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Abstract 

Background:  African trypanosomiasis, which is mainly transmitted by tsetse flies (Glossina spp.), is a threat to public 
health and a significant hindrance to animal production. Tools that can reduce tsetse densities and interrupt disease 
transmission exist, but their large-scale deployment is limited by high implementation costs. This is in part limited 
by the absence of knowledge of breeding sites and dispersal data, and tools that can predict these in the absence of 
ground-truthing.

Methods:  In Kenya, tsetse collections were carried out in 261 randomized points within Shimba Hills National 
Reserve (SHNR) and villages up to 5 km from the reserve boundary between 2017 and 2019. Considering their limited 
dispersal rate, we used in situ observations of newly emerged flies that had not had a blood meal (teneral) as a proxy 
for active breeding locations. We fitted commonly used species distribution models linking teneral and non-teneral 
tsetse presence with satellite-derived vegetation cover type fractions, greenness, temperature, and soil texture and 
moisture indices separately for the wet and dry season. Model performance was assessed with area under curve 
(AUC) statistics, while the maximum sum of sensitivity and specificity was used to classify suitable breeding or forag-
ing sites.

Results:  Glossina pallidipes flies were caught in 47% of the 261 traps, with teneral flies accounting for 37% of 
these traps. Fitted models were more accurate for the teneral flies (AUC = 0.83) as compared to the non-teneral 
(AUC = 0.73). The probability of teneral fly occurrence increased with woodland fractions but decreased with cropland 
fractions. During the wet season, the likelihood of teneral flies occurring decreased as silt content increased. Adult 
tsetse flies were less likely to be trapped in areas with average land surface temperatures below 24 °C. The models 
predicted that 63% of the potential tsetse breeding area was within the SHNR, but also indicated potential breeding 
pockets outside the reserve.

Conclusion:  Modelling tsetse occurrence data disaggregated by life stages with time series of satellite-derived vari-
ables enabled the spatial characterization of potential breeding and foraging sites for G. pallidipes. Our models provide 
insight into tsetse bionomics and aid in characterising tsetse infestations and thus prioritizing control areas.
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Background
Tsetse flies (Glossina spp.) occur only in 38 sub-Saharan 
Africa (SSA) countries [1]. They are the main vector of 
trypanosome pathogens that cause animal African trypa-
nosomiasis (AAT) and human African trypanosomiasis 
(HAT). Although HAT is no longer considered a major 
public health problem in most of these SSA countries, 
AAT is still a major constraint in livestock production. 
In Kenya, the annual economic loss as a result of AAT 
is projected to be US$ 200 million [2]. There are no vac-
cines for AAT, and disease control is limited to the use 
of trypanocidal drugs on infected animals and indirect 
control measures such as risk mitigation, breeding of 
trypanotolerant livestock, and vector control [3]. Reduc-
ing tsetse numbers in areas in which they occur is the 
most promising strategy for mitigating AAT. Although 
tsetse control tools such as the use of odour-baited traps 
and insecticide-treated targets exist, sustainability is still 
a problem due to the high costs incurred in their large-
scale implementation. Spatially explicit and reliable infor-
mation on tsetse distribution, particularly their breeding 
localities, could help guide control by indicating priority 
areas for strategic targeting.

The occurrence of tsetse flies is determined by the 
availability of a host to feed on and suitable habitats to 
breed and rest. In the tsetse breeding cycle, one egg is 
fertilized by sperm stored in the female’s spermatheca, 
and then develops through three larval instars inside the 
ovary before being deposited in an appropriate micro-
habitat (shaded areas with loosely textured and moist soil 
with reasonable organic content) where the larva pupates 
[4, 5]. With sufficient blood meals and a conducive exter-
nal environment, the development of the larva inside 
the female fly takes ~ 10 days, while the burrowed pupae 
take ~ 22–60  days to emerge as a young adult. These 
young adults that have not had a blood meal (teneral) are 
unlikely to disperse far from where they emerged, since 
their flight muscles require 2–3 blood meals and 6–8 days 
to mature [6]. On the other hand, an adult tsetse fly that 
has already had a blood meal can fly as far as 1 km away 
from their habitual grounds to search for a host to feed 
on [7, 8]. The seasonal changes in the environment affect 
the distribution of hosts and consequently tsetse feeding 
habits and localities [9].

Satellite data have been used to predict life-stage-
specific suitable habitats for large areas for some insect 
vectors such as mosquitoes [10–15] by linking satellite-
derived environmental variables to species occurrence 

data. This is yet to be fully exploited for tsetse. Globally, 
the only existing tsetse fly distribution map predicts the 
suitability of the general tsetse occurrence at a spatial res-
olution of 5 × 5 km [1]. The accuracy of this global map is 
unknown. In some instances, local studies have reported 
vast differences between the continental map and the 
actual occurrence of the tsetse fly [16, 17]. Furthermore, 
the spatial resolution of this global map may be of limited 
use to guide locally oriented tsetse interventions.

