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Abstract: Agroecological farming systems such as maize–legume intercropping (MLI) and push-pull
technology (PPT) have been introduced to mitigate losses from pests. Nevertheless, the regionwide
maize yield gained from practicing such farming systems remains largely unknown. This study
compares the performance of two uncomplex and interpretable models, namely the hybrid fuzzy-logic
combined with the genetic algorithm and symbolic regression, to predict maize yield. Specifically, the
study adopted the best-fitting model to map the potential maize yield under MLI and PPT compared
to the monocropping system in East Africa using climatic and edaphic variables. The best model, i.e.,
the symbolic regression model, accurately fitted the maize yield data as indicated by the low root
mean square error (RMSE < 0.09) and the higher R2 (>0.9). The study estimated that East African
farmers would increase their annual maize yield by about 1.01 and 1.96 rates under MLI and PPT,
respectively. Furthermore, the results showed a fairly good modelling performance as indicated by
low standard deviations (range of 0.70–1.1) and skewness (absolute range of 0.03–0.09) values. The
study guides the upscaling of MLI and PPT systems through awareness creation and public-private
partnerships to ensure increased adoption of these sustainable farming practices.

Keywords: fuzzy-genetic; symbolic regression; integrated pests management; intercropping; sustainable
farming practices

1. Introduction

Maize is the most important staple crop for over 300 million people in Sub-Saharan
Africa (SSA), accounting for 70% of cereal production and 40% of calorie intake in many
households [1,2]. However, various biotic and abiotic stressors threaten maize production,
such as insect pests [3] and unfavourable climatic events [4]. Specifically, climate change,
which has altered rainfall patterns and increased temperature in SSA, exacerbates both
stressors, leaving staple food crops like maize vulnerable [5], [6]. Moreover, extreme climatic
conditions can be conducive to indigenous and invasive insect pests such as stemborers
and fall armyworm by accelerating their growth and development [7–9]. Hence, due to
climate change, crop insect pests have become more damaging, negatively impacting food
and nutrition security [10]. For instance, cereal stemborers like the Busseola fusca Fuller and
Chilo partellus Swinhoe cause up to 80% grain yield loss [11]. Besides, the relatively recent
invasion by the fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) in Africa can cause
a maize yield loss of 8.3–20.6 million tons, valued at US$ 2,481 to US$ 6,187 million [12].
The FAW invasion in Africa has been facilitated by the similarity in climate between SSA
and the pest’s native region in South America [13].

On the other hand, injudicious farming practices, including misuse of synthetic pes-
ticides, can be ineffective in mitigating and controlling these insect pests, as they could
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develop resistance against these agrochemicals [14]. Hence, there is a need to develop
resilient and climate-smart cropping systems and improved integrated pest management
(IPM) solutions for smallholder farmers in Africa to reduce crop yield losses from insect
pests. For instance, agroecological strategies are recommended to improve food and nutri-
tion security through improving crop (e.g., maize) productivity and mitigating large-scale
losses of natural systems. Studies have shown that intercropping patterns can considerably
increase crop production compared to monocropping patterns, particularly in low-input
systems [15–17]. Crops chosen for intercropping typically have different abilities to use
the available resources for growth and development, resulting in increased productivity
and reduced risk that can lead to a complete crop failure [18,19]. A typical example of
successful agroecological practices against crop insect pests is the maize–legume intercrop-
ping (MLI) system and push-pull technology (PPT). The PPT is a climate-smart cropping
system that uses perennial legume (Desmodium ssp.) and grass (Brachiaria ssp.) crops as
companion fodder crops in a maize production system to manage cereal stemborers, and
the parasitic Striga weed [20,21]. Recently, the technology has proved very efficient in
managing FAW [16,22]. The MLI system entails simultaneously planting maize and an
edible legume crop like beans in the same or alternating rows [15]. Generally, both practices
are effective against maize insect pests and weeds; however, studies have shown that MLI
is less effective than PPT. For instance, Midega et al. [16] and Hailu et al. [22] reported an
approximately 80% reduction in pest infestation due to PPT compared with 60% due to the
MLI system.

