
Citation: Mudereri, B.T.;

Abdel-Rahman, E.M.; Ndlela, S.;

Makumbe, L.D.M.; Nyanga, C.C.;

Tonnang, H.E.Z.; Mohamed, S.A.

Integrating the Strength of

Multi-Date Sentinel-1 and -2 Datasets

for Detecting Mango (Mangifera indica

L.) Orchards in a Semi-Arid

Environment in Zimbabwe.

Sustainability 2022, 14, 5741. https://

doi.org/10.3390/su14105741

Academic Editor: José Manuel Mirás-

Avalos

Received: 21 March 2022

Accepted: 28 April 2022

Published: 10 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Integrating the Strength of Multi-Date Sentinel-1 and -2
Datasets for Detecting Mango (Mangifera indica L.) Orchards in
a Semi-Arid Environment in Zimbabwe
Bester Tawona Mudereri 1,* , Elfatih M. Abdel-Rahman 1 , Shepard Ndlela 1 , Louisa Delfin Mutsa Makumbe 2,
Christabel Chiedza Nyanga 2 , Henri E. Z. Tonnang 1 and Samira A. Mohamed 1

1 International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, 00100 Nairobi, Kenya;
eabdel-rahman@icipe.org (E.M.A.-R.); sndlela@icipe.org (S.N.); htonnang@icipe.org (H.E.Z.T.);
sfaris@icipe.org (S.A.M.)

2 Plant Quarantine Services Institute, 33 km peg Mazowe Bindura Highway, P. Bag 2007, Mazowe, Zimbabwe;
makumbelouisa@gmail.com (L.D.M.M.); chiedzanyanga@gmail.com (C.C.N.)

* Correspondence: bmudereri@icipe.org

Abstract: Generating tree-specific crop maps within heterogeneous landscapes requires imagery
of fine spatial and temporal resolutions to discriminate among the rapid transitions in tree pheno-
logical and spectral features. The availability of freely accessible satellite data of relatively high
spatial and temporal resolutions offers an unprecedented opportunity for wide-area land use and
land cover (LULC) mapping, including tree crop (e.g., mango; Mangifera indica L.) detection. We
evaluated the utility of combining Sentinel-1 (S1) and Sentinel-2 (S2) derived variables (n = 81)
for mapping mango orchard occurrence in Zimbabwe using machine learning classifiers, i.e.,
support vector machine and random forest. Field data were collected on mango orchards and
other LULC classes. Fewer variables were selected from ‘All’ combined S1 and S2 variables using
three commonly utilized variable selection methods, i.e., relief filter, guided regularized random
forest, and variance inflation factor. Several classification experiments (n = 8) were conducted
using 60% of field datasets and combinations of ‘All’ and fewer selected variables and were com-
pared using the remaining 40% of the field dataset and the area underclass approach. The results
showed that a combination of random forest and relief filter selected variables outperformed
(F1 score > 70%) all other variable combination experiments. Notwithstanding, the differences
among the mapping results were not significant (p ≤ 0.05). Specifically, the mapping accuracy of
the mango orchards was more than 80% for each of the eight classification experiments. Results
revealed that mango orchards occupied approximately 18% of the spatial extent of the study
area. The S1 variables were constantly selected compared with the S2-derived variables across the
three variable selection approaches used in this study. It is concluded that the use of multi-modal
satellite imagery and robust machine learning classifiers can accurately detect mango orchards and
other LULC classes in semi-arid environments. The results can be used for guiding and upscaling
biological control options for managing mango insect pests such as the devastating invasive fruit
fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

Keywords: Google Earth Engine (GEE); land use and land cover (LULC); machine learning;
multi-algorithm classification; pest control; variable selection; SAR

1. Introduction

Spatial characterization and mapping of land use and land cover (LULC) provide crucial
planning tools and decision support systems through the quantification and evaluation of
the spatial distribution of fundamental natural resources such as mango (Mangifera indica L.)
orchards [1–4]. Such tools can be used for numerous strategies, such as the implemen-
tation and upscaling of integrated pest management (IPM) options, estimation of crop
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production, and assessing the distribution and resilience of food systems. Additionally,
LULC features can be utilized as primary input variables in the geospatial crop, pest, and
pollinator modeling approaches [5]. The LULC information is thus key in strengthening
the spatio-temporal agricultural planning and driving progress towards achieving the
overarching United Nations sustainable development goals (UN SDGs) and commitment
to end hunger, food insecurity, and all forms of malnutrition (availability, access, and uti-
lization) by 2030 [6]. Mango is among the crop systems that can substantially contribute to
achieving the mentioned SDGs by providing food and generating income for impoverished
smallholder farmers [7,8].

Worldwide, mango is one of the most important nutritional and cash tree fruit crops
in tropical and subtropical regions [9]. The crop provides income and sustains food and
nutritional security for approximately 25% of the smallholder farmers in sub-Saharan
Africa [8]. In 2020, the mango-harvested area in Africa was ~967 × 103 ha, contributing
to ca 12.3% of the global mango production [10]. The demand for mangos and other vari-
ous fruits and vegetables is increasing globally because of population growth, societal
affluence, improved lifestyles, and the general increase in health awareness and nutritive
benefits [8,11]. This demand is also attributed to the 400 g recommended daily intake of
fruit and vegetables by the food and agriculture organization (FAO) and the world health
organization (WHO) [8,11]. Avocado, mango, orange, peach, and guava were identified
as the most popular exotic fruit tree species commonly consumed in Zimbabwe, with
an average mango daily consumption of about 40 g/day/person [12]. Therefore, the
determination of these crucial fruit tree area coverage in Africa is critical for assessing
their occurrence, abundance, yield, production, and post-harvest treatments [10]. More-
over, delineating mango areal extent is important for other inventory and management
information, such as crop insurance and the monitoring of biotic and abiotic stresses. For
instance, spatio-temporal changes in mango systems could be related to climate shocks
and insect pest (e.g., fruit flies) damage [13–15].

There are several available remotely-sensed LULC products with medium to high
spatial resolutions at a global scale that could be used for mango monitoring and manage-
ment. For example, the European space agency (ESA) GlobCover (300 m × 300 m pixel
size), Copernicus global land cover (100 m × 100 m pixel size), Globland (30 m × 30 m
pixel size), FROM-GLC (10–30 m × 10–30 m pixel size), and the 20 m × 20 m pixel size ESA
climate change initiative (CCI) land cover prototype. However, all these readily-available
products fail to provide explicit tree species-specific maps. Additionally, the accuracy of
these products is comparatively low, with many discrepancies existing among them. As
such, there is a limit on the quality of the information necessary to improve planning initia-
tives in sub-Saharan Africa regarding mango orchard mapping. Thus, the insufficiency of
the existing LULC products for localized or species-specific cover mapping highlights the
need for developing innovative methods that provide more efficient, accurate, and reliable
LULC maps.

