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ABSTRACT 

Cowpea is one of the 14 species of grain legumes.  It rewards insects by producing nectar 

and it advertises to the pollinators by producing floral volatiles.  The volatiles act as cues 

that guide insect pollinators in terms of pollen and nectar.  Floral volatile quality also 

influences the efficiency of pollination.  Genetic manipulations involving selection of 

varieties with high quality floral volatiles and nectar can therefore increase pollination 

efficiency and hence cowpea yields.  It is believed that efficiency of insect pollination in 

several food crops is dependent on the quality of floral volatiles.  Several molecules, 

including allozyme, co-dominant and isozyme DNA molecular markers (AFLP, RAPD 

and SSR) among others are useful in the selection of disease resistant and high yielding 

food crop cultivars in breeding programmes.  Floral volatiles and nectar profiles can 

therefore act as molecular markers in cowpea breeding programmes. This project 

involved the collection, analysis and characterization of cowpea floral nectar and volatile 

composition.  The flowers bloomed for one day and nectar was secreted between 6.00 

and 10.00 am East African time.  The flower sizes in the six selected cultivars were 

measured, nectar withdrawn using microlitre syringe and its characteristics (volume and 

sugar composition) examined.  The sugar composition of the nectar was analyzed using 

HPLC, LC-MS and co-injection with authentic standards.  Hydro-distillation and static 

headspace trapping with adsorbents (activated charcoal,  reverse-phase, C18 bonded silica 

and porapak Q) was done in the six selected cultivars and volatiles concentrated using 

gentle stream of N2 while cooling under ice.  GC was used to analyze the composition of 

floral volatiles and GC-MS for identification of the components.  Co-injection with 

authentic standards was used to confirm identity of the components.  Nectar volume 

varied as a function of time.  A correlation between nectar production and time was 

observed.  There were significant quantitative differences in the volumes of nectar 

produced in the different cowpea cultivars.  The highest volume collected (18 μl) was 

from cultivar 219, with a mean of 7.99 ± 0.78 μl and the lowest recorded value (0.2 μl) 

was from SP46 with a mean of 3.65 ± 0.59 μl.  The cultivars showed similar trends in the 

rate of reduction in the volumes of nectar produced with time.  Sucrose (0.104 ± 0.099 

mg), glucose (0.0224 ± 0.006 mg), and fructose (0.0225 ± 0.012 mg) occured frequently 

in the nectars.  Lactose (0.003 ± 0.001 mg), raffinose (0.004 ± 0.002 mg), and mannose 

(0.006 ± 0.004 mg) were present in trace amounts.  The biggest flower size recorded (47 

mm) was from cultivar 219 with a mean of 42.62 ± 0.65 mm while the smallest size (10 

mm) was from SP46, with a mean of 17.13 ± 0.65 mm. The nectar volume is directly 

proportional to the flower size.  The total number of trapped volatile compounds ranged 

from 43-109 for headspace trapping and hydrodistillation.  Porapak Q trapped the largest 

number of compounds.  Quantitative and qualitative differences in volatile composition 

of various cultivars were noted.  Aliphatic compounds were the most abundant followed 

by benzenoids, monoterpenes, sesquiterpenes, norisoprenoids and other compounds.  The 

most common cowpea floral volatiles were toluene, 1-hexanol, benzaldehyde, 

acetophenone, limonene, 1-octen-3-ol, artemisia alcohol and nerolidol.  Palmitic acid 

was the most abundant component of steam distillates. Due to the high protein content, 

grain legumes should help in reducing protein deficiency cases in developing countries.  

Improved legume yields should be encouraged to address protein deficiency in children.  

There is need to intensify production of cowpea by developing more efficient and well 

adapted varieties with good pest and disease resistance through biotechnology. 
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 CHAPTER ONE 

 INTRODUCTION 

1.1 Background  

A legume is any plant belonging to the pulse family (Leguminosae) that produces a dry 

dehiscent fruit in the form of a pod including many important vegetable crops such as 

pea, bean, lentils, peanut and soybeans and cowpea.  The family Leguminosae has 

approximately 650 genera and 18,000 species (Rachie et al., 1979).  It is the third largest 

family after Compositae and Orchidaceae.  They are found in temperate zones, humid 

tropics, highlands, savannah lowlands and aquatic environments.  The sub-families are 

Caesalpinioideae, Mimosoidea and Papilionoideae (Fabaceae).  Most widely used 

leguminous plants are peanuts, soybeans, peas, lentils, pigeon peas, chickpeas, mung 

beans, kidney beans, cowpeas, alfalfa (lucerne), sweet cloves (Melilotus spp) and other 

cloves (Trifolium spp).  Legumes are the only flowering plants that posses root nodules 

containing bacteria that can take up atmospheric nitrogen and convert it to other 

nitrogenous compounds that can be used by the plant thereby improving soil fertility. 

This unique character makes legumes important in soil fertility management by crop 

rotation (Herrero & Flores, 2008). 

 

Cowpea, Vigna unguiculata, is a herbaceous annual plant.  Other common names 

frequently encountered in the literature are southern pea and black eye pea (US), beans in 

Anglophone Africa, niebe in Francophone Africa, lubia, lobid, coupe, frijole, asparagus 

beans, yard long beans and sitao.  The last three names generally, refer to V. u. 

sesquipedalis.  It grows by epigeal germination.  Cowpea belongs to the sub-family 
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Papilionoideae within the family Leguminosae, the tribe Phaseolea, sub-tribe 

Phaseolinae and section catiang.  The species include cultivated and wild annual forms 

such as V. unguiculata var. spontanea plus ten wild perennial subspecies (Pasquet, 

1993a; 1993b; 1997; 1999).  V. u. unguiculata and V. u. spontanea are the likely 

progenitors of the cultivated cowpea (Pasquet, 1999).  The wild ancestors of cultivated 

cowpea are V. u. mensensis, V. u. dekindtiana and V. u. pubescens.  Numerous cultivated 

traditional varieties are short day plants (longer dark periods for flowering -12 hours).  

The flower colors range from white to violet.  The immature pods are green or varying 

pigmentation like pink, red, crimson or black.  They have twinning and bushy stems with 

trifoliate leaves and long petioles (2.5-12.5 cm).  The flowers are in auxillary racemes 

(Baudoin & Vanderborght, 2001).  Cowpea is widely spread in West Africa and India 

(Summerfield, 1978).  It was known in India during the first millennium BC (Steele & 

Merha, 1980) and was widespread in Asia by 2300 BC.  Wild cowpea is almost only 

encountered in Africa.  Although Asia is considered the probable center of the cultivated 

forms, there is enough evidence suggesting that cowpea originated in Africa (Baudoin & 

Vanderborght, 2001). It was domesticated in Africa in the neolithic age (Murechal et al., 

1978).  There is still uncertainty as to where the crop was first domesticated: Ethiopia 

(Vavilov, 1926; Steele, 1976; Pasquet, 2000), West Africa (Murdock, 1959; Rawal, 

1975; Vaillancourt & Weeden, 1992; Ng, 1995), eastern and southern Africa (Baudoin & 

Marechal, 1985) have all been proposed as probable centers of the original domestication 

and primary center of diversity for the wild forms.  Primitive and semi-wild forms 

(natural hybrids between wild and cultivated forms as well as the escapes) came from 

West Africa as (Figure 1).  Archeological data suggests that cowpea was grown with 

millet in West Africa (Rachie et al., 1979).  A diffuse domestication in the savannah 

after the dispersal of cereals has also been hypothesized (Chevalier, 1974; Steele, 1976; 
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Garba & Pasquet, 1998).  Cowpea was introduced in Europe in 300 BC where it 

remained a minor crop in the southern part of the continent.  Other cultivars were 

transported directly from Africa to Latin America with slave trade.  It reached the United 

States in the 19
th

 century.  Spanish and Portuguese explorers exported it to the new world 

in 17
th

 century. 

 

 

Figure 1: Global dispersal pattern and distribution of cowpea (Chevalier, 1974) 

 

Vigna unguiculata is a diverse seed, vegetable and fodder legume of the tropics.  The 

major economic sub-species are of West African origin and are especially important for 

its protein contribution.  Cowpea is an ancient neolithic African crop now grown 

throughout the tropics and sub tropic as a pulse, vegetable, fodder and cover crop 

(Rajapakse & Van Emden, 1997).  It is mainly important in the cereal farming systems of 

Africa and India where people eat the mature seeds, young leaves, pods and feed the 

halms to livestock (Summerfield, 1978).  There are no accurate estimates but the annual 

world production and acreage probably exceed 3 million tons and 12.5 million hectares, 

respectively (Singh et al., 1997).  Cowpea is cultivated in 80,000 hectares of land in the 

USA (Fery, 1990).  In Africa, the total annual production is estimated at 1.5 million tons, 
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with East Africa and Kenya producing 130,000 tons and 48,000 tons, respectively (Singh 

et al., 1997).  Cowpea is an important source of protein to the people of northern and 

eastern Uganda where 90% of the crop is grown.  The crop is grown under low input 

subsistence farming, in mono- or mixed -cropping systems.  The yield is lower (500 kg 

per hectare) in Uganda (Baudoin & Vanderborght, 2001). 

 

Cowpea crop still suffers from several insect pests like the pod borer, flower bud thrips 

and the pod sucking bug complex since there is no good resistance against these diseases 

in cultivated cowpea (Ng, 1995). V. vexillata, the wild cowpea species, has good 

resistance to pod borers, pod sucking bugs and flowering thrips (Singh et al., 1997),  the 

cultivated cowpeas, V. unguiculata, have high levels of resistance to aphid borne mosaic 

virus (Ng, 1995).   Many accessions of wild species; such as V. vexillata (L.), V. 

reticulata (L.), V. oblongifolia (L.) and V. luteolia (L.) are highly resistant to cowpea 

storage weevil (Ng, 1995).   

 

Vigna leutolia (L.) has a fast growth rate and its ability to produce seeds in a relatively 

short time is good towards improving the food in Africa and developing world in 

particular (Ng, 1992).  Vigna vexillata (L.) also has medicinal properties. Vigna marina 

(L.) grows along the seashores where it exhibits a tremendous resistance to salty 

environments (Sonnante et al., 1997; Padulosi & Ng, 1993; 1991).  The wild cowpea and 

relatives have great potential and requires serious and detailed research in such areas as 

taxonomy, cytology, genetic variability and genetic affinity between cultivated and wild 

cowpea species (Ng, 1995).  Many attempts are being made to transfer pest resistant 

traits that are present in wild species into cultivated cowpea with the aim of improving 

food production, enhancing food security and reducing poverty levels.  Histological 
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studies have shown that after crossing V. unguiculata (L.) with V. vexillata (L.)  the F1 

embryos started to develop but collapsed at globular stage (Barone & Ng, 1990; Ng, 

1992).  The cultivated form, V. u. unguiculata, is interfertile with its wild sub-species 

such as V. u. dekindtiana var. dekindtiana, V. u. dekindtiana var. mensensis and V. u. 

dekindtiana var. pubescens (Steele, 1976).  Successful crossing of V. luteolia (L.) and V. 

oblongifolia (L.) resulted in hybrid plants that can be used as bridges of crosses to 

cowpea (Padulosi & Ng, 1991; Schnapp et al., 1990).  

 

1.2 Wild and cultivated cowpea species 

There are various sub-species of wild cowpea: V. u. dekindtiana, V. u. tenuis, V. u. 

stenophylla but varieties protracta and pubescens have also been raised to two distinct 

sub-species because of their distinctive characteristics like hairy pods and morphology of 

other plant parts such as flowers, pollen grains, leaves and root nodules.  Vigna u. 

protracta has several varieties such as protracta, rhomboidea and kgalagadiensis.  Vigna 

u. protracta var. rhomboidea has been reinstated to a sub-species because of its strong 

incompatibility with other taxa within V. unguiculata (Ng, 1995).  Similarly, V. u. tenuis 

has several varieties like tenuis, oblongifolia and parviflora.  Likewise, V. u. dekindtiana 

has several varieties including huillensis, congoliensis, ciliolate and grandiflora 

(Sonnante et al., 1996).  All the weedy forms and the intermediates between true wild V. 

u. dekindtiana and cultivated cowpea have been named V. u. unguiculata var. spontanea.  

Vigna ungiculata burundiensis is a variant of V. u. dekindtiana var. ciliolate and is found 

in the mid-latitudes in Zaire, Burundi, Kenya and Uganda (Pasquet, 1993a).   Wild 

cowpea basically is of African origin (Figure; 2) 
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Figure 2; A map of the of distribution of wild cowpea in Africa (Pasquet, 1993a) 

 

1.3 Growth types 

Genotypes and environments interact to produce a bewildering diversity of growth, 

which is difficult to rationalize.  The classification is based upon genotypic differences in 

flowering response to photoperiod and night temperatures.  Three genotypes have been 

broadly identified (Summerfield, 1978).  They include reproductively photo-insensitive 

determinate cultivars, which have apical inflorescence on main stem and branches.  In 

some cultivars flowering is as early as five weeks and day length and night temperatures 

affect first flower.  Reproductively photo-insensitive indeterminate cultivars are common 

in large collections of germplasm.  The flowers appear 5-6 weeks delayed by cold nights 

and long days.  They require short days for flowers to appear.  Photo-sensitive 

indeterminate cultivars include oldest varieties of cowpea; in which flowering begins at 

the end of rainy season regardless of the sowing date (Baudoin & Vanderborght, 2001). 

Under the predominant influence of human selection, there are photo-sensitive and 

photo-insensitive cultivars in which vegetative growth, plant architecture and 

reproductive ontogeny are mainly determined by the interaction of genotypes with day 

length and night temperatures.  Reproductively short day cultivars in West Africa are 
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precisely adapted to local environments through a range of location, specific day length 

requirements for inflorescence initiation and expansion.  

 

1.4 Cultigroups (cultivars) of cultivated cowpea 

Classification of cultivated cowpea, V. unguiculata, was based on three groups for a long 

time (Westphal, 1974) but it is now based on five cultivars (Pasquet, 1998; 2000). These 

include textilis with long inflorescence peduncle (0.4-1 cm) found in West Africa.  

Sesquipedalis formerly V. unguiculata, but also known as yard-long bean and comprises 

Asian cultivars with fleshy pods wrinkled when ripe, longer than 0.3 cm, kidney shaped 

seeds spaced within the pods, more than 7 ovules and are mainly found in eastern Asia.  

The third one is melanophthalmus with thin seed testa partly white and often wrinkled, 

flower and seed partly white with less than 7 ovules, flowers quickly from the first nodes 

under inductive conditions and was originally found and majorly grown in West Africa 

Biflora formerly V. unguiculata cylindrica but also known as catjang bean has thick seed 

testa, often coloured shinny flowers, less than 7 ovules, flowers quickly from the first 

nodes under inductive conditions and cultivated in Africa and South East Asia.  The fifth 

one is unguiculata formerly sinensis  with shinny, thick, coloured seed testa and often 

coloured flower, with more than 6 ovules, flowering late even under inductive conditions 

and largely grown in Africa (Baudoin & Vanderborght, 2001).   

 

1.5 Medicinal and economic significance of legumes 

Legumes and grains grow together in the field and often go well together in the plate.  A 

special type of bacteria, rhizobium, develops in the roots of plants in the family, 

leguminoseae.  These bacteria convert atmospheric nitrogen, an inert gas into 

nitrogenous compounds such as ammonia and nitrates (Herrero & Flores 2008).  For this 
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reason, cultivation of legumes needs no nitrogenous fertilizers.  They also supplement 

the soil for other crops without this ability.  Legumes are important sources of nectar for 

foraging honeybees (Furgala et. al., 1958). They are ecologically profitable since one 

hectare dedicated to legume production provides up to seven times more calories and 

protein than if it were used to raise livestock for milk or meat.  If the same amount of 

money used to buy meat were to buy legumes the amount purchased would be several 

times greater in terms of calories, vitamins and minerals.  Amino acids; valine, leucine 

and isoleucine are contained in pollen and are of great nuitritional quality for honey bees 

(Cook et al., 2003) 

 

To prevent or help alleviate certain health problems and adequately feed people, there is 

need for added contributions from legumes.  Legumes produce primary and secondary 

metabolite and other phytochemicals such as nutraceuticals, pharmaceuticals, pesticides 

and industrial products (Brad, 2003).  Bio-functional legumes have ben used in the past 

for forage, pasture, minor food, green manuring and erosion control.  Hyacinth bean is 

used as ornamental and wildlife feed plant (Brad, 2003).   