Improved crop yield due to the MLI and PPT systems is mainly due to a relatively
lower pest infestation rate [16] and more efficient use of natural input resources [15]. It
has been demonstrated that MLI and PPT restore soil fertility and enhance ecosystem
services (e.g., biodiversity, nutrient fixation, and soil organic matter) [23]. Despite these
known benefits, these cropping systems are still underutilized. Thus, there is a need to
assess the potential gain in crop yield from adopting the MLI and PPT systems. At the
policy level, information on potential gains in yield resulting from adopting these farming
systems will serve as an evidence-based asset for scaling these technologies to enhance
food and nutrition security. This can provide informed decision-making for scaling such
climate-smart cropping systems to improve small-scale farmers’ livelihoods, particularly
in SSA.

As previously mentioned, crop yield is not only a function of insect pests and weeds.
Climatic conditions and soil fertility that affect crop physiological processes also substan-
tially influence crops to attain optimum yield. Generally, two complementary modelling
approaches to estimate crop yield are physiological process-based and data-driven em-
pirical models. Physiological models are typically based on experimental understanding
of several crop parameters and factors related to the crop’s physiological processes and,
ultimately, the crop productivity. In contrast, data-driven empirical models are citizen
science approaches that utilise secondary data to explore empirical relationships among
these dependent datasets and some independent predictor variables [24,25]. In SSA, ex-
perimental data, such as crop growth and development parameters and genetic factors
necessary for the process-based models for estimating crop yield, are barely available.
Therefore, data-driven empirical models seem ideal in such a situation because crop yield
data are usually made readily available by various stakeholders and hence can be utilised
in empirical modelling approaches and related to freely available satellite-based predictor
variables like climate and soil factors [26].

Most of the existing data-driven empirical approaches that could explain the relation-
ships between crop yield and predictor variables employ conventional statistical modelling
methods [27]. However, these methods are largely unsuitable for accurately mimicking
the relationship between crop yield and the relevant predictor variables, particularly in
complex agroecosystems. This is because such conventional methods cannot handle the
expected random and systematic noise in both the dependent response (e.g., yield) and
independent predictor (e.g., climate) datasets [28]. Moreover, the conventional methods are
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parametric approaches that require response variables of normal distributions and large
sample sizes to prevent model overfitting (the Hughes problem). Hence, advanced and
cutting-edge machine learning and artificial intelligence methods are known parametric
data science algorithms that can efficiently handle the abovementioned constraints [29,30].

A study by Lughopher et al. [31] demonstrated that fuzzy logic and symbolic regres-
sion (SR) provide reliable results in data-based methods for building regression models.
The SR is an artificial intelligence algorithm that can be employed as an empirical crop yield
data-driven model to effectively explain the relationship between target and predictor vari-
ables. The algorithm is a breakthrough approach that unravels the intrinsic relationships
among response and predictor datasets using mathematical functions [32]. Specifically, the
SR algorithm uses optimization methods such as genetic programming (GP) [33], Bayesian
methods [34], and physics-inspired methods [35]. The most recently used optimization
method for SR is simulated annealing (SA), which is more suitable for approximating the
optimum setting values of a given function, hence yielding superior performances [32]. It
is reported that the SA performs more accurately than the GP [31] and is one of the most
preferred heuristic methods [36].

On the other hand, the fuzzy set theory holds great potential in dealing with uncer-
tainties in data. Fuzzy sets represent the inherent uncertainty in the data and a linguistic
description of the pattern under study, allowing for more accurate conclusions [37,38]. In
addition, fuzzy logic offers flexibility and simplicity, which reduce the model’s vulnerabil-
ity to uncertainty as no exact information about the system is needed [39]. Furthermore,
the fuzzy logic model provides a methodology for describing complex systems and per-
forms better than conventional (parametric) methods for time-varying, nonlinear, adaptive
systems, such as those found in biological and agricultural processes [40]. Besides, the
fuzzy model is flexible and can be combined with optimisation algorithms such as the
genetic algorithm or the neural network, among many other nature-inspired algorithms.
As mentioned earlier, yield prediction depends on many factors that are hard to capture in a
mathematical model based solely on physical principles. Relevant influence factors include
edaphic variables and the climate [41]. The overall objective of this study was twofold: to
compare the performance of two uncomplex and interpretable models, hybrid fuzzy-logic
and genetic algorithms (fuzzy genetic FG) and SR, in predicting maize yield; and to use
the best-fitted model to map the potential maize yield under MLI and PPT compared to
the monocropping system in East Africa using climatic and edaphic variables. We believe
farmers and decision-makers need to be aware of the added value in food and nutrition
security that each technology provides.