Over the years, identification of tsetse breeding loca-
tions has relied on the physical collection of tsetse fly 
pupae or pupa shells left after birth [18]. Collecting such 
in  situ data is expensive and impractical for large areas. 
An alternative way to estimate tsetse breeding sites is to 
capture teneral flies and use their presence as a proxy. 
However, in  situ tsetse fly catches use baited traps that 
mimic a potential host and can attract tsetse flies from 
as far as 50  m away [19]. Therefore, although predic-
tive models generally assume that each trap represents 
a point location, this does not necessarily imply that the 
environmental conditions at the trap fully represent the 
preferred habitat. For instance, tsetse fly species such as 
Glossina pallidipes are known to hide in shaded areas and 
attack host species in open areas. Therefore, the relative 
abundance of the different land use/land cover (LULC) 
classes surrounding an area would better represent the G. 
pallidipes occurrence than the actual LULC class at the 
point location.

We aimed to assess whether the young unfed tsetse 
flies could be used to model tsetse breeding sites by (1) 
identifying the environmental variables that explain 
the occurrence of recently emerged and unfed (teneral) 
G. pallidipes and older flies that have had a blood meal 
(non-teneral), and (2) using this information to under-
stand, predict, and map the seasonality of the suitable 
habitats for each life stage using different species distri-
bution modelling techniques. This information will ena-
ble more enlightened decision-making and allocation of 
resources when selecting priority areas for control and 
piloting of field activities, which is ‘stage 2’ of the Pro-
gressive Control Pathway (PCP) for African Trypanoso-
miasis [20].

Methods
Study area
The study area covers four administrative wards in 
Kwale County, Kenya (~ 1173 km2, Fig. 1). These wards 
surround the Shimba Hills National Reserve (SHNR, 
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192 km2), which is managed by the Kenya Wildlife 
Service (KWS) and is home to diverse wildlife species 
such as Loxodonta africana (African elephant), Trage-
laphus sylvaticus (bushbuck), Syncerus caffer (African 
buffalo), Phacochoerus africanus (warthog), and endan-
gered sable antelope (Hippotragus niger). This region is 
known to have a high tsetse abundance and trypano-
somiasis incidence [20–22], with infection rates in cat-
tle often exceeding 30% (Okal et al. unpublished data). 
The vegetation covers inside SHNR are forests, dense 
thickets or woodlands, and grasslands with scattered 
shrubs. The climate is hot and humid with total annual 
precipitation ranging from 900 to 1500  mm [23]. The 
communities encircling SHNR cultivate maize, cassava, 
and tree crops such as cashew nuts, mango, and coco-
nut. The livestock reared in the area are cattle, goats, 
and chickens. Despite the many years of tsetse control 

around SHNR, tsetse and AAT is still a major con-
straint in livestock farming.

Entomology surveys
Tsetse fly monitoring was done inside and outside of 
SHNR in two phases between 2017 and 2019. The first 
phase had 171 monitoring traps outside SHNR (Fig. 1c, 
pink lines), and the second phase added 60 traps still out-
side the reserve (Fig. 1c, green lines) and 30 traps inside 
SHNR. Outside SHNR, sampling was guided by 1  km 
grids that extended up to 5  km away from the reserve 
boundary. Inside every grid, one biconical trap baited 
with cow urine and acetone was installed at a randomly 
pre-assigned location. Inside SHNR, similar traps were 
set up, with each land cover having at least six traps. In 
every period of tsetse monitoring, collections were made 
every 48  h with four repeats. Since this data collection 

Fig. 1  Location of the study area. The grey lines represent the Kenya county boundaries (a). The red and the black lines represent the Kwale county 
boundary and the study area extent, respectively (b). The gold lines show SHNR, the blue dots are the tsetse sampling locations, and the pink and 
green lines are phase 1 and phase 2 sampling blocks (c). The background image in (c) is the Google Earth image as provided in ArcGIS
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was only meant for surveillance and not control, the traps 
were removed after the fourth collection and installed 
again at the same location during the next period of 
monitoring.

Individual flies were identified using morphologi-
cal keys as G. pallidipes, G. austeni, G. brevipalpis, Sto-
moxys spp., Haematopota spp., and others. Additionally, 
for every Glossina fly, we recorded the presence of a 
blood meal (teneral, non-teneral), its sex, and whether 
the females were pregnant. These parameters were then 
counted per trap. Glossina pallidipes accounted for more 
than 95% of all the flies captured and were the only spe-
cies considered in this study.