The development of such methods is achievable because of the advancement and im-
proved accessibility to freely available satellite imageries of medium spatial and temporal
resolutions that open new prospects for LULC mapping including tree-specific orchards
detection [16]. For instance, remote sensing satellite-based observations such as the constel-
lation of Sentinel-2 (S2) are a distinctive source of data for LULC characterization because
of their near-real-time precision, worldwide coverage, repetitiveness, and dependability at
a free cost [17]. The S2 satellite imageries have been tested by several studies and recom-
mended for use in many environmental monitoring applications that include identification
of tree species [18], rangeland quality evaluation [19], coffee crop detection [20], cropland
mapping [21], and general LULC mapping [22,23]. The constellation of S2 includes the
identical optical S2A and S2B satellites launched in June 2015 and March 2017, respec-
tively, offering a wider swath (290 km), medium spatial resolution (10, 20, and 60 m),
high temporal resolution (5 days revisit time for S2A and B combined), and multi-spectral
(13 spectral bands) capabilities [24,25]. Amongst the S2 13 spectral bands, there are four
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unique and useful red-edge bands (bands 5, 6, 7, and 8A) with central wavebands of
704.1 nm, 740.5 nm, 782.8 nm, and 864.7 nm, respectively, that enhance the possibility of
class-specific separability among LULC classes that exhibit similar spectral characteristics,
such as croplands and grasslands [26].

Although S2 imagery provides the above-mentioned momentous advantages over
other optical satellite imagery such as Landsat and moderate resolution imaging spectro-
radiometer (MODIS), all these datasets including S2 are often affected by the time of day
(night) and weather patterns such as clouds and inter-seasonal differences [26]. However,
the high temporal resolution of the S2 constellation (S2A and S2B) offers the possibility
to harness intra- and inter-seasonal reflectance changes to identify earth objects over
time [23]. This advantage is particularly essential in regions with strong vegetation
seasonality, such as the semi-arid tropics with distinct wet and dry seasons [27]. Ad-
ditionally, the sentinel mission offers observations using a Sentinel-1 (S1) sensor that
operates in C-band synthetic aperture radar (SAR). The benefit of such a SAR band
is that it is not affected by cloud cover or insufficient illumination and acquires data
under all weather conditions during day or night time [16,28]. Hence, the sentinel
mission provides an opportunity for combining both S2 optical and S1 SAR data to
enhance the mapping capacity in situations where multi-date optical satellite-based data
are limited due to unfavorable imaging conditions. Recent studies have successfully
combined the advantages of both S2 and S1 to detect and differentiate LULC classes
in various agro-natural ecosystems [23,29,30]. However, accurate and reliable LULC
mapping is not possible without employing advanced and efficient machine learning
(ML) classifiers [31,32]. Thus, the appropriate remotely sensed and associated ancillary
data sources, optimum precisions, and the finest classification techniques for LULC
mapping are still debatable within the remote sensing community [2].

Several ML classifiers are comparatively better than the conventional statistical
classifiers in producing LULC maps with varying levels of performance. Commonly,
the performance variation among ML algorithms in classifying LULC classes is caused
using different combinations of predictor remotely-sensed variables, sampling strategies
used in the collection of georeferenced points, and the complexity of the agroecology
in different geographic regions [2]. Additionally, the strength and capability of the ML
classifier itself used for processing, mining, and analyzing the predictor variables with
the classes can play a major role in obtaining varying LULC mapping results. Thus,
it is beneficial to take advantage and test the strengths of different ML classifiers for
mapping tree-specific fruit crops. As mentioned earlier, accurate and reliable tree-specific
mapping results should also be coupled with the incorporation of multiple satellite-
based data from various sensor (e.g., S1 and S2) types [23]. Notwithstanding, multiple
datasets with numerous predictor variables might be highly dimensional, redundant,
and multicollinear. This could cause an increase in computational density and time, and
ingest more computer storage space [33]. Moreover, the inclusion of highly correlated
predictor variables in a classification experiment can make the classification model very
sensitive to any minor change in the model settings and parameters. A highly sensitive
classification model reduces the precision and accuracy of the predictions by weakening
the computational power of the model. Hence, there is a need for applying variable
selection techniques before performing a classifier [33].
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One of the ways to optimize the selection of relevant predictor variables is to apply
data exploration procedures that are aimed at obtaining fewer computationally efficient
variables that are sensitive to relatively strong patterns of association (i.e., interactions) so
that informative variables are not erroneously eliminated before executing the classification
experiment [34]. In general, the currently available variable selection technics fall within
three main categories [35,36]: (i) wrapper methods (e.g., forward, backward, and stepwise
selection approaches), (ii) filter methods (e.g., ANOVA, correlation, variance thresholding),
and (iii) embedded methods (e.g., lasso, ridge, decision trees), which have been successfully
used in earlier studies that utilized remotely sensed datasets [37]. Unlike the other methods,
the embedded ones are essentially ML algorithms, among which Lasso [38], random forest
(RF: [39]), and the guided regularized random forest (GRRF: [40]) are the most powerful
and widely used in analyzing remotely sensed data.

In the literature, few or no studies have attempted to combine the strengths of SAR
and optical datasets to reveal the best predictor combinations derived using embedded
variable selection methods and ML classifiers for mango orchard detection. Furthermore,
the performance of RF and support vector machines (SVM: [41]) classifiers have never been
compared to detect mango orchards within a complex semi-arid environment. Therefore,
herein, we tested the strength of S1 and S2 as SAR and optical sensors, respectively, for
mango orchard detection in a semi-arid environment in Zimbabwe. In particular, we
examined the utility of the S1 backscatter and S2 reflectance, derived vegetation indices,
and three variable selection methods (relief filter (reliefF), GRRF, and variance inflation
factor (VIF)) to discriminate between eight LULC classes including mango orchard using
the RF and SVM machine learning classification algorithms, respectively. Furthermore, our
study established the most relevant SAR and optical remotely sensed variables necessary
for mapping mango orchards and other LULC classes in semi-arid environments.

2. Study Area

The study was conducted in the Mashonaland East (Mutoko and Murehwa districts)
and Mashonaland West (Zvimba district) provinces of Zimbabwe. The administrative
locations of the three districts are at Mutoko (17◦10′0′′ S; 32◦30′0′′ E), Murehwa (17◦48′0′′ S;
31◦50′0′′ E), and Zvimba (17◦42′0′′ S; 30◦12′0′′ E) (Figure 1). A unimodal rainfall pat-
tern characterizes most of the agro-ecological regions in southern Africa, including Zim-
babwe [42]. In the study area districts, annual rainfall ranges between 750 and 1000 mm
for Murehwa and Zvimba and between 650 and 750 mm for the Mutoko district. The
temperature in winter has a minimum average of 10 ◦C, while summer temperatures
can reach a maximum average of 33 ◦C across the three districts [43]. Isolated woody
vegetation, bushland, grasslands, and rocky hills dominate the ecosystems in the study
area. Most of the communal farmers perform subsistence agriculture as the main economic
activity [44]. Maize is the major farming system in both the communal and commercial
farming systems in the three districts. Additionally, the three districts are some of the most
dominant mango production areas in Zimbabwe, hence our motivation for selecting them
as our study sites [12].
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Figure 1. Location of the study area in Africa and Zimbabwe along with the spatial distribution of
land use and land cover (LULC) ground reference points taken between the 23 May 2021 and the
4 June 2021 superimposed on shaded relief natural Earth data (https://www.naturalearthdata.com/).

