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Abstract: Plant viruses and entomopathogenic fungi (EPF) can both elicit immune responses in
insects. This study was designed to clarify whether plant viruses could affect the efficacy of EPF
and explore the immune responses of brown planthopper (BPH), Nilaparvata lugens, in response
to different pathogen infections. In this study, a strain of Metarhizium anisopliae YTTR with high
pathogenicity against BPH was selected and explored whether rice ragged stunt virus (RRSV) could
affect its lethality against BPH. RNA-seq was used to detect the inner responses of BPH in response to
RRSV and M. anisopliae YTTR infection. Results showed that M. anisopliae YTTR has strong lethality
against BPH (RRSV-carrying and RRSV-free). RRSV invasion did not affect the susceptibility of BPH
against M. anisopliae YTTR at all concentrations. At 1 × 108 spores/mL, M. anisopliae YTTR caused a
cumulative mortality of 80% to BPH at 7 days post-treatment. The largest numbers of differentially
expressed genes (DEGs) was obtained in BPH treated with the two pathogens than in other single
pathogen treatment. In addition, KEGG enrichment analysis showed that the DEGs were mostly
enriched in immune and physiological mechanisms-related pathways. Both RRSV and M. anisopliae
YTTR could induce the expression changes of immune-related genes. However, most of the immune
genes had varying expression patterns in different treatment. Our findings demonstrated that RRSV
invasion did not have any significant effect on the pathogenicity of M. anisopliae YTTR, while the
co-infection of M. anisopliae YTTR and RRSV induced more immune and physiological mechanisms
-related genes’ responses. In addition, the presence of RRSV could render the interplay between BPH
and M. anisopliae YTTR more intricate. These findings laid a basis for further elucidating the immune
response mechanisms of RRSV-mediated BPH to M. anisopliae infection.

Keywords: brown planthopper; entomopathogenic fungi; rice virus; innate immunity; RNA-seq

1. Introduction

The brown rice planthopper (BPH), Nilaparvata lugens (Stål) is one of the most de-
structive rice pests and widely spreads in rice paddies in Asia. Indeed, feeding on rice
phloem with its genotype mouthparts, it’s also an important insect vector that transmits
rice ragged stunt virus (RRSV) and rice grassy stunt virus (RGSV) [1,2]. The damage of BPH
severely limits rice production, leading growers to the excessive use of chemical pesticides
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as the main means to control BPH. Long-term excessive and unreasonable use of chemical
pesticides has resulted in BPH resistance to multiple insecticide groups [2–4]. Liao et al. [3]
found that BPH had developed varying degrees of resistance to a broad range of frequently
used insecticides such as thiamethoxam. It was reported that some of the pesticides have a
promotion role in the fecundity and development of BPH, which will accelerate its outbreak
of the pest in the field [3,5,6]. Moreover, other irrational agronomic practices, such as the
irrational use of nitrogen fertilizer, made the control of BPH even more challenging [2,7].

Entomopathogenic fungi (EPF) are major pathogens causing diseases in insect pop-
ulations, and there exist over 1000 different kinds of fungi with lethal effects to the pest.
Compared to chemical control, biocontrol using EPF is not only sustainable but also eco-
friendly, and could prevent the development of resistance in the pest populations. Thus the
use of EPF has great potential for pest management [8–11]. Currently, several EPF includ-
ing Metarhizium anisopliae, Beauveria bassiana, and Lecanicillium lecanii have been reported
to have high mortality effects against BPH [12,13]. M. anisopliae, an important taxon of
EPF [14,15], is widely applied for the control of BPH [15,16]. Jin et al. [17] tested the effects
of different M. anisopliae strains against 3rd-instar nymphs of BPH and reported that the
cumulative corrective mortality rates ranged between 6.5–64.2% at 9 days post-treatment
with the concentration of 100 spores/mm2. In addition, M. anisopliae with the concentration
of 1 × 108 spores/mL was found to cause over 80% mortality to adult BPH at 9 days after
treatment [12]. Tang et al. [16] also demonstrated that when using M. anisopliae CQMa421
against newly emerged adult BPH, at the concentrations of 1 × 105 and 1 × 108 spores/mL,
the LT50 values were about 8 and 5 days respectively. However, the combination of M.
anisopliae CQMa421 and insecticides produced a synergistic effect in suppression BPH. In
addition to killing BPH through direct spraying (inundative application), M. anisopliae may
also act as endophytes by colonizing a host plant to systemically control BPH [18,19].

