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Edible insects are currently promoted worldwide as an alternative animal protein source, but they are mostly still 

harvested from the wild where they are predisposed to contamination with agrochemicals. This study analysed six 

species of edible insects ( Ruspolia differens, Rhynchophorus phoenicis, Schistocerca gregaria, Oryctes sp, Pachnoda 

ephippiata and Acanthoplus sp) collected from different habitats and/or reared in the laboratory in Kenya and 

Uganda for safety from agrochemical contaminants using liquid chromatography tandem mass spectrometry. 

The residue levels were statistically compared with the Codex Alimentarius Commission maximum residue limits 

(MRLs). Residues of only nine agrochemicals were detected in the insects out of 374 chemicals which were 

screened. The detected agrochemicals include two insecticides (aminocarb and pymetrozine), three herbicides 

(atraton, methabenzthiazuron and metazachlor) and four fungicides (carboxin, fenpropimorph, fludioxonil and 

metalaxyl). Ruspolia differens and adult Oryctes sp were free from detectable levels of any agrochemical. Whereas 

the pesticides residue levels in most insect samples were within maximum residue limits, some of them notably 

P. ephippiata from black soldier fly larval frass, R. phoenicis from oil palm and P. ephippiata from plant compost 

contained 2-, 8- and 49-fold higher levels of atraton, methabenzthiazuron and metazachlor, respectively, than 

MRLs. These findings demonstrate that edible insects may accumulate harmful residues of agrochemicals from 

the environment where they breed or forage, rendering them unsafe for human consumption or feeding animals. 

The mechanisms for possible bioaccumulation of these agrochemicals in the insects remains to be investigated. 

Development of methods for farming edible insects under regulated indoor conditions to ensure their safety as 

sources of food or feed is recommended. 
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. Introduction 

Worldwide, human consumption and trade in insects has been pop-

lar in selected communities for generations, but these activities are

apidly spreading to other communities ( Egonyu et al 2021 ; Kelemu et al

015 ; Magara et al 2021 ; Tanga et al 2021 ; Verner et al 2021 ). Value

ddition through new food products development is growing as a way

f improving acceptability of edible insects to consumers ( Cheseto et al

020 ; Maiyo et al 2022 ; Ssepuuya et al., 2016 ). The most common ed-

ble insects in East Africa and other countries in sub-Saharan Africa

re long-horned grasshoppers ( Ruspolia differens ), mopane worm ( Go-

imbrasia belina ), armoured bush cricket ( Acanthoplus sp), house crick-

ts ( Acheta spp), palm weevil larvae ( Rhynchophorus phoenicis ), cabbage

ree emperor moth ( Bunaea alcinoe ), Silkmoth ( Anaphe panda ), termites
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 Macrotermes spp) and rhinoceros beetles ( Oryctes spp) ( Kelemu et al.,

015 ; Kusia et al., 2021 ; Mugova et al., 2018 ). In Uganda and Kenya, ter-

ites, grasshoppers, locusts and crickets are among the most commonly

onsumed insects ( Egonyu et al., 2021 ; Kelemu et al., 2015 ; Kusia et al.,

021 ). However, these insects are still largely harvested from the wild

here they are predisposed to contamination with different agrochemi-

als which spillover from crop farms to wild vegetation where the insects

orage or breed ( Belluco et al., 2013 ; Murefu et al., 2019 ; van der Fels-

lerx et al., 2018 ). Although edible insects are commonly heat processed

e.g., sun drying, roasting and deep frying) which may cause evapo-

ation or degradation of pesticide residues, not all types of pesticides

an be eliminated by heat ( Nuran and Yakup, 2019 ). Also, some insects

e.g., grasshoppers and termites) are eaten in raw form in some com-

unities in Uganda and Kenya ( Agea et al., 2008 ; Kelemu et al., 2015 ;
ober 2022 
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usia et al., 2021 ), hence expossing consumers to the risk of pesticide

oisoning. Whereas the risk of pesticide contaminants in edible insects

nd insect-derived food products have been assessed in some parts of the

orld e.g., Belgium and Canada ( Kolakowski et al., 2021 ; Poma et al.,

017 ), and Kuwait and Saudi Arabia ( Egonyu et al., 2021 ), informa-

ion on harmful agrochemical residue levels for African edible insects is

carce. 

