Chapman et al., 1999), each third
instar larva was individually placed in a separate 100 ml plastic
vial with perforated screw-cap lid and soybean wheat germ artifi-
cial diet (Southland Products Inc., Lake Village, Arkansas, USA)
until pupation. Pupae were maintained in open Petri dishes (30 ×
30 × 30 cm3) in collapsible rearing cages made of mesh cloth until
adult eclosion. Adults were provided with 25% sugar-water from a
moistened cotton wool placed in a Petri dish. At least two maize
plants (3–4 weeks old) were placed in each rearing cage as ovipos-
ition substrate for gravid females. After hatching, the 1st instar
larvae were transferred to an artificial diet for subsequent rearing.
For all the experiments F1 generation of 4th, 5th, 6th instar larvae
and 24–48 h old virgin adults were used.

CTmin and repeated cold exposure assays

To the relationship between CTmin and repeated cold exposure,
larvae and adults (males and females) of S. frugiperda underwent
repeated cold tolerance (CTmin) assays at 0 (control), 24, 48 and
72 h intervals. CTmin were assayed using standardized dynamic
and ecologically relevant protocols (Chidawanyika and
Terblanche, 2011; Chidawanyika et al., 2017). Ten replicate larvae
and adults were individually placed randomly in a series of 200
mm glass tubes (‘organ pipes’) connected to an insulated double-
jacketed chamber linked to a programmable water bath (Grant
model Tx150; Grant Instruments, UK) filled with 1:1 water:pro-
pylene glycol. In the ‘organ pipes’, insects were allowed to equili-
brate for 10 min at 28°C (optimum temperature) before
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decreasing the temperature at a rate of 0.25°C min−1 until their
CTmin were recorded. This was repeated twice for each life stage
to yield sample sizes of n = 20 per treatment. To record chamber
temperature, a thermocouple (type K 36 SWG) connected to a
digital thermometer (53/54IIB, Fluke Cooperation, Everett,
Washington, USA) was inserted into a control (centre) glass
tube of the organ pipes. After each assay, insects were given
time to recover before repeating the same assay across 24, 48
and 72 h intervals using the same batch of insects. CTmin was con-
sidered as the temperature at which insects did not respond to
gentle prodding (e.g. Nyamukondiwa and Terblanche 2009).

Influence of repeated cold exposure on CCRT

CCRT was assessed following Mutamiswa et al. (2018). A total of
ten replicate larvae and adults were placed individually in 7 ml
screw-cap glass vials with 1 mm diameter holes pierced through
cap for ventilation. The vials were then placed into a large zip-
lock bag which was subsequently submerged into a water bath
(Grant LTC40 model TX150) filled with a 1:1 water:propylene
glycol mixture and set at 0°C for 1 h. After 1 h at chill-coma tem-
perature, the tubes were removed from the water bath and trans-
ferred to a Memmert climate chamber (HPP 260, Memmert
GmbH+ Co.KG, Schwabach, Germany) set at 28°C, 65% RH for
recovery. The chamber was connected to a camera (HD Covert
Network Camera, DS-2CD6412FWD-20, Hikvision Digital
Technology Co., Ltd, Hangzhou, Zhejiang, China) that was linked
to a computer where observations were recorded. This was
repeated twice for each life stage to yield sample sizes of n = 20
per treatment. After each assay, insects were exposed to the
same treatment and CCRT measured across 24, 48 and 72 h inter-
vals using the same batch of insects. CCRT was defined as the
time (in min) required for an adult to stand upright on its legs
(Milton and Partridge, 2008).

Determination of body water content (BWC)

After 72 h interval following CTmin and repeated cold exposure
assays, BWC of the insects were determined. Larvae (4th, 5th and
6th instar) and adults were individually placed in a pre-weighed
50ml Eppendorf tubes and the initial mass of each insect before
oven drying was measured (to 0.0001 g) on a Scout Pro
(DHAUS) microbalance (model: Scout Pro SPU 123,
Parsippany, USA). Thereafter, insects were placed in a Memmert
drying oven (UL50, Memmert, Schwabach, Germany) set at 60°C
for 72 h. Insects were allowed to cool under laboratory temperature
conditions of 28°C for 30min thereafter, dry mass was measured (to
0.0001 g) on a microbalance. To determine BWC, dry mass was
subtracted from the initial mass following Bazinet et al. (2010)
and Weldon et al. (2018).

Determination of body lipid content (BLC)

Following BWC assays, the tested insects were further oven dried
for another 72 h at 60°C. Thereafter, the insects were individually
washed in 1.5 ml diethyl ether and then gently agitated at 250 rpm
for 24 h at 37°C using ST 5 CAT orbital shaker (model: Zipperer
GmbH, D 79219 Staufen, Germany) following the methods of
Mitchell et al., (2017). The diethyl ether was then removed
from the tubes and insects were oven dried again at 60°C for
24 h, before reweighing. The lipid content for each individual
was calculated by subtracting the lipid-free dry mass from the

initial dry mass. Controls were exposed to the same conditions
before measuring their lipid content.