Insects possess a strong immune system to defend themselves against external
pathogens invasion, and it plays an indispensable role in promoting insects’ commu-
nity prosperity [20,21]. Insect innate immunity contains cellular and humoral immunity,
which work together to guard against alien pathogens [22–26]. The advances in omics
techniques have led to an upsurge in the field of insect immunity [13,27–32]. In humoral
immunity, when pathogens were recognized by pattern recognition receptors (PRRs), the
relevant signaling pathways were triggered including Toll, Immune deficiency (Imd), Janus
kinase/signal transducers and activators of transcription (JAK/STAT), Prophenoloxidase
(PPO), and RNA interference (RNAi) pathways. The antimicrobial substances were then
released to attack the harmful pathogens [22,33]. Plant viruses, like other foreign pathogens
in the insect system, can trigger the immune response of their host insect vector [13,32].
Yoshikawa et al. [34] reported that both BPH-transmitted viruses (RRSV and RGSV) caused
changes in the activity of detoxification enzymes, but at different degrees for different
viruses, sexes, and resistant strains. Plant viruses can persist in vector insects, and they
co-evolve in more intricate interactions with vector insects [33,35,36]. They can manipulate
the host’s immune response by weighing their pathogenicity and proliferation, enabling
long-term existence in the vectors [33,36]. Additionally, RRSV can cause apoptosis in the
salivary gland cells of BPH, but only some regions were affected [37].

Plant viruses and EPF could co-exist in hosts where both have complex immune
interactions with vector insects [22,33,35]. It is therefore important to understand whether
RRSV invasion could affect the lethality of the entomopathogenic fungus M. anisopliae YTTR
and the immune interactions between M. anisopliae YTTR and BPH. In addition, how BPH
responds to infection by the two external pathogens is still unclear. Our previous study
showed that M. anisopliae YTTR has a highly lethal effect on BPH (unpublished data). All
tested individuals died at 12 days post-treatment at the concentration of 1× 108 spores/mL
and with a LT50 value of 5 days. The body of BPH was stiff after infection with M. anisopliae
YTTR, followed by hyphae and conidia development, which is consistent with the general
symptoms developed after EPF infection of pests (Figure S1). In this study, we assessed
whether RRSV infection could affect the virulence of M. anisopliae YTTR against BPH. The
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study further investigated the RRSV-mediated immune response of BPH to M. anisopliae
YTTR infection and the response of BPH to the two different pathogens (M. anisopliae YTTR
and RRSV) using the RNA-seq approach.

2. Results
2.1. Effect of RRSV on the Lethality of Metarhizium anisopliae YTTR against BPH

To explore RRSV-mediated effects on the pathogenicity or virulence of EPF to BPH,
M. anisopliae YTTR was used to treat the RRSV-carrying and RRSV-free adult females BPH.
The results showed that the survival rate of adult females was decreased with an increased
concentration of M. anisopliae YTTR and days after treatment, whether in the presence
or absence of RRSV (Figure 1). Compared to RRSV-free BPH, RRSV invasion did not
significantly (p > 0.05) affect the survival rate of BPH after M. anisopliae YTTR infection at
all concentrations.
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Figure 1. Survival curves of BPH showing RRSV-meditated lethal effects of Metarhizium anisopliae
YTTR against BPH. Data are mean ± SEM (n = 30), and significant differences were represented
by definite P value and asterisk (** p < 0.01; *** p < 0.001; **** p < 0.0001) (Logrank test). In fact, 0,
106, 107, and 108 are the various concentrations of M. anisopliae YTTR at 0, 1 × 106, 1 × 107, and
1 × 108 spores/mL, respectively. RRSV– and RRSV+ represent RRSV-free or RRSV-carrying BPH
respectively.

2.2. Transcriptome Data Quality Control and Gene Annotation Analysis

RNA-seq was used to explore the effect of RRSV on the responses of BPH to M.
anisopliae YTTR infection. RRSV-free BPH was treated with Tween-80 (CK) or M. anisopliae
YTTR (SF), and RRSV-carrying BPH was also treated with Tween-80 (SV) or M. anisopliae
YTTR (CI), respectively. After checking the quality of total RNA and sequencing, each
sample generated an average of 49.2 G raw reads. The clean reads of each sample were
above 6.8 GB, the GC content ranged between 46.69–48.33%, and the Q30 quality was
higher than 92%. The percentage was uniquely mapped with the reference genome in
12 samples ranging from 65.81% to 68.97%, and the total matching rate was higher than
79.73% in all samples (Table S1). All the data indicated the high quality of RNA-seq of each
sample.