Millions of tons of pesticides are annually used to control pests and

isease-vectors worldwide, with an estimated 10,000-100,000 tons im-

orted into East Africa in 2018 ( FAO/WHO, 2018 ; Sarkar et al., 2021 ).

n some African countries like Uganda, some organochlorine pesticides

hich were banned in the 1970’s due to persistence in the environment,

on-selectivity and high toxicity are still detectable in the environmen-

al matrices at varying concentrations, suggesting that they could still

e used illegally ( Ntirushize et al., 2019 ; Mukiibi et al., 2021 ). Most of

he agrochemicals are not judiciously used, while some expire and are

nappropriately disposed of due to weak regulatory systems in most de-

eloping countries ( Akpan and Olukanni, 2020 ; Bempah et al., 2011 ;

AO/WHO, 2018 ; Fayiga et al., 2018 ). This situation predisposes the

nvironment and non-target organisms and the food chains to chem-

cal contamination, hence posing serious health risks to consumers of

ild collected foods like edible insects. Health complications associated

ith pesticide food poisoning range from acute symptoms like headache

nd stomachache to chronic impacts like cancer and endocrine disorders

 Bempah et al., 2011 ; Chiou et al., 2015 ). The lipophilic nature of most

esticides favors their quick accumulation in fats of organisms like edi-

le insects ( Maitera et al., 2018 ). Analysis of the scale of agrochemical

esidue levels in edible insects is an important step in designing mea-

ures of mitigating their hazardous impacts to insect consumers. 

Pesticide residues in food are monitored with reference to the

odex Alimentarius Commission maximum residue limits (MRLs) in

g/kg, determined by field trials combined with toxicological risk

valuations ( Boobis et al., 2008 ). Maximum residue limits refer to

he maximum allowable levels of pesticide residues in food products

 Kolakowski et al., 2021 ). Although no MRLs are defined for edible in-

ects, published values for meat/meat products have been suggested to

pply ( Kolakowski et al., 2021 ; Poma et al., 2017 ). 

In this study, we analyzed six species of edible insects collected from

ifferent habitats or reared in the laboratory in Uganda and Kenya for

74 pesticides residues relative to MRLs in meat and meat products

 FAO/WHO, 2016 ). For pesticides whose MRLs are not defined, 0.1

g/kg was adopted as the MRL according to Kolakowski et al., (2021) .

he research questions were: (i) which pesticides are detectable in sam-

les of the edible insects? (ii) When present, do pesticide residue levels

n the different insect samples exceed the permissible MRLs? 

. Materials and methods 

.1. Insect sample collection 

Details of insect samples are presented in Table S1. A total of 12

atches of whole raw and plucked deep fried wild collected R. differens

dult samples (6 batches each) were purchased from three randomly

elected traders from Katwe and Busega markets in Uganda’s capital

ity, Kampala in December 2020. Wild collected R. phoenicis larvae (6

atches; 3 from oil palm and 3 from raffia palm) were sampled from

nfested palms in Kalangala, Uganda in June 2020. The palms were pur-

osively selected based on symptoms of infestation with palm weevils,

nd cut down to extract the weevil larvae. Adult wild collected desert

ocust Schistocerca gregaria (3 batches) were sampled from swarms at

arsaloi, Maralal, Samburu, Kenya in October 2020 when the locust

lague had invaded the country. Laboratory reared samples of adult S.

regaria (3 batches) were obtained from the colony maintained at the

nternational Centre of Insect Physiology and Ecology ( icipe ), Nairobi

ince 1991 ( Njagi and Torto, 2002 ) with periodic infusions with wild

ollections whenever there’s an invasion. Adult Oryctes sp samples (3
2 
atches) were obtained from the fourth generation of a colony at icipe

eared on cattle dung and its larvae (3 batches) were collected on cattle

ung from a farm at Kasarani, Nairobi, Kenya in February 2021. The

olony at icipe was initiated with collections from Busia, Kenya in Au-

ust 2019. Acanthoplus sp adults (3 batches) were collected from wild

rasses at the outskirts of Kumi district headquarters, Uganda in Septem-

er 2019. A total of 9 batches of P. ephippiata larvae were collected from

attle-dung, plant compost and black soldier fly frass (3 batches each)

t the icipe campus in February 2021. Coordinates from sampling sites

ere taken using a Global Positioning System (GPS) (GARMIN eTrex

0X, Garmin Ltd, Olathe, Kansas, U.S.A.) and plotted using Arc Map

GIS 3.10.9 software ( Fig. 1 ). Apart from S. gregaria which was sam-

led from the wild and also in the laboratory, all insects tested were

nique species from either wild or laboratory. Therefore, all the insect

amples were analyzed as stand-alone treatments. 