2. Materials and Methods

This study used a robust stepwise data-driven empirical approach by comparing two
algorithms, FG and SR, to predict the potential maize yield under MLI and PPT compared
to the maize monocropping system using edaphic and climatic variables. The model that
best explained the relationship between the predictor variables and maize yield under
monocropping, the MLI and PPT with the highest accuracy, was used to extrapolate the
potential maize yield under the two treatments and the control at scale. Specifically, we
estimated the gain in maize yield (t ha−1) due to the MLI and PPT compared to the maize
under the monocropping system as a control.

2.1. Area of Interest

The study area includes three maize-producing countries in East Africa: Kenya,
Uganda, and Tanzania (Figure 1). The monocropping system is the cropping pattern
most commonly used by smallholder farmers in the region because of the minimal invest-
ment required. However, the intercropping (i.e., MLI) strategy of planting common beans
in the same hole as maize is also practised in the region. Whereas PPT, recently introduced
to farmers, is still barely used in the region.
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2.2. Maize Yield Data and Predictor Variables

The maize yield (t ha−1) data were collected in 2020 from farms under PPT, MLI and
the control areas located in Bungoma, Busia, Siaya, and Homabay (Kenya), Iganga, Bugiri,
Tororo, and Bukedea (Uganda), and Tarime (Tanzania). Specifically, the maize data were
collected in nine experimental farms at the sub-county level in western Kenya, eastern
Uganda, and northern Tanzania, where PPT and MLI were tested against the monocropping
system (i.e., the control in this study). We further collated the mean maize yield reported
for each study country (Kenya, Uganda, and Tanzania) for the period 2017–2020 from [42].
We assumed that the FAOSTAT data records were for the maize monocropping system, as
it is the main cropping system in the study countries. Moreover, we used these FAO yield
data to assess our developed models’ performance.

Coupled with the experimental maize data, we used key climate predictor variables,
i.e., temperature, rainfall, and soil fertility parameters (zinc, manganese, nitrogen, mag-
nesium, sodium, iron, copper, boron, potassium, and phosphorus) to empirically predict
maize yield, as described in Shirley et al. [27]. The rainfall and temperature were sourced
from the WorldClim platform (www.worldclim.org (accessed on 20 January 2022)) at ap-
proximately 1 km2 of spatial resolution [43,44], and soil fertility parameters were retrieved
from https://www.isric.org (accessed on 20 January 2022) also at 1 km2 of spatial resolu-
tion. The WorldClim platform provides long-term (1970–2000) annual climatic observations
that are widely used to predict both abiotic and biotic responses [43]. On the other hand,
the maize growing area at 10 km2 spatial resolution was sourced from the MapSPAM
data centre (https://www.mapspam.info/data/ (accessed on 20 January 2022)) [45]. The
MapSPAM data were processed using the “Raster Calculator” tool in QGIS 3.10.9 software
(https://qgis.org/, accessed on 20 January 2022)) [46] and transformed to the presence or
absence of maize crop. We then resampled the maize growing layer to a spatial resolution
of 1 km2 for harmonisation. The area under the maize layer was used to restrict our model
to predict the maize yield within the growing sites.

www.worldclim.org
https://www.isric.org
https://www.mapspam.info/data/
https://qgis.org/
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2.3. Assumption

Overall, our experiment for predicting maize yield assumed that (1) maize growing
area is the restricted spatial domain for our model; (2) maize yield under MLI and PPT are
directly related mainly to rainfall, temperature, and soil fertility; (3) the effects of biotic
factors like crop insect pests and weeds and other edaphic factors are minimal; and (4) the
effect of other climatic factors like relative humidity and CO2 on maize yield is optimal.

2.4. Model Development and İmplementation

We implemented the SR model in the TuringBot software [47] linked to the Python
programing language [48], while the FG model was fully implemented in Python [48]. To
generate the mathematical expressions in SR, building blocks were used. These building
blocks include mathematical operators (such as arithmetic, operators, trigonometric, hy-
perbolic, and exponential functions), variables, and constants. The building blocks are
combined to generate the optimal model. After the random generation of the mathematical
expressions, each operator helps describe the data accurately, and the next generation of
mathematical expressions is created using an evolutionary algorithm (SA in this case).
The selection of the predicting model was based on the generated models’ goodness of fit
and simplicity.