3. Methodology

Our proposed semi-automated mango mapping methodology uses two satellite-based
data types derived from SAR (i.e., S1) and optical (i.e., S2) sensors, together with three
variable selection methods and two ML classification algorithms to develop explicit LULC
maps in Google Earth Engine (GEE). The generalized workflow of our semi-automated
mango orchards classification approach used in this study is shown in Figure 2. The
specifics of every procedure are explained in detail in the subsequent subsections.

https://www.naturalearthdata.com/
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Figure 2. The general workflow of the methodology used to test the strength of Sentinel-1 and -2 for
mapping mango orchards, together with other land use and land cover (LULC) classes in a semi-arid
environment in Zimbabwe.

3.1. Land Use and Land Cover (LULC) Classes

A total of eight LULC classes were used to characterize the landscape in the study
area. These classes were informed by the general structure of semi-arid environments,
the specific structure of our study area, and the importance of the classes in assessing the
biotic and abiotic risk factors for agricultural production. Specifically, the eight classes
comprised mango, bare soil, urban/built-up, cropland, forest, grassland, shrubland, and
water. The mango class was the main target class that identified mango trees occurring at
homesteads, within fields, or in the wild at a minimum tree height of >1.7 m and a canopy
cover of 225 m2 (15 × 15 m). All juvenile mango shrubs below the mentioned height
and canopy coverage were not considered. We opted to only include mango orchards of
225 m2 to ensure that an orchard sample would at least match up with the Sentinel pixel
size, viz., 10 m × 10 m. Hence, individually occurring mango trees were excluded from
the field data collection. The ‘bare soil’ class referred to open areas or areas with scant
grass vegetation of up to 10% or rocky areas, e.g., a Dwala. Urban/built-up areas included
settlements, i.e., houses and impervious, paved, and unpaved surfaces. Cropland referred
to planted crop areas of maize, millets, sorghum, cowpeas, vegetables, etc. Those areas
that were considered as the cropland class either had standing crops or there was evidence
of recent harvest when the LULC data were collected. Therefore, abandoned croplands
were considered as either grassland or shrubland based on their constituents. Forests were
identified as an assemblage of trees of greater than 2 m in height with some understory,
while ‘grasslands’ were devoid of trees and mainly dominated by grasses. Shrublands
were areas with sparse, short bushes of heights less than 2 m and with coppicing covering
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between 20% and 80% of the soil surface within 225 m2 (15 m × 15 m). The ‘water’ class
referred to permanent open water bodies such as rivers and lakes only.

3.2. Mango and Other Land Use and Land Cover (LULC) Field Data Collection

Mango tree orchard locations (n = 1072), together with other LULC-class (n = 1931)
data, were obtained during field surveys conducted between 23 May 2021 and 4 June 2021,
following a stratified random sampling protocol. We stratified the study area using the
administrative wards as strata (29 in Mutoko, 30 in Murehwa, and 35 in Zvimba) and
randomly collected the LULC classes in each stratum (i.e., ward). Because the main aim
was to map mango orchards in the study area, about 35% of our LULC samples were on
mango orchards (Table 1). Herein, we leveraged the strength and capabilities of the open
data kit (ODK) smartphone application (app), and the vast network of agricultural extension
services personnel in Zimbabwe to capture the location of the eight thematic classes used in
the LULC classification. The ODK is a multi-operational app parameterized and optimized
to efficiently assemble, aggregate, and analyze survey data [45]. Furthermore, the ODK
provides a compound app logic and strengthens the possibility of data manipulation that
comprises text, geographic position, images, audio, video, and barcodes [46]. An optimized
questionnaire to capture the necessary and required LULC information was created in
the ‘ODK Build’ and was successively installed in the ‘ODK Collect’ module available
on ‘Android’ devices of technically-trained agricultural extension officers. Thereafter, the
collected observations on LULC were accessed, downloaded, and visualized. Additionally,
the global positioning system (GPS) capabilities within the ODK, which provide ±4 m ac-
curacy, was utilized to geolocate the LULC observations in the field. A total of 3117 sample
points were originally sent to the ODK server. These data were put through a rigorous
data cleaning mechanism to eliminate duplicates and misplaced coordinates using the R
software (version 4.0.4, Vienna, Austria) [47]. The misplaced coordinates were verified and
eliminated from the data set using the Google Earth platform (https://earth.google.com/)
as a reference. After the data cleaning process, a combined total of 3003 reference points
were retained for further analysis. We utilized the ‘caret’ package [48] in R software to split
the reference LULC observation points for each class using a ratio of 60% for training and
40% for testing the accuracy of our classification algorithms (Table 1). The locations and
distribution of both the training and testing LULC datasets used in this study are shown in
Figure 1. The independently split ground reference points were converted to shapefiles
and uploaded into the GEE for further analysis.

Table 1. Mango and other land use and land cover (LULC) classes, the sample size of the training
and test datasets that were used in the classification experiment of mapping mango orchards and
other LULC classes in the Mutoko, Murehwa, and Zvimba districts in Zimbabwe.

LULC
Class

Class
Number Training Data (60%) Test Data (40%) Total

Mango 1 644 428 1072

Built-up 2 227 150 377

Cropland 3 263 175 438

Forest 4 173 114 287

Grassland 5 185 122 307

Bare soil 6 83 55 138

Shrubland 7 88 58 146

Water 8 143 95 238

Total 1806 1197 3003

https://earth.google.com/
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3.3. Sentinel-2 Image Processing in Google Earth Engine (GEE)

The GEE platform offers parallelized processing steps on the Google cloud that enables
the processing and analysis of satellite imagery at a petabyte-scale [30,49]. The platform
includes freely available various satellite data such as Landsat, S1, and S2, among oth-
ers [30,50]. Additionally, GEE provides various advanced ML analytics and ancillary data
types, such as bioclimatic, and remotely sensed vegetation indicators [50]. In this study,
the S2 image preprocessing steps were automatically conducted in GEE following the
procedures suggested by Schulz et al. [23]. The S2 imageries in the GEE were provided by
the Copernicus program of the European Space Agency [24] as level 2A. Level 2A products
of S2 provide bottom of atmosphere (BOA) reflectance images that were derived from
the associated level–1C products. Specifically, each S2 level–2A product is composed of
12 bands (excluding band 10) as 100 km × 100 km tiles in the universal transverse mercator
(UTM, zone 36 south) and WGS84 projection [24]. We utilized multi-date S1 (n = 50) and
S2 (n = 60) imageries that were subjected to several preprocessing steps. The selection
of the multi-date imagery was guided by the cropping seasons between 2020 and 2021
(i.e., 2020/2021 cropping calendar) in Zimbabwe and by cloud cover in the imagery (≤30%).
The 2020/2021 cropping calendar was selected to guide the selection of imagery dates as it
was in general regarded as a normal rainfall year with no distinct anomalies, and this pro-
vided complete season data [51]. In particular, the S1 and S2 imagery were acquired during
the dry season, 1 June 2020–15 October 2020 (n = 20 for S1 and 24 for S2); harvest season,
1–30 May 2020 (n = 5 for S1 and 6 for S2); and wet season, 1 November 2020–30 April 2021
(n = 25 for S1 and 30 for S2) of Zimbabwe.