Insect samples obtained from icipe campus were placed in sterile zip

ock bags and killed by freezing at -80°C; whereas the insect samples

btained from distant places were immediately placed in sterile zip lock

ags and transported in cool boxes with flaked ice to icipe , where they

ere preserved in a freezer at -80°C prior to use. 

.2. Sample preparation 

Each insect sample ( ∼200 g) was homogenised in a blender. The

amples were then freeze-dried and stored at -20 °C until chemical anal-

sis. Modified Quick, Easy, Cheap, Effective, Rugged, Safe (QuECHERS)

nd liquid chromatography tandem mass spectrometry (LC-MS/MS)

 Poma et al., 2017 ) were used in sample preparation and analysis of

esticide residues in insect samples. Briefly, 2.0 g of each insect batch

as weighed into a 15 mL Polypropylene (PP) falcon tube containing

uECHERS salts ((PSA, C18EC, Bulk Carbograph and MgSO 4 (Agilent

echnologies, Inc. Folsom)) and 7 mL of Acetonitrile was added. The

ixture was shaken for 1 min, vortexed for 1 min, sonicated for 5 min

Branson 2510, Danbury, CT, USA) and centrifuged at 4200 relative cen-

rifugal force (rcf) for 5 min. Aliquot (2 mL) of the supernatant was

ransferred into a clean glass tube, where it was concentrated to dryness

nder a gentle nitrogen stream and reconstituted in 150 μL ACN:MilliQ

1:1 v/v). The samples were filtered through a 0.22 μm nylon membrane

nto 2 mL clear glass vials, each containing 250 μL conical point glass

nserts (Supelco, Bellefonte, PA, USA) and immediately analyzed using

C-MS/MS. 

.3. Liquid chromatography mass spectrometry (LC-MS/MS) 

The analysis of insect samples (0.2 μL), mostly in triplicates, but

lso in duplicates due to limited availability, was performed on a Wa-

ers Xevo TQ-S LC-MS/MS (Waters Corp., Milford, MA). The chromato-

raphic separation was done on a Waters ACQUITY ultra-performance

iquid chromatography (UPLC) I-class system fitted with an ACE C 18 

olumn (250 mm × 4.6 mm i.d., 5 μm) from Advance Chromatography

echnologies, Aberdeen, Scotland. Mobile phase A was 10 mM ammo-

ium acetate (pH 5) in water, whereas the mobile phase B comprised

0 mM ammonium acetate (pH 5) in methanol. The following gradi-

nt elution program was used: 0.25 min, 2% B; 0.25–12.25 min, 2–99%

;13.00 min, 99% B; 13.01–17.00 min, 2% B. The flow rate was held

onstant at 0.45 mLmin − 1 . The Ultra UPLC system was coupled to a

evo TQ-S equipped with an electrospray ionization source operated

n positive mode. The LC inlet and MS acquisition methods were au-

omatically generated from Waters® Quanpedia Database where up to

hree MRM transitions for each of the 374 pesticides (Table S2) in the

ata base were targeted. The method was optimized and validated by

unning a mixture of pesticides standard following LC-MS/MS criteria

or residue analysis according to European Commission (2015) . The cali-

ration curves and matrix-matched calibration standards were prepared

rom seven calibration levels covering 0.01-100 pg/μL using the certi-

ed pesticides standard mixtures (Dr. Ehrenstorfer, Augsburg, Germany,
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Fig. 1. Insect sampling sites in Uganda and Kenya. 
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 95% purity). The analysis included the zero point in blank extracts of

he respective matrices. The resultant calibration curves were used to

etermine the method’s limit of quantification (LOQ) (minimum con-

entration that could be quantified with acceptable accuracy and pre-

ision), and limits of detection (LOD). Other MS parameters included,

apillary voltage, 3.3 kV; desolvation gas temperature, 250°C; source

emperature, 150°C; nitrogen desolvation flow rate, 600 L/h; cone gas

ow rate,150 L/h; and collision gas Argon at 3.5 ×10 − 3 mbar. Extract-

ng solvent and experimental blanks were assessed during the analysis;

hereby no quantifiable target compounds were found in the blank sam-

les. 