All clean reads were annotated with the major databases (NR, Swiss-Prot, Pfam,
EggNOG, GO, and KEGG). As shown in Figure S2A, 11,753, 11,089, 16,080, 19,537, 13,355,
and 14,947 genes were obtained from the six databases, respectively. Among them, the NR
database has the largest number of annotated genes: 19,537.
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2.3. Differential Expressed Genes Analysis

To clarify the expression of DEGs among the four treatment groups (CK, SF, SV, and
CI), every two or pairs treatment groups were compared based on the DEGs analysis where
six comparison groups (CI vs. SF, CI vs. CK, CI vs. SV, SV vs. CK, SF vs. CK, and SF vs.
SV) were defined. In each comparison group, 256, 338, 166, 258, 149, and 195 DEGs were
obtained respectively (Figures 2 and S2B). Among these groups, 132, 147, 87, 110, 78, and
107 DEGs were up-regulated, respectively (Figures 2 and S2B). The greatest number of
DEGs were obtained in CI vs. CK, which included 147 DEGs that were up-regulated and 191
DEGs that were down-regulated (Figures 2 and S2B). This indicates that co-infection with
RRSV and M. anisopliae YTTR arouses more strong responses for BPHs genes’ expression.
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Figure 2. Volcanic plots of DEGs in each combination group. RRSV-free BPH were treated with
Tween-80 (CK) or Metarhizium anisopliae YTTR (SF) and RRSV-carrying BPH were also treated with
Tween-80 (SV) or M. anisopliae YTTR (CI), respectively. After 12 h, RNA-seq was performed. The
expression of DEGs among the four treatment groups (CK, SF, SV, and CI) were compared with any
two treatment groups. CI vs. CK, SF vs. CK, SV vs. CK, CI vs. SF, CI vs. SV, and SF vs. SV were
defined. (A–F) respectively means the comparison group of CI vs. CK, SF vs. CK, SV vs. CK, CI vs.
SF, CI vs. SV, and SF vs. SV.
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2.4. Venn’s Diagram Analysis

According to the result of Venn’s diagram analysis (Figure 3), 218 (37.91%) DEGs were
solely expressed in CI, which expression may be attributed to RRSV and M. anisopliae YTTR
invasion. These DEGs were mapped to 174 pathways in the KEGG database (Table S2)
and these pathways were involved in six categories, among which 11 pathways were
annotated to the category of the immune system. In addition, some immune-related signal
transductions such as the TNF signaling pathway and MAPK signaling pathway were
found. Fifty (22 + 28) (8.70%) DEGs were co-expressed between CI vs. CK and SF vs. CK,
which may be responsible for M. anisopliae YTTR invasion, while 98 (70 + 28) (15.65%) DEGs
were expressed in the comparison groups of CI vs. CK and SV vs. CK, indicating that these
genes were induced after RRSV invasion. Furthermore, 28 (4.87%) DEGs were co-expressed
among the three comparisons (SF vs. CK, SV vs. CK, and CI vs. CK), which mapped to
14 pathways according to KEGG annotation. Most pathways were also performed with
functions related to immunity (Table S3).
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Figure 3. Venn’s diagram of DEGs in comparison groups. RRSV-free BPH were treated with Tween-80
(CK) or Metarhizium anisopliae YTTR (SF) and RRSV-carrying BPH were also treated with Tween-80
(SV) or M. anisopliae YTTR (CI), respectively. After 12 h treatment, RNA-seq was performed. The
expression of DEGs among the four treatment groups (CK, SF, SV, and CI) were compared with any
two comparison groups. CI vs. CK, SV vs. CK, and SF vs. CK were defined.

2.5. KEGG Enrichment Analysis

The results of KEGG enrichment showed that KEGG was mainly enriched in im-
mune, metabolic, and signal transduction-related pathways in the six comparison groups
(Figure 4). The number of DEGs in significantly enriched pathways was much higher
in CI vs. CK and CI vs. SF than in the other four comparison groups (padjust < 0.05)
(Figure 4A,D). After pathogens invasion, most immune-related pathways such as Toll and
Imd signaling pathway, and MAPK-related pathways were significantly enriched. Toll
and Imd signaling pathway was found in all the six comparisons with enriched different
levels, especially in the groups CI vs. CK, SF vs. CK, and SV vs. CK (Figure 4A−C)
(padjust < 0.05). Indeed, immune-related pathways, pathways participating in vital physi-
ological processes were also enriched. Amino acid (arginine and tryptophan) synthesis,
nutrition digestion and absorption (protein, vitamin, and fat), and harmful substances
(caffeine and alcoholism) metabolism-related pathways were also significantly enriched.
The longevity regulating pathway was enriched in comparisons containing CI, which may
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be attributed to the co-infection of the two pathogens arousing more longevity-related
genes response (Figure 4A,D,E).
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Figure 4. Enrichment map of DEGs in KEGG pathways. RRSV-free BPH were treated with Tween-80
(CK) or Metarhizium anisopliae YTTR (SF) and RRSV-carrying BPH were also treated with Tween-80
(SV) or M. anisopliae YTTR (CI), respectively. After 12 h treatment, RNA-seq was performed. The
expression of DEGs among the four treatment groups (CK, SF, SV, and CI) were compared with any
two comparision groups. CI vs. CK, SF vs. CK, SV vs. CK, CI vs. SF, CI vs. SV, and SF vs. SV were
defined. (A–F) respectively means the result of the enrichment map in the comparison group of CI vs.
CK, SF vs. CK, SV vs. CK, CI vs. SF, CI vs. SV, and SF vs. SV.