Transforming the G. pallidipes count data to seasonal 
occurrence data
Although the study area has bimodal rainfall, i.e. April–
May (long rains) and October–December (short rains), 
after the start of the long rains, light showers occur dur-
ing the second dry season (June–September) resulting 
in high vegetation productivity till the end of the short 
rains. Since Normalized Difference Vegetation Index 
(NDVI) variations relate to changes in vegetation cover 
in semi-arid areas, and G. pallidipes depend on the veg-
etative cover to rest and breed [5], we assumed that the 
variations in vegetation greenness would influence its 
distribution. Therefore, instead of using the known rain-
fall seasons, we delineated two vegetation productivity 
seasons according to the mean temporal behaviour of 

the 16-day NDVI obtained from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) instrument 
at 500 × 500   m spatial resolution (Fig. 2). The timelines 
were as follows: 1st January–30th April (dry season), and 
1st May–31st December (wet season).

Glossina pallidipes counts per trap were pooled into 
the dry and wet vegetation seasons using the actual date 
when the trap was monitored regardless of the year. To 
transform the tsetse fly count data to binary data, we 
calculated the flies per trap per day (FTD; divide total 
tsetse numbers with total monitoring days per trap) for 
the respective season. Since the shortest monitoring time 
for one tsetse trap was 8 days, we selected a threshold 
of 0.125 FTD as the lower limit to consider a catch as a 
presence (Fig. 3).

Predictor variables
We used the European Space Agency’s (ESA) Senti-
nel-2 Level 2A surface reflectance data to generate a 
land cover layer, and the maximum, minimum, and 
median NDVI and the Modified Normalized Differ-
ence Water Index (MNDWI) at 10  m spatial resolu-
tion. These data were accessed and processed using the 
Google Earth Engine (GEE) platform. Because Senti-
nel-2 lacks a thermal infrared band, we calculated land 
surface temperature (LST) using Landsat 8 Operational 
Land Imager (OLI) surface reflectance data as provided 
by the National Aeronautics and Space Administra-
tion (NASA) in collaboration with the United States 

Fig. 2  The average 16-day NDVI time series from MODIS as extracted from Climate Engine (https://​app.​clima​teeng​ine.​org/​clima​teEng​ine) within 
the study area for the respective years. a and b are screenshots of the Sentinel-2 Level 2A median composites (‘B11’, ‘B8’, ‘B4’) for the dry and wet 
season, respectively

https://app.climateengine.org/climateEngine
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Geological Survey (USGS). To derive our predictor var-
iables, for both years and sensors we used a full year of 
data, i.e., all acquisitions made in 2019. This was done 
because (1) tsetse data were also pooled into two sea-
sons regardless of the year; (2) our focus is on habitat 
mapping rather than abundance monitoring; (3) we 
anticipated that Sentinel-2-derived predictors would 
show similar spatial patterns in the different years even 
if the magnitude of the indices might differ; (4) based 
on MODIS NDVI, 2019 NDVI values were between 
those of 2017 and 2018 (Additional File 1: Figure S1); 
and (5) Sentinel-2 surface reflectance data for 2019 
were readily available in GEE, which was not the case 
for previous years. Other variables that were generated 
include silt percentage (from soil texture analysis data 
collected at every trapping location), Topographic Wet-
ness Index (TWI), and slope. All variables were resam-
pled to 10  m to match the Sentinel-2 finer resolution. 
Table  1 summarizes the rationale behind the choice 

of each variable, while the detailed description of how 
each variable was extracted is described below.

Land cover fractions
We used Sentinel-2 Level 2A data acquired in 2019 and 
in  situ geo-located observations to generate six land 
cover classes (Table 2).

The GPS Essentials (http://​www.​gpses​senti​als.​com/) 
Android app was used to collect 140 ground reference 
data points. We overlaid these point data on high-reso-
lution imagery in Google Earth, and using visual image 
interpretation we added more points, ensuring that 
each class had more than 100 points. For every Sen-
tinel-2 Level 2A image, we applied a map function in 
GEE that used the scene classification layer (part of the 
Level 2A product) to mask out pixels that had clouds, 
cloud shadows, and no data. We then generated the 
seasonal median image composite, which retained the 
median pixel from the observations of that pixel (within 

Fig. 3  Spatial distribution of the pooled teneral and non-teneral G. pallidipes occurrence in and around Shimba Hills National Reserve in the dry and 
wet season

http://www.gpsessentials.com/
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the respective season, Fig.  2), for Sentinel-2 spectral 
bands ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’, ‘B8A’, ‘B11’, ‘B12’, and 
in addition NDVI, Enhanced Vegetation Index (EVI), 
and MNDWI indices. The reference data were divided 
into 70% for training and 30% for testing, and a random 
forest classifier with 500 trees was applied to the image 
composite. Table  3 shows the confusion matrix of the 
land cover classification.