Our automated S2 image preprocessing steps in GEE included: (1) resampling of all
S2 image bands that had pixel size greater than 10 m × 10 m (Bands 1, 5, 6, 7, 8A, 9, 11,
and 12) to the lowest spatial resolution (10 m × 10 m) of S2 using the nearest neighbor
approach [50]; (2) masking the imagery cloud and shadow using a filtering process of
the scene classification (SC) band provided in the level 2A products; and (3) calculation
of a median pixel value for each S2 band as per the cropping season [24]. The median
pixel values for all S2 bands (n = 12) were then used as predictor variables or for calcu-
lating seven vegetation indices, which were also combined with the bands as predictor
variables for mapping mango and other LULC classes (Table 2). Studies have shown that
the median image compositing method offers relatively better results than other methods,
such as a maximum ratio value [52,53]. Seven S2-based vegetation indices comprised the
normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normal-
ized difference moisture index (NDMI), normalized difference built-up index (NDBI), and
three tasseled cap (TC) transformed indices for brightness (TCBI), wetness index (TCWI),
and greenness index (TCVI). Similarly, two predictor variables comprising the seasonal
standard deviations of NDVI (NDVI_stdDev) and EVI (EVI_stdDev) were also computed.
The syntax and Equations (1)–(7) of these selected indices were adapted from the index
database (IDB) https://www.indexdatabase.de/ [54]. The IDB is a tool that was developed
to provide a simple overview of satellite-specific vegetation indices, which are usable from
a specific sensor for a specific application [54]. The selection of these seven S2-based indices
was motivated by the fact that they can efficiently capture the sensitivity of vegetation
variables while minimizing the atmospheric and soil background noises on the image
reflectance [55]. Additionally, these selected indices have been reported by other studies
as the most suitable remotely sensed variables for capturing vegetation variabilities over
time [56].

NDVI =
ρNIR− ρRed
ρNIR + ρRed

(1)

EVI = 2.5 × ρNIR− ρRed
ρNIR + 6 X ρRed− 7.5 X ρBlue + 1

(2)

NDMI =
ρNIR− ρSWIR1
ρRed + ρSWIR1

(3)

https://www.indexdatabase.de/
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NDBI =
ρSWIR1− ρNIR
ρSWIR1 + ρNIR

(4)

TCBI = 0.3037 ρBlue + 0.2793 ρGreen + 0.4743 ρRed + 0.5585 ρNIR+
0.5082 ρSWIR1 + 0.1863 ρSWIR2

(5)

TCWI = 0.1509 ρBlue + 0.1973 ρGreen + 0.3279 ρRed+
0.3406 ρNIR− 0.7112 ρSWIR1− 0.4572 ρSWIR2

(6)

TCVI = −0.2848 ρBlue− 0.243 ρGreen− 0.5436 ρRed+
0.7243 ρNIR + 0.084 ρSWIR1− 0.18 ρSWIR2

(7)

where ρBlue (S2 band 2), ρGreen (S2 band 3), ρRed (S2 band 4), ρNIR (S2 band 8), ρSWIR1
(S2 band 11), and ρSWIR2 (S2 band 12) in Equations (1)–(7) represent the blue, green,
red, near-infrared, shortwave infrared 1, and shortwave infrared 2 reflectance values,
respectively, for a given pixel.

Table 2. Summary description of the 21 Sentinel-2 derived bands and indices that were used across
the three seasonal clusters, i.e., wet, dry, and harvest seasons. Band 10 (Cirrus) of Sentinel-2 is
excluded in the level-2 processing. All bands were resampled from their original spatial resolution to
10 m × 10 m.

Band
Number/Index Description Central Wavelength (nm) Width Original Spatial

Resolution (m)

B1 Coastal aerosol 443 20 60
B2 Blue 490 65 10
B3 Green 560 35 10
B4 Red 665 30 10
B5 Red-edge (RE5) 705 15 20
B6 Red-edge (RE6) 740 15 20
B7 Red-edge (RE7) 783 20 20
B8 Near infrared 842 115 10

B8A Rededge NIR 865 20 20
B9 Water vapor 945 20 60

B11 Short wave infrared 1610 90 20
B12 Short wave infrared 2190 180 20
EVI Enhanced vegetation index NA 1 NA NA

EVI_stdDev 2 EVI standard deviation NA NA NA
NDBI Normalized difference build-up index NA NA NA
NDMI Normalized difference moisture index NA NA NA
NDVI Normalized difference vegetation index NA NA NA

NDVI_stdDev NDVI standard deviation NA NA NA
TCBI Tasseled cap brightness index NA NA NA
TCVI Tasseled cap greenness index NA NA NA
TCWI Tasseled cap wetness index NA NA NA

1 NA = not applicable, 2 stdDev = standard deviation.

3.4. Sentinel-1 (S1) Image Processing in Google Earth Engine (GEE)

The feasibility of the SAR data for mapping LULC has already been tested and es-
tablished [28,57–59]. Studies have revealed that the interaction of SAR signal with the
vegetation is volumetric and quite sensitive to the canopy structure, orientation, and mois-
ture content [60]. Specifically, the variability in backscatter of, for instance, SAR vegetation,
bare soil, water, and built-up signals can be uniquely different and distinguishable [60].
Moreover, SAR data complement the limitation of optical sensors in that their signals
do not penetrate the clouds. Hence, in cloudy areas, the use of optical sensors could
result in either missing or low-quality earth observation data depending on the cloud
coverage [49]. Therefore, in this study, we tested the use of seasonal (i.e., dry, wet, and
harvest) median and standard deviation backscatter of S1 data, together with two normal-
ized difference-based backscatter indices (NDI), in improving the classification of mango
orchards and other LULC classes (Table 3). This was based on the recommendation of
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Schulz et al. [23] and Jin et al. [61], who also calculated these six S1-based variables for land
use and crop mapping.

Table 3. Description of the vertical transmit/horizontal receive (VH) and vertical transmit/vertical
receive (VV) backscatter bands and their indices (n = 6), derived from Sentinel-1 (S1) across the three
seasonal clusters, i.e., wet, dry, and harvest seasons.