2.6. Immune-Related Genes’ Expression Level in Transcriptome Data

To further understand the immune-related genes’ expression in the different treat-
ments, insect major humoral immunity pathways (PRRs, Toll pathway, IMD pathway,
JAK-STAT pathway, Serine protease cascade, PPO cascade, and JNK pathway) were se-
lected. The 66 immune-related genes were selected in transcriptome data and the results
showed that different genes had different expressions among the four treatments (CK,
SF, SV, and CI) (Figure 5; Table S4). In PRRs, after pathogens treatment, the relative ex-
pression level of galection-4 was enhanced significantly in SF, SV, and CI; and PGRP-LB
and dscam2 expression in the three treatments were also higher than that in CK. However,
β-1,3-GBP expression was reduced greatly in pathogens infection treatments (SF, SV and CI)
(Figure 5A; Table S4). For the Toll pathway, most genes’ expression did not differ signifi-
cantly among the four treatments. While the expression of myd88 and defensin showed more
extensive variations among the four treatment groups (CK, SF, SV, and CI). Myd88 was
down-regulated in SF and SV, while defensin was highly expressed in SF and CI (Figure 5B;
Table S4). In the IMD pathway, IKK and IAP-1 were highly expressed in SV and CI, while,
IAP-1′s expression in SF was significantly reduced compared with that in the other three
treatments (CK, SV, and CI). After M. anisopliae YTTR treatments (SF and CI), the expression
of ankyrin3 was reduced compared with that in CK (Figure 5C; Table S4). In addition,
Hopscotch’s expression was reduced significantly after pathogens (M. anisopliae YTTR and
RRSV) infection. Additionally, the expression of SCS5 was enhanced in the three treatments
(SF, SV, and CI) compared with that in CK (Figure 5D; Table S4). For the cascade of Serine
protease and PPO, the largest number of genes was annotated in these cascades and most
genes’ expressions were down-regulated. The expression of SP7 in SF was significantly
higher than that in the other three treatments (Figure 5E; Table S4). However, the highest
expression of TNF-α was found in SF, and the lowest in CI (Figure 5F; Table S4).
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Figure 5. Relative expression levels of immune-related genes in RNA-seq. RRSV-free BPH were
treated with Tween-80 (CK) or Metarhizium anisopliae YTTR (SF), and RRSV-carrying BPH were
also treated with Tween-80 (SV) or M. anisopliae YTTR (CI). (A–F) respectively means the pathogen
recognition receptors (PRRs), Toll pathway, immune deficiency pathway (IMD pathway), Janus
kinase/signal transducers and activators of transcription pathway (JAK-STAT pathway), Serine
protease cascade and Prophenoloxidase cascade (PPO cascade) and c-Jun N-terminal kinase pathway
(JNK pathaway). The heatmap was constructed based on the relative expressions of immune genes
compared to CK in RNA-seq. Different colors mean different multiples, and red indicates high
expression and blue indicates low expression.
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2.7. Transcriptomic Data Validation

Ten DEGs were randomly selected in each comparison group to verify the reliability
of the transcriptomic data using RT-qPCR. The results showed that the expressions of these
selected genes in RT-qPCR were consistent with the transcriptome results, indicating the
reliability of the transcriptome data (Figure 6, Table S5).
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Figure 6. Transcriptomic data validation by RT-qPCR. RRSV-free BPHs were treated with Tween-80
(CK) or Metarhizium anisopliae YTTR (SF), and RRSV-carrying BPHs were also treated with Tween-80
(SV) or M. anisopliae YTTR (CI). (A–C) respectively means the expressions of DEGs among the three
comparision groups of CI vs. CK, SF vs. CK, and SV vs. CK.