 

1.6 The statement of the problem 

The role of pollinators and floral volatiles in pollination efficiency and cowpea yield has 

never been investigated.  Cowpea yields may be positively associated with pollination 

efficiency while the amount of and quality of floral volatiles and nectar may enhance 

pollinator visitation.  The use of volatiles and nectar as molecular markers for the useful 

traits in cowpea could be essential in selection of appropriate cultivars.   
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1.7 Hypothesis 

Floral volatiles and nectar in cultivated, wild and inbred cowpea are qualitatively and 

quantitatively different and may have effects on pollination and crop yields. 

 

1.8 Objectives 

1.8.1 General objective  

Analysis of floral volatiles and nectar from six different cultivars of cowpea (wild out 

crossed, wild inbred and cultivated forms) and their effect on pollination. 

1.8.2 Specific objectives  

 To determine the floral sizes of the six cowpea cultivars.  

 To trap the floral volatiles from six cowpea cultivars using different adsorbents 

and also by steam distillation and to analyze the collected volatiles by GC and 

GC-MS to establish any quantitative or qualitative differences between the six 

cowpea cultivars. 

 To identify the components of the floral volatiles of the six cowpea cultivars. 

 To collect nectar from the six cowpea cultivars and to establish qualitative and 

quantitative differences in the nectar from the six cowpea cultivars using HPLC. 

1.9 Justification 

Legumes are primarily important as sources of protein in diets in many parts of the 

world.  Cowpea is economically useful as vegetable (leaves), a protein source (seeds and 

young pods), fodder and pulse crop.  Increase in vegetable protein, vitamin and soluble 

carbohydrates supply from cowpea in malnourished areas presents a less difficult, less 

expensive and more energy efficient solution.  Consequently, cowpea production should 

be enhanced.  If a link between floral volatiles and pollination efficiency can be 

demonstrated and the direct impact on cowpea yield assessed, then, bee keeping and 
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cowpea cultivation could be encouraged as complimentary farming practices.  Breeding 

resistant cultivars is an important means of pest and disease control in tropical farming 

systems where monetary inputs are limited.  The wild cowpea has got useful traits (high 

yields, drought resistance, medicinal value, pest and disease resistance) which if 

trasfered to the cultivated cowpea would be of great importance.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Plant-insect interactions 

There is a wide variety of flowers and insects.  Flower pollinator insect combinations are 

often very precise and often quite general.  Insects recognize flowers that provide for 

their nutritional needs.  The flowers in return advertise to the insects that fit their needs 

(Pichersky & Gershenzon, 2002).  Flowers attract insects from varying distance through 

interplay of visual and chemical stimuli which by virtue of their species-specific patterns 

allow insects to discriminate between flowers of different species (Menzel, 1985). Plant 

volatiles, together with some other compounds, are determinants in insect-plant 

interactions (Dobson, 1994).  

 

 Insect-flower associations have long been a pivotal subject of interest to entomologists, 

due to their economic importance in agriculture and the co-evolutionary history between 

flowers and pollinating insects.  Animal-pollinated plants offer rewards in several ways, 

such as pollen, nectar, stigmatic exudates and essential oils, sexual attractants, resins, 

gums, food tissues and brood places (Simpson & Neff, 1983).  Among these, nectar 

(secreted by a localized glandular nectariferous tissue) is the most common (Baker et al., 

1978).  Floral nectarines occur on various flower parts and have been used as key 

characteristics in plant taxonomy and phylogeny (Fahn, 1979). Most butterfly species are 

effective pollinators and tend to visit broad spectrum of plant species for nectar.  The 

quantity of available sugars (caloric content) is an important factor influencing insect 

visitation patterns since they prefer plants or flowers that offer high rewards (Devlin & 

Stephenson, 1985).   
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Flower visit varies from one species of butterfly to the other and appears to be an 

outcome of learning through recognition of rewarding flowers.  In foraging for food 

sources, insects make use of a variety of sensory cues (visual, olfactory and gustatory).  

Although generalists are visited from an array of insects, different visitors vary 

considerably in pollination efficiency (Corbet, 1978a; 1978b).  For effective pollination, 

the efficiency must be enhanced and hence the specialized pollinators for particular plant 

species.  Characteristic scents produced by particular flowers therefore will attract 

efficient pollinators. 

 

2.2 Floral scent 

Floral scent is an important component of reproductive biology of many flowering 

plants, advertising the presence of rewards (nectar or pollen) to foraging pollinators 

(Heinrich & Raven, 1972; Kevan & Baker, 1983; Robacker et al., 1988).  They can serve 

as attractants in plants pollinated by bees, beetles, butterflies, moths and probably bats 

(Dodson et al., 1969; Galen & Kevan, 1983; Nilsson, 1983; Pellmyr, 1986; Williams, 

1983; Williams & Whitten, 1983; Dudareva & Pichersky, 2000).  In most associations 

between plants and pollinators, floral scent acts as a long-range attractant (Faegri & Van 

der Pijl, 1979; Williams, 1983) or a close range orientation guide within the flower 

(Dobson et al., 1990; Knudsen & Tollsten, 1991).   

 

In nocturnal moth species, attraction to flowers is guided mainly by floral scent (Gabel et 

al., 1992; Dobson, 1994).  Olfactory modulation in butterflies influences their attraction 

to floral odour.  In some flowering plants the scent has a highly specific role and 

determines the relationship between the flower and pollinators.  Examples are the co-

adaptation of many Neotropical orchids, perfume collecting male euglossine bees 
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(Williams & Whitten, 1983) and the deception of male Hymenoptera by Orphyress 

orchids (Borg-Karlson, 1990).  The purpose of floral scent in the former is to attract and 

reward the pollinating bee.  In the latter, it is a sexual stimulant giving way to pseudo-

copulation, which results in pollination. In a number of pollination syndrome, the 

adaptation of flowers to specific groups of pollinators is believed to depend heavily on 

scents.  However, little is known about the chemical compositions and the exact role of 

the scent in the different syndromes (Faegri & Van der Pijl, 1979).  Many plant species 

share characters from different pollination syndrome and are visited by more than one 

group of pollinators (generalists or promiscuous).  Many flower volatiles are pleasant to 

human sensory system and have potential application in perfumery.  Most common floral 

scents are composed of essential oils. 

   

2.3 Nectar 

Nectar is a sugar rich solution, which is also thought to be a reward and pollinator 

attractant, produced by plants (Nepi et al., 2003).  The sugar content, type of sugars 

present and their relative amounts have been identified as the main factors that dictate 

nectar quality in plant-insect interactions.  Three main sugars that are usually in nectar 

are fructose (Fruc) (1), glucose (Gluc) (2) and sucrose (Suc) (3) (Baker & Baker, 1983a; 

Baker et al., 1998).   
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Nectar may also act as an attractant to the pollinators.  Pollinator visits have been 

assumed to be independent of the rate of nectar production by the plant.  This assumption 

is based on the belief that pollinators are unable to remember the location of individual 

plants in a dense population (Summerfield, 1978).  Bees prefer bright flowers (Reinhard 

et al., 2004) though colours can be associatively learnt with rewards (Menzel, 1990).  

Bumble bees descriminte against white flowers when floral rewards are comparable 

(Odell et al., 1999).  Familiar scents trigger navigational and visual memories in 

experience to bees.  Acquired visual and chemical associations facilitate honeybee 

navigation in the field enhancing foraging efficiency (Reinhard et al., 2004).  Pollinators 

have been found to favour larger plants over smaller ones.  It is possible that if nectar 

production is associated with some other phenotypic trait, then pollinators might 

selectively visit plants with high rates of nectar production.   

 

2.3.1 Factors that influence nectar production 

Production and composition of nectar vary widely according to species (Fahn, 1979; 

Baker & Baker, 1983a; 1983b).  Variations in environmental conditions can influence 

the volume of nectar that is produced by a flower and the overall concentration of solutes 

in the nectar (Shuel, 1955; 1957).  Photoperiods and environmental conditions influence 

the amount of nectar produced (Baker & Baker, 1982).  At a photoperiod of 8 hours and 

10 
o
C, no nectar is produced.  Low temperatures and low light intensity decreases nectar 

production (Pleasants, 1983).  Corbet et al. (1979) and Plowright (1981) studied the 

importance of humidity in controlling nectar concentrations and found that at a given 

humidity, nectar-containing sucrose (3) has a higher concentration than nectar consisting 

of hexoses in order to maintain equilibrium with air (Corbet et al., 1979).  This explains 

why hexose rich nectar is found in shallow exposed nectarines.  High relative humidity 
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and high temperatures can stimulate nectar production (Butler et al., 1972).  The 

presence of other compounds may also influence vapour pressure and biochemistry of 

nectar. Carbon dioxide increases nectar production (Lakes & Hughes, 1999; Pan et. al., 

1998).  The quantity and composition of nectar vary widely from species to species 

(Baker & Baker, 1983a).  Patterns of nectar sugars are influenced by several factors, 

including removal by insects (Silva & Dean, 2000).  Flowers exposed to insect visitors 

often have much lower sugar amounts than individual whose nectar sources are 

experimentally protected and unavailable to insects (Davis, 1997).  There is wide intra-

species variability resulting from environmental factors like temperature, soil moisture 

and humidity.  Physiological factors such as flower age, health of plants and damage to 

floral parts also affect the quality and composition of nectar.  High moisture content or 

soil water increases nectar volume (Wyatt et al., 1992).  Nectar composition and nectary 

cytology are generally studied during anthesis, when nectar is available to pollinators.  A 

complication in nectar composition during aging is due to reabsorption of nectar not 

collected by pollinators (Zimmerman, 1988; Burquez & Corbet, 1991; Davis, 1997).  

Although some species do not reabsorb nectar (Pleasants, 1983; Burquez & Corbet, 

1991), nectar sitting in flowers may be reabsorbed into nectarines and sometimes 

reincorporated into concentrated nectar (Corbet, 1978b; Burquez & Corbet, 1991).  The 

latter suggest that nectar may not be reabsorbed if it is stored in an area remote from the 

nectary or if the nectarines are abscised along with the corolla shortly after fertilization.  

In monoecious and dioecious zoophilous plants, nectary position and nectar composition 

may differ in the flowers of the two sexes (Delph & Lively, 1992).   

 

Nectar production increases with plant age and also nectary depth.  Nectar volume 

increases with flower depth for example in Asclepiadaceae (Asclepias syriaca) (Pyke, 
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1978), though not in all species as in Polemoniaceae (Ipomopsis aggregata) (Pleasants, 

1983).  The flower length is correlated with nectary size and total volume of nectar 

secreted.  Structural constraints play a major role in determination of nectar traits 

(Galetto & Bernardello, 2004; Herrera & Alonso 2006).  In some flowers, surfactants on 

the surface of the nectar pool retard nectar evaporation.  Periodic nectar harvesting from 

some tropical hummingbird flowers appears to increase total nectar yield (Gill, 1988).  

Removal of nectar stimulates further production (Corbet, 1978b).  The production of 

nectar is an active energy requiring process, which is curbed by respiratory inhibitors 

(Southwick, 1984; Heinrich, 1983).  There is a strong genetic component in nectar 

production characteristics (Hawkins, 1971).  Day-to-day environmental variations 

influence metabolic process of nectar production (Gardener & Gillman, 2001b).  Large 

amounts of nectar sugars at night may be the result of increased nectar secretion (Wyatt 

& Shannon, 1986), selective reabsorption during the day (Nepi et al., 1996b) and 

reduced insect visitation during the night due to adverse temperatures (Deppe et al., 

1999). 

 

2.3.2 Nectar sugars 

Most nectar contains some proportion of all three major sugars: fructose (1), glucose (2) 

and sucrose (3).  Others contain sucrose and very little glucose.  Some also contain 

sucrose, fructose and no glucose (Percival, 1961; Hainsworth & Wolf, 1976).  Sucrose 

and glucose with an apparent absence of fructose; and glucose and fructose with sucrose 

at undetectable levels occur fairly frequently Glucose more frequently outweighs 

fructose (Baker et al., 1998; Baker & Baker, 1973).  Fructose and glucose are secreted 

from the nectariferous tissues and are not products of hydrolysis (Baker & Baker, 1982).  

No nectar has been found to contain fructose only (Baker & Baker, 1982).  Some sugars 
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like sucrose (3), maltose (4), glucose (2), fructose (1), trehalose (5) and melezitose (6), 

all of which are present in some nectars taste sweet to honeybees. 
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Sugars that are apparently tasteless to bees include: lactose (7), melibiose (8), raffinose 

(9), xylose (10), and arabinose (11) (Von Frisch, 1950). 
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The sugars that are repellant to bees include cellobiose (12) and gentiobiose (13) 

(Von Frisch, 1950). 
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Galactose (14) and mannose (15) are toxic to bees (Barker & Lehner, 1974b; Cane, 

1977).   

OH

H

OH

O

H

H H

HO
HO

CH
2
OH

H

H
OH

O

H

H H

HO

HO

CH
2
OH H

14                                                                                     15

HO

 

Other unusual oligosaccharides are present in some fresh nectar.  They may increase in 

amount if nectar is allowed to stand as a liquid (Mauritzio, 1959). 

 

2.3.3 Nectar sugar ratios 

Baker & Baker (1983a) distinguished four classes of nectar on the basis of sucrose: 

hexose ratios.  They include hexose dominant, hexose-rich, sucrose-rich and sucrose-

dominant.  Perfectly balanced nectar contains equal quantities of sucrose, fructose and 

glucose by weight.  The ratio would include sucrose/hexose ratio of 0.333/0.667 = 0.5.  

If much sucrose is present, the ratio may be 1.0.  Sucrose-dominant nectars have 

sucrose/hexose a ratio of 0.999.  The nectars with sucrose/hexose ratios between 0.5 and 

0.999 are sucrose-rich and while those between 0.1 and 0.499 are hexose-rich.  Ratios of 

sucrose/hexose which are less than 0.1 are characteristic of hexose-dominant nectars, 

(Herrera & Alonso, 2006; Silva & Dean, 2000; Baker & Baker, 1982; Southwick et al., 

1981). 
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2.3.3.1 Nectar sugar ratios and pollination biology 

Flowers have played a role in eliciting behavioural responses in several adult 

phytophagous insects (Waller, 1972).  Among soybean cultivars, floral characteristics 

that influence attractiveness to honeybees include flower size, colour, abundance, 

clustogamy, aroma and nectar (Erickson, 1975).  Of all the floral rewards offered by 

flowers to animal visitors, nectar is considered the most important (Simpson & Neff, 

1983).  Bees exhibit definite preferences for nectar with respect to carbohydrate 

composition (Bachmann & Waller, 1977).  Concentration and abundance of nectar in 

flowers affect honeybee foraging activity (Kauffield & Sorensen, 1971).  Nectar 

composition is influenced by time of sampling, and the total carbohydrate content 

increases with time of sample collection (Erickson et al., 1973).  Nectar production and 

blossom sequence vary along a continuum between extreme limits for most of these 

characteristics.  There are co-evolutionary relationships between the nectar sugar ratios 

and the types of pollinators that are attracted by the plant (Baker, 1975; Baker & Baker, 

1979; 1983a; 1983b; Lammers & Freeman, 1986).  To explain those cases where nectar 

sugar composition and pollinators are not correlated, it has been suggested that, some 

plant taxa have a phylogenetic constraint and therefore do not develop distinct 

pollination syndromes (Baker & Baker, 1983a).  Sucrose-rich nectars are associated with 

pollination by humming birds, hawk moths, butterflies and long-tongue bees like 

honeybee.  Hexose-rich nectars are likely to be used by passaring birds, bats, flies and 

short-tongue bees (Baker & Baker, 1983a).  Honeybees prefer sucrose-rich nectar 

(Waller, 1972; Wykes, 1952a; 1952b; Barker & Hurd, 1969).  Balanced nectar is rare 

(Percival, 1961).  Starved honeybees would take glucose, fructose and sucrose when 

offered singly.  More loading would occur if sucrose were combined with fructose or 

glucose (Barker & Lehner, 1974a; 1974b).  Long-tongue bees remove sucrose rich 
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nectar.  Little is known about inter-relationships among the constituents or characters of 

cross-pollinated legume flowers that attract pollinators.   