On the other hand, the evolutionary fuzzy inference system powered by the genetic
algorithm automatically generates a set of optimal connection weights required to train the
rules efficiently, thus creating a robust model. The rules are as follows: f 1, f 2, . . . , fn, where
n represents the number of rules:

Rule n : if x is An and y is Bn , then f n = pnx + qny + rn (1)

where An, and, Bn are the membership functions for multiple inputs, including x and y.
Prior to generating the two models, we reduced dimensionality and correlation in our

predictor datasets. Pearson’s correlation test and cluster analysis with a dendrogram were
performed using R statistical software [49]. The 12 least correlated variables (rainfall, zinc,
manganese, nitrogen, magnesium, temperature, sodium, iron, copper, boron, potassium,
and phosphorus) (Figure 2) were input into the two models to predict maize yield. More-
over, we assessed the performance (goodness of fit) of the two models in fitting the data
using the root mean square error (RMSE) and the coefficient of determination (R2).
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2.5. Mapping Maize Yield in the Study Area

To predict maize yield in the entire study area (countries), we created a 1 km2 grid
similar to the resolution of the predictor variables using the “Research tools: create grid”
in QGIS [46]. Then the best-fitted model was extrapolated over the grid to provide a
spatial representation of maize yield within the maize-growing areas in the study coun-
tries using Python programming language [48]. Furthermore, we calculated the mean
simulated maize yield (t ha−1) under the monocropping system in each pixel using the
R statistical software [49]. Subsequently, the simulated maize means yield was compared
to the FAO mean (2017–2020) yield in each country to assess the performance of our de-
veloped data-driven modelling approach. Moreover, we used a fundamental descriptive
statistical approach to further validate our yield estimation. We calculated maize yield in
each centroid of a 2 × 2 km grid in each cropping system treatment (i.e., MLI, PPT, and
monocropping), and then cleaned the data by removing the null values. The remaining
(n = 82,155) yield records were plotted using a distribution histogram. We hypothesised
that a good-performing model should predict maize yield with small standard deviation
and skewness values.

3. Results

Overall, the symbolic regression (RMSE < 0.09 and R2 = 0.99) performed better than the
FG (RMSE < 2 and R2 ranged from 0.87 to 0.90) in fitting the regression data; however, both
models performed fairly well (Table 1). This indicates a highly accurate model performance,
as rainfall, temperature, and soil fertility parameters can explain more than 90% of maize
yield variability under the three farming practices.

Table 1. Model comparison in predicting maize yield class coverage (t ha−1) under monocropping,
maize–legume intercropping (MLI), and push-pull (PPT) systems.

Fuzzy Genetic Symbolic Regression

Treatments R2 RMSE R2 RMSE

Monocropping 0.90 1.52 0.99 0.07
MLI systems 0.87 1.85 0.99 0.06
PPT systems 0.89 1.61 0.99 0.10

The spatial dispensation of maize yield (t ha−1) in the three study countries under the
three production systems using the SR model is shown in Figure 3. The results generally
indicated a low maize yield under monocropping compared with the MLI and PPT systems,
while maize yield was higher under PPT than under the MLI system in all the study
countries. Overall, Kenya, the Rift Valley, and the central, eastern and coastal regions
were predicted with low maize yield under monocropping. Similarly, a low maize yield in
Uganda was estimated in the northern and eastern regions under the same monocropping
system, while the districts of low maize yield in Tanzania were Tabora, Shinyanga, Geita,
Lindi, Iringa, and Dodoma. In contrast, under the MLI and PPT systems, there were no
distinct maize yield trends among the counties and districts, but as earlier mentioned, a
generally higher yield under PPT, as opposed to the MLI system, was predicted.

Results on the net maize yield due to the potential implementation of the MLI and
PPT systems suggest an augmentation. Our modelling experiment predicted that when
the monocropping system is practised, 57% of the study area is of low maize yield, and no
high yield class was predicted (Table 2). Also, the table shows that under the MLI and PPT
systems, 40% and 72% of the study area are under high maize yield, respectively.
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Table 2. Maize yield class coverage (%) under the monocropping, maize-legume intercropping (MLI),
and push-pull (PPT) systems in the entire study area.

Maize Yield Class Monocropping % MLI Systems % PPT Systems %

Low (0–1.5 t ha−1) 57.0 09.0 03.0
Moderate (1.5–3.0 t ha−1) 43.0 51.0 25.0

High (>3 t ha−1) None 40.0 72.0

Furthermore, assessing the performance of our developed SR modelling approach for
the prediction of maize yield at a country level under the monocropping system, it is found
that Tanzania had a higher deviation (29%) as a function of reported and simulated yield
than Uganda (10%) and Kenya (4%) (Table 3).