.4. Statistical analyses 

Permutation-based one sample t-tests were carried out to compare

esticide residue values in the insect samples (Tables; 1-3) with MRLs us-

ng MKinfer package ( Kohl, 2020 ) in R statistical software version 4.1.2

 R Development Core Team, 2021) . Mean pesticide residue levels in the

amples and the 95% permutation percentile confidence intervals are

resented. Other pesticides with only 2 samples were not statistically

nalysed, but their means and standard errors of the means were com-

uted and presented. 

. Results 

.1. Agrochemicals detected in edible insects 

A total of nine pesticides were detected in the edible insect sam-

les out of 374 which were screened. These included two insecticides

 Table 1 ], three herbicides [ Table 2 ] and four fungicides [ Table 3 ]. The

ungicides fenpropimorph and metalaxyl were the most detected pesti-

ides, i.e., detected in 50 % and 33.3 % respectively of insect batches

nalyzed. Atraton (herbicide) and carboxin (fungicide) were the least

etected pesticides (each detected in 8.3 % of the samples analyzed). 
3 
.2. Pesticides residue levels in the edible insects relative to maximum 

esidue limits 

No pesticide residues were detected in adult R. differens (both raw

nd fried) and adult Oryctes sp (reared on cattle dung) ( Tables 1-3 ).

rom the insecticides recorded, the mean concentration of aminocarb

n wild collected S. gregaria and that of pymetrozine in R. phoenicis from

il palm were significantly lower than MRLs; whereas the residue lev-

ls of aminocarb in R. phoenicis from raffia palm were not significantly

ifferent from MRL. 

The mean residue concentration of the herbicide atraton in P. ephip-

iata from BSF frass was statistically higher than the MRL. The residue

evel of the herbicide methabenzthiazuron in R. phoenicis from oil palm

as significantly higher than MRL. 

For fungicides, the mean concentration of carboxin residues in P.

phippiata collected from cattle dung was significantly higher than MRL.

imilarly, the residue levels of fenpropimorph in wild S. gregaria and P.

phippiata from BSF frass were significantly higher than MRL, but the

oncentration of this fungicide in Oryctes sp larvae was not statistically

ifferent from MRL. Residue concentrations of fludioxonil in reared S.

regaria and R. phoenicis from raffia palm were significantly higher than

heir corresponding MRLs, while the concentration of this fungicide in

. ephippiata from BSF frass was not statistically different from the MRL.

etalaxyl residue levels detected in Oryctes sp larvae and P. ephippiata

rom cattle dung were comparable to MRLs, whereas the residue level

f this fungicide in P. ephippiata from BSF frass was significantly higher

han MRL. 

For residue levels which were not subjected to statistical tests

ecause of having only two replicates, pymetrozine in P. ephippiata

rom plant compost was numerically lower than MRL; while levels of

ethabenzthiazuron, fenpropimorph and metalaxyl in Acanthoplus sp,

nd methabenzthiazuron in reared S. gregaria were numerically com-

arable to MRLs. On the other hand, the level of fenpropimorph in P.

phippiata from cattle dung was numerically 13-fold higher than MRL;
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Table 1 

Insecticide residues (mg/kg) detected in six species of edible insects sampled from different habitats in Kenya and Uganda. 