Band or Index Wavelength or Formula

VV_p50 Vertically polarized backscatter with refined lee filter (seasonal mean)

VH_p50 Horizontally polarized backscatter with refined lee filter
(seasonal mean)

VV_stdDev 3 The seasonal standard deviation of VV
VH_stdDev The seasonal standard deviation of VH

NDI_VV (VV − VH)/(VV + VH)
NDI_VH (VH − VV)/(VH + VV)

3 stdDev = standard deviation.

The S1 mission supports data from a dual-polarization C-band SAR instrument at
5.405 GHz (C band). This compilation incorporates the S1 ground range detected (GRD)
scenes, pre-processed by employing the S1 toolbox to create a calibrated and ortho-corrected
product. We utilized S1 (S1A and S1B) GRD vertical transmit/horizontal receive (VH) and
vertical transmit/vertical receive (VV) backscatters that were acquired during the ascending
orbit (relative orbit: 1) using the interferometric wide swath (IW) for comparability of the
backscatter intensity [61]. The GRD products were preferred because they detect the
amplitude and are multi-looked to reduce the impact of speckles [62]. The S1 imagery
(COPERNICUS/S1_GRD) was acquired already partially preprocessed at level 1 [62].
The stages in pre-processing involved generating level 1 data products that comprised
the doppler centroid estimation, single look complex (SLC) focusing, and image post-
processing to produce the SLC and GRD outputs, and mode-specific processing for the
gathering of multiple sub-swath products [23,62]. The S1 toolbox in GEE was used to
further preprocess the S1 backscatter data. This step involved speckle filtering, thermal
noise removal, terrain correction, and radiometric calibration [50]. The terrain correction
process was conducted using the shuttle radar topography mission (SRTM) of 30 m spatial
resolution or the advanced spaceborne thermal emission and reflection (ASTER) digital
elevation model (DEM) for areas greater than 60 degrees latitude where the SRTM is not
available [62]. Additionally, a 3 × 3 filter window was applied to smoothen the backscatter
data and reduce speckle effects using the Lee sigma filter [29,63].

3.5. Variable Selection and Importance

In total, we derived 81 S1- and S2-based predictor variables during the three seasons
(i.e., dry, wet, and harvest) for mapping mango and other LULC classes in the study
area. Specifically, we utilized 18 predictor variables from S1 and 63 from S2, which were
subjected to a variable selection routine to reduce their dimensionality, multicollinearity,
and redundancy [64]. Multicollinearity is often coupled with the restricted number of
training samples (n) in comparison to the abundance of predictor variables (p) that often
hinder (i.e., overfitting) the successful implementation of accurate predictive models when
they are validated using an independent test dataset. As in our case, many predictor
variables (n = 81) may have resulted in multicollinearity and information redundancy,
which could negatively impact the classifier performance in mapping mango and other
LULC classes. We generated three sets of predictor variables using three ML variable
selection methods i.e., GRRF, VIF, and reliefF, and compared their performances. Initially,
all the derived S1 and S2 variables (n = 81) were used for mapping the mango and other
LULC classes before applying any variable selection. This is referred to as ‘All’ in the
present study. The GRRF is one of the embedded methods that use decision trees, a
similar concept to RF, but applies the importance scores generated from RF to guide the
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variable selection process [40]. The importance value of a variable in RF is attained through
the Gini index over all nodes, and across all the generated trees to facilitate the voting
process of the variable selection [39]. Hence, GRRF provides a few variables that are most
suitable for predicting target features of interest (e. g., LULC classes) from a dimension
of variables [65]. The package “RRF” in R software (version 4.0.4, Vienna, Austria) [47]
was used to perform the GRRF using a gamma value of 0.6 in the “CoefReg” [40,47]. On
the other hand, VIF measures the inflation of the variance for the variables to determine
multicollinearity among the variables. The VIF is directly calculated from a linear model
with a focal numeric variable as a response using Equation (8):

VIFi =
1

1− R2
i

(8)

where i is the predictor variable and R2 (R-squared) is the statistical measure that repre-
sents the proportion of the variance for the dependent variable that is explained by the
independent variable.

The ‘vifcor’ function inherent in the ‘usdm’ package in R [47,66] was employed to
perform variable selection using VIF. The ‘vifcor’ function picks variable pairs with high
correlation and then removes the variable with the greatest VIF. The threshold was set at a
Pearson correlation coefficient (r) of ≥0.7. Fundamentally, a VIF value of more than 10 is
a confirmation of collinearity among the variables [37]. The reliefF filter, as implemented
in the R package ‘FSelector’ [67], was used as the third method for our variable selection
experiment. The reliefF filter ranks the variables using the differences in the variables based
on their nearest neighbors, thus the algorithm finds weights of continuous and discrete
attributes according to a distance among all the variables [34].

In our variable selection experiment, we limited the number of the selected variables
for each variable selection method to 18. This was informed by the maximum optimum
number of variables that could be selected using the VIF method. Therefore, we restricted
the other two methods to select the same number of variables (i.e., 18) as the VIF method for
ease of comparison. Additionally, we ranked the importance (%) of the selected variables for
mapping mango and other LULC classes using the inbuilt ‘variable importance’ procedure
in the RF algorithm as provided in the GEE. For the ‘All’ variables, we selected the 18 most
important predictor variables as ranked by the RF algorithm.

3.6. Mapping of Mango Orchards and Other Land Use and Land Cover (LULC) Classes

Two of the most widely used ML classifiers, i.e., SVM [41] and RF [39], were used to
test the strength of combined S1- and S2-derived predictor variables for mapping mango
and other LULC classes. Moreover, we opted to compare the performance of two efficient
ML classifiers that have been previously tested for LULC mapping and have shown com-
paratively high accuracy [2,68]. These two ML classifiers are assumption-free methods that
do not generally encounter prediction overfitting challenges. The SVM classifier divides
the training data points by a hyperplane and maximizes the distance between a data point
(e.g., a pixel) and the hyperplane to assign a class to such a data point. RF, on the other hand,
uses decision trees that assign classes to data points following a predefined tree structure
until the class labeling criteria are met. The algorithm uses a majority vote procedure that
is derived from the decision trees to determine the final class label for each data point [39].
A total of 100 ‘trees’ were used to run the RF classification experiment after a parameter
tuning process that demonstrated the classification accuracies would not considerably be
improved when a higher number of ‘trees’ was used [23]. We used the default mtry, which
is the square root of the number of predictor variables used. Similarly, we used the default
SVM parameters in GEE, i.e., radial bases function (RBF) kennel type and a gamma value
equivalent to one divided by the number of predictor variables (1/n features) for each run
(1/81 for all features and 1/18 for the feature selected runs) [41]. We employed both SVM
and RF classification experiments in the GEE [50].
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3.7. Accuracy Assessment