Table 3. Performance assessment of the developed symbolic regression modelling approach for
predicting maize yield under the monocropping system in each study country.

Country Reported Mean
Maize Yield (t ha−1)

Simulated Mean
Maize Yield (t ha−1) Yield Deviation (%)

Kenya 1.64 1.60 4
Uganda 1.69 1.59 10
Tanzania 2.69 2.40 29

Figure 4 presents the geographical representation of gain in maize yield due to the MIL
and PPT systems compared to the monocropping system. The maps show that Northern
and Eastern Uganda, Tabora and Shinyanga districts in Tanzania and some belts around
the Rift Valley and Eastern Kenya have moderate and high-yield trends under the MLI and
PPT systems. But the increment in maize yield under PPT is more pronounced.



Agronomy 2022, 12, 3085 8 of 12

Agronomy 2022, 12, x FOR PEER REVIEW 8 of 13 
 

 

Table 2. Maize yield class coverage (%) under the monocropping, maize-legume intercropping 
(MLI), and push-pull (PPT) systems in the entire study area. 

Maize Yield Class Monocropping % MLI Systems % PPT Systems % 
Low (0–1.5 t ha−1) 57.0 09.0 03.0 

Moderate (1.5–3.0 t 
ha−1) 43.0 51.0 25.0 

High (>3 t ha−1) None 40.0 72.0 

Furthermore, assessing the performance of our developed SR modelling approach 
for the prediction of maize yield at a country level under the monocropping system, it is 
found that Tanzania had a higher deviation (29%) as a function of reported and simulated 
yield than Uganda (10%) and Kenya (4%) (Table 3). 

Table 3. Performance assessment of the developed symbolic regression modelling approach for pre-
dicting maize yield under the monocropping system in each study country. 

Country 
Reported Mean 

Maize Yield (t ha−1) 
Simulated Mean 

Maize Yield (t ha−1) Yield Deviation (%) 

Kenya 1.64 1.60 4 
Uganda 1.69 1.59 10 

Tanzania 2.69 2.40 29 

Figure 4 presents the geographical representation of gain in maize yield due to the 
MIL and PPT systems compared to the monocropping system. The maps show that North-
ern and Eastern Uganda, Tabora and Shinyanga districts in Tanzania and some belts 
around the Rift Valley and Eastern Kenya have moderate and high-yield trends under the 
MLI and PPT systems. But the increment in maize yield under PPT is more pronounced. 

 

Figure 4. Geographical representation of gain in maize yield (t ha−1) as a result of using the
maize legume intercropping (MLI) and push-pull technology (PPT) systems in comparison with the
monocropping system.

Moreover, the histograms in Figure 5 show the distribution of the predicted maize
yield under each cropping system. The histogram reinforced the finding that there was a
progressive increment in maize yield due to the use of the monocropping (µ = 1.83 t ha−1),
MLI (µ = 2.84 t ha−1), and PPT (µ = 3.79 t ha−1) systems. This indicates that East African
farmers would increase their annual maize yield by about 1.01 and 1.96 rates under MLI
and PPT, respectively. The indicators of good model performance are low variabilities
(standard deviation range 0.7–1.1) and skewness (range of absolute values of 0.03–0.09).
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4. Discussion

This study presents a data-based method for building regression models to map maize
yield under three farming practices, viz., monocropping, MLI, and PPT, using climatic
and edaphic variables as predictors. The study first compared the FG and SR modelling
approaches, with the SR (RMSE < 0.09) and R2 = 0.99) performing better than the FG
(RMSE < 2 and R2 from 0.87–0.90) in fitting the data. The best-fitted model (SR) used for the
spatial analysis in the present study performed well on the experimental maize yield data
for the nine farms, showing highly accurate yield predictions. The three maize farming
systems under which yield was predicted are the commonly used systems in East Africa.

The monocropping system is the region’s most commonly used cropping system. This
is attributed to the fact that poorer East African farmers preferred monocrops, such as maize,
due to the minimal production inputs required [50,51]. On the other hand, recently, farmers
have been introduced to sustainable agronomic practices like MLI and PPT to maximize
land use and reduce risks due to crop pests and climate shocks. Our study provided a maize
yield prediction model under these cropping systems and further compared the estimates
among these cropping systems and the study countries. Moreover, we estimated the gain
in maize yield due to the implementation of the MLI and PPT systems. Our study is the
first attempt to employ an advanced artificial intelligence algorithm for predicting crop
yield under MLI and PPT treatments at scale. Crop yield predictions are mainly made for
monocropping systems using conventional empirical modelling approaches [27]. However,
such approaches either require a large sample size to avoid the Hughes (i.e., overfitting)
problem or several experimental parameters that might not always be available [30].