The four genes (Toll, Myd88, PPO, and TNF-α) in Figure S3 were also found in the
transcriptome data (Figure 5). According to the comparison results of the four genes’
relative expression levels in RNA-seq and RT-qPCR (Table S6), 75% of the comparison
results were consistent. Additionally, all the gene expressions differences in the pair of CI
vs. CK were consistent between transcriptome data and RNA-seq data.

3. Discussion

M. anisopliae is an important species of EPF, which is widely used for the management
of BPH [12,15,16,18]. In our study, it was found that the M. anisopliae YTTR had high
pathogenicity to BPH. Our findings showed that, when the concentration of M. anisopliae
YTTR reached 1 × 108 spores/mL, all the infected individuals can be killed within 14 days
after treatment. The high pathogenicity of the fungus shows a strong potential of M.
anisopliae YTTR in controlling the pest under field conditions. In rice paddies, the moist or
humidity and hidden environment could significantly facilitate the growth of M. anisopliae
YTTR and could consequently reduce its degradation under UV in the rice cropping
systems.

Plant viruses have a complex mutualistic relationship with their vector insects. They
can persist within their vectors for a long time and achieve long-lasting transmission by reg-
ulating the interactions between their pathogenicity and proliferation [33,35]. Most studies
of immune interactions between rice viruses and vector insects are mainly focused on Laodel-
phax striatellus and its transmitted rice viruses, such as the rice stripe virus (RSV) [36,38,39].
Zhou et al. [40] showed that the chronic presence of RSV in L. striatellus could suppress
the expression of antiviral genes, TLR13, and promoting virus transmission. There also
exists a complex interplay between RRSV and BPH [34,37]. In this study, we demonstrated
whether the effect of RRSV on the immunity of BPH could produce any supplement im-
pact on the efficacy of M. anisopliae YTTR. Our findings showed that RRSV did not affect
the susceptibility of BPH against M. anisopliae YTTR at all concentrations, indicating that
RRSV infection had no significant effect on the virulence of M. anisopliae YTTR against the
insect pest. This result was consistent with the findings reported by Garza-Hernández
et al. [41], who reported that the Dengue virus did not affect the M. anisopliae fatal efficacy
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against Aedes aegypti (L.) (Diptera: Culicidae). To further explore RRSV-mediated immune
responses of BPH to the fungal infection, M. anisopliae YTTR was used for RNA-seq at a
concentration of 1 × 108 spores/mL.

The advances in omics technology have provided a convenient vehicle for studying
the interactions between insects and pathogens, where the use of RNA-seq to study insect
innate immunity has become more prominent [13,27,32]. Based on our previous study and
other related studies [13], after 12 h post-treatment with Tween-80 or M. anisopliae YTTR,
the four treatments (CK, SF, SV, and CI) were prepared to proceed with transcriptome
sequencing. Our results showed that the largest numbers of DEGs were obtained in CI
vs. CK, with 147 up-regulated genes and 191 down-regulated genes. This indicates that
BPH treated simultaneously with the two pathogens expressed more DEGs than any
single pathogen treatment. Fifty (8.70%) DEGs were co-expressed between the group
of SV vs. CK and SF vs. CK, and these genes may play a common anti-pathogen role
against fungi or viruses. Compared with CK, SF, SV, and CI treatments down-regulated
the expressions of PGRP-LF, β-1,3-GBP, Ankyrin3, Hopscotch, SPI, SP-snake, SPIB5, SPIB10,
Lyzome2, I-Lysozyme3, and TNF-α-H, which may be attributed to the negative relationship
with the pathogens (M. anisopliae YTTR and RRSV), and up-regulated the expression of
PGRP-LB, Galectin-4, Dscam2, Defensin, SCS5, and PPAF [36,40]. Some genes were only
highly expressed in one pathogen treatment, which may be due to the fact that these genes
have a special anti-pathogen role [38–40]. For example, TNF-α and draper were highly
expressed in SF and SV, respectively. IKK and IAP-1 were highly expressed in SV and CI
compared with those in SF and CK, which may be due to the fact that these two genes play
key anti-viral roles [39,40]. SF had higher expression of SP7, and lower expression of IAP-1
than the other three treatments, which may be attributed to the anti-fungal role of these
genes [13]. In addition, 218 (37.91%) DEGs were solely expressed in CI vs. CK, indicating
that the co-invasion of RRSV and M. anisopliae YTTR may lead to these genes solely
expressed in CI. TNF-α in SF was the highest expressed and the lowest in CI. We speculated
that these two genes have an anti-fungal role and that the co-infection of RRSV and M.
anisopliae YTTR suppressed the expression of TNF-α. The analysis of the KEGG pathways
that enriched them in the top 20 pathways showed that DEGs were mainly enriched in
immune-related pathways in the six comparison groups. It indicated that the pathogens’
invasion significantly initiated immune-related gene responses. In addition to the response
of immune genes, the energy metabolic and synthetic pathways were also enriched, which
means that the immune responses were energy-consuming processes requiring high energy
levels to compensate for the consumption of immune responses [42–44]. These findings
showed that there is a complex interaction between the insects and these pathogens. In
this study, we mainly focus on humoral immune response, therefore, to further explore
immune-related genes’ expression patterns in RNA-seq, 66 genes including in six major
insect humoral pathways were selected. We found that, although some selected genes’
expressions were not significantly different among the four treatments, especially the Toll
pathway genes, most of the genes had varying expression patterns in different treatments,
or even showed completely opposite expression patterns between different treatments,
such as SP7, TNF-α, galectin-3, IKK, and IAP-1 [23,45–47]. At the same time, the expression
of related genes in CI did not show the same expression pattern as that observed in SF, such
as IAP-1, lysozyme3, galectin-3, and TNF-α, which might be due to the presence of RRSV,
and thus these genes in response changed to different degrees [40]. The expression of the
four genes (Toll, Myd88, PPO, and TNF-α) in our study have the same significance level or
similar expression trend in three comparision groups compared with RNA-seq. Further, the
expression level of the selected 19 genes that were used to validate transcriptomic data in
four treatments using RT-qPCR was consistent with its expression level in RNA-seq, which
proved the reliability of the RNA-seq approach. The results of RNA-seq and our study
suggested that there is a complex interaction between both pathogens and insects. BPH
showed different degrees of responses to the invasions of the different pathogens, while the
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presence of RRSV could induce more intricate immune responses of BPH after M. anisopliae
YTTR infection.