Olofsson et al. [69] argued that the accuracy assessment results generated from the
confusion classification matrix must not be the last step of the model evaluation but
an essential step of the overall analysis of model accuracy. Therefore, the confusion
classification matrix was used as a first step to calculate the interclass errors that were used
to quantify the accuracy uncertainty using an area under class estimation method [69].
Specifically, we calculated overall accuracy (OA), user’s accuracy (UA), producer’s accuracy
(PA), and the Kappa coefficient to assess the performance of SVM and RF for mapping
mango orchards and other coexisting LULC classes. Additionally, the area under each
LULC class was used to build the confidence intervals at 95% to suggest the uncertainty of
the area estimates of each variable selection method and classifier [69,70]. For a detailed
description of the theoretic and mathematical constructs of the area under class accuracy
assessment method, readers are referred to Olofsson et al. [69] and Card [70]. This method is
widely accepted and has been used by several other studies [29,71,72]. A class-wise accuracy
metric was subsequently calculated using F1-score, which leverages the importance of both
the precision (UA) and recall (PA) in a single fused accuracy measure that ranges between
0 and 100% [73]. In other words, F1-score represents the harmonic mean between PA and
UA for each class, as shown in Equation (9).

(F1)i = (2 × PAi × UAi) ÷ (PAi + UAi) (9)

Additionally, a McNemar’s chi-square test was carried out to test for any statistically
significant differences (p ≤ 0.05) in the model performance among the different variable
selection methods and the classifiers used [74].

4. Results
4.1. Variable Selections and Importance

The reliefF, GRRF, and VIF methods selected different S1- and S2-based predictor
variables from the three seasons (Figure 3). However, most of the selected variables were
from the wet season variables, followed by the dry and harvest seasons, respectively. In
general, most of the selected variables were S1 and S2 vegetation indices and very few
were wavebands. Additionally, there was no distinct consistency in the selected predictor
variables between the four variable selection methods (Figure 3). The results also showed
that most of the frequently selected predictor variables were derived from the S1 sensor
(Table 4). The most frequently selected predictor variables (three out of four times) were the
S1 VH backscatter band of the wet season (wet_VH_p50) and the VV backscatter band of
the harvest season (harvest_VV_p50: Figure 3). Although the S1 derived bands and indices
had the least representation in the total number of the selected predictor variables, they
were the most frequently selected among the five most important predictor variables across
the four variable selection methods (Figure 3).

Table 4. Frequency of Sentinel-1 and Sentinel-2 variables selected by the four variable selection
methods used in this study.

Sensor Once Twice Thrice Four Times

Sentinel-1 13 7 2 0
Sentinel-2 21 9 0 0

Total 34 16 2 0

4.2. Mapping Mango and Other Land Use and Land Cover (LULC) Classes

Figure 4 shows the mapping results for the mango and other LULC classes in Zim-
babwe using combinations of the four variable selection methods and two ML classification
algorithms. Specifically, the RF and SVM classifiers mapped the distribution of mango
differently, with the SVM underestimating the mango distribution in the northeastern side



Sustainability 2022, 14, 5741 13 of 23

of Mashonaland East; this was improved after combining SVM and VIF. In contrast, SVM
mapped relatively more mango distribution in Mashonaland West as opposed to the RF
when the reliefF and VIF variable selection methods were used (Figure 4), whereas the ‘All’
and GRRF variable selection methods showed relatively similar mango distribution trends
in Mashonaland West when RF and SVM were employed. The results showed that water
distribution was comparatively mapped out using all the combinations of the variable
selection and classification methods with some confusion between water and forest in
some parts of Mashonaland West using SVM. Moreover, different mapping patterns for
the other LULC classes (e.g., grassland) were observed when different variable selection
and classification methods were performed. Overall, the varying mango and other LULC
mapping patterns indicate that each combination of variable selection and classification
algorithms performed differently.
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4.3. Analysis of the Classification Accuracies

The results revealed that the RF algorithm outperformed (test OA >75%, Kappa = 0.7)
SVM (test OA = 74%, Kappa = 0.6) in mapping mango and other LULC classes in the
four variable selection methods (Table 5). On the other hand, the best performing variable
selection method as indicated by the test OA was the reliefF (test OA = 78.4%), while the
least performing one was VIF (test OA = 66%). The OA achieved by the two classification
algorithms was within the acceptable standard (~75%), and their strength and ability
to improve the classification were demonstrated in the class-wise accuracies, as shown
in Figure 5.

Although the summary of the overall accuracies of the different combinations of
variable selection methods and the classification algorithms showed differences in accuracy
levels, the McNemar test demonstrated that the differences were not statistically significant
at p ≤ 0.05 (Table 6).
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Figure 4. Comparative mango and other land use and land cover (LULC) maps for Mashonaland
East and West in Zimbabwe that were produced using combinations of two classification algorithms
and four variable selection methods: (a,b) random forest (RF) and support vector machines (SVM)
with ‘All’ 81 bands (without variable selection), respectively; (c,d) RF and SVM with the guided
regularized random forest (GRRF), respectively; (e,f) RF and SVM with reliefF, respectively; and
(g,h) RF and SVM variance inflation factor (VIF), respectively.
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Figure 5. Comparative analysis of (a) producers’ accuracy, (b) users’ accuracy, and (c) F1 scores for
the eight land use and land cover (LULC) classes using two machine learning (ML) classification
algorithms (random forest (RF) and support vector machine (SVM)) and three variable selection
methods, i.e., reliefF, guided regularized random forest (GRRF), and variance inflation factor (VIF),
and using all the variables (‘ALL’). The classification accuracy metrics were calculated using the area
under class method.
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Table 5. Overall training and test accuracies for mapping mango and other land use and land cover
(LULC) classes using the random forest (RF) and support vector machines (SVM) and three variable
selection methods, i.e., reliefF, guided regularized random forest (GRRF), variance inflation factor
(VIF), and using all variables (‘ALL’).

Classifier RF SVM

Variable
Selection Method

Training Overall
Accuracy (%)

Test Overall
Accuracy (%) Kappa Training Overall

Accuracy (%)
Test Overall
Accuracy (%) Kappa

‘All’ 100 80 0.7 89 74 0.6
ReliefF 100 78 0.7 76 74 0.6
GRRF 100 77 0.7 77 72 0.6

VIF 100 75 0.6 68 66 0.5

Table 6. Comparative analysis of the McNemar (X2) test (p ≤ 0.05) for the eight possible classification
combinations using two machine learning (ML) algorithms (random forest (RF) and support vector
machine (SVM)) and three variable selection methods, i.e., reliefF, guided regularized random forest
(GRRF), and variance inflation factor (VIF), and using all the variables (‘ALL’). The values in the table
show the p-values from the pairwise model comparisons.