Generally, the SR algorithm reliably unravels the intrinsic relationships in the maize
yield and predictor variable dataset (RMSE of <0.09 and R2 of >0.9). In addition, our high
modelling performance confirms the ability of advanced artificial intelligence and citizen
science [29] to bypass the limitation of conventional empirical algorithms by correctly
learning from incomplete, noisy experimental data [30]. In this study, the SR model
predicted that more than 90% of maize yield variability could be explained by the predictor
variables when only nine yield data points were used. Furthermore, our study suggests
that the MLI and PPT systems can improve maize yield by about 1.01 and 1.96 rates,
respectively, compared to the monocropping system. This is consistent with other study
findings that showed better maize yield under MLI and PPT than under monocropping
systems [16,21,52,53]. When the simulated yield under the monocropping system in each
country was compared to the reported yield records [42], the results showed that Tanzania
had a higher maize yield deviation (29%), followed by Uganda (10%) and Kenya (4%). This
trend could be due to the nature of the data, which is not well distributed across the three
countries. For instance, Tanzania has only one experimental plot compared to Kenya and
Uganda, which had four plots each. This may explain the low performance of our model in
Tanzania. Moreover, we used a data-driven model that accurately predicted maize yield, as
observed from the low-predicted yield deviations and skewness values.

In addition, relatively higher agronomic advantages could explain maize yield under the
MLI and PPT systems in terms of nutrient fixation and soil organic matter improvement [23],
low pest infestation, and climate resilience [16]. Despite the general trend of yield im-
provement in the study area using MLI and PPT compared to monocropping, some sites
in the three study countries showed low maize yield gain under all the treatments. We
observed that these sites are mainly in areas of low soil fertility, i.e., the soil parameters
were clustered around a very low value. Moreover, these sites might already have optimum
maize production conditions or high crop production constraints.

Our study guides the upscaling of MLI and PPT by creating awareness and public-
private partnerships to ensure the increased adoption of these farming systems. Despite
the potentially increasing maize yield due to both MLI and PPT, as observed in this
study, each technology provides an added value in terms of food and nutrition security,
especially for small-scale farmers. Thus, a hybrid practice combining both techniques
should be developed to increase their adoption rate among African farmers and spread
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these technologies. Nevertheless, this study’s experimental maize yield data might have
been affected by other confounding factors like fall armyworm, stem/stalk borers, and
Striga weed. Hence, extrapolating our experimental findings to a regional scale might
be a source of bias in our modelling results. However, the effect of the confounding
factors on maize yield could have been minor, as our simulated yield data under the
monocropping system were comparable to the previously reported yield records [42]. In
addition, our study targets the benefits in yield that East African farmers can gain when
they use sustainable farming practices toward a conservation biological control approach,
as opposed to the agronomic process of yield growth.

Nevertheless, further studies should investigate the possibility of comparing multiple
AI methods, such as random forest regression, gradient boosting regression, deep neural
network regression, and SR. Moreover, the biological control options, that has been reported
to significantly reduce pests’ population [54–57], could be integrated into the maize yield
prediction models. Since our study showed better maize yield under the MLI and PPT
systems, these technologies’ scaling up should be accompanied by increased farmers’ infor-
mation and communications technology (ICT) tools and device accessibility. Nevertheless,
it is well known that African farmers have limited ICT tools in agriculture [58]. This could
also limit the farmers’ practices, as they do not access pertinent information.

5. Conclusions

This study used a data-driven approach to predict the potential maize yield under MLI
and PPT compared to the monocropping system. The results showed highly accurate fitting
results, as indicated by RMSE (<0.009) and R2 (>90%). In addition, the simulated maize
yield was comparable (4% difference in Kenya, for instance) to the previously reported yield
records. In addition, our model performance was fairly good, as indicated by descriptive
statistic metrics. Our study is the first attempt to predict maize yield under the MLI and
PPT systems using artificial intelligence algorithms at a regional scale. It is recommended
that future studies should integrate other crop production constraints like crop insect pests,
disease, weeds, and biological control agents in modelling maize yield. Overall, the present
study provides yield estimates information at a macro scale that better illustrates the benefit
of using sustainable farming practices to attain food and nutrition security in SSA.
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