The largest number of selected genes were involved in the serine protease cascade.
Additionally, this cascade plays an indispensable role in insect immunity by regulating
antibacterial peptide synthesis, PPO activation, and melanin production [48–50]. It is also
engaged in some vital physiological processes [51,52]. Hence, further study should mainly
focus on the cascade, by exploring the mechanism of RRSV-meditated BPH to M. anisopliae
infection.

4. Conclusions

In summary, this study showed that M. anisopliae YTTR has a high virulence against
BPH, and the presence of RRSV did not affect the susceptiblity of BPH to M. anisopliae
YTTR infection. Transcriptome sequencing was used to explore the immune responses of
RRSV-mediated BPH in response to M. anisopliae YTTR infection, where we established
that immune-related genes expressed different responses to defend against different types
of pathogens invasion. More genes were induced after the treatment of M. anisopliae YTTR
when the RRSV was present in the host insect, while the presence of RRSV could also
induce a more intricate immune response of BPH after M. anisopliae YTTR infection. In
addition to the immune response, the expression of genes involved in crucial physiological
processes was also significantly changed after pathogens invasion, especially for encoun-
tering RRSV and M. anisopliae YTTR infections. The findings of this study laid a basis to
further clarify the immune response mechanism of RRSV-mediated BPH to M. anisopliae
infection, and consequently, explore the immune regulatory mechanism of BPH in both
pathogen infestations, digging more into resistance genes to improve the level of control of
BPH in rice cropping systems.

5. Materials and Methods
5.1. Materials

The test rice variety used was Taichung No. 1 (TN1), an insect and disease susceptible
strain. RRSV-infected rice was tested by outer symptoms and RT-PCR, and positive samples
were selected as RRSV-carrying rice for subsequent experiments [53].

BPH were long-term reared in an artificial climate chamber with 26± 1 ◦C, L:D = 14:10
and RH maintained at 70% ± 10%. They were continuously reared on TN1 for at least
10 generations prior to the bioassays. Newly molted BPH nymphs were used for virus
acquisition by feeding them on RRSV-carrying rice. After two days of feeding, these
nymphs were removed and placed on RRSV-free rice and waited for them to grow up into
newly eclosion adults. RRSV-carrying BPH was also tested by RT-PCR.

The test EPF used in the study was M. anisopliae strain YTTR, kindly provided by Dr.
Shouping Cai, Fujian academy of forestry. The M. anisopliae strain YTTR was cultured on
potato dextrose agar (PDA) medium and placed in an artificial incubator at 26 ± 1 ◦C and
under dark conditions.