Instead of just evaluating the land cover class at the 
trap location, we calculated the relative abundance of 
the different land covers surrounding each pixel (10 m) 
using a moving window. Within the moving win-
dow, the percentage of a specific land cover class sur-
rounding the 10  m pixel was calculated and assigned 
to the centre pixel. The resulting layer is still at 10  m 

resolution, but now provides for each pixel informa-
tion about land cover abundance in its surroundings. 
This larger spatial configuration is considered impor-
tant for tsetse fly occurrence, given its range of move-
ments to search for shelter and food. Several moving 
windows were generated (110 × 110  m, 210 × 210  m, 
510 × 510  m, 1010 × 1010  m), and each was tried sep-
arately to model the presence of the teneral and non-
teneral G. pallidipes using the generalized linear model 
(GLM) with stepwise backward regression. After apply-
ing the step function (as embedded in the R statisti-
cal software) with the land cover fractions generated 
from all four kernels separately, only the fractions that 
were calculated using the 1010 × 1010 m window were 
selected as variables having a significant influence on 
the occurrence of both life stages. The better perfor-
mance of 1010 × 1010  m fractions could be attributed 
to the fact that a tsetse trap mimics a potential host 
that tsetse can feed on, and a tsetse fly can travel up to 
1 km away from their home territory in search of such 
a host [7].

Spectral indices
In GEE, we extracted the seasonal (Fig.  2) minimum, 
maximum, and median composite of NDVI (near-infra-
red – red/near-infrared + red) and MNDWI (green – 
shortwave infrared 1/green + shortwave infrared 1) from 
the cloud-masked Sentinel-2 Level 2A images acquired 
in 2019. The rationale to include these composites was 

Table 1  Resampled 10 m spatial resolution predictor variables that were used to relate to the presence of teneral and non-teneral G. 
pallidipes 

Variable Rationale/hypothesis

Land cover fraction Tsetse flies require cool and shaded areas to rest and breed [6]. We hypothesized that areas with high fractions of woodland 
would exhibit a positive relationship with the presence of the fly, while areas with high fractions of croplands or bare land would 
have a negative correlation

NDVI NDVI is a measure of green vegetation abundance. Unlike land cover, which is usually more static, NDVI varies within the year, 
allowing for a clearer distinction between seasons. NDVI has also been used previously as an indicator of the tsetse ecological 
niche [57], and based on that study we expect greater abundance for higher levels of NDVI

MNDWI MNDWI is a spectral index that has been used to delineate open water areas from satellite imagery [58]. Moist environments are 
crucial for larval survival [6], but areas with too much water can result in the drowning of the larva. We hypothesized that areas 
with high MNDWI values would result in low teneral fly suitability

LST LST is the temperature at the top of the canopy retrieved using satellite imagery [24], and it is commonly used as an indicator for 
air temperature. Several studies have assessed its influence on tsetse distribution, relative abundance, infection rates, and mortal-
ity rates [16, 59, 60]. Very high or low temperatures negatively affect the survival of G. pallidipes [61]. We hypothesized that areas 
having temperatures below 20 °C and above 28 °C [5] would result in a lower probability for tsetse presence for both life stages

Silt % Soils with a large proportion of silt have poor water infiltration [62]. We hypothesized that an increase in silt content in the wet 
season would result in fewer teneral flies. We assumed that in the wet season, silty soils are more likely to hold high water levels, 
reducing the probability of burrowed pupae emerging

TWI TWI quantifies how the land structure controls the hydrological process and has been used to delineate areas that are prone to 
flooding [63]. Areas with high water retention can cause the drowning of pupae, decreasing their survival rate. We hypothesized 
that areas with higher TWI values would be negatively associated with the presence of the teneral flies

Slope Steep areas are vulnerable to soil erosion, while extremely flat areas can be vulnerable to flooding. Whilst erosion or water runoff 
is also affected by other factors like rainfall intensity [64], we hypothesized that very steep slopes would correlate negatively with 
the occurrence of teneral flies

Table 2  Land cover classes that were generated

Land cover class Description

Forest Tall high-density trees (> 20 m) with no under-
story cover

Woodlands Dense short (< 20 m) thickets

Grasslands Open grasslands with scattered shrubs and tree 
crops

Croplands/bare lands Food crops such as maize, cowpeas, green peas, 
etc

Settlements Built-up or developed areas

Water Water bodies and wetlands
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to account for intra-annual variability of the spectral 
indices. The corresponding variability in greenness and 
wetness conditions (Table 1) may be relevant for the dis-
tribution of the teneral and non-teneral G. pallidipes.

LST
LST is the temperature that is estimated using satellite 
imagery and represents the top of the canopy [24]. In 
this study, the thermal, near-infrared, and red spectral 
bands from the Landsat-8 OLI were used to estimate 
LST. In GEE, we used the pixel quality layer (gener-
ated by the CFMask algorithm) to mask out clouds and 
cloud shadows pixels in each of the 18 scenes acquired 
in 2019 (Worldwide Reference System-2 [WRS-2] row 
63, path 166). Subsequently, we followed the procedures 
described in Jiménez-Muñoz et  al. [25] to retrieve LST 
based on the brightness temperature derived from the 
thermal band and a fractional green cover estimated from 
NDVI. The seasonal minimum, maximum, and median 
LST image composites were generated and resampled to 
10 m spatial resolution for further analysis.