 

2.3.4 Roles of the sugars 

Carbohydrates or sugars occupy a central position in plant metabolism, such that the   

methods for their detection and estimation are very important to plant scientists.  Sugars 

act as source of respiratory energy (maltose), stored energy (starch), energy (sucrose) 

and building blocks of cell wall (cellulose).  Nucleic acids, like DNA and RNA, contain 

sugars as essential features of their structures.  Sugars also play a number of ecological 

roles in plant-animal interactions (flower nectar is mainly composed of sugars).  They 

also protect plants from wounding and infection.  Sugars are also involved in 

detoxification of foreign substances (Harbone, 1998).  Sugars can be classified as 

monosaccharides, disaccharides, oligosaccharides and polysaccharides.  Nectar is mainly 

composed of monosaccharides, which are characterized by low molecular weight and 

optical activity.  They are cyclic, water soluble, polyhydroxy compounds that are 

difficult to crystallize even when pure (Chatwaal, 1988). 

  

2.3.5 Other nectar constituents 

Nectar is not merely sugar solution in water providing energy for pollinators.  Other 

constituents in nectar include amino acids, alkaloids, vitamins, phenolics, terpenes, 

proteins, inorganic ions, micro-organisms, iridoid acids and floral oils (Baker, 1977; 

1973).   

 

Amino acids are the second most abundant class of compounds in nectar after sugars 

(Gardener & Gillmann, 2002).  Amino acid composition can be modified by soil nutrient 
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conditions (Gardener & Gillmann, 2001a).  Concentrations of amino acids can vary 

between species (Baker & Baker 1973) and within single species (Gardener & Gillmann, 

2001b).  All twenty common amino acids like proline (16) and histidine (17) found in 

proteins have been identified in various nectars, with the non-aromatic ones like alanine, 

arginine, serine, proline, glycine, isoleucine, threonine, valine being the most prevalent 

(Baker & Baker 1973; Cook et al., 2003). 

 

 

 

 

 

 

 

They contribute to the overall taste of nectar (Gardener & Gillmann, 2001a) and elicit 

various responses in insect taste receptors.  Plants adapted to pollination by butterflies 

show high concentrations of amino acids while those pollinated by birds show low 

concentration of amino acids in their nectar (Baker & Baker, 1975; 1982). Plants 

pollinated by bees, which are able to eat and digest pollen, as their source of amino acids, 

form an intermediate group (Baker & Baker, 1973; Cook et al., 2003). 

 

Alkaloids are also present in nectars frequented by bees but do not discourage them from 

foraging (Baker & Baker, 1975).  Adult Lepidoptera are intolerant to alkaloids.  

Ithiomine butterflies derive protection from predators from pyrrolizidine alkaloids like 

jocabine (18) and heliotrine (19) found in nectars of some flowers they visit (Masters, 

1990).  Vitamin C (20) has been identified in the nectar of several plant species.  

However, the reducing agents identified in nectar may not always be vitamin C (Baker & 

Baker, 1975). 
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Enzymes (transglucosidases, transfructosidases, esterases and malate dehydrogenases) 

have also been detected in nectar.  Other proteinous contaminants in nectar may be from 

pollen, micro-organisms or glandular secretions from bees (Baker & Baker, 1973). 

 

Phenolics protect plants from wounding (Buchmann & Buchmann, 1981).  Many phenols 

including ferullic acid (21), vanillic acid (22) and 2, 5-dihydroxyphenylacetic acid (23) 

are broad-spectrum allelopathics (Johnson et al., 2006; Cabras et al., 1999; Mann, 1978). 
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Yeasts and bacteria can grow in nectars of low sugar concentrations exposed for longer 

period of time (Buchmann & Buchmann, 1981).  They are at times introduced through 

contamination by floral visitors (Gilliam et al., 1983).  Anthomyces reukaufii is common 

floral yeast (Meeuse, 1982).  In some cases, yeast hydrolyzes sucrose (3) in nectar to 

yield glucose (2) and fructose (1) (Meeuse, 1982; Heil et al., 2005).  The presence of 

micro-organisms (yeast) can increase the levels of amino acids, alcohols and other 

fermentation products (Kevan et al., 1988).  Honey often harbors microorganisms.  Bees 
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visiting milkweed flowers cannot differentiate nectar with and without yeast (Spencer et 

al., 1970). 

 

Catalpa (Bignoniaceae) nectar contains iridoids which act as phagostimulants for leaf 

feeding larvae (Wilkins & Bohin, 1976).  The larvae take Catalpa nectar but not sucrose 

solution of the same concentration (Stephenson, 1982b).  Examples of iridoids are 

iridodial, iridodiol, nepetalactone, dolicholactone among many others (Otsuka et al., 

1989). 

 

Carboxylic acids (Buchmann & Buchmann, 1981), lipids (Baker & Baker, 1975) and 

other organic compounds are also present in floral nectar.  Water, present in nectar is 

also important to nectarivores (Willmer, 1986). 

 

Some floral nectar has significant amounts of ions like K
+ 

(Waller et al., 1972).  Onion, 

Allium cepa (Liliaceae), nectar contains K
+
, Na

+
, Mg

2+
 and Ca

2+
.  High levels of K

+
 deter 

honeybees from collecting onion nectar (Silva & Dean, 2000; Waller et al., 1972).  The 

major cation of most nectar is K
+
, making up 35 to 74% of the total cation content 

(Heinrich & Raven, 1972).  Other notable cations include; Na
+
 (17.9%), Ca

2+ 
(12.8%), 

Mg
2+

 (5.9%), Al
3+

 (4.6%), Fe
3+

 (1.2%) and Mn
2+

 (0.8%) (Heinrich & Raven, 1972).   

 

No work on the quality and quantity of cowpea nectar has been reported.  

 

2.4 Extra-floral nectar (EFN) 

Extra-floral nectar (EFN), produced by nectarines on leaves, petioles, stipules and stems 

also attract insects.  Like floral nectar, they contain sugars, amino acids, water and other 

chemical constituents which provide insects with necessary nutrients and water (Baker et 
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al., 1978; Dress et al., 1997).  EFN reduce herbivory and seed predation (Pembertone & 

Lee, 1996).  Most studies have focused on the mutualistic system between plants and 

ants whereby ants reduce herbivory by aggressively preying on adult herbivores, their 

eggs or larvae (Bentley, 1977; Stephenson, 1982b).  Relatively few studies have 

investigated EFN production patterns, primarily due to difficulty involved in accurately 

collecting and measuring them (Wunnachit et al., 1992). 

 

2.5 Floral oils  

Nectar and pollen are not the only floral rewards.  There are flowers offering fatty oil 

instead of nectar (Simpson & Neff, 1983; Vogel, 1969).  Five major families have been 

confirmed to have special oil secreting elaiophores (glandular hairs or specialized 

regions of the floral epidermis).  Their flowers offer fatty oils instead of nectar or pollen 

(Buchmann, 1987).  The families include Iridaceae, Orchidaceae, Malpighiaceae, 

Scrophulariaceae and Gesneriaceae (Buchmann, 1987).  Floral oils contain free C14 - C20 

fatty acids that are, substituted with acetoxy at C-3.  Examples include 3-acetoxy-

octadecanoic acid (24), from Calceolaria pavonii and 1, 2-diglyceride of 3-acetoxy- 

11E- octadecenoic acid (25), the major component of Calceolaria and Lysimachia 

species.  Floral oil may also contain smaller amounts of long chain hydrocarbons, 

aldehydes and esters (Zinkl & Preuss, 2000; Buchmann, 1987). 
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Lipids are important mediators of pollen hydration (Zinkl & Preuss, 2000; Hülskamp et 

al., 1995b; Preuss et al., 1993).  The long chain lipids are important components of 

pollen coats (Ross & Murphy, 1996; Roberts et al., 1994). 

 

2.6 Essential oils 

Essential oils are odoriferous volatile secondary metabolites that plants produce for their 

own needs such as defense and attraction (Corbet, 1978a).  They can be obtained by 

gently heating or by steam distilling certain plant materials (flowers, leaves, roots, fruits) 

(Solomons, 1997; Pinder, 1960).  They constitute the characteristic floral scents of the 

various plants and therefore enable their recognition by pollinators.  The composition of 

flower compounds that give characteristic odour and flavor to each plant may change 

with physiological state of the plant.  Chemical examination of the essential oil has 

shown that they consist of complex mixtures of acyclic, alicyclic, aromatic and 

heterocyclic compounds and they may be classified broadly as: aromatics terpenes, 

nitrogen and sulphur containing compounds (Pinder, 1960).  They are usually referred to 

as floral volatiles. 

 

2.7 Floral volatiles 

Volatile compounds mediate many interactions between organisms, including plant 

response to pathogen infection (Shulaev et al., 1997), plant-parasitoid signaling in 

response to herbivory (Turlings et al., 1990) and plant-pollinator communication during 

flowering.  As pollinator attractants, volatiles are important cues that help insects locate 

flowers and signal the presence of food or mates (Knudsen et al., 1993). 
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Plants synthesize and emit a large variety of volatile organic compounds with terpenoids, 

fatty acids and derivatives as the dominant classes.  Floral scent composition of a plant is 

thought to have evolved partly from adaptations towards the olfactory requirements of 

efficient pollinators.  Some volatiles are probably common to almost all plants while 

others are specific to only one or a few related taxa (Pichersky & Gershenzon, 2002; 

Visser, 1986).  Plant odour specificity is achieved by a characteristic ratio of the 

constituent chemical compounds, which are generally distributed among the plant 

species (Visser, 1986).  Anthers and pollen release distinctive odours (Barkmann, 2003; 

Blight et al., 1995).  Floral volatiles are formed via plant biosynthetic pathways.  The 

rapid progress in elucidating the biosynthetic pathways, enzymes and genes involved in 

the formation of plant volatiles allows their physiological activity and function to be 

rigorously investigated at the molecular and biochemical levels.  Floral volatiles act as 

attractants for species-specific pollinators. However, the volatiles emitted from the 

vegetative parts, especially those released after herbivory, protect plants by deterring 

herbivores and/ or attracting the enemies of herbivores (Pichersky & Gershenzon, 2002).  

Most of the floral fragrance compounds are terpenoids, simple aromatics, amines and 

hydrocarbons.  The most common floral fragrance compounds are monoterpenes 

(William & Whitten, 1983; Vickery & Vickery, 1981).   

 

2.7.1 Terpenes 

Terpenes and terpenoids (oxygen containing compounds) are the most important 

constituents of essential oils (Solomons, 1997).  They are products of secondary 

metabolism synthesized in various cellular organelles but stored in specialized secretory 

structures.  Apart from the relatively rare hemiterpenoids (a group of natural products 
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containing a single C5 skeleton) there exist monoterpenes.  Isoprene (26) is a classic 

example of hemiterpenoids (Agarwaal, 1998).  

26  

Monoterpenes may be envisaged as consisting of two isoprene (C5 carbon) units, formed 

by head-to-tail condensation to produce a C10 branched chain or ring.  The metabolic 

pathway of terpenes is believed to start with the condensation acetyl coenzyme A (27) 

from acetic acid and malonyl coenzyme A (28) from malonic acid, (Scheme 1).  They 

condense to form (29) which decarboxylates to form aceto acetyl coenzyme A (30).  

Another molecule of malonyl coenzyme combines with aceto acetyl coenzyme to form 

(31). The latter then decarboxylates to form hydroxyl methyl glutarate (32), on addition 

of NADPH, mevalonic acid (33) arises.  The isoprene unit, normally in the form of 

isopentyl pyrophosphate (IPP) (34) readily converted to dimethylallylpyrophosphate 

(DMAPP) (35), Scheme 1. 
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Scheme 1: Biosynthesis of IPP from acetyl coenzyme A (Mann, 1978) 

 

IPP (34) is readily converted to monoterpenes by condensation with DMAPP (35) to give 

nerylpyrophosphate (NPP) (36) and geranylpyrohosphate (GPP) (37) (Scheme 2).  The 
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cyclic, bicyclic and acyclic species are derived from NPP (36) and GPP (37) (Scheme 2).  

When the phosphate group is eliminated, linalyl (38) and neryl (39) cations are formed.  

NPP, LPP and GPP are in isomerism.  They form cations which are in isomerism and 

they form menthyl (α-terpenyl) cation which also forms various cations (scheme 2). 
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+

+

resonance stabilized allylic neryl cation (39)
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+
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Scheme 2:  Biosynthesis of monoterpenes (Pinder, 1960; Charlwood &  Charlwood, 

1998; Dewick, 2002). 

 

Linalyl cation (38) gives rise to the acyclic species (Charlwood & Charlwood, 1998).  

The aliphatic monoterpene hydrocarbons are represented by: cosmene (40), β-myrcene 

(41) α-myrcene (42) (isolated from bay oil, verbena, hops and terpentine oils), (E)-
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ocimene (43), (Z)-ocimene (44) and allo-ocimene (45).  Ocimene was first isolated from 

the oils of the leaves of Ocimum basilicum (Agarwaal, 1998; Charlwood & Charlwood, 

1998) and has been found to attract nocturnal Lepidoptera species (Dotterl et al., 2005). 

40                       41                            42                           43                           44                            45  

 Aliphatic oxygenated monoterpenoids are represented by: linalool (46), myrcenol (47), 

citronellal (from citronella oil) (48), citronellol (49), (from rose oil, geranium oil and 

citronella oil), dihydrocitronellol (50) and geranial (51) also referred to as E-citral 

amongst many others (Agarwaal, 1998; Charlwood & Charlwood, 1998). 
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Neryl cation (39) gives the cyclic classes.  It has cisoid stereochemistry required for 

cyclisation by intermolecular electrophyllic attack at the isoprenyl double bond yielding 

α-terpenyl cation (52).  Rationalization of many monoterpenoid skeletons is made 

possible through hydride shifts, internal additions and rearrangements.  The monocyclic 

monoterpenoids are classified on the basis of carbon skeleton consisting; p-menthane 

(53), m-menthane (54), 1,1,3-trimethylcyclohexane (55) and 1,1,3,6-

tetramethylcyclohexane (56) (Dewick, 2002; Agarwaal, 1998). 

53                                54                                  55                                     56  
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Bicyclic monoterpenes are classified into six groups on the basis of saturated parent 

hydrocarbons namely thujane (57) from thujyl cation, carane (58), pinane (59) from 

pinyl cation, bornane (camphane) (60) from bornyl cation, isocamphane (61) from 

isocamphyl cation and fenchane (62) from fenchyl cation.  The last two are derivatives of 

norbonane (Dewick, 2002; Agarwaal, 1998).  They are formed through hydride shifts, 

internal additions and rearrangements. 

 

57                              58                             59                        60                               61                        62  
 

 

Monoterpenoids (C10H16) and its oxygenated derivatives are the simplest among the 

naturally occurring isoprenoids and form the important constituent of the essential oils 

obtained from leaves, roots, and flower sand barks of various plants.  They have different 

pleasant odours and hence are frequently used in perfumery (Agarwaal, 1998; 

Charlwood & Charlwood, 1998).  Other exploitable properties of monoterpenoids are 

anti-bacterial, anti-fungal and anti-cancer activities and in chemotherapy (Charlwood & 

Charlwood, 1998).   