RF
‘ALL’

SVM
‘ALL’

RF
ReliefF

SVM
ReliefF

RF
GRRF

SVM
GRRF

RF
VIF

SVM
VIF

RF
‘ALL’ – 4 – – – – – – –

SVM
‘ALL’ 0.6344 – – – – – – –

RF
ReliefF 0.6738 0.6409 – – – – – –

SVM
ReliefF 0.6321 0.6008 0.6238 – – – – –

RF
GRRF 0.6602 0.6279 0.6517 0.6265 – – – –

SVM
GRRF 0.6174 0.5867 0.6093 0.5854 0.6013 – – –

RF
VIF 0.6436 0.6118 0.6352 0.6105 0.6269 0.6023 – –

SVM
VIF 0.5591 0.531 0.5517 0.5299 0.5444 0.5226 0.5357 –

4—means the value is not applicable or it is available in the other intersection dimension.

Figure 5 demonstrates the class-wise mapping accuracy metrics for the mango and
other LULC classes for each variable selection method and classification algorithm. The PA,
UA, and F1-scores were constantly above 80% ± 5% for the mango and water classes, while
the other LULC classes were within the 70% ± 5% range, except for the shrubland class,
which had relatively low accuracies (F1 scores less than 40%). In particular, the RF and SVM
models and the three variable selection methods successfully classified the mango, water,
and urban/built-up classes with very high accuracy (F1 score above 75%), except when
the VIF was used in combination with SVM (Figure 5c). Additionally, improvements were
observed in the F1 scores of these three classes while using the reliefF and GRRF with the
RF model (85%± 4%). Results revealed that an F1 score accuracy range of 70–80% for all the
variable selection methods and classification algorithms was achieved for the mango class
(Figure 5c). Although the shrubland class had relatively low accuracies across the different
variable selection and classification methods, it was observed that using reliefF and SVM
resulted in the relatively better mapping performance of shrublands as compared to the
other methods (Figure 5). It was also interesting to note that all the variable selection and
classification algorithms mapped the urban/built-up class with high accuracies (±75%). It
was thus observed that each classifier and variable selection method had its advantages
and limitations in mapping certain classes of LULC.
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4.4. Unbiased Area Estimation

The unbiased area estimate calculated from the best performing combination of the re-
liefF and RF classification scenario revealed that mango orchards cover approximately 18%
(292,232 ± 29,358 ha) of the total area coverage in the three districts i.e., Zvimba, Murehwa,
and Mutoko. The largest area was demonstrated to be covered by croplands (33%), while
the least coverage was by water, bare areas, and shrubland classes (Table 7).

Table 7. The area estimates and approximate 95% confidence intervals (CIs) of the mango and other
land use and land cover (LULC) classes using the area under class method of the highest obtained
accuracy, i.e., the reliefF variable selection method and the random forest (RF) classification algorithm.

Class Unbiased Area
Estimate (ha) Area (%)

95% CI of the
Unbiased Area
Estimate (ha)

Mango 292,232 18 ±29,358
Built-up 151,147 9 ±20,141

Cropland 529,021 33 ±37,160
Forest 271,183 17 ±34,127

Grassland 256,377 16 ±31,994
Bare soil 26,199 2 ±9506

Shrubland 54,771 3 ±20,841
Water 28,797 2 ±5606
Total 1,609,726 100

5. Discussion

We tested the strength of S1 backscatter, S2 reflectance bands, and their indices and
derivatives for distinguishing mango orchard and the other seven LULC classes in a semi-
arid environment in southern Africa using four variable selection and two ML classification
methods. Our mango mapping approach builds on the recommendations of earlier stud-
ies that targeted large-scale, crop-specific mapping using the freely available Sentinel
dataset [49]. Previous attempts for mapping mango trees resulted in high misclassifica-
tion (i.e., low accuracy) that could be due to the weakness of the data and classification
methods used [1]. Thus, in the present study, we advanced the geospatial methodologies
for mapping mango as one of the important tree crops for food and nutrition security and
income generation in Africa and produced plot-level (i.e., orchard) thematic maps in a het-
erogeneous landscape. Furthermore, the advancements in data analytic tools, such as the
GEE approach used in this study, are reproducible and semiautomatic. Thus, the mapping
approach used provides unique opportunities to improve the detection and monitoring
of mango orchards of variable sizes, which might not be feasible using the conventional
remote sensing mapping tools [30,53]. The GEE offers advantages such as ML and parallel
processing of large satellite-based datasets such as those used in this study (n = 81), memory
efficiency, and fast image processing power [50].

The results demonstrated the usefulness of combining S1 SAR and S2 optical variables
with ML variable selection and classification methods for mapping mango and other
LULC classes over a wide area in a semi-arid environment. Additionally, the results
showed valuable marks for establishing relevant and highly important predictor variables
that are necessary for mapping fruit tree crops, and LULC in general, in such complex
and heterogenous semi-arid environments. The aggregation of distinct Sentinel image
dates to capture the yearly inter-seasonal spectral variations among the studied LULC
classes provided a huge opportunity to improve our mapping accuracies [23,49]. This is in
confirmatory of other studies that demonstrated the utility of the Sentinels’ spatial (10 m)
and temporal (6 days for S1 and 5 days for S2) resolutions, as well as relevant spectral
and backscatter variables in distinguishing different vegetation classes (e.g., fruit tree,
cropland, and forest trees) and non-vegetation (e.g., bare land and water) classes albeit the
complexity and heterogeneity of semi-arid environments [30]. Furthermore, the mango



Sustainability 2022, 14, 5741 18 of 23

detection approach was sound and innovative as it leveraged on initially generating many
(n = 81) integrated S1 and S2 predictor variables across three seasons (i.e., dry, wet, and
harvest), then applying robust variable selection methods to select a few, yet relevant ones
to map mango and other LULC classes using two ML classifiers (RF and SVM).

This is the first attempt aimed at mapping mango orchards at relatively large geo-
graphic scales in Africa. However, the use of combined S1 and S2 datasets for mapping
LULC classes including tree crops (e.g., avocado and coffee) is well documented [29,49].
Although the incorporation of S1 and S2 datasets in mapping LULC is not new, it could
be regarded as innovative because it was developed and advanced to suit different crops
(e.g., mango), regions, and agro-ecologies [23,49]. Therefore, our study contributes to this
research portfolio by mapping mango orchards. Furthermore, most of the earlier studies
on LULC mapping have exclusively relied on the use of optical satellite data [22,75]. Un-
like the present study, studies that have used a combination of optical and SAR Sentinel
data for LULC mapping were carried out on relatively smaller geographic footprints [29].
The combination of S1 and S2 data showed that the mango and other LULC classes were
mapped with high OA (75 ± 5%). Likewise, our mango orchard class was detected with an
F1 score of >70%. This is following the findings of earlier studies that integrated S1 and
S2 variables for mapping crop and cropping patterns at a landscape scale and obtained
classification accuracies ranging between 70% and 90% [23,29,76]. This could be attributed
to the added advantage of S1, i.e., the non-reliance on cloud-free days and the smaller
wavelength of the C-band (3–5 cm), allowing for a temporally continual data source to
augment the optical data, particularly in the cloudy tropics and sub-tropics. Additionally,
the area under class analysis showed that ~18% of the study area was covered by mango.
This result highlighted the huge contribution and spatial coverage that mango has within
the communities in Zvimba, Murehwa, and Mutoko. This concurred with earlier studies
that have established that mango trees have been naturalized in Zimbabwe and can be
found both in the wild and in domesticated systems [77]. The natural forest class had
a larger coverage compared to the mango class, thus we assume that some forest trees
perhaps mixed with naturalized mango trees could have been classified as mango, as
shown by the large range of the confidence interval, i.e., ±29,358 ha.