TWI
TWI is a function of slope and flow accumulation and 
allows for a spatial description of relative soil mois-
ture levels based on water flow. Sørensen et al. [26] give 
a detailed overview of TWI calculation methods and 
indicated that the estimation of flow accumulation con-
stitutes a major difference between methods. We used 
the 30 m Shuttle Radar Topography Mission (SRTM) to 
estimate the slope and the flow accumulation in ArcMap. 
TWI was then estimated from the natural logarithm (ln) 

ratio of the slope and flow accumulation [27]. The result 
was resampled to 10 m spatial resolution.

Soil sampling and silt percentage estimation
Soil samples were collected within a 1 m square of every 
tsetse fly trapping location and stored in a plastic con-
tainer. Soil texture classes were estimated from these 
samples following the method described in Salley et  al. 
[28]; this constitutes applying water to the sample and 
evaluating whether it allows for making specific forms. In 
this way, eight different soil texture types were defined, 
including clay, clay loam, loam, loamy sand, sand, sandy 
clay loam, sandy loam, and silt loam. Each soil type was 
assigned the sand, silt, and clay content ranges as guided 
by the Food and Agriculture Organization (FAO, Fig. 4). 
We preferred generating a silt content layer because 
a future objective is to transfer these models to other 
regions in Kenya that have more silty than sandy and 
clayey soils. We used co-kriging in ArcMap to interpolate 
the field estimated silt content together with the Modi-
fied Soil-Adjusted Vegetation Index (MSAVI2), TWI, and 
slope as covariates, since previous literature had men-
tioned their importance in representing soil texture vari-
ability [28–30].

Multicollinearity
Before fitting species distribution models, multicollin-
earity between the environmental variables was assessed 
using the variance inflation factor (VIF). In a stepwise 
manner, variables with high VIF values that were consid-
ered less relevant to G. pallidipes occurrence (based on 

Table 3  Land cover test error matrix for the dry and the wet seasons. The blanks cells are zero (0)

Predicted class

F WD G C S W

Dry season

 Forest (F) 818 16

 Woodlands (WD) 13 344

 Grasslands (G) 74 1

 Croplands/bare lands (C) 22 63

 Settlements (S) 3 2 904

 Water (W) 720

Wet season

 Forest (F) 812 22

 Woodlands (WD) 58 299

 Grasslands (G) 75

 Croplands/bare lands (C) 23 62

 Settlements (S) 4 905

 Water (W) 10 710
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literature) were excluded until all remaining variables had 
a VIF value < 10 [31].

Species distribution modelling (SDM)
Multiple SDM techniques exist with varying strengths 
and weaknesses, and thus choosing a specific technique 
can be subjective for a given situation [32]. Therefore, we 
applied one simple GLM model with backward stepwise 
regression (GLM*; [33]), two machine learning model-
ling techniques (boosted regression trees—BRT [34]; and 
random forest—RF [35]), and one modelling technique 
that is capable of dealing with collinear data explicitly 
(GLM with partial least squares regression—GLM-PLSR; 
[36]) to test whether the most important variables for the 
occurrence of teneral and non-teneral flies are robustly 
identified by all four strategies. BRT and RF are machine 
learning techniques that are designed to learn the model 
structure from the data, and thus no prior assumptions 
are needed other than ensuring that the independent 
variables are uncorrelated. The GLM-based techniques 
require an additional selection of independent variables 

that explain as much variation as possible in the response 
variable [37]. For this study, we used two variable selec-
tion techniques for the GLM technique. The first was a 
backward stepwise regression, which selects the impor-
tant uncorrelated variables based on the lowest Akaike 
information criterion (AIC) value. This was performed 
using the step function embedded in the stats package 
in R programming [38]. We then used the vi function in 
the VIP package to confirm whether the retained vari-
ables from the step function had a variable importance 
score of > 1 [39]. The second technique was PLSR, which 
accommodates collinear and correlated variables and 
uses scores and loadings (a measure of how strongly each 
variable influences the component) to select variables 
[40]. A PLSR decomposes the response and explana-
tory variables into independent components, where the 
first component explains most variation, and subsequent 
components explain a decreasing amount of the remain-
ing variation. PLSR models can be tuned to avoid over-
fitting by selecting the correct number of components to 
include [41]. In this case, we used the cv.plsRglm function 

Fig. 4  The soil texture type distribution around the Shimba Hills National Reserve (SHNR)
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to determine the optimal number of components [36]. 
Biplots were used to assess the set of variables that 
explained similar variation in the total dataset [36] out of 
which the most relevant to G. pallidipes occurrence was 
chosen.