The hydrocarbon monoterpenoids with monocyclic menthane skeletal include β-

phellandrene (63), (from water fennel, eucalyptus, Japanese pepper mint and Canadian 

balsam oils) α-phellandrene (64), (from fennel, aniseed, eucalyptus and biter ginger grass 

oil), limonene (65) (from lemon, orange, caraway, peppermint and pine needle oils), 

terpenolene (66) (coriander and Manila elemi oils), β-terpenene (67) and α-terpenene 

(68)  (from cardamon, coriander and marjoram oils) (Charlwood & Charlwood, 1998). 
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63                     64                  65                     66                   67                     68    

 

The oxygenated monocyclic menthane skeletal monoterpenoids are represented by 

pulegone (69) (from penny royal oil), menthone (70) (from geranium and penny royal 

oils), menthol (71) from pepper mint Mentha piperita oils), 1, 8-cineol (72) (from 

wormseed, cajaput and eucalyptus oils), carvone (73) (from dill, spearmint and caraway 

oils) and piperitone (74) (from broad leaf peppermint and the Himalayan grass, 

Andropogon snerancus among many others) (Gershenzon & Croteau, 1991; Agarwaal, 

1998). 

 

 

 

 

 

The monocyclic monoterpenoids derived from 1,1,3 trimethylcyclohexane skeleton are 

represented by cyclogeraniols and cyclocitrals.  The examples of cyclogeraniols are α-

cyclogeraniol (75) and β-cyclogeraniol (76).  Cyclocitrals do not occur in nature but are 

derivatives of naturally ocuring safranal (77).  Examples of cyclocitrals are: α-cyclocitral 

(78) and β-cyclocitral (79) (Agarwaal, 1998).  
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The 1,1,3,6-tetramethylcyclohexane (56) derivatives include the ionones and irones.  The 

examples of ionones include; α-ionone (80) and β-ionone (81).  The α-ionones and β-

O

O OHO

O
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ionones have been isolated from essential oil of Baronia megastigma.  Other examples 

include γ-ionone (82) (ambergris oils) and Ψ-ionone (83) (Agarwaal, 1998). 

 

 

 

 

Examples of irones are: α-irone (84), β-irone (85), γ-irone (86) (in the roots of Iris 

florentina) and Ψ-irone (87) (Agarwaal, 1998).  

 

O
O O O
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Thujane skeletal structures include thujone (88), α-thujene (89) and sabinene (90) while 

the carane skeletal structures include carone (91), 2-carene (92) and 3-carene (93).  The 

carenes have been isolated from pine needle oils (Agarwaal, 1998; Charlwood & 

Charlwood, 1998). 

OO

88                      89                   90                     91                       92                        93  

Bicyclic monoterpenoids of pinane skeletal structure include α-pinene (94), β- pinene 

(95), verbenol (96), verbenone (97), pinocarveol (98), myrtenol (99) and myrtenal (100).  

(Agarwaal, 1998; Charlwood & Charlwood, 1998) 
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Bornane (camphene) derivatives include: camphor (101) (from oil of camphor), 

isoborneol (102) (from valerian, rosemary and spike oils), borneol (103) (from oil of 

Dryobalanops camphore tree), and born-2-ene (104) among many others (Agarwaal, 

1998; Charlwood & Charlwood, 1998). 

O OH OH

101                      102                       103                          104 
 

The isocamphene skeletal structures include camphene (105), camphenilone (106), 

camphenelol (107) and santene (108) among many others (Charlwood & Charlwood, 

1998). 

O OH

105                         106                          107                    108   

 

Fenchane skeletal structures are thought to be derived from the pinane skeletal but are 

rearranged (Charlwood & Charlwood, 1998).  Examples include α-fenchene (109), β-

fenchene (110), δ-fenchene (111), fenchone (112) and α-fenchol (113) among many 

others (Charlwood & Charlwood, 1998). 

O OH
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Irregular monoterpenes do not obey the biogenic isoprene rule (BIR) (Mann, 1978; 

Nakanishi et al., 1980).  In irregular monoterpenes the biosynthetic route suggests the 

involvement of enzyme sulphydril group (114) since IPP (34) and DMAPP (35) are 

incorporated but not GPP (37) and NPP (36) (Scheme 3).  They are derived from 

hypothetical process from chrysanthemyl pyrophosphate (CPP) (115) by 
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cyclopropylcarbinyl (CPC) ion rearrangement (116) or they are derived from MVA (33) 

via intermediacy of the two units of IPP (34) and DMAPP (35).  The skeletal types are to 

some extent interconvertible and could probably arise from a common cationic species 

(Mann, 1978).   

 

 

Scheme 3: Biosynthesis of irregular monoterpenoids (Mann, 1978) 

 

Subsequent rearrangements give rise to structures, which are not obviously isoprenoid in 

character.  The most common monoterpenoid skeletones include; artemisyl (117), 

chrysanthemyl (118), santolinyl (119), lavandulyl (120) and rothrockyl (121). 

 

117                               118                              119                         120                                121  

 

Examples in this class include artemesia alcohol (122), artemisia ketone (123), 

chrysanthemyl alcohol (124), santolina alcohol (125) (from santolina oils), and 

lavandulol (126) (from lavandula oils) and rothrockene (127) (from Artemisia tridentate 

var. rothrockii oils) (Mann, 1978).  Compounds of this nature are commonly found in the 

family Compositae (Mann, 1978). 
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Glycosidic monoterpenes have been isolated from Ocimum, Pelargonium, Rosa, 

Syneilesis, Mentha, Thymus and Vitis species, (Jerkovic & Mastelic, 2001; Vorun et al., 

1990; Van Dries & Svendesen, 2006, Radonic & Mastelic, 2008; Min et al., 2009; 

Watanabe et al., 2002; Wende et al., 2001).  Of particular note are the pinane type enol 

glycosides (128-130), which have been isolated from the roots of Paeonia lactiflora 

(Winter & Skouroumounis, 2007; Inoshiri et al., 1988; 1987). 

 

 

 

 

 

 

Glycosilated hydroxypulegone schizonepetoside (GHS) (131) was isolated from 

Schizonepeta tenuifolia (Kubo et al., 1986).  Angelicoidenal-2-O-β-D-glucopyranoside 

(132) was found in the stems of Berchemia racemosa (Inoshiri et al., 1988).  Agarwaal 

(1998) has also reported picrocronin (133). 

 

 

 

 

 

2.7.2 Sesquiterpenes  

Sesquiterpenes are C15 hydrocarbons or their oxygenated analogues.   They arise from 

the cyclisation of 2E, 6E-farnesyl pyrophosphate (FPP) (134) with nerolidyl 
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pyrophosphate (NPP) (135) and 2Z, 6E-FPP (136) which are in isomerism.  Subsequent 

rearrangements results in farnesyl (137) and nerolydyl cation (138) (Bouwmeester et al., 

1999; Mckaskill & Croteau, 1997).  Cyclization followed by hydride shifts results in 

numerous sesquiterpene skeletons: farnesane (139), bisabolane (140), cadinane (141), 

humulane (142), caryophyllane (143), eudesmane (144), eremophillane (145), elemane 

(146), germacrane (147), bicyclogermacrane (148), carotaene (149), aromandrane (150) 

and guainane (151) (Scheme 4) (McCaskill & Croteau, 1997; Fraga, 1998). 
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Scheme 4: Biosynthesis of sesquiterpenes, (Bouwmeester et al., 1999; Mackaskill & 

Croteau, 1997; Fraga, 1998). 
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Ionization of FPP to the farnesyl cation (137) is the first step in the biosynthesis of a 

large number of sesquiterpenes (Bouwmeester et. al., 1999).  For a large number of other 

sesquiterpenoids, the enzymatic reaction is initiated by isomerization of FPP (134) to the 

isomer NPP (135), which is ionized to generate the nerolidyl cation (138).  The 

intramolecular attack of the cationic centre formed in the solvolysis of phosphate on one 

of the double bonds that are not allylic to this group, followed by cyclisitions, 

rearrangements and deprotonation leading to cyclic sesquiterpenoids such as 

germacranes, bisabolanes, guiananes, caryophyllanes: and pantalananes  (Scheme 4) 

(McCaskill & Croteau, 1997; Fraga, 1998).  This enzyme-bound carbocation can 

undergo electrophilic cyclizations, rearrangements, hydride shifts, and deprotonation to 

yield cyclic sesquiterpenoid constituents such as the cadinanes, bergamotanes, and 

bisabolanes (McCaskill & Croteau, 1997).   Sesquiterpenes are unsaturated compounds 

and may be acyclic, monocyclic, bicyclic or tricyclic hydrocarbons and have many 

oxygenated derivatives (Nakanishi et al., 1980).  Few acyclic sesquiterpenes occur 

naturally.   

 

The sesquiterpene hydrocarbons with farnesane skeletone include; α-farnesene (152) 

(from oils of Grammy Smith apple) and β-farnesene (153) (Fraga, 1998) while the 

oxygenated derivatives are represented by: farnesol (154) (from ambrette seeds, 

citronella, rose, acacia and sevile orange oils), geranyl acetone (155), nerolidol (156) 

(from neroli and flowers of bitter orange), farnesal (157) and β-sinensal (from Chinese 

orange) (158) (Fraga, 1998).  
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The monocylic hydrocarbon sesquiterpenes with bisabolane skeletone are represented 

by: α-bisabolene (159) β-bisabolene (160), γ-bisabolene (161).  The bisabolenes are got 

from bergamot, bisabol myrrh and carrot oils.  Others are: zingiberen (162) (from ginger 

oil) and β-curcumene (163) (Fraga, 1998).  The oxygenated derivatives are represented 

by: α-bisabolol (164), lanceole (165) (Mann, 1978; Fraga, 1998). 

  

OH

CH
2
OH
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The bicyclic sesquiterpene hydrocarbons of cadinane skeleton are represented by: α-

cadinene (166), (from oleum, cubebs galbanum, Angostura rind and juniper wood oils), 

β-cadinene (167), cadalene (168) and calamene (169) (Fraga 1998) while the oxygenated 

derivatives incude: khusol (170), α-cadinol (171), and dimeric sesqiuterpene gossypol 

(172) (from cotton seed) amongst many others (Mann, 1978).  Gossypol isolated from 

cotton (172) has been used as a stabilizer for vinyl compounds, as a reagent for analysis 

of some compounds and certain metals.  It is an anti-fertilty spermicide for men (Fraga 

1998).   
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The hydrocarbon sesquiterpenes represented by humulane skeleton is humulene (173) 

while the oxygenated derivative is represented by zerumbone (174) (Fraga, 1998). 

O

174173
 

Germacrane is also another skeletal structure for the sesquiterpenes. The hydrocarbons 

consist of germacrene A (175), B (176) C (177) and D (178) while the oxygenated 

derivatives are represented by germacrone (179) (McCaskill & Croteau, 1997; Mann, 

1978).  Germacrene A (175) readily isomerizes to β-elemene (185).  

 

O

179175                                        176                                            177                                     178  

The hydrocarbons with caryophyllane skeleton sesquiterpene are represented by β-

caryophyllene (180) (Mackaskill & Croteau, 1997) while the oxygenated derivatives 

include caryophyllene oxide (181), α-betulenol (182) and β-betulenol (183) (Dudareva & 

Pichersky, 2006; Fraga, 1998). 
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The sesquiterpene hydrocarbons with elemane skeleton are represented by α-elemene 

(184) and β-elemene (185) while the oxygenated derivatives are represented by elemol 

(186) (Dudareva & Pichersky, 2006; Fraga 1998).  
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OH

184                                                  185 186  

The sesquiterpene hydrocarbons with eudesmane skeleton are represented by α-selinene 

(187) and β-selinene (188) while the oxygenated derivatives are represented by α-

eudesmol (189), β-eudesmol (190), rishitin (from oil of Solanum tuberosum) (191) and 

chrysanthemol (from oil of Chrysanthemum indicum) (192) (Fraga, 1998). 

OH OH
HO

HO

OH

187 188 189                                       190                                                       191                                           192  

The hydrocarbon sesquiterpenes with eremophilane skeleton are represented by 

eremophilene (193), nootkatene (from oil of Chameacypari nootkatensis) (194) and 

valencene (195) while the oxygenated derivatives are represented by nootkatone (196), 

vetivone (197) and valeranone (198) (Fraga, 1998). 

O

O O

196                                            197                                     198193                                            194                                     195  

The aromandendrane-type sesquiterpene hydrocarbons are represented by 

aromandendrene (199) and α-gurjunene (200) (Mann, 1978) while the oxygenated 

derivatives are represented by maaliol (201) (from oil of Valeriana officinalis) and 

viridifloral (202) (Fraga, 1998). 

OH

HO

201                           202                                                

202

199                                      200  

The sesquiterpenes with carotane skeletone are represented by caratol (203) and 

jaeschkeanadiol (204) (Mann, 1978).  
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Essential oils may have a blue color due to the presence of azulenes which are 

beautifully colored aromatic sesquiterpenes (Pinder, 1960) with guianane skeleton 

(Fraga, 1998).  Examples include: vetivazulene (205) (from vetivar oil), guaiazulene 

(206) (from geranium and guacum wood oils) and chamazulene (207) (from Matricaria 

chamomilla) (Fraga 1998) while the oxygenated derivatives are represented by guaiol 

(208). 

OH

205                                              206                                                207 208
 

  

The tricyclic sesqiterpene hydrocarbons are represented by α-cedrene (209), β-cedrene 

(210), α-bourbonene (211), β-bourbonene (212), α-copaene (213) and pantalanene (214) 

while the oxygenated ones include cedrol (215) and ketone 21 (bourbonone) (216) 

(Mann, 1978). 

 

 

 

 

 

 

 

Most of known acyclic sesquiterpenes contain furan rings or tetrahydrofuranyl groups:  

davanone (217), ipomearone (218) and freelingyne (219) (Mann, 1978). 
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Terpenoid essential oil comprises the volatile steam distillate fraction responsible for the 

characteristic scent (odor) found in many plants and their flowers.  They are 

commercially important as the basis of natural perfumes, spices and flavoring agents in 

the food and pharmaceutical industry.  Plant families particularly, rich in essential oils 

include the Compositae, Matricaceae, Labiatae, Pinaceae, Rutaceae and Mrytaceae 

(Harbone, 1998).  The C10 and C15 compounds are often referred to as lower terpenoids 

or essential oils (volatile terpenoids).  C20 compounds and above are often referred to as 

higher terpenoids (non-volatile terpenoids) (Mann, 1978). 

 

2.7.3 Aromatic constituents of floral volatiles 

The shikimate pathway (Scheme 5) is an essential metabolic route by which micro-

organisms and plants synthesize aromatic amino acids and many other aromatic 

compounds.  Other compounds such as vitamin K, ubiquinone, anti-tumour anti-biotics 

and enterochelin are also synthesized through this pathway (Coggins et al., 2003; 

Mansfield, 2000; Heinz, 1997; Bu‟lock, 1965).  The starting materials in the shikimate 

pathway are phosphoenol pyruvate (PEP) (220) and erythrose-4-phosphate (221) which 

are involved in primary metabolism of sugars (Bu‟lock, 1965).  In the presence of 

enzyme 3-deoxy-D-arabino-hept-2-ulosonate-7-phosphate (DAHP) synthase these 

starting materials yield DAHP (222) Quinic acid (223) from quinate pahway is converted 

to 3-deydroquinic acid (224) in the presence of quinate dehydrogenase enzyme.  3-

Dehydroquinic acid (224) also arises from DAHP (222) a reaction catalysed by 

dehydroquinate synthase.  3-Dehydroquinic acid (224) is converted to 3-dehydrishikimic 
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acid (DHSA) (225) by loosing water, a reaction catalysed by dehydroquinase enzyme. 