Data analysis

Data analyses were carried out in STATISTICA, 13.5.0 version
(Statsoft Inc., 2021) and R version 4.1.2 (R Development Core
Team, 2021). Normality and equality of variances were first
checked using the Shapiro–Wilk and Hartley–Bartlett tests,
respectively. Data for CCRT was linear and met the conditions
for normality and equality of variances (W = 0.83, P = 0.12) and
were analysed using generalized linear models assuming a
Gaussian distribution and an identity link function in R. The
CTmin data also met the linear model assumptions and were ana-
lysed using repeated measures analysis of variance. Tukey–
Kramer’s post-hoc tests were used to separate statistically hetero-
geneous means. The relationship between CTmin and BWC and
BLC were examined using linear regression in STATISTICA.

Results

CTmin and repeated cold exposure assays

CTmin significantly varied across life stages following repeated
cold exposure (F16, 282 = 134.59, P < 0.001) (fig. 1). In 5th instar
and virgin adults, cold tolerance (CTmin) improved with repeated
cold exposure (fig. 1). However, 6th instar larvae showed compro-
mised cold tolerance with CTmin increasing with repeated expos-
ure (fig. 1). Virgin females recorded the lowest CTmin across all
assays relative to other life stages (fig. 1).

CCRT and repeated cold exposure assays

As in CTmin assays, CCRT varied significantly across life stages
with repeated cold exposure (F16, 282 = 4.06, P < 0.001) (fig. 2).
CCRTs of tested instars (4th, 5th and 6th instar) decreased with
repeated cold exposure (fig. 2). In adults (virgin males and
females), CCRT improved following repeated exposure at 24 h
interval and was compromised after 48 and 72 h intervals (fig. 2).

Figure 1. CTmin in adult (virgin male and female) and larval stages of S. frugiperda
following repeated cold exposure. Data points represent means of n = 20 while
error bars denote 95% confidence limits for each gender and life stage. Different let-
ters above error bars denote significant differences.
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Body water and lipid content

BWC did not vary significantly among life stages (F4, 95 = 2.01,
P = 0.98) (fig. 3A). There was no significant difference in BWC
between all tested life stages (fig. 3A). Nevertheless, BWC was
not significantly correlated with low temperature tolerance
(measured as CTmin) (fig. 3B).

Similar to BWC, BLC did not significantly vary among life
stages (F4, 95 = 2.94, P = 0.24) (fig. 4A). As in BWC, BLC was
not significantly correlated with low temperature tolerance such
that CTmin decreased with BLC (fig. 4B).

Discussion

Insect physiological and behavioural adaptations are very import-
ant for determining survival and population dynamics in both
transient and seasonal cold spells (Chown and Nicolson, 2004;
Terblanche et al., 2011; Andrew and Kemp, 2016). As expected,
our results showed that repeated cold exposure influences the fit-
ness of S. frugiperda (determined as CTmin and CCRT). While
insects may face multiple temperature variabilities in winter sea-
son, the repeated cold exposures can trigger responses that may
set the insect on a different physiological path relative to a single
exposure (Marshall and Sinclair, 2010, 2012). In the current study,
CTmin improved with repeated exposure in 5th instar larvae, vir-
gin males and females in agreement with Renault et al. (2004)
who reported improved survival in beetles that were exposed to
repeated cold exposure. A similar trend was reported in
Drosophila melanogaster, with low temperature tolerance improv-
ing following repeated cold exposure in tested insects (Le Bourg,
2007). However, compromised and fluctuating CTmin were
recorded in 6th instar and 4th instar larvae, respectively. Given
this variation across life stages, it therefore indicates that repeated
thermal exposure impacts on CTmin are life-stage dependent.

Figure 3. BWC (g) across different life stages (A) and relationship between BWC and
CTmin (B) in S. frugiperda.

Figure 2. CCRT in adult (virgin male and female) and larval stages of S. frugiperda
following repeated cold exposure. Data points represent means of n = 20 while
error bars denote 95% confidence limits for each gender and life stage. Different let-
ters above error bars denote significant differences.

Figure 4. BLC (g) across different life stages (A) and the relationship between BLC
and CTmin (B) in S. frugiperda.
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While 5th instar larvae, virgin males and females showed
enhanced CTmin across subsequent exposures, virgin females
recorded the lowest CTmin across treatment intervals indicating
that they were the most thermally tolerant. This gives them a fit-
ness and survival advantage when they encounter extreme cold
conditions in nature.

In the present study, repeated thermal exposure improved
CCRT in 4th, 5th and 6th instar larvae and this is in consonance
with Andersen et al. (2017) who reported improved chill-coma
recovery, cellular survival and cold tolerance in Locusta migra-
toria following brief cold exposure periods. However, compro-
mised CCRTs were recorded in adults (males and females) in
keeping with van Dooremalen et al. (2011) who reported CCRT
decrease in Orchesella cincta following repeated cold exposure.
The variations in the current study underlie that CCRT responses
are life-stage dependent. Although CCRT and CTmin are measures
of cold tolerance, surprisingly, 6th instar larvae recorded compro-
mised CTmin and enhanced CCRT indicating that responses also
vary across traits, thus can be trait dependent.