We then used the sdm package to fit the two GLM 
models (i.e., with variables selected using step function 
and those selected using PLSR), BRT, RF model, with 
the last two using all the uncorrelated variables [42]. 
We determined the relative importance of the variables 
for the occurrence of the teneral and non-teneral G. 
pallidipes using the getVarImp function from the sdm 
package, which considers two metrics, i.e., AUC and 
the coefficient of determination (R2). The AUC indicates 
how well a model can discriminate between areas that 
are suitable and areas that are not suitable, and ranges 
between 0.5 and 1. We also reported the true skill statis-
tic (TSS) which indicates the overall classification accu-
racy of a presence–absence model, provided a certain 
threshold is used to classify predicted occurrence prob-
abilities into suitable and unsuitable areas. The maximum 
sum of the sensitivity and specificity was used as an opti-
mal threshold for this [42–44]. We used the rcurve func-
tion from the sdm package to establish the shape of the 
response of the species to environmental conditions.

Results
Selection of predictor variables
The retained relevant environmental variables had VIF 
values below 10 (Fig. 5), and pairwise correlation values 
were below 0.7 (Fig. 6).

The optimal components for the PLSR models were 
one and two for the teneral and non-teneral flies in the 
dry season and two and three for teneral and non-teneral 

flies in the wet season, respectively. Since biplots cannot 
be generated for a single component, for the dry season 
teneral case we included only the variables that had load-
ing values of ≥ 0.4 (Table 4, variables with a) [45].

For the other life stages, biplots were used to visu-
ally assess the set of variables that explained the high-
est amount of variations in the total datasets. From each 
coloured oval (Fig.  7), a single variable with the longest 
arrow was chosen for further modelling. Despite the dif-
ference in the number of components, cropland fractions 
were a common variable for both life stages and across 
seasons.

Species distribution modelling
The AUC for all the models was > 0.7 (Fig. 8). The GLM 
model with the backward stepwise regression had higher 
AUC values than all other modelling methods used in 
both seasons and life stages. For the teneral flies in the 
wet season and the non-teneral flies in the dry season, 
the modelling technique used did not influence the AUC 
values, since all the four models had more or less the 
same AUC values of ~ 0.83 and ~ 0.78, respectively. For 
the teneral flies in the dry season and non-teneral flies in 
the wet season, the AUC values varied between the mod-
elling method used with the latter having the lowest AUC 
values (~ 0.7).

Various variables were important for modelling both 
G. pallidipes life stages suitability (Fig. 9). Cropland and 
woodland fractions were important elements for model-
ling both life phases and in both seasons. Other factors 
were only essential for a single life stage, e.g., grassland 
fractions and median LST were only important for the 
non-teneral flies, while silt content and maximum LST 
were essential for the presence of teneral flies (Table 5). 

Fig. 5  The retained environmental variables that had a VIF value of < 10 after conducting the multicollinearity analysis
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The direction and the shape of the relationship between 
these variables and the presence of G. pallidipes varied 
between life stages and in some instances between sea-
sons for the same life stage (Table 5, Figs. 10 and 11).

Cropland fraction correlated negatively with the pres-
ence of both life stages, indicating that G. pallidipes are 

less likely to occur in areas that have human-induced 
changes because of farming. Woodland fraction corre-
lated positively with the presence of teneral flies in both 
seasons, which may be explained by tsetse’s need for 
shaded areas for breeding. While the non-teneral flies 
had a negative relationship with grassland and wood-
land fractions during the wet season, the relationship 
was positive in the dry season. This could mean that the 
woodland fraction and the scattered shrubs/tree crops 
provided shaded areas for the adult flies to rest in the 
dry season when temperatures were high.

Teneral flies correlated positively with maximum LST 
during the wet season, suggesting that newly emerged 
flies preferred areas with higher LST values when it was 
cold. The non-teneral flies had a negative relationship 
with median LST in both seasons. Silt content was only 
important in explaining the occurrence of the teneral 
flies in the wet season, and the association was negative.

Figure  12 shows the classification thresholds (maxi-
mum sum of sensitivity and specificity) that were used 
to classify the suitable and unsuitable areas. The pre-
dicted habitats for the teneral G. pallidipes were mostly 
concentrated inside the reserve. While the non-teneral 
habitats also occurred in the reserve, they extended 
far beyond the park boundaries, especially towards 
the south-eastern side (Fig.  13). All models predicted 
unsuitable habitats for the occurrence of both the ten-
eral and non-teneral G. pallidipes towards the western 
side of the study area. A prediction of high suitability 
can be observed for Mwaluganje Conservancy, which 
is a known tsetse fly hotspot (Fig.  13, blue circle) but 

Fig. 6  The correlation matrix of the retained variables. Blue colours represent positive collinearity, and red colours negative collinearity. The symbol 
size represents the strength of the correlation

Table 4  PLSR loadings for the teneral G. pallidipes during the dry 
season

a The environmental variables that were chosen for further modelling

Variables Component_1

ForK101 0.3

WoodK101a 0.4

GrassK101 −0.2

CropK101a −0.4

SettlK101 0.0

WaterK101 0.0

Silt 0.0

TWI −0.1

SlopeDEM 0.2

MaxNDVI 0.3

MinNDVI 0.2

MedNDVI 0.3

MaxMNDW 0.2

MinMNDWII 0.1

MedMNDWI 0.2

MaxLST a −0.4

MinLST −0.3

MedLST a −0.4
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for which no observations were included in the current 
model fitting.