The (DHSA) (225) enters back into the quinate pathway as protocatchute (226), a 

reaction catalysed by dehydrase enzyme while shikimic acid (227) is formed from 

DHSA (225) under the influence of shikimate dehydrogenase.Shikimic acid (227) is 

phosphorylated to form 3-phosphoshikimic acid/3-shikimate-3-phosphate (228), a 

reaction catalysed by shikimic kinase.  Phosphoenol pyruvate (PEP) (220) reacts with 3-

phosphoshikimic acid/3-shikimate-3- phosphate (228), to produce 5-enol pyruvate 3-

shikimate-3-phosphate (EPSP) (229).  This reaction is catalysed by EPSP synthase. 

Chorismic acid (230) is formed from EPSP by the action of chorismate synthase.  There 

are numerous products that are synthesized from chorismic acid (230) after loosing the 

pyruvate (Coggins et al., 2003; Dewick, 2002; Heinz, 1997). 
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Scheme 5:  Shikimate pathway (Coggins et al., 2003; Mansfiled, 2000; Heinz, 1997;  

      Bu‟lock, 1965). 

 

Chorismic acid (230) is used in the biosynthesis of aromatic amino acids.  Intramolecular 

arrangement by the action of chorismate mutase (CM) forms prephenic acid (231).  

Decarboxylation and dehydration of prephenic acid (231) by the action of prephenate 

dehydratase forms phenyl pyruvate (232).  Reductive amination (introduction of 

ammonia under reducing conditions) of phenyl pyruvate (232) produces L-phenylalanine 
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(233).  On the other hand; prephenate dehydrogenase produces p-hydroxyphenyl 

pyruvate (234) which leads to L-tyrosine (235).  Formation of these amino acids is 

catalysed by tyrosine transaminase. 

 

Reduction of chorismic acid (230) and incorporation of ammonia from glutamine by the 

action of anthranilate synthase produces anthranilic acid (236).  Phosphorylation and 

addition of ribose sugar to the anthranilic acid by action of anthranilate phosphribosyl 

trasferase (APRT) leads to N-(5'-phosphribosyl)-anthranilate (237).  It isomerizes to 

produce 1-(O-carboxyphenylamino) - 1'-deoxyribulose-5'-phosphate (238) by the action 

of phosphribosyl-anthranilate isomerase (PRAI) enzyme. Decarboxylation and 

dehydration of 1-(O-carboxyphenylamino)-1'-deoxyribulose-5'-phosphate (238) by the 

action of indole-3-glycerol phosphate synthase forms indole-3-glycerol phosphate (239).  

Reductive amination leads to L-tryptophan (240) by the action of tryptophan synthase. 

 

Decarboxylation of chorismic acid (230) and subsequent amination prouces p-

hydroxybenzoic acid (241) and p-aminobenzoic acid (242).  Removal of pyruvate group 

from chorismic acid (230) leads to (2S, 3S)-2, 3-dihydroxy-2, 3-dihydrobenzoic acid 

(243) which gives 2, 3-dihydroxybenzoic acid (244). Rearrangement of chorismic acid 

(230) leads to isochorismic (245) by action isochorismatase enzyme (Dewick, 2002). 

Examples of aromatic volatile constituents include vanillin (246), (from vanilla beans), 

eugenol (247) (from oil of cloves), methyl salicylate (248), veratraldehyde (249), benzyl 

benzoate (250), isoeugenol (251) and safrole (252) (from sassafras) (Bu‟lock, 1965).  

Their role in perfumery is well established while the same cannot be said for insect-plant 

interaction (Morrison & Boyd, 1991).  However, the roles of some of these compounds 
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in plant insect interactions have been identified.  Benzaldehyde (253) and 

phenylacetylaldehyde (254) attract nocturnal Lepidoptera species (Dotterl et al., 2005). 
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The young leaves of African tree (Leonardoxa africana) emit high levels of methyl 

salicylate (248).   Petalomyrmex phylax, ants patrol the young leaves, which emit high 

levels of methyl salicylate (248) that attracts them.  They make use of it as a kairomone 

or as an anti-septic for their nests (Brouat et al., 2000).  Methyl salicylate (248) is also 

released by Arabidiopsis thaliana in the floral scent.  Feeding by Pieris rapae larvae 

triggers production of methyl salicylate (248) which is attractive to the larval parasitoid.  

A novel gene for the scent producing enzyme, isoeugenol-O-methyltransferase (IEMT), 

that catalyses the production of methyleugenol (255) and methylisoeugenol (256) 

formation using the donor methyl group of S-adenosyl-L-methionine (SAM), has been 

characterized in Clarkie breweri. The gene has high levels of sequence similarity to 

caffeic acid-O-methyltransferase (COMT), which is useful in the biosynthesis of lignin 

converting caffeic acid to ferullic (21) acid in plants (Mansfield, 2000; & Pichersky, 

1998).  
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2.7.4 Amine floral volatile compounds 

Among nitrogen containing compounds found in floral fragrances, indole (257) and 

skatole (methylindole) (258) are the most common.  Skatole is a potent attractant of male 

euglosine bees.  The foul smell of many fly and beetle pollinated flowers is usually due 

to amines (Williams & Whitten, 1983). 

 

N N

CH
3

257                                      258  
 

The precursor of indole alkaloids is tryptophan (240) produced in the shikimic acid 

pathway (Heinz, 1997; Mann, 1978).  Metabolism of the amino acid tryptophan provides 

the indole C2N sub-unit.  They may be formed either as simple alkaloids from minor 

chemical modification of tryptophan or by incor-poration of a C2 sub-unit (from 

pyruvate) into the structure.  Skatole (258) belongs to another group of alkaloids formed 

as a result of mixed metabolism of tryptophan and mevalonate by incorporation of a C5 

or C9/C10 sub-unit (Bu‟lock, 1965). 

 

2.7.5 Factors affecting the release and emission of plant volatiles 

Composition of the volatile blend emitted by plant varies within plant species depending 

upon the taxonomic group to which the plant belongs (Lui et al., 1988; Tollsten & 

Bergstrom, 1989; Cole, 1980a), plant cultivar (Cole, 1980b), plant age (Matile & 

Alttenburger, 1988), defense (Brouat, 2000), plant wounding (Dicke et al., 1990), light 

intensity (Turlings et al., 1991), season and geographical location (Whiteman & Aller, 

1990).  The emission of other volatiles from foliage is thought to help protect plants 

against herbivores directly.  For example, two species of trees belonging to the Brazil nut 
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family (Lecithydaceae) that emit high levels of S-methylmethionine (SMM) are 

colonized by wood boring beetles at much lower frequency than other tree species in the 

same family that emit minute amounts (Berkov et al., 2000).  Plant volatiles can also 

promote indirect defenses, like the protection of the Leonardoxa Africana (family 

(Leguminosae) from herbivores (Pare & Tumlinson, 1997; 1999).  Petalomyrmex phylax 

ants attracted by methyl salicylate patrol young leaves of the L. africana predating on 

any phytophagus insects (Brouat, 2000).  Wounding crushes plant cells and releases 

some degradative enzymes resulting in the emission of higher concentrations of volatiles 

and sometimes changes in the composition of the components as demonstrated in 

mechanically damaged maize (Zea mais) that produce anisole (259), 3-hexenyl-1-ol 

(260) and (E)-α-farnesene (152) in addition to its normal volatile profile (Brouat, 2000).  

They have been found to deter herbivores (Gershenzon & Croteau, 1991; Agrawal et al., 

2000). They also act as airborne signals that activate diseases resistance via expression of 

defense related genes in neighbouring plants and in the healthy tissues of infected plants 

(Shulaev et al, 1997). 

O

OH

259                               260  

 

Emission of volatiles can also take place from the foliage after herbivore damage.  

Terpenoids, fatty acid derivatives and other volatiles such as indole (257) and methyl 

salicylate (248), germacrene D (179), α-copaene (213), guaiol (208) and α-caryophllene 

are released from plants after bouts of herbivory (Gang et al., 2001; Knudsen et al., 

2004).  Some volatiles are released when feeding ruptures pre-existing internal or 

external excretory structures in which the volatiles are synthesized and stored (Gang et 
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al., 2001).  Volatiles may also be formed at the moment of damage.  The C6 aldehydes, 

alcohols and esters, generally known as “green-leaf volatiles‟ (GLVs), are metabolites of 

the oxidative degradation of fatty acids (Scheme 6).  Lipase acyl hydrolases liberate free 

fatty acids from membrane lipids.  The polyunsaturated fatty acids involved are linoleic 

(261) and linolenic (262).  Linoleic acid (261) is converted to hexanal (263).  The acids 

are oxidized by the action of lipoxygenase to 2E-hexenal (264) and 3Z-hexenal (265).  

Alcohol dehydrogenase converts hexanal (263) to 1-hexanol (266).  The unsaturated 

aldehydes (2E-hexenal) (264) are converted to 2E-hexen-1-ol (267) and 2Z-hexen-1-ol 

(268) while 3Z-hexenal (265) is converted to 3Z-hexen-1-ol (269) and 3E-hexen-1-ol 

(270) (Mansfield, 2000).  The biosynthetic pathway (Scheme 6) is operative in several 

plant species such as potatoes, tomatoes, tea, peas, apples and legumes like soybeans 

among others (Dudareva & Pichersky, 2006; Mansfield, 2000).  More volatiles are 

released from dark flowers than from light coloured flowers (Pacetti & Tava, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6: Biosynthesis of GLVs (Mansfield, 2000).   
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The GLVs embody the typical odor of damaged leaves and are derived via lipoxygenase 

catalysed cleavage of fatty acids shortly after injury (Pare & Tumlinson, 1997; 1999; 

Agrawal et al., 2000).  Indirectly, volatiles attract insects that prey upon herbivores 

thereby reducing further damage to the plant (Nicotiana alata).  Herbivore-induced 

volatiles from tobacco plant include the 3Z-hexenyl acetate (271) and hexen-1-ol (272) 

which deters female moths (Heliothis virescens) from laying eggs on the injured plants 

(Van Poecke et al., 2001).   

 

 

 

Light also affects the composition of plant volatiles.  Plants under high light intensity are 

characterized by relatively high amounts of volatiles than those under low light intensity.  

This could be due to the fact that plants under high light intensity receive more 

photolytic energy input to produce volatiles (Dudareva & Pichersky, 2006; Gershenzon 

& Croteau; Heinz, 1997).  Inverse correlation sometimes exists between age of plants 

and the amount of volatiles released, such that young plants produce more volatiles than 

old ones (Matile & Altenburger, 1988; Hatanaka, 1993).  Data on the effect of the plant 

cultivar on the composition of volatile has shown marked difference in the composition 

of volatile blends emitted by cultivars (Cole, 1980b). 

 

2.7.6 Floral volatiles and pollination biology 

In angiosperms that rely on insect pollination, reproductive fitness partially depends on 

the ability of the plants to produce flowers that are very attractive (easily visible and 

overwhelming olfactory hints) to insects.  Vision and olfactory cues are indeed the main 
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stimuli that attract insects to flowers although gustatory and tactile hints may be 

important once the flower has been located (Dobson, 1994).  Odor is learned fast and 

used in preference to colour and shape.  From afar, insects probably select their target by 

flower colour while at close range aroma of individual plants becomes the main guide.  

After alighting, the insect may use close range olfactory and gustatory cues such as 

nectar volume and sugar concentration (Dobson, 1994).  

 

Flower volatiles may induce pollination by deceit (Pichersky & Gershenzon, 2002).  

Floral scent is an important factor in deceiving bees (a male of the solitary bee species) 

that pollinate some species of orchid flowers.  The compounds responsible include ß-

caryophyllene (180), citronellol (49), benzyl acetate, linalool (46), methyl cinnamate 

(304) and 1, 8-cineol (72) (Pichersky & Gershenzon, 2002; Eltz & Lunau, 2005; Eltz et 

al., 2006; Elza et al., 2008).  After pollination, the Ophris sphegodes flowers have been 

found to emit farnesyl hexanoate, a compound that is normally released by non-receptive 

female bees depending on the stage of floral development.  The compound is thought to 

deter floral visitors after pollination and and may help to minimize damage to the 

developing seed and direct polinators to adjacent unpollinated flowers (Pichersky & 

Gershenzon, 2002).   Alfalfa is almost certainly the most important forage species 

worldwide.  It is significant in trade of seed that parallels the use of hay and fodder.  The 

pollination of alfalfa (Medicago sativa L.) and subsequent seed production requires 

„tripping‟ of its flowers by insects (Viands et al., 1988). 

 

 Honeybees (Apis mellifera L.) are used as pollinators for the production of alfalfa 

(Medicago sativa L.) seeds in South West United States of America.  The vast majority 
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of honeybees visiting alfalfa seed fields are nectar collectors and not efficient pollinators.  

They accidentally trip 2% of all the florets visited out of which 63.5% of the available 

bloom remain untripped.  Foraging honeybees (Apis mellifera L.) collect nectar and 

pollen from the flowers that they visit to provide the nutrient necessary for colony 

maintenance.  It is therefore necessary to increase visitation by pollen and nectar 

collecting bees (Heinrich & Raven, 1972). 

  

Composition of alfalfa flower volatiles has been investigated in regard to their 

attractiveness to honeybees.  Flower volatiles can be an important factor in preferential 

bee visitation in lucerne cloves (Buttery et al., 1982).  A potential method of increasing 

visitation is the genetic alteration of alfalfa floral volatile components to amplify the 

plant attractiveness to honey bees (Henning & Teùber, 1992).  Thirty-three floral 

components have been identified in 3 different alfalfa cultivars (Buttery et al., 1984).  

(Z)-Ocimene (44) accounts for > 25% of the total floral volatiles in alfalfa (Loper et al., 

1971; Buttery et al., 1982).  Presence of β-myrcene (41), linalool (46), limonene (65), 

methyl salicylate (248), nonylacetate (273), and undecyl acetate (274): cis-3-hexenyl 

acetate (271), 2-methylbutanol (275), 2-pentanol (276), and heptan-2-one (277) have also 

been reported by the same group. 
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Waller et al. (1972) analyzed honeybee olfactory training recognition of four volatile 

compounds including β-myrcene (41) (Z)-ocimene (44), linalool (46), limonene (65).  

Honeybees trained on the β-myrcene (41), (Z)-ocimene (44) limonene (65), and could 
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not differentiate between them.  However, they could differentiate linalool (46) from all 

the other compounds.  Later, the honeybees were trained on the scent of alfalfa from 

specific clones containing β-myrcene (37) (6.2%), (Z)-ocimene (44) (83.4%), linalool 

(46) (0.3%) and limonene (65) (3.5%).  The bees chose to forage on the essential oil of 

the first three and not the linalool (46) clone and also identified alfalfa clones for 

visitation.  However, the experiment could not demonstrate honeybee attraction or 

repellency towards floral volatile compounds.  

During electro-antennographic assay of individual compounds, linalool (46) and 

methylsalicylate (236) elicited „sticky‟ antennal signals (slow recovery towards baseline 

physio-electrical output) (Henning & Tueber, 1992).  The „sticky‟ response suggests that 

it is biologically active.  Coincidentally, linalool (46) has a structural similarity to 

honeybee aggregation pheromone, geraniol (Nasonov) (278) which is also present in 

many plants (rose, lemon grass, geranium, lavender citronella oils) (Henning & Teuber, 

1992).  Chemical structure-activity relationship (insect antennal response) is dependent 

upon the compounds structural „fit‟ in pheromone chemoreceptor cells (Struble & Arns, 

1984).  The closer the structural „fit‟ the greater the antennal response.  Non-preference 

for linalool (46) by honeybees trained to alfalfa flowers shows low concentration and 

possible masking by more prevalent volatile components (Waller et al., 1972).   