The results also showed low PA and UA for mapping the shrubland class. This could
have contributed to lowering the OA obtained in this study. The low grassland mapping
accuracies obtained in this study could be attributed to the relatively low number of ground
truth points for the grassland and the expected spectral similarity between grassland
and bare soil [78]. Probably an addition of training samples for this class would have
reduced the mapping errors by reducing the within-class variability [79,80]. Additionally,
the classification approach used in the present study was able to capture the spectral
differences among the eight classes within a highly heterogenous landscape. For instance,
neighboring mango orchards are often patchworked along with annual (e.g., maize) and
perennial (e.g., guava) crops. Some other mango orchards were within a village setup in the
present study area, hence they are surrounded by built-up and crop classes. Despite these
intricacies, both ML classifiers used in this study produced a good agreement between the
test and predicted LULC observations as indicated by the Kappa metric.

It is interesting to note that the present study presents an opportunity to comparatively
assess the performance of RF and SVM classifiers for mapping mango, as a tree crop, and
other LULC classes in complex and heterogenous agroecology. An in-depth analysis
showed that RF consistently outperformed SVM as assessed using the OA and class-wise
accuracy metrics, except for the grassland class where SVM achieved a relatively better F1
score. This agrees with several studies that reported a better performance of RF for mapping
LULC classes as opposed to other ML classifiers such as SVM [57]. However, other studies
have found that SVM outperformed RF in mapping LULC classification using S2 data and
other ancillary predictor variable types [81]. These disparities in the performance of ML
classifiers are expected and are predominantly affected by the selected predictor variables
and the number and distribution of ground truth observations and the parameters and
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settings used for executing the classifier. Therefore, what can be derived from a critical
comparison among these studies is that the differences in their performance in most cases
are not statistically substantial, as evidenced by the McNemar comparative analysis.

The S1 and S2 imagery are rich with information that is optimum and suitable to
predict LULC classes. Specifically, the variable selection and importance experiment
presented strong evidence of the usefulness and relevance inherent in the S1-based variables
for mapping mango and other LULC classes. This is indicated by the number of S1-based
variables that dominated the top-ranked variables for mapping mango and other LULC
classes compared to the S2-derived variables. The importance and dominance of the S1
variables could be attributed to SAR’s independence to the time of the day or the seasonal
changes compared to the optical sensors such as S2. However, by adding the temporal
dimension in the S1 and S2 data via aggregating the seasonal variability instead of using
single imaging dates, we were able to eliminate the inherent bias toward selecting S1-
based variables [23]. Hence, S2-based variables were also well represented among the
18 selected predictor variables for classifying LULC. Likewise, Jin et al. [61] demonstrated
the importance of both S1- and S2-based variables for mapping cropland presence, maize
presence, and maize yields for the main 2017 maize season in Kenya and Tanzania. The
variable selection and importance approach reduced the dimensionality of the initially
generated variables (n = 81) by 78%. Studies have shown that using a few relevant predictor
variables in a classification experiment reduces the overfitting and computational time
required for executing the classification algorithm itself [64]. Additionally, this could permit
a better transferability or extrapolation of our mapping method in similar agro-ecologies.
In particular, the approach developed in this study could be used to detect and map mango
orchards in other areas in Zimbabwe and elsewhere. Notwithstanding, the transferability
of the approach to other points in time and space was not tested. Furthermore, for other
areas with similar climatic patterns and agro-ecologies, it is speculated that the selected
predictor variables would perform similarly to their performance for detecting mango and
other LULC classes in the present study. Thus, we recommend that studies that aim to map
mango and other tree crops in tropical and semi-arid agro-ecologies should integrate both
SAR and optical seasonal composite datasets during dry, wet, and harvest seasons that are
defined in the localized target climates. Specifically, the identification and definition of the
seasons during which SAR and optical data should be captured to map mango and other
LULC classes should solely depend on the number of rainy seasons, onset, cessation of the
precipitation, and its distribution in the specific areas [82].

Overall, the mango and other LULC mapping results could serve as a baseline for
future LULC prediction studies including change detection. Likewise, the developed LULC
maps could be used together with other environmental and vegetation information as
input predictor variables for assessing the habitat suitability of mango pests and pollina-
tors using species distribution models. Moreover, the LULC maps could also be advisory
tools for extension services related to, for instance, crop inventory, husbandry, postharvest
interventions, insurance, and marketing. The present study did not particularly differen-
tiate between mango age groups, hence future studies should look at the possibility of
using integrated multi-date SAR and optical datasets for discriminating distinct mango
age groups or estimation of individual tree numbers. This would provide better and more
accurate information as compared to a general LULC map for interventions such as harvest
planning, marketing, and postharvest. On the other hand, the LULC mapping results could
be baseline inputs in studies that look at land degradation and fragmentation, such as
deforestation expansion of agriculture. These LULC pathways would be exceptionally
useful in building a timeline of a spatial continuous proxy for, e.g., agricultural expansion
and forest vulnerability.

6. Conclusions

Our study demonstrated and provided an innovative mango and other LULC map-
pings approach for heterogenous landscapes in semi-arid regions. Overall, the findings
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provide baseline information appropriate to perform LULC change analysis as well as a
predictor variable input in species distribution models such as in insect pests and polli-
nators. Detecting the mango class benefitted from the strength of cloud computing using
multiple indices together with seasonal temporal clustering of the remotely sensed data.
However, the results of the present study suggested that using more data did not always
generate better results, hence the need for variable selection to reduce overfitting and the
time needed for the analysis. The study also showed that there were shortcomings in the
classification of the shrubland class, probably due to a low number of reference points and
spectral similarity with the bare soil and grassland classes. Although the focus of the study
was on mango orchards, most reference points belonged to one class, overestimating this
class compared to all of the other seven classes. Future studies could investigate combining
such similar classes to improve the classification accuracies. Although RF proved superior
to SVM in mango detection, their differences were not significant, hence SVM should
also be considered during LULC classification using robust variable selection methods
such as reliefF. Together with other earlier studies, the performance of the classifier and
variable selection approach was not uniform, thus yielding different classification outcomes.
Therefore, we suggest the use of an ensemble approach to harness the strengths of each
classifier and each set of predictor variables.
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