Discussion
Our results showed that the most important variables for 
predicting the occurrence of both life stages were mostly 
consistent across the models. Among the four models, 
GLM with a backward stepwise regression model had 
higher AUC values (Fig. 8) across all life stages, and thus 
this model result was used for this discussion. In general, 
teneral G. pallidipes occurrence models had higher AUC 
values than those of the non-teneral flies. This could 

be because the newly emerged flies that have not had a 
blood meal are likely to be within more restricted ranges 
than non-teneral flies that move further in search of 
hosts to feed on. While some environmental factors were 
the same for teneral and non-teneral flies, we also found 
differences that varied between the dry and the wet sea-
sons. Cropland and woodland fractions were important 
for modelling both teneral and non-teneral flies, but 
other parameters were only relevant for modelling a sin-
gle life stage. For instance, grassland fraction and median 
LST were only important for the non-teneral flies, while 
silt content was essential to represent the presence of 

Fig. 7  The PLSR components as visualized using biplots. The ovals refer to a set of variables that explain the same amount of variation in the total 
dataset. The text with the same colour as the ovals indicates the variable chosen to be used in the final model
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teneral flies. The direction of the relationship between 
the important variables and the occurrence of each life 
stage varied between seasons and at times between life 
stages, other than the cropland fractions, which were 
negatively correlated with both life phases regardless of 
the season.

The lack of shading in cropland fractions likely explains 
the strong negative correlation with both G. pallidipes 

life stages. Human-induced environmental changes such 
as increased land cultivation negatively affect tsetse fly 
occurrence [45–47]. Previously, intensive bush clear-
ing that aimed to clear shaded areas where tsetse flies 
laid their larvae and rested was used as a tsetse control 
strategy, and it did lead to a tremendous decline in tsetse 
numbers and trypanosomiasis [48]. Shaded areas are 
important for tsetse breeding sites [5], and this could 

Fig. 8  GLM, BRT, and RF model evaluation statistics for the prediction of the teneral and non-teneral G. pallidipes occurrence

Fig. 9  Importance of individual variables for the prediction of the suitability of the teneral and non-teneral G. pallidipes using four modelling 
techniques
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Table 5  Variables that had R2 > 0.1. + indicate a positive relationship, while − indicates a negative relationship. The blank/clear cells 
mean that the variables had R2 values < 0.1

Predictor variable Season (D = dry, 
W = wet)

Teneral Non-teneral

GLM* GLM-PLSR BRT RF GLM* GLM-PLSR BRT RF

Woodlands D + + +
W + + −

Croplands D − − − − − − − −
W − − − − − − − −

Grasslands D +
W −

MedLST D −
W −

MaxLST W +
Silt W −

Fig. 10  Response (y-axis) curves for variables (x-axis) having > 0.1 R2 in the dry season. The panels with the pink boundary refer to the teneral flies, 
while the ones with the blue boundary are the non-teneral flies. The numbers (1), (2), (3), and (4) at the end of the variable names represent the 
variable’s response as modelled using the GLM*, GLM-PLSR, BRT, and RF modelling techniques, respectively. The blank/clear cells mean that the 
variable had R2 values of < 0.1
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Fig. 11  Response curves (y-axis) for variables (x-axis) having > 0.1 R2 in the wet season. The panels with the pink boundary refer to the teneral flies, 
while the ones with the blue boundary are the non-teneral flies. The numbers (1), (2), (3), and (4) at the end of the variable names represent the 
variable’s response as modelled using the GLM*, GLM-PLSR, BRT, and RF modelling techniques, respectively. The blank/clear cells mean that the 
variable had R2 values of < 0.1

Fig. 12  Optimal thresholds that were used to classify suitable and unsuitable teneral and non-teneral areas for the various models
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explain the strong positive relationship between the ten-
eral G. pallidipes and the woodland fractions in both 
seasons.

Other than the need for shaded places to rest [49], 
adult tsetse require blood meals to survive. Therefore, 
their distribution is also influenced by that of the hosts 
they feed on [50]. Although the present study did not 
include host data, animal distribution is influenced by 
the seasonal changes in the environment such as vegeta-
tion cover changes. For instance, wildlife will likely move 
towards the available vegetated areas (mostly the wood-
lands and scattered shrubs/tree crops) during the dry 
season to find fodder and avoid excessive temperatures. 

Their presence in these areas implies that a blood source 
is easily available, and thus may explain the positive rela-
tionship between the non-teneral flies and the woodland 
and scattered shrub fractions in the dry season. During 
the wet season, potential hosts are more dispersed into 
the open grasslands, causing flies to disperse further for 
feeding; this may explain the negative correlation of non-
teneral flies with woodlands in the wet season. In addi-
tion, given the lower temperatures in the wet season, 
flies will likely move out of the cooler woodlands to more 
open/sunlit areas.