 

 

Linalool (46) is largely emitted by pistils and the stamens but to a lesser extent by petals 

(Pichersky et al., 1994). Three linalool oxides: 6, 7-epoxy linalool (279), linalool oxide 

(pyranoid) (280) and linalool oxide (furanoid) (281) are produced and emitted 

CH
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exclusively by the pistil (Pichersky et al., 1994).  Linalool synthase is responsible for 

converting the C10 isoprenoid precursor GPP (37) to linalool (46) as shown in scheme 7. 
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Scheme 7: Biosynthesis of linalool and its oxides (Pichersky et al., 1994)   

 

β-Myrecene (41), (Z)-ocimene (44) and limonene (65) give „non sticky‟ response (faster 

recovery towards baseline physio-electrical output).  β-Myrcene (41), (Z)-ocimene (44) 

and limonene (65), are chemically identical, but not structural „fits‟ for Nasonov 

pheromone chemoreceptor (Henning & Teuber, 1992).  

  

Another alfalfa floral volatile 3Z-hexenyl acetate (271), elicits a „non sticky‟ response.  It 

is structurally similar to the alarm pheromone, n-hexyl acetate (282) and exhibits a large 

antennal response for defense and so of no proper significance to pollination (Henning & 

Teuber, 1992). A similar response was observed from Psila rosae upon exposure to this 

compound.    
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Loper et al., (1971) provided evidence that alfalfa floral volatile composition was under 

genetic control by comparing a limited number of parents and their F1 offspring.  For 

enhanced pollination and increased yields, plant breeders should select for populations 

with increased emission of these compounds and bee keepers should choose queens 

whose offsprings are more antennally sensitive to linalool (46) and methyl salicylate 

(248), but discriminates against 3Z-hexenyl acetate (271) (Henning & Teuber, 1992).  

Honeybee antennal non-discrimination ultimately results in behavioral non-

discrimination.  Genetic manipulation through selection for linalool (46) and methyl 

salicylate (248) against n-hexyl acetate (282) appears to offer great potential for 

increasing the attractiveness of alfalfa to honey bees. 

 

It has also been suggested that knowledge of the flower volatiles from alfalfa would 

provide information on the compounds that act as attractants for pollinating insects 

(Buttery et al., 1982; Dobson, 1994).  It is possible that flower volatiles of other legumes 

like cowpea may also be an important factor in pollination due to attractancy to bees. 

  

Common honeybee (Apis mellifera) emits a mixture of volatiles including 2-Z-citral 

(neral) (283) (a major constituent of lemon-grass oil), nerolic acid (284), geraniol (278) 

(from oil of roses) and geranic acid (285) in order to attract other bees to a prime source 

of nectar that it has discovered (Mann, 1978).  They act as aggregation pheromone and 

therefore equally important in pollination.  For increased pollination efficiency and 

increased yields, beekeepers should select queens whose offspring can produce enhanced 
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levels of aggregation components to attract more bees to the prime sources of pollen and 

nectar.   

CHO COOH

COOH

283                         284                          285  

 

2.7.7 Floral volatiles and agricultural biotechnology 

Agriculture involves the transformation of wild species of plants and animals into strains 

that are amenable to the provision of food, feed, fiber, and industrial uses through 

cultivation and husbandry.  During 5,000-10,000 years of agricultural history, increase of 

the crop production came from taking additional lands into cultivation, an action that 

disturbs wild flora and fauna and may contribute to the loss of species and radical 

changes of landscape (Sharma et al., 2000).  Further advances in agricultural 

productivity are needed to meet the food, fiber and industrial demands due to increasing 

populations, add nutritional value and ensure food security, and reduce use of marginal 

or fragile lands, by moving towards a more sustainable agriculture that will preserve and 

restore diversity of flora and fauna.  Capability to identify and manipulate plant genes 

that increase productivity and nutritional values now exist.  These biotechnologies enable 

scientists to conduct more informative research into the genetic and physiological basis 

of crop growth and environmental responses and interactions.  New prospects have 

emerged for more effective and efficient improvement of crop performance across a 

range of environments. New techniques are available to transfer genes among species.  

These capabilities are being used to complement and enhance traditional crop breeding 

practices.  Effective use of the new tools will require their integration into overall 

schemes of plant breeding and field evaluation.  Effective stewardship of genetic 
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resources is a prerequisite to achieving the goal of a productive, sustainable, and 

environmentally harmonious agriculture (Sharma et al., 2000).  New biotechnologies in 

agriculture and medicine will continue to play an increasing role in our daily lives.  

These include gene expression analysis to identify important genes and marker-assisted 

selection to efficiently select new varieties.  Also included are transgenic products such 

as those that confer herbicide or insect resistance traits to crops.  Varieties with enhanced 

nutritional values are on the horizon, and many other possibilities exist.  It is important to 

discover which new approaches can improve sustainable crop productivity, human 

health, and environmental conservation.  

 

The role of individual volatiles in pollinator attraction can be tested by genetic 

manipulation of floral emission using appropriate mutants and transformants (Pichersky 

 & Gershenzon, 2002).  (S)-Linalool synthase, the first floral volatile enzyme has been 

purified from Clarkia brewerie (Pichersky et al., 1994; Pichersky et al., 1995).  

Information on the amino acid sequence that facilitated the isolation of the corresponding 

gene expressed solely in flowers has been enabled by (S)-linalool synthase (Dudereva et 

al., 1996). 

 

The characterization of additional genes that are involved in the biosynthesis of the 

phenylpropanoids: eugenol (247) and methylisoeugenol (256) (Wang et al., 1997), 

benzyl acetate (286) (Dudereva et al., 1998) and methyl salicylate (248) (Wang et al., 

1997) has been done.  Scent formation is regulated principally by transcriptional control 

of biosynthetic gene expression at the site of emission for example at epidermal cells of 

floral parts like petals (Pichersky & Gershenzon, 2002).  A gene encoding the enzyme 

benzoic acid carboxyl methyl transferase (BAMT) (Dudareva & Pichersky, 2000) which 
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produces a principal floral volatile methyl benzoate (287) has also been isolated in 

snapdragon (Antirrinium majus) and shown to be flower specific (Dudereva et al., 2000; 

Murfitt et al., 2000).  The expression of BAMT which belongs to the same family as 

SAMT (salicylic acid carboxyl methyl transferase), is correlated with the synthesis of 

methyl benzoate (287) (Dudereva et al., 2000; Kolosova et al., 2001a).  

 

O
O

O

O

286                                        287  

The expression of (S)-linalool synthase is correlated with the synthesis of linalool (46) in 

C. brewerie.  The gene encoding BAMT is expressed exclusively in epidermal cells of 

the petals some of which have a conical shape that increases their surface area (Kolosova 

et al., 2001b).  There is a higher concentration of the enzyme in the petal near the path 

taken by bees to reach the nectar hence the scent may serve as guide for bees to find their 

way inside the flower.  The identification of genes for the production of floral scent 

opens new opportunities to alter floral scent composition for research on enhancing 

pollination and increasing yields for commercial purposes (Pichersky & Gershenzon, 

2002). 

Biotechnology has provided several unique opportunities that include: access to novel 

molecules, ability to change the level of gene expression, capability to change the 

expression pattern of genes and develop transgenics with different insecticidal genes 

(Sharma et al., 2000).  

For cowpea yield enhancement, the starting point would be the identification of wild, 

cultivated or inbred cultivars with the most attractive floral scents.  The attractive 

components of the scents would be identified before genetic manipulations through 
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conventional plant breeding or biotechnological approaches are employed.  It is with this 

in mind that, we chose to investigate the floral volatile composition of a pair of wild, 

inbred and cultivated cowpea cultivars with the aim of identifying molecular markers 

that would assist in enhancing flower attractiveness to pollinators. 

2.7.8. Volatiles from vegetative parts of cowpea 

Several compounds have been identified in intact cowpea plant volatiles (Lwande et al., 

1989).  The major constituents include α-cedrene (209) (42.4%), (Z)-3-hexen-1-ol 

acetate (288) (28.8%) and hexanal (247) (9.4%).  The minor constituents include: 1-

nonene (289), α-pinene (94), β-pinene (95), n-hexyl acetate (282), 1, 8-cineol (72), 

limonene (65), (E)-β-ocimene (44) and nonanal (290).  Cowpea volatiles increase trap 

catches of the adult carrot fly, Psila rosae (Guerin et al., 1983). While n-hexyl acetate 

(282) is attractive to cabbage root fly, Delia brassicae (Wallbank & Wheatly, 1979).  α-

Pinene (94) and β-pinene (95) stimulate oviposition of the eastern spruce budworm, 

Choristoneura fumiferana (Staedler, 1974).  

 

 

 

 

Volatile compounds originating from the cowpea plant play a role in the orientation of 

insect pests towards the plant and recognition of the plant for feeding and oviposition 

(Visser, 1986).  Knowledge of the volatile compounds associated with cowpea is useful 

in studies of insect pest-cowpea plant relationships (Lwande et al., 1989).  Cowpea is a 

cross fertilized species relying on insects for pollination (tripping) and therefore genetic 

manipulation to select for cultivars that attract pollinators could lead to increased cowpea 

O
O

O

288                                                    289                                                       290



83 

 

 

83 

yields.  Floral volatile is one molecular marker that can be used to select bee attractive 

cowpea cultivars.  No cowpea floral volatile studies have been reported to date.   

Qualitative and quantitative investigations of the cowpea floral volatiles may lead to a 

better understanding of the factors that influence pollination of the various cultivars.  

Furthermore, comparison of the quality and quantity of nectar in the cowpea cultivars 

with the aim of understanding its influence on cowpea pollination is necessary.  These 

may assist in cowpea breeding programmes, especially genetic manipulation to identify 

and enhance production of compounds which are behaviorally and nuitritionally 

important to honeybees, enhance crop yields and select for cultivars that are prefered by 

pollinators. 

2.7.9 Isolation of plant volatiles 

Generally plant volatiles occur in very small quantities in comparison to the main 

components of plant material (Dobson, 1994).  Rapid advances in combined gas 

chromatography-mass spectrometry (GC-MS) technology during the past 40 years have 

accelerated the development of sensitive, reproducible chemical analyses of floral 

volatiles (Bergström et al., 1980; Williams, 1983; Bicchi & Joulain, 1990; Dobson, 

1991; Kaiser 1993; Pecetti & Tava, 2000; Knudsen et al., 2004).  The floral scent 

compounds of many plant species have been collected by different methods including, 

steam distillation, hydrodistillation, enfleurage, solvent extraction and headspace 

trapping: static, dynamic and solid phase micro extraction collection (SPME) usually 

followed by GC-MS analysis (Ameenah, 1994; Flamini et al., 2002; Fernando & Grun, 

2001, Shang et al., 2001; Pecetti & Tava, 2000; Tava et al., 2000; Dobson, 1994; 1991; 

Bicchi & Joulain, 1990; Loper & Waller, 1970).  Headspace trapping is the most 

prefered of these methods (Knudsen et al., 1993; Dobson, 1991; Hills & Schutzmann, 
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1990).  It generates floral volatile profiles devoid of wound related compounds and 

extraction artifacts (Bergström et al., 1980; Mookherjee et al., 1990; Dobson, 1991).  In 

dynamic headspace technique, scent compounds are concentrated in a small glass or 

plastic chamber enclosing the living floral tissues and are swept by a flow of filtered air 

over a cartridge packed with adsorbent particles (Dobson, 1991; Bicchi & Joulain, 1990; 

Williams, 1983).  In static headspace method, the adsorbent satchets hang on the floral 

parts without passing air.   

 

Trapped volatiles are removed from cartridge by solvent elution.  The solvents that have 

been used for elution of trapped volatiles include hexane (Raguso & Pichersky, 1995; 

Loughrin et al., 1993; Haynes et al., 1991; Hills & Schutzmann, 1990; Hills, 1989), 

dichloromethane (DCM) (Ware et al., 1993; Heath et al., 1992; Patt et al., 1988), diethyl 

ether (Bergström et al., 1992; Bergström & Bergström, 1989; Dahl et al., 1990; Groth  et 

al., 1987; Dobson, 1987) and pentane (Andersson, 2003; Dobson et al., 1990; 

(Bergström et al., 1995; Tollsten & Bergström, 1993; Borg-Karlson et al., 1985; Nilsson, 

1983).  DCM has also been used as an internal standard (Azuma et al., 2001). 

 

The adsorbents that have been used for the trapping of volatiles include porapak Q 

(Raguso & Pellmyr, 1998; Bergström et al., 1995; Olesen & Knudsen, 1994; Dobson, 

1987; Groth  et al., 1987; Nilsson, 1983; Centelo & Jacobsen, 1979), tenax (Andersson 

& Dobson, 2003; Andersson et al., 2002; Tava et al., 2000; Bouwmester et al., 1999; 

Tava & Pecetti, 1997; Borg-Karlson et al., 1985; Robertson et al., 1994. Haynes et al., 

1991; Loughrin et al., 1993; Hamilton-Kemp et al., 1990) and activated charcoal (Bartak 

et al., 2003; Raguso & Pichersky, 1995; Pichersky et al., 1994; Sazima et al., 1993).  

The absorbents have also been used as combinations: tenax with activated charcoal (Patt 
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et al., 1988) and tenax with carbotrap (Knudsen et al., 2004; Jurgens et al., 2002; 

Knudsen & Klitgard 1998). 

 

Steam distillation and headspace trapping have been widely adopted in collection of 

volatiles in forage species.  Classical steam distillation allows the investigation of higher 

boiling point compounds, which may be relevant for the odor characteristics and 

determination of the total concentration of the volatiles (Scheirer, 1984).  

 

SPME, a fast and a technique that does not use solvent, is based on the adsorption of 

chemical compounds onto an extracting phase like polydimethylsiloxane (PDMS) on a 

fused silica fiber.  The adsorbed volatiles are then thermally desorbed from the fiber in 

the injector port of GC. (Flamini et al., 2003; 2002; Shang et al., 2001; Fernando & 

Grun, 2001). 

 

Volatiles that are solvent eluted or thermally desorbed from adsorbents are then analysed 

by GC-MS and comparisons done.  The sampling method can influence the composition 

of volatiles significantly (Scheirer, 1984; Dobson, 1994).  Steam distillation at 

atmospheric or reduced pressure has been used in alfalfa (Buttery & Kamm, 1980), tall 

fescue, red and white clover (Tava et al., 1995) and compared to the dynamic headspace 

sampling of volatiles using tenax® (Buttery et al., 1984 (Mayland et al., 1997; Tava & 

Pacetti, 1997).   

 

2.7.10 Ultra Violet (UV) Visible Spectroscopy (Spectrophotometry) 

This technique involves the sspectroscopy of photons in the UV-Visible region.  It uses 

light in the visible and adjacent near ultraviolet (UV) and near infrared (NIR) range.  
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Samples are placed in a transparent cell called cuvette.  Fused silica and quartz are used 

as sample holders.  Glass and plastic may be used but the disadvantage is that they also 

absorb light.  It gives the UV-spectrum.  This method is used to identify sugars.  Sugars 

are organic compounds of high degree conjugation.  It is based on the principles of Beer 

Lambert‟s law.  It measures the intensity of light before it passes through the sample and 

after it passes through the sample.   This is measured and is called trasmittance and is 

usually expressed as absorbance.  If interfaced with personal computer they appear as 

peaks at different wavelengths and different times. This then characterizes the sugars.  