5.2. RRSV Meditated the Virulence of Metarhizium anisopliae YTTR against BPH

M. anisopliae YTTR conidia were harvested from 7 days culture by scraping the conidia
into sterile centrifuge tubes on a sterile operating surface under a safe cabinet, and where
sterile water containing 0.1% Tween-80 (named Tween-80) was added and vortexed for
about 5 min to produce homogenous conidial suspensions. To determine the concentration
of mother suspensions, conidial counts were made using a Neubauer Hemacytometer [54].
The conidial suspension was adjusted to appropriate working concentrations through serial
dilutions prior to bioassays. Three concentrations (1.0× 106, 1.0× 107, 1.0× 108 spores/mL)
were prepared using hemocytometer. The conidial suspension of each concentration was
used to treat newly emerged adult BPH females (RRSV-carrying and RRSV-free) using a
hand-held sprayer, while Tween-80 was used as a control treatment. Hence, four treatments,
CK (Tween-80 against RRSV-free BPH), SF (single fungus infection, M. anisopliae YTTR
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against RRSV-free BPH), SV (single virus infection, Tween-80 against RRSV-carrying BPH),
and CI (co-infection, M. anisopliae YTTR against RRSV-carrying BPH) were defined. Each
treatment used a volume of 2 mL of suspension or Tween-80 to treat the insect. After
air-drying, BPH were moved to a self-made BPH rearing device where rice seedlings were
provided to them as a food source and changed every three days. The cultural solution, the
Kimura B culture solution, was also changed every two days. The experiment was set up
in Randomized Complete Block Design (RCBD) with three biological replicates where 30
BPH adult females were used per treatment. Mortality was observed daily, and the number
of dead insects was recorded and then removed.

5.3. Transcriptomic Sequencing

A previous study explored the RRSV-mediated effect on the expressions of immune
genes of BPH to M. anisopliae YTTR infection at the concentration of 1 × 108 spores/mL
(Figure S3). RRSV-free BPH were treated with Tween-80 (CK) or M. anisopliae YTTR (SF),
and RRSV-carrying BPH were also treated with Tween-80 (SV) or M. anisopliae YTTR (CI),
respectively. The three insect major humoral pathways (Toll pathway, Prophenoloxidase
(PPO) cascade, and c-Jun N-terminal kinase (JNK) pathway) were selected and the four
major genes in these pathways were measured (Toll and Myd88 in Toll pathway, PPO
in PPO cascade and TNF-α in JNK pathway). It is commonly regarded that the Toll
pathway was activated by G+ bacteria and fungi, however, a few studies found that the
Toll pathway could be initiated by plant viruses [39,40]. JNK pathway and PPO cascade
also could be activated after plant virus infection [36,38]. After 4, 8, 12, 24, 48, and 72 h post-
treatment, selected genes’ expression were detected by RT-qPCR. Results showed that M.
anisopliae YTTR and RRSV could induce different immune genes’ responses (Figure S3). In
addition, the expressions of immune genes did differ between the single M. anisopliae YTTR
treatment (SF) and the co-infection with M. anisopliae YTTR and RRSV (CI). Additionally,
they even showed completely opposite expression patterns between SF and CI. Further, the
expressions of immune genes were higher at the early stage (4–12 h post-treatment) of M.
anisopliae YTTR infection than those at the later stage (24–72 h post-treatment). Hence, the
time node of 12 h post-treatment was selected as the RNA sampling time for transcriptomic
sequencing.

Samples from the four treatment groups (CK, SF, SV, and CI) as described above
were collected 12 h after treatment. Three biological replicates were set up with 30 BPH
adult females per treatment. The total RNA were extracted from the survived insects from
the four treatments using the Trizol method. Additionally, the quality of the RNA was
checked by Nanodrop 2000 (Thermofisher, Waltham, MA, USA) and agarose gel. The
quality-checked RNA was enriched through oligo (dT), fragmented, reversed to cDNA,
adding connectors, and then sequenced by Illumine platform, and these procedures were
performed by Majorbio Biomedical Technology Co. (Shanghai, China).