Dry external environments or waterlogging can lead to 
high pupal mortality rates through dryness or drowning 

Fig. 13  Predicted habitats for the occurrence of the teneral and non-teneral G. pallidipes during the dry and wet season with the four different 
models. The blue circle indicates the Mwaluganje Conservancy
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[5]. This could explain why during the wet season, teneral 
flies had a negative relationship with silt content, which 
is associated with high moisture retention. We initially 
hypothesized that MNDWI would capture the soil mois-
ture variability and thus be a useful proxy to determine 
the importance of a moist external environment for the 
occurrence of teneral flies, but this was not the case. This 
could be because other environmental factors such as 
land cover and LST that correlate with soil moisture [51] 
were already incorporated in the models.

Very low or high temperatures have negative effects on 
the survival of both young and adult tsetse flies [51–53]. 
Temperatures that are suboptimal for tsetse occurrence 
are season- and location-dependent. However, a recent 
study by Are and Hargrove [54] shows that most tsetse fly 
species cannot survive below 16 °C or above 32 °C. In this 
study, we used LST as the temperature indicator. How-
ever, vegetation and shading will cause small-scale vari-
ability in air temperature, which is not incorporated in 
the pixel-level LST retrievals. Although Ngonyoka et al. 
[55] did not find a relationship between G. pallidipes 
abundance and LST for the Maasai Steppe in Tanzania, 
in this study newly emerged G. pallidipes correlated posi-
tively with maximum LST during the wet season, while 
adult flies correlated negatively with median LST in both 
seasons. The response curve (Figs.  10 and 11) between 
adult flies and median LST intersected with the optimal 
thresholds (Fig.  12) used to categorize the suitable and 
unsuitable areas at ~ 24  °C in both seasons, indicating 
that the probability of G. pallidipes occurrence decreases 
below these temperatures regardless of the season.

Extrapolation to larger extents resulted in an observable 
spatial consistency across all models used. The predicted 
suitability of teneral and non-teneral flies overlapped, but 
the former was more restricted inside the SHNR, sug-
gesting that breeding predominantly occurs within the 
reserve boundaries (Fig. 13). The extension of non-teneral 
habitats from teneral habitats confirms that tsetse fly dis-
persal involves movements between their home ranges 
and habitual feeding grounds [7, 55]. While the present 
study cannot report on the accuracy of prediction when 
extrapolating beyond the sampled area, the results indi-
cated occurrence in areas known to be suitable for tsetse 
flies such as the Mwaluganje Conservancy (Fig.  13, blue 
circle). This possible extrapolation beyond the sampled 
region can be used to identify potential hotspots of G. 
pallidipes presence and guide in situ monitoring efforts.

Although this study provided insights into the impor-
tance of environmental variables for teneral and non-
teneral tsetse occurrence, it was limited in that it did not 
include data on the presence of vertebrate hosts, which is 
critical for the survival of adult tsetse flies [56]. Addition-
ally, due to the random sampling method used for the 

tsetse data collection, not all land cover class abundances 
(a key factor in tsetse occurrence) were equally repre-
sented (Additional File 1: Figure S2 and Figure S3). For 
example, while the woodland and grasslands fractions 
were well sampled, allowing for robust conclusions on 
the positive and negative relationships, the importance of 
other land cover fractions (or lack thereof) is less robustly 
confirmed in this study. We also transformed tsetse fly 
trap data from three calendar years (2017–2019) into two 
seasons (Figs. 2 and  3) but used satellite images that were 
captured in 2019 to generate the predictor variables that 
were used in the model fitting. We assumed that envi-
ronmental changes (especially the land cover) between 
the 3  years were unlikely to have drastic effects on habi-
tat suitability. Unlike other disease vectors (for example, 
mosquitos [12]), weather changes have less impact on the 
occurrence of the tsetse fly. Nonetheless, such weather and 
environmental temporal effects may need to be addressed 
when predicting tsetse abundance. An understanding of 
environmental effects on the apparent tsetse density, and 
consequently using this information to predict their rela-
tive abundance, is likely to provide further insight on areas 
of high AAT risk as compared to the habitat suitability 
mapping performed here. Despite these shortcomings, 
the study highlights that teneral fly trapping data could be 
used as a proxy for mapping potential breeding sites, while 
non-teneral fly suitability can be used to assess the disper-
sal of the adult flies from those breeding areas.

Conclusion
Modelling the distribution of teneral and non-teneral G. 
pallidipes separately allows us to predict potential breed-
ing and foraging grounds for this species. The large-scale 
identification of tsetse breeding sites provides informa-
tion on potential tsetse re-invasion fronts. The extension 
of non-teneral habitats further away from the teneral 
habitats can be used to estimate adult flies’ dispersal 
ranges. This provides insight into the ecology of G. pal-
lidipes and can be useful for selecting priority areas for 
control and piloting of field activities.
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