Country of origin 

Sample 

description 

Aminocarb Pymetrozine 

Mean [CI] t df P 

Mean 

[CI]/ ± SE t df P 

Uganda Raw R. differens - - - - - - - - 

Fried R. differens - - - - - - 

Acanthoplus sp - - - - - - - - 

R. phoenicis from raffia palm 0.03 a [0.02, 0.03] -3.7 2 0.25 - - - - 

R. phoenicis from oil palm - - - - 0.02 b 

[0.01, 0.03] 

-17.5 2 < 0.001 

Kenya Reared S. gregaria - - - - - - - - 

Wild S. gregaria 0.01 b [0.01, 0.01] -97.4 2 < 0.001 - - - - 

Adult Oryctes sp - - - - - - - - 

Oryctes sp larva - - - - - - - - 

P. ephippiata from BSF frass - - - - - - - - 

P. ephippiata from cattle dung - - - - - - - - 

P. ephippiata from plant compost - - - - 0.06 ± 0.01 - - - 

Maximum residue limit (mg/kg) 0.05 a 0.1 a 

Key: (-) = Insecticide not detected; [x, y] = confidence interval; lower case super script letters within a column that are different from those 

on the MRL value indicate a significant difference between the residue level and the MRL. The MRLs of pesticides used were in accordance to 

FAO/WHO, (2016) and Kolakowski et al., (2021) . 

Table 2 

Herbicide residues (mg/kg) detected in six species of edible insects sampled from different habitats in Kenya and Uganda. 

Country of origin 

Sample 

description 

Atraton Methabenzthiazuron Metazachlor 

Mean [CI] t df P 

Mean 

[CI]/ ± SE t df P 

Mean 

± SE t df P 

Uganda Raw R. differens - - - - - - - - - - - - 

Fried R. differens - - - - - - - - - - - - 

Acanthoplus sp - - - - 0.01 ± 0.00 - - - - - - - 

R. phoenicis from raffia palm - - - - - - - - - - - - 

R. phoenicis from oil palm - - - - 0.08 b 

[0.05, 0.10] 

3.5 2 < 0.001 1.4 ± 0.03 - - - 

Kenya Reared S. gregaria - - - - 0.01 ± 0.01 - - - - - - - 

Wild S. gregaria - - - - - - - - - - - 

Adult Oryctes sp - - - - - - - - - - - - 

Oryctes sp larva - - - - - - - - - - - 

P. ephippiata from BSF frass 0.2 b 

[0.18, 0.22] 

5.8 2 < 0.001 - - - - - - - - 

P. ephippiata from cattle dung - - - - - - - - - - - - 

P. ephippiata from plant compost - - - - - - - - 0.49 ± 0.04 - - - 

Maximum residue limit (mg/kg) 0.1 a 0.01 a 0.01 

Key: (-) = Herbicide not detected; [x, y] = confidence interval; lower case super script letters within a column that are different from those on the MRL 

value indicate a significant difference between the residue level and the MRL. The MRLs of pesticides used were in accordance to FAO/WHO, (2016) and 

Kolakowski et al., (2021) . 
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hereas that of fenpropimorph in P. ephippiata from plant compost was

4.5-fold higher than MRL. 

. Discussion 

Agrochemicals are among the priority pollutants monitored in a

ide variety of matrices due to their amalgamation into foods, wa-

ers, air, and soil, which may signify potential health hazards to hu-

ans ( Chaunjiang et al., 2010 ). In our study, we detected nine out of

74 agrochemicals screened in wild collected edible insects including

wo insecticides (aminocarb and pymetrozine), three herbicides (atra-

on, methabenzthiazuron and metazachlor) and four fungicides (car-

oxin, fenpropimorph, fludioxonil and metalaxyl). These pesticides ex-

st in several formulations with unique physicochemical properties and

re commonly used in both Kenya and Uganda to boost agricultural

roductivity ( Bon et al., 2014 ; Houbraken et al., 2018 ; MAAIF., 2021 ;

ulu et al., 2018 ; PCPB., 2010 ). Insecticides are generally the most toxic

esticides to the environment, followed by fungicides and herbicides

 Yadav, 2010 ). The levels of most pesticide residues observed in the

nsects were lower than their corresponding MRLs, suggesting that the

esticides may have not directly been applied to the insects, but rather
4 
hey could have originated from indirect contact with pesticide contam-

nated materials along the food chains, breeding habitats or handling

rocess. Further research is necessary to confirm the pathway through

hich the insects could have picked up the pesticide residues in the

nvironment. 