5.4. Transcriptomic Data Analysis

The raw data were assessed through quality control, removing adaptor, sequences with
high N (N for uncertain base information) rates, and short-length reads. The data/reads
(named clean reads) were then subjected to subsequent analysis. Clean data/reads were
compared with the reference genome (https://www.ncbi.nlm.nih.gov/genome/?term=
Nilaparvatalugens) (Access date: 24 September 2014) by using HISAT2 (http://ccb.jhu.
edu/software/hisat2/index.shtml). Based on the comparison results, the clean reads
were assembled and spliced into transcripts using StringTie (http://ccb.jhu.edu/software/
stringtie/) and then annotated for analysis. Alignment of annotated genes was done with
six major databases (NR (ftp://ftp.ncbi.nlm.nih.gov/blast/db/), Swiss-Prot (http://web.
expasy.org/docs/swiss-prot_guideline.html), Pfam (http://pfam.xfam.org/), EggNOG
(Clusters of Orthologous Groups of proteins, http://www.ncbi.nlm.nih.gov/COG/), GO
(Gene Ontology, http://www.geneontology.org) and KEGG (Kyoto Encyclopedia of Genes
and Genomes, http://www.genome.jp/kegg/)). Gene expression levels were compared by
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ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://web.expasy.org/docs/swiss-prot_guideline.html
http://web.expasy.org/docs/swiss-prot_guideline.html
http://pfam.xfam.org/
http://www.ncbi.nlm.nih.gov/COG/
http://www.geneontology.org
http://www.genome.jp/kegg/
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quantitative analysis using RSEM (http://deweylab.github.io/RSEM/) based on the value
of FPKM (Fragments Per Kilobases per Million reads) (FPKM value > 0). To clarify the inner
responses of BPH at the different treatment groups (CK, SF, SV, and CI), any two treatment
groups were compared based on the DEGs analysis, and the six comparison groups (CI vs.
SF, CI vs. CK, CI vs. SV, SV vs. CK, SF vs. CK, and SF vs. SV) were defined. The differential
expressed genes (DEGs) were analyzed by Degseq 2 (|log2FC| ≥ 1, p ≤ 0.05). Venn’s
diagram was constructed to analyze the common or specific DEGs in different treatment
comparisons. DEGs in each two-pair comparison were analyzed for KEGG enrichment,
and these genes were enriched in the top 20 KEGG pathways using R scripts and Fisher’s
exact test. Immune-related genes’ expressions were extracted from the transcriptome data
and the relative expression levels of those genes compared with its expression in CK were
analyzed. The data were analyzed on the online platform of Majorbio Cloud Platform
(www.majorbio.com) [55].

5.5. Transcriptome Data Validation

Randomly selected DEGs from transcriptome data were performed to verify the
reliability of transcriptome data. RT-qPCR was used to verify the expression level of DEGs
in BPH. According to the sequences of transcriptome data, special primers were designed,
and β-actin was used as an internal reference gene (Table S5) [56]. Total RNA was extracted
from the four treatments (CK, SF, SV, and CI) using Trizol method as described above. The
RNA was reverse transcribed for cDNA using a reverse transcription kit (Vazyme, Nanjing,
China). Using the cDNA as a template, the expression level of each gene was detected
using RT-qPCR. The protocols were conducted with reference to the kit (Vazyme, Nanjing,
China).

The expressions of the four genes that were previously measured (Figure S3) were
used to detect the validation of transcriptome data. The four genes’ relative expression
levels were computed by comparing their expression in treatments (SF/SV/CI) with CK. In
addition, the relative expression levels of those genes between transcriptome data and in a
previous study (Figure S3) were compared to further validate the reliability of transcriptome
data.

5.6. Data Analysis

All the data were analyzed using SPSS 22 and GraphPad Prism 9.0.0. The median
lethal time (LT50) of M. anisopliae YTTR against the rice planthoppers (RRSV-free or RRSV-
carrying) was analyzed using Probit analysis [57]. LT50 value means the number of post-
treatment days for 50% of the test individuals that die, and a t-test was performed to
analyze the significance level using SPSS 22. The survival rate of BPH was tested with a
Logrank test (GraphPad) with significant differences at p < 0.05, 0.011, 0.001, and 0.0001.
The relative expressions in the four treatments were counted by 2−∆∆Ct [58] and analyzed
using ANOVA followed by Duncan’s test (SPSS 22). The significance level of all tests was
set at p < 0.05 or p < 0.01. The data of RNA-seq were analyzed using the online platform of
Majorbio Cloud Platform (http://www.majorbio.com) [55].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12020345/s1, Figure S1: The disease symptoms of Metarhiz-
ium anisopliae YTTR-infected BPH (mycosis); Figure S2: The number of annotated genes in major
databases (A) and DEGs in different treatment groups (B); Figure S3: RRSV-mediated effects on the ex-
pression of immune genes of BPH encountering Metarhizium anisopliae YTTR infection; Table S1: RNA
Sequencing data statistics and the comparison results with the reference genome; Table S2: Analysis
of KEGG annotation of DEGs expressed only in the comparison of CI vs. CK alone; Table S3: Analysis
of KEGG annotation of co-expressed DEGs in three comparations; Table S4: Detailed information
about immune genes that were annotated in RNA-seq; Table S5: Primers used in transcriptomic data
validation; Table S6: Relative expression of selected four genes in RNA-seq and RT-qPCR.
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