(Skoog et al., 2006; Clark et al., 1993). 
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CHAPTER THREE 

                   METHODOLOGY 

3.0 General experimental procedures 

3.1 Reagents, apparatus and stardards 

All solvents (acetonitrile, DCM, hexane and acetone) were obtained from Sigma-Aldrich 

Chemical Company (Dorset, England), Kobian Ltd. (Nairobi, Kenya) and Science-Scope 

Ltd (Nairobi, Kenya).  Reference compounds were obtained from Sigma-Aldrich 

(Dorset, England) and Mayer & Baker (Birmingham, England).  The adsorbents were 

acquired from chrompack (Middlebourg, Netherlands) and J.T. Baker (New Jersey, 

USA).  The HPLC column for nectar sugar analysis was obtained from Supelco 

Chemical Co., (Pennslyvania, USA) through Sigma-Aldrich (Dorset, England).  All 

glassware was obtained from Superior Company (Johnson city, Germany) and 

Drummond Scientific Company (Broomall, Pennslyvania, USA).  Re-usable glassware, 

(collection chamber, glass tubing, columns and sample vials) were washed with hot 

water and soap, rinsed with cold water, acetone and finally distilled water then dried at 

110 ºC for 1 h in a clean oven. 

 

3.2 Cleaning of adsorbents 

The adsorbents used were: porapack Q (80/100 mesh, Chrompack) (Raguso & Pellmyr, 

1998; Bergström et al., 1995; Olesen & Knudsen, 1994; Dobson, 1987), reverse-phase 

C18 bondeded silica (40 µm), J.T. Baker, New Jersey, USA), and activated charcoal (80-

100 mesh, Chrompack, New Jersey) (Bertak et al., 2003; Raguso & Pichersky, 1995; 

Pichersky et al., 1994; Sazima et al., 1993).  Adsorbents were cleaned by soxhlet 

extraction for 48 h using DCM wrapped with aluminium foil, dried at 60 ºC and 

conditioned to activate it in readiness for trapping.  Porapak Q traps were conditioned by 

heating under a stream of N2 in a GC oven, at 110 ºC for 30 min., cooled under a stream 
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of N2 and wrapped in a clean aluminium foil.  Similarly, activated charcoal traps were 

conditioned by heating under N2 at 250 ºC for 30 min., cooled under nitrogen and 

wrapped in a clean aluminium foil.  Likewise, reverse-phase C18 bonded silica traps were 

dried under a stream of N2 at room temperature and wrapped in a clean aluminium foil.   

 

3.3 Preparation of traps 

For static headspace volatile collection, traps were prepared by packing satchets of 

adsorbents (50 mg) in filter paper enclosed in wire gauze except for activated charcoal, 

which was packed in wire gauze alone.  One of the packed sachets not used for trapping 

was extracted with DCM (4 ml) into a clean vial and the resulting solution concentrated 

to 10 µl using N2 while cooling in ice (Jacobsen & Olesen, 1994; Porter et al., 1999; 

Miyake et al., 1998).  The concentrated extract (2 µl) was injected into a gas 

chromatograph (GC) for analysis for any impurities in control traps. 

 

3.4 Study location 

The study was done in green houses (Dotterl et al., 2005; Porter et al., 1999; Sazima et 

al., 1993; Sutton et al., 1992) and laboratories at ICIPE, Nairobi (1º 14´ S, 36º 52´ E). 

 

3.5 Plant material  

Three cowpea lines with two cultivars in each line: wild inbred SP52, SP46; cultivated 

524B, ICV12; wild out crossed 219 and 269 were used.  The plants were propagated 

through seed (Raguso & Pichersky, 1995; Sazima et al., 1993) and vegetative cutting 

(Loper & Waller, 1970). Inbred lines were prepared by self-pollinating plants through 

“tripping” to minimize genetic variation.  The plants were originally obtained from West 

Africa, Coastal parts of Kenya and USA.  The wild inbred cultivars SP52 and SP46 were 

obtained from Cameroon in West Africa while 524B was from Califonia and ICV 12 
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aquired from Kakamega, Western Kenya and were cultivated in the green house at 

ICIPE.  The wild outcrossed were collected from Coastal parts of Kenya. Cultivar 219 

came from West of Msambweni and South West of Shimba Hills.  Cultivar 269 was 

from Taita Hills and Mwatate (Figure 2).   

 

Cultivars ICV12 and 524B, the seeds were planted directly in 2000 ml cylindrical pots 

(Plepys et al., 2002) containing sandy soil that was enriched with fertilizers.  The seeds 

for the wild inbred varieties, SP52 and SP46, were cleaned by scrubbing, soaked in water 

for one day and planted in 250 ml pots with sandy soil enriched with synthetic fertilizer.  

After germination, the seedlings were transplanted into 2000 ml cylindrical pots with 

sandy soil and fertilizer. 

 

The vegetative cuttings of SP52, SP46, 219 and 269 cultivars, obtained from plants 

already present in the green house and also from the field, were planted in 2000 ml 

cylindrical pots with sandy soil enriched with fertilizer.  They were covered with plastic 

bottles or bags until new leaves appeared, and 2-5 week old flowering plants used in 

nectar and floral volatile collection.  The plants were supported with sticks for climbing 

as they grew and sprayed with fenitrothion to control pests and viral infections (Jones, 

1965; Erbaugh et al., 2002).  Anatone, a flowering hormone, was applied to induce 

flower production in wild inbred (SP46 and SP52) and wild outcrossed (219 and 269) 

cultivars. 

3.6 Flower sizes 

The sizes of cowpea flowers were determined by width.  The width (diameter) cowpea of 

open cowpea flowers for the extraction of nectar and volatiles were taken using 300 mm 

ruler and recorded in millimeters (Galetto & Bernardello, 2004; Azuma et al., 2001).  
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3.7 Nectar extraction  

Nectar from each flower was extracted with, a 10 µl disposable micro-pipette 

(Drummond Scientific Co., Broomall Pennsylvania, USA) calibrated into 76 mm, hourly 

from 6.00 and 10.00 am without detaching the flowers from the plants (Langenberger & 

Davis, 2002; Silva & Dean, 2000; Bernardello et al. 1994).  The nectar volume was 

determined by the following relationship:  

Volume of nectar (µl) = (Height of nectar in pipette (mm)/76 mm) x 10 µl 

 

3.8 Analysis of nectar 

Same samples collected for nectar volume measurement were used to determine the 

sugar composition.  The extracted nectar was spotted on Whatman No. 1 filter paper 

(Perret et al., 2001; Bernardello et al. 1994; Van Wyk, 1993).  The filter paper labeled, 

air-dried and stored at -20 ºC in a clean dry vial until sugar analysis was done, in order to 

limit changes caused by nectar aging, until sugar analysis was done (Baker & Baker, 

1983a).  The nectar was eluted from the filter paper with 30 l distilled water and 

analyzed by HPLC and LC-MS using amine column (Silva & Dean, 2000; Kearns & 

Inuoye, 1993).  

 

3.9 High performance liquid chromatography (HPLC)  

Analysis of nectar sugars was performed on the Beckmann HPLC System Gold with 

programmable solvent Module 126, and interfaced with IBM computer linked to Epson 

LQ-570 printer and Dessaga Sarstedt- Gruppe intergrator (Hewlett Packard, New York, 

USA).  Detection was achieved using the Beckmann diode array UV detector Module 

168 (Hewlett Packard, New York, USA).  Separation was achieved using a Supelcosil 
TM

 

LC-NH2 (nucleosil amine) column (25 cm × 5 m) with guard column (Supelco High 

Chrom, Bellefonte, Pennsylvania, USA).  The column had the following characteristics: 
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silica stationary support; spherical particle shape; aminopropylsilyl bonded phase; 100 Å 

pore size, 170 m
2
/g surface area; 0.6 ml/g pore volume, and pH 2-7.5.  HPLC was 

performed isocratically at 1 l/min.  The sample (20 l) was injected and the 

chromatograms analyzed for sugars.  Freshly prepared standard sugar solutions (20 l, 1 

mg/ml of distilled water) (Van Wyk, 1993), were analyzed to confirm the sugars present 

by comparison of the retention times (Rt).  The sugar standards: sucrose, glucose, 

fructose, (Nepi et al. 2003; Van Wyk, 1993) raffinose, mannose, maltose and lactose 

were used.  Sugars present in nectar were characterized by comparing retention times 

(Rt) of standards, peak enhancement and LC-MS data.  HPLC peak enhancement was 

achieved by analysis of 10 μl of standard sugar solution and an equal volume of nectar.  

The amounts of each sugar present in the nectar was quantified from calibration curves 

of  HPLC peak areas or heights of standard solutions (Silva & Dean, 2000; Van Wyk, 

1993). 

 

3.10 Liquid chromatography-Mass Spectrometry (LC- MS) 

The LC-MS was performed on a VG Platform 11 mass spectrometer (Fisons Insruments, 

Birmingham, UK) with electrospray (ES) ionization source using atmospheric pressure 

ionization (API).  Control of the system was achieved by Mass Lynx for Windows NT 

3.51, in Digital Celebris GL 5120 SL PC, using Microsoft Windows Graphical 

Environment.  Ions from the mass analyzer were detected by dynode detector system; 

carrier gas used was white-spot N2 gas.  The cycle time was 3 sec., with scan duration of 

2 sec. and interscan delay of 1 sec.  The mass range was from 38 to 1000 amu.  The ion 

source was maintained at atmospheric pressure and 120 
˚
C while the analyzer was at 2.5 

x 10 
–5

 mbar (Silva & Dean, 2000). 
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3.11 Collection and analysis of volatiles 

3.11.1 Static headspace trapping  

The diagrammatic representation of static headspace volatile collection is shown in 

figure 3.   

 

Aluminium foil

Aluminium foil

Aluminium foil

Plastic pot

Sandy soil

Plexi glass

Flower

Adsorbent Sachet

Copper/Nichrome wire

Retort Stand

 

 

Figure 3: Diagramatic representation of static headspace trapping 

 

The volatiles were collected from 2-5 week old plants between 6.00 and 10.00 am when 

the flowers are open (Anderson et al., 2002).  The field collection was done using: 

activated charcoal (Raguso & Pichersky, 1995) reverse-phase C18 bonded silica and 

porapak Q (Raguso & Pellmyr, 1998; Bergström et al., 1995; Olesen & Knudsen, 1994; 

Dobson, 1987; Groth et al., 1987; Nilsson, 1983; Centelo & Jacobsen, 1979).  The base 

of the flower and soil in the pot were covered with aluminium foil.  The flower was 

enclosed in a cylindrical plexiglass vessel supported by retort stands and aluminium foil 

was also used to seal the space on the plexiglass and the soil on the pot was also covered 

with aluminum foil to prevent from the volatiles they release from being trapped.  The 

scent was trapped in the adsorbent enclosed in a sachet hanging directly above the flower 

for 4 h until it closed (Loper & Waller, 1970).  The sachets were removed from the 
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glasses, wrapped in aluminum foil, stored in bottles already dipped in ice.  They were 

taken to the laboratory near the green house for further analysis.   

 

3.11.2 Hydrodistillation 

Varying amounts (200-300 g) of flowers, collected from the green house, were placed 

into distillation flask and 500 ml of water was added.  The flask was directly heated and 

the distillate collected over hexane (4 ml) using clean Dean & Stark apparatus.  The 

volatiles accumulated in hexane were dried using 5 mg anhydrous sodium sulphate and 

filtered into a clean vial.  The hexane solution was concentrated to 20 μl using a gentle 

stream of N2 gas and stored at 
-
4ºC when required for analysis (Ameenah, 1994). 

     

3.11. 3. GC analysis  

The adsorbent sachets used for trapping cowpea flower volatiles were eluted with 4 ml of 

HPLC grade CH2Cl2.  The eluant was concentrated to 10 l under a gentle stream of N2 

gas (Jacobsen & Olesen, 1994; Porter et al., 1999; Miyake et al., 1998) while cooling in 

ice and stored in teflon-capped glass vials at -20 ºC.  The sample (2 l) was subjected to 

GC analysis (Azuma et al., 2001; Olesen & Knudsen, 1994).  Alternatively, the flowers 

were hydro distilled, concentrated and subjected to GC analysis.  GC analysis of volatiles 

was performed on Hewlett Packard (HP) 5890 Series II capillary GC equipped with a 

splitless injector, a flame ionization detector (FID) and a HP 3396 Series II integrator 

(Hewlett Packard, Minnesota, USA).  The separation was done on a HP cross-linked 

methyl silicone capillary column (50 m × 0.2 mm, d × 0.33 m, film thickness) (Hewlett 

Packard, Minnesota USA).  The carrier gas used was nitrogen while analytical grade 

hydrogen was used as fuel together with medical air (pure oxygen).  The oven 

temperature was programmed from 40 (5 min.) to 280 °C (20 min.) at 5 °C/min. for 

trapped volatiles or 40 (5 min.) to 100 at 5 °C/ min., to 280 °C (35 min at 10 °C/ min.), 
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for hydro-distilled essential oils.  The integrator was set at: attenuation of 2, chart speed 

0.5, area rejection 200 and thresh hold 2. 

 

3.11.4 GC-MS analysis  

The GC-MS analysis was done on a HP 8060 Series II gas chromatograph coupled to VG 

Platform II mass spectrometer (Fisons, Birmingham, UK).  The MS was operated in the 

electron ionization (EI) mode at 70 eV with emission current of 200 μA and a multiplier 

voltage of 300 V.  The ion focus was held at 29 V.  The temperature and pressure of the 

source was held at 180 º
 
C and 9.4 x 10

–6
 mBar, respectively.  The scan speed was 112 to 

1697 amu/sec while the scan duration was 1 sec. with a cycle time of 1.5 sec. and 

interscan delay of 0.50 sec.  The solvent delay time was 0 sec while the analyzer mass 

range of was 38 to 650 amu.  The mass spectral identification of the compounds was 

carried out by comparison with NIST (National Institute of Standards and Technology, 

Gauthersberg, MD) (Jurgens et al., 2003; Azuma et al., 2001) and Wiley 6.0 (Wiley, 

New York) mass spectral libraries.  The identified compounds were confirmed by GC 

co-injection through peak enhancement.  The retention time of the standards was also 

established to confirm identity (Jennings & Shibomoto, 1980; Davies, 1990).  The 

standards were run both on the GC and GC-MS.  The generated spectra of known 

standards were compared with those of the sample compounds (Azuma et al., 2001., 

Knudsen & Stahl., 1994) and the MS library data (Rodel & Petrzika, 1991; Adams, 

1989; Stenhagen et al., 1974). 

 

Samples from the six cowpea cultivars obtained by the different techniques were 

subjected to GC-MS.  
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3.11.5 Statistical analysis 

The amount of sugars present in the nectar was quantified from the calibration curves of 

HPLC peak areasor heights of standard solutionsfrom regression analysis using SAS 

software (Hatcher, 2003).  The nectar sugar concentrations in the six cultivars were 

subjected to two way factorial ANOVA and statistical analysis (Armstrong et al., 2000) 

using the LSD to obtain p values.    
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CHAPTER FOUR 

RESULTS 

4.1 Flowering and flower sizes 

 

Although all cultivars gave flowers, the wild inbred cultivars (SP52 and SP46) and wild 

outcrossed (219 and 269) flowered with a lot of difficulty and required application of 

hormone (anatone) to induce flowering.  The individual flowers bloomed for one day 

only.  The bell-shaped cowpea flowers were coloured as follows: 524B yellow (Plate 1), 

ICV12 medium purple (Plate 2), SP46 orchid (Plate 3), SP52 violet (Plate 4), 219 

psychedelic purple (Plate 5) and 269 electic purple (Plate 6). 

 

Plate 1: Photograph of flowering cowpea cultivar 524B.                      Plate 2: Photograph of flowering cowpea cultivar ICV12  

 

Plate 3: Photograph of flowering cowpea cultivar SP46                       Plate 4: Photograph of flowering cowpea cultivar SP52 

 

 Plate 5: Photograph of flowering cowpea cultivar 219   Plate 6: Photograph of flowering cowpea cultivar 269                           

           

 

 

 

 

The flowers opened before 6.00 a.m. and closed between 9.30 a.m. and 10.30 a.m.The 

flower sizes were measured and recorded.  The data is summarized in fig. 4.   
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Figure 4: Mean sizes of cowpea flowers  

 

The wild outcrossed cultivars (219 and 269) produced the biggest flowers, (42.62 ± 0.65 

and 42.38 ± 1.10mm respectively), followed by cultivated cultivars (ICV 12 and 524B) 

(33.88 ± 0.93 and 32.87 ± 0.39 mm respectively) while the wild inbred cultivars (SP46 

and SP52) produced the smallest flowers (17.13 ± 0.65 and 17.75 ± 0.79, respectively).  