The changes in cold tolerance across consecutive measure-
ments provide insight into potential benefits of short-term accli-
mation to extreme cold events through cold hardening. Our
results showed evidence of cold hardening in S. frugiperda as indi-
cated by improved cold tolerance in some of the life stages. This
suggests significant adaptive potential for cold tolerance in this
invasive insect species and that individuals may also respond dir-
ectly to low temperature extremes through phenotypic plasticity.
While S. frugiperda has been reported to overwinter and survive
all year round in Africa (Kebede and Shimalis, 2018; Prasanna
et al., 2018; Keosentse et al., 2021), the results indicate its poten-
tial to adapt to variable thermal extremes in winter and this may
give it fitness and survival advantage in the face of climate change.
Insects reportedly enhance their cold tolerance through carbohy-
drate cryoprotectants accumulation, antifreezes synthesis, lipid
membranes reordering and either removal (freeze avoiding) or
retaining (freeze tolerant) of ice nucleators (Lee, 2010).
Therefore, differential life-stage responses shown in this study fol-
lowing repeated exposure assays may be a result of variation in
these physiological components of cold hardiness. However, this
warrants further investigation to fully elucidate the responses.

Cold tolerance is dependent on the water content remaining
unfrozen in many cold hardened insects by allowing basal metab-
olism to continue at low temperature levels (Colinet et al., 2007;
Alfaro-Tapia et al., 2021). Reports have shown that reduction in
BWC and subsequent increase in solute concentration may
increase cold tolerance in insects (Worland, 1996). In the current
study there was no relationship between cold tolerance and
BWC. This may be because insects in our assays did not experience
repeated cold conditions that trigger any water loss and subsequent
solute concentration increase. While Keosentse et al. (2021)
reported that BWC increased with larval stage in S. frugiperda,
our results report otherwise on CTmin following repeated exposure.
This may be because our present study measured BWC following
plastic responses while Keosentse et al. (2021) measured basal
BWC. Given these responses, it indicates that S. frugiperda may
trade-off basal BWC for plasticity of thermal tolerance.

Lipid content plays a vital role in cold tolerance as they can
serve as anti-freezers in the insect haemolymph (Sinclair
and Marshall, 2018; Trenti et al., 2022). In winter, most insects
do not feed and may face the unreplaced energy consumption,
water loss and low temperatures (Sinclair et al., 2013; Williams
et al., 2015). Low temperature is one of the stressors which affect

neutral lipid fluidity and mobilization and energy drain, since
lipids are the primary overwintering source of fuel (Sinclair and
Marshall, 2018). As such, most overwintering insects end winter
with fewer lipid stores than at the beginning (Sinclair, 2015).
For example, in laboratory-reared colonies of D. melanogaster,
glycogen levels decreased following repeated cold exposure
(Marshall and Sinclair, 2010). In addition, there was a positive
correlation between BLC and cold tolerance in Drosophila spp.
(Hoffmann et al., 2001; Kaczmarek and Boguś, 2021). However,
in the current study, our results showed no significant correlation
between BLC and cold tolerance in S. frugiperda. A recent study
attributed glycerol as the key cryoprotectant used by S. frugiperda
(Vatanparast and Park, 2022). This therefore suggests that the
influence of BLC on cold tolerance may be species dependent
and glycerol maybe more important in this species.

In conclusion, the current study documents life-stage-related
variation in cold tolerance for S. frugiperda following repeated
thermal exposure. Our results suggest that repeated cold exposure
differentially influences the fitness of S. frugiperda in nature where
vulnerability is life-stage and trait dependent. In addition, the
study provides evidence that cold hardening may be an important
mechanism for S. frugiperda to cope with repeated cold exposure
over the short term. These cold tolerance responses may provide
temporal fitness benefits following repeated cold conditions in
nature hence population persistence under changing environ-
ments. The results also have direct implications on the geographic
distribution of the pest under climate change scenarios where
warming winter seasons will lead to even further spatial expan-
sion and multivoltinism due to favourable conditions. For a pol-
yphagous pest such as S. frugiperda this will be critical as
alternative hosts will support multiple generations enough to
exert pest pressure on the main crop in the subsequent season
(Vatanparast and Park, 2022). In such cases, management prac-
tices should consider area-wide monitoring of the pest popula-
tions even during off-season for early integrated pest
management practices. This may include improved phytosanitary
measures and reduction of alternative hosts on-farm. More
importantly, augmentative releases to boost parasitoid popula-
tions during this period will also be a feasible option to suppress
the pest populations to reduce the pressure in the main crop in
the impending season. This will greatly reduce pest pressure,
but costs are associated with control of the outbreak pest using
synthetic pesticides on-season. Future studies should therefore
determine the intensity of such parasitoid levels to maintain
pest pressure well below economic injury levels.
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