Atraton, metazachlor and methabenzthiazuron are broad spectrum

erbicides used to control broad-leafed weeds and grasses in cereals

nd onions ( Fenoll et al., 2014 ; Hussain et al., 2008 ; Singh et al.,

017 ). Fenpropimorph, carboxin and metalaxyl are systemic fungi-

ides, whereas fludioxonil is a contact fungicide ( Bon et al., 2014 ;

oubraken et al., 2018 ). The insecticides (pymetrozine and aminocarb)

re effective at 52 - 104 𝜇gmL − 1 in controlling piercing and sucking

nsect pests ( Boina et al., 2011 ; MAAIF., 2021 ; PCPB., 2010 ). These pes-

icides are however not readily biodegradable ( Jablonowski et al., 2012 ;

arucchini and Zadra, 2002 ; USEPA., 2000 ) and their persistence in the

nvironment predisposes wild organisms like edible insects to bioac-

umulation of pesticide residues ( Houbraken et al., 2018 ; Singh et al.,

017 ). 

Our results show that adult R. differens , both raw and fried, was

he only species analyzed where no detectable level of any pesticide

as recorded. This may be attributed to the preference of this insect
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5 
o feed on inflorescences of wild grasses, and it rarely attacks crops,

ence minimizing its chance of direct contact with pesticides which are

sed in crop protection ( Bailey and McCrae, 1978 ; Leonard et al., 2020 ;

cCrae, 1982 ; Opoke et al., 2019 ). This species also swarms only dur-

ng rainy seasons when vegetation is abundant ( Matojo and Njau, 2010 ),

hich may minimize the risk of coming into contact with concentrated

evels of pesticides in agricultural fields due to the dilution effect of

bundant rain water. Nonetheless, investigation of possible occurrence

f detoxifying enzymes in R. differens as is reported in other grasshop-

ers like Oedaleus asiaticus (Orthoptera: Acrididae) ( Wang et al., 2020 )

s warranted. 

Whereas the adult Oryctes sp from icipe colony were free from any

etectable pesticide residues, two fungicides (fenpropimorph and meta-

axyl) were detected in its wild conspecific larvae collected from cattle

ung. Cattle dung and much of the environment, including water bodies

re reportedly contaminated with pesticide residues ( FAO/WHO, 2018 ;

ubus et al., 2000 ; Peterson et al., 2020 ; Sarkar et al., 2021 ). Oryctes spp

arvae have relatively higher feeding rates than their adult conspecifics

 Soltani et al., 2008 ) and therefore, they may more likely accumulate

esticide residues than adults. It is also known that Oryctes spp lar-

ae are more susceptible to biopesticides than their adult conspecifics

 Sreelatha et al., 2011 ), probably due to differences in their capacities

o detoxify chemicals, but this needs further confirmatory studies. 

Although the pesticide residue levels in most samples of the insects

ere within maximum residue limits, some of them notably P. ephippiata

rom BSF frass, R. phoenicis from oil palm and P. ephippiata from plant

ompost contained numerically and statistically 2-, 8- and 49-fold higher

evels of atraton, methabenzthiazuron and metazachlor, respectively,

han MRLs. The statistically higher mean concentrations of these pes-

icides than their corresponding MRLs could be attributed to their high

revalence in the substrates on which the insects feed, coupled with en-

ironmental factors, but these need empirical studies for confirmation.

he pesticide residues detected within their corresponding MRLs in edi-

le insects suggest either a reduced usage of these pesticides or their high

ate of detoxification by environmental factors. Also, insects possess in-

ate capacities to detoxify pesticides through biotransformation and/or

onjugation with different compounds (van der Oost et al., 2003). Dif-

erences in degradation potentials in insects may therefore lead to vary-

ng bioaccumulation levels ( Bosch et al., 2017 ; Johnson et al., 1971 ;

andrum and Poore, 1988 ). Despite some pesticide residues being de-

ected below or within the MRLs, their presence in edible insects is a

afety concern which warrants action to mitigate further possible con-

aminations of wild collected edible insects to ensure consumer safety. 

. Conclusion and recommendations 

Most of the edible insects analysed were contaminated with insecti-

ides, fungicides and herbicides residues, although only a few of them

ad toxic levels of the pesticides. The level of insect contamination with

esticides depended on the insect species, life stage and sampling sub-

trate. It remains unclear how the pesticide residues found their way

nto the insects. Development of insect farming methods under regu-

ated indoor conditions is highly recommended to ensure their safety as

ources of food and feed. 
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