There was no significant difference between the flower sizes of wild outcrossed cowpea 

cultivars (219 and 269).  Similarly, there was no significant difference between the 

flower sizes of the cultivated cowpea cultivars.  Likewise, there was no significant 

difference in the flower sizes of wild inbred cowpea cultivars (SP46 and SP52).  

However, significant difference was noted between the flower sizes of wild outcrossed, 

cultivated and wild inbred cowpea cultivars.   
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4.2 Nectar Production 

The mean volume of nectar produced between 6.00 and 10.00 am for the six cowpea 

cultivars are summarized in figure.5 

 

 
 

Figure 5: Mean volume of cowpea flower nectar 

 

The pattern of nectar production was the same in all the six cultivars in the three lines.  

Nectar volume ranged from 0.2-18 µl with a mean of 2.28 ± 0.058 µl.  Cultivars 219 and 

269 produced big flowers flowers and more nectar.  Cultivar 219 recorded the highest 

nectar volume (10.99 ± 0.78 µl) followed by 269 (10.29 ± 0.93 µl), 524 B (7.28 ± 0.82 

µl), ICV 12 (6.99 ± 0.99 µl), SP 52 (3.49 ± 0.63 µl) and SP.46 (3.65 ± 0.59 µl).  There 

was no significant difference in mean nectar volumes for the two wild outcrossed 

cowpea cultivars (219 and 269).  Similarly, no significant difference was observed in 

mean nectar volumes between the two cultivated cowpea cultivars (524B and ICV12).  

Likewise, there was no significant difference in the nectar volume of wild inbred 

cultivars.  The volume of nectar collected was generally high between 6.00 and 10.00 am 
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for all the six cultivars and correlates well with the activity of the pollinators suggesting 

that cowpea nectar is produced at night to facilitate bee visit in the morning.  Nectar 

production occurred during the day before 8.00 am with the highest volume being 

collected at 6.00 am for all the six cultivars.  The nectar volume reduced with time (6.00-

10.00 am) with the lowest volume of nectar being recorded at 10.00 am.  Reduced 

volumes of nectar were recorded after 9.00 am for all the lines. 

 

However, significant differences were noted in nectar volume of wild outcrossed, 

cultivated and wild inbred.   

 

4.3 Nectar sugar composition 

Seven sugars were identified in nectar from the six cowpea cultivars (Table 4).  Three 

sugars: glucose, fructose and sucrose, are found in varying amounts in the nectars from 

all the cowpea cultivars.  Although all the nectars contained the three sugars in different 

combinations, they were not balanced, (equal quantities). The three most common nectar 

sugars did not occur singly in any cultivar but as a combination of three or in two. Necta 

from the six cowpea cultivars were sucrose dominant (S/G+F >0.999).  (Mannose, 

maltose and raffinose, though rare, were detected in some cowpea nectars.  Galactose 

was not detected in any of the cowpea nectars investigated.  There was no significant 

difference in mannose and raffinose concentration in all the cultivars.  For sucrose 

concentration, there was no significant difference in 524B and ICV 12; 219 and 269 and 

SP 46 and SP 52 cultivars.  No significant difference was observed for maltose 

concentration in ICV 12 and 219 cultivars.  For fructose, there was no significant 

difference detected in nectar of cultivars SP 46 and ICV 12 while the other cultivars were 

significantly different.  The nectar from the 6 cowpea cultivars was subjected to HPLC 

analysis.  The HPLC profiles of the nectar from 6 cultivars are presented in figure 6. 
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Figure.6: HPLC profiles for cowpea flower nectar 

  

The UV analogue and LC-MS profiles are in appendix 1. 

Key 

 

Peak No.  Name 

 

1                Allose 

2                Xylose 

3    Fructose 

4    Mannose 

5    Glucose 

6    Unidentified 

7    Sucrose 

8    Maltose 

9    Unidentified 

10    Lactose 

11    Unidentified  

12    Raffinose 

13    Unidentified 

14    Unidentified 

13 
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The peaks were identified by HPLC coinjection of cowpea nectar with sugar standards.  

The composition of the nectar from 6 cowpea cultivars is summarized in table 1. 

 

Table 1:  Sugar composition of nectar from six cowpea cultivars  

                                                                   Relative peak areas (%) 
Peak No. Rt (min) Sugar 269 219 ICV 12 524 B SP 46 SP 52 

1 4.31 Alloseb  - - - - 1.67 - 

2 6.78 Xylosea 46.29 0.85 - 22.90 1.30 6.01 

3 7.61 Fructoseb 1.48 75.54 26.29 tr 4.67 3.37 

4 7.71 Mannoseb tr 0.99 - 5.63 - 0.18 

5 8.33 Glucoseb - 2.83 1.58 - - 22.9 

6 9.85 Unidentified - - - - - 50.47 

7 12.18 Sucroseb 26 8.8 46.93 39.64 1.46 7.02 

8 12.62 Maltoseb tr - - 1.59 - - 

9 14.31 Unidentified - - - - 4.61 8.32 

10 16.40 Lactoseb - - 1.63 2.52 - - 

11 18.48 Unidentified 2.74 - - - - - 

12 22.26 Raffinoseb - 4.13 tr - tr - 

13 23.51 Unidentified - - tr - - - 

14 28.72 Unidentified - - - tr tr 12.32 

Identification by: a -Rt only; b - Rt, coinjection and LC-MS  

 

Standard solutions were subjected to HPLC analysis.  The HPLC data for sugar stardards 

is summarized in table 2. 

 

Table 2: HPLC data for sugar stardards 
Peak No. Rt (min.) Sugar Absorbance Peak area ( %) 
1 4.31 Allose 0.43 77.10 

3 7.61 Fructose 0.30 76.39 

4 7.71 Mannose 0.05 100.00 

5 8.33 Glucose 0.06 100.00 

7 12.18 Sucrose 0.06 100.00 

8 12.62 Maltose 0.18 35.62 

10 16.40 Lactose 0.03 82.00 

12 22.26 Raffinose 0.14 26.82  

 

The UV absorbance data of the standard sugar solution were subjected to regressional 

analysis which yielded the corresponding calibration equations (Table 3).  

 

Table 3: Calibration equations for sugar standards 
 

Sugar Regression equation R2 RMSE 

Allose y = - 0.035 + 0.001x 0.541 0.0337 

Fructose y = - 0.018 + 0.0019x 0.9696 0.0125 

Glucose y = 0.0032 + 0.0002x 0.9982 0.0004 

Lactose y = 0.0042 + 0.0001x 0.8885 0.0011 

Maltose y = 0.0028 + 0.0002x 0.8583 0.0028 

Mannose y = - 0.0436 + 0.002x 0.9451 0.0176 

Raffinose y = 0.0023 + 0.0001x 0.8666 0.0016 

Sucrose y = - 0.0075 + 0.0005x 0.9129 0.0053 
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The calibration equations were used to approximate the amount of sugars in cowpea  

nectar (Table 4). 

Table 4: Mean (± SE) sugar concentration (mg/ml) in nectar from six cowpea cultivars  
Peak   Rt Sugar 219 269 524B ICV 12 SP 46 SP 52 

3 7.61 Fructose 1.26±0.2x 4.70±1.2x 2.15±0.6x 6.80±0.1y 5.00±2.0y 2.95±1.3x 

   a, b a, b a, b a a b 

4 7.71 Mannose - 1.00±1.0y - 2.00±1.0y - 1.52±1.2y 

    a  a  a 

5 8.33 Glucose 1.10±0.6x  1.62±0.1x 3.20±1.1y 3.20±1.1y 1.52±0.5x 3.91±2.7x 

   a, b a, b a a   

7 12.18 Sucrose 4.40±2.3x 1.098±0.3z 1.94±0.09z 2.26±0.37 5.30±1.0z 3.34±0.25x 

   b b a a c c 

8 12.62 Maltose 2.85±1.91z 8.8±8.0y 5.20±4.0x 4.75±4.0x 5.70±2.0y 3.60±0.1y 

   a b b a, b b b 

10 16.40 Lactose 2.30±2.0y 1.20±1.0y 5.70±1.0y - - 1.50±0.1y 

   a, b b b   b 

12 22.26 Raffinose 4.00±2.0y 5.50±1.0y 1.00±1.0x 2.80±2.0y 4.10±1.0y 4.40±1.0y 

   a a a a a a 

N = 4; means with different letters are significantly different; x = *10
-2

; y = *10
-3

 and Z= *10
-1  

 

The statistical characteristics for the sugar standards and in nectar are summarized in 

table 5.  

Table 5: Statistical characteristics for sugar standards 
Peak No. Rt (min.) Sugar F value Pr value tconc Pconc tintercept Pr intercept 

1 4.31 Allose 3.54 Pr > F = 0.1566 1.88 0.1566 -0.99 Pr > t = 0.396 

3 7.61 Fructose 95.7 Pr > F = 0.0023 9.78 0.0023 -1.37 Pr > t = 0.2632 

4 7.71 Mannose 51.62 Pr > F = 0.0056 7.19 0.0056 -2.37 Pr > t = 0.0988 

5 8.33 Glucose 1691.62 Pr > F =< 0.0001 41.13 0.0001 8.46 Pr > t = 0.0036 

7 12.18 Sucrose 31.42 Pr > F= 0.0112 5.61 0.0112 -1.35 Pr > t = 0.269 

8 12.62 Maltose 18.17 Pr > F = 0.0237 4.26 0.0237 0.94 Pr > t = 0.414 

10 16.40 Lactose 23.91 Pr > F = 0.0164 4.89 0.0164 3.63 Pr > t = 0.0359 

12 22.26 Raffinose 19.42 Pr > F = 0.0216 4.42 0.0216 1.39 Pr > t = 0.2577 

95 % confidence level 

 

The statistical characteristics for the sugars in nectar are summarized in table 6 

 

Table 6: The statistical characteristics of the sugars in nectar of six cowpea cultivars 
 

Peak No. Rt Sugar R2 RMSE F value Pr value 

3 7.61 Fructose 0.437 0.018 2.8 Pr > F = 0.0487 

4 7.71 Mannose 0.205 0.013 0.93 Pr > F = 0.4862 

5 8.33 Glucose 0.146 0.032 0.62 Pr > F = 0.6891 

7 12.18 Sucrose 0.749 0.053 10.73 Pr > F = < 0.0001 

8 12.62 Maltose 0.351 0.161 1.95 Pr > F = 0.1361 

10 16.40 Lactose 0.461 0.002 3.08 Pr > F = 0.0351 

12 22.26 Raffinose 0.204 0.003 0.92 Pr > F = 0.4882 

95  confidence limit 

 

 

 



103 

 

 

103 

 

4.4. Essential oils and floral volatiles  

4.4.1 Essential oils 

 

The floral essential oils sampled revealed great variation in the quality and quantity.  The 

chemical composition was found to be dependent on the technique of volatile collection 

and the trapping material.  Depending on the technique used for volatile extraction, the 

composition of the classes varied.  The volatiles were classified into six categories on the 

basis of biosynthetic origin: aliphatics such as decanal, palmitic acid, n-hexanal, 1- 

octene-3-ol; aromatics including toluene, acetophenone, vanillin, methyl eugenol and 

xylene; monoterpenes like limonene, terpenyl acetate, menthol, linalool and geranyl 

nitrile); sesquiterpenes such as geranyl acetone, nerolidol, farnesol, bisabolene guaiol 

and cedrene; norisoprenoids like β-methyl ionone, phytol, β-cyclocitral and others and 

other miscellenious compounds that were present but did not have striking similarity 

(furfural and indole,).  The composition of the floral volatiles varied greatly on the basis 

the categories.  The number of compounds in the volatiles from each of the two 

techniques ranged from 43-109.   The composition of the cowpea floral volatiles from 

hydrodistillation is summarized in table 7.  The GC chromatograms are in appendix 2. 

Table 7: Composition of cowpea floral volatiles from six cultivars by hydrodistillation               
   Relative amounts (%)                                            

Peak No. Rt (min) Compounds 219 269 524B ICV 12 SP 46 SP 52 

  Aliphatic alcohols       

6 12.65 1- Hexanola - 1.12 - 0.04 - 0.3 

7 12.7 2E-Hexenolb - - - - 42.34 - 

13 16.63 3Z-Hexenola - 2.36 0.75 1.56 0.09 0.02 

14 17.2 3E-Hexenola tr tr - tr - tr 

15 17.65 Heptanolb - 1.05 0.31 0.57 - - 

26 21.6 1-Octen-3-olc 0.47 1 0.13 4.64 4.7 2.71 

31 22.1 1-Octanolb 0.2 - - - - - 

36 22.53 3-Octanolb 

Aliphatic aldehydes 

- 5.23 - - - 6.08 

8 13.5 2E-Hexenalb - - 0.12 68.75 5.12 - 

11 14.57 n-Hexanala 0.53 0.98 0.35 - - 0.4 

19 18.72 n-Heptanalb 0.12 0.25 0.3 - - - 

50 24.88 Nonanalb - - - - - 0.41 

58 26.1 2E-nonenalb - 0.84 2.58 0.19 - 0.04 

71 29.18 2,4-decadienalb - 1.62 - - - - 

96 35.03 Tridecanalb 
7.92 3.23 19.61 - 0.28 0.58 
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  Aliphatic ketones       

1 9.7 3-Methyl butanoneb - - - 0.13 - - 

18 18.4 5-Methyl -2-hexanoneb - 0.06 - - - 0.01 

25 21.33 4-Octen-3-oneb 0.86 1.36 2.17 - 0.14 0.08 

27 21.7 3-Octanonea 0.79 - 18.61 - 0.28 - 

  Aliphatic esters       

10 14.17 n-Amyl isobutyrateb - 0.08 - - - - 

55 22.4 n-Hexyl acetateb - - 0.15 - 0.05 0.01 

100 36.32 Isopropyl myristateb - 0.27 - - - 0.14 

104 38.6 Ethyl palmitateb - - - 0.41 - - 

105 38.88 Isopropyl palmitateb - 0.62 1.05 - - - 

108 40.5 Oleic acid propyl esterb - 2.37 - 2.67 - - 

  Aliphatic acids       

88 32.95 Lauric acidb - 0.18 - - - 0.33 

102 37.82 Myristic acidb - - 0.99 2.97 - 0.17 

103 38.23 Palmitic acidb 
63.83 43.52 18.21 7.41 11.5 8.34 

  Aliphatic hydrocarbons       

2 11.95 2,3,3 trimethyl pentaneb 
1.45 - - - 0.5 - 

3 12.06 Cyclohexaneb - - - - 6.3 - 

4 12.1 2-methyl hexane - - - - 10.62 72.33 

5 12.55 2-azido 2,3,3-trimethyl butaneb - - - - 16.19 - 

22 19.4 Nonanea 0.24 0.38 - - 0.07 - 

62 27.33 Dodecanec - - - - - 0.07 

84 31.82 n-Eicosanea 
1.43 0.8 0.7 1.29 - 0.19 

110 45.58 Octadecaneb - - - - - 0.07 

111 48.13 n-Tricosaneb 0.32 - 0.3 0.3 0.08 - 

112 48.8 Pentacosaneb - 0.2 1.22 0.68 - 0.08 

113 55.08 Hexacosaneb 0.51 0.04 - - - 0.08 

114 60 n-Heptacosaneb 0.02 - 0.28 0.23 - 0.07 

115 65.83 n-Octacosaneb 0.8 0.96 0.45 0.14 0.007 0.06 

  Aromatic hydrocarbons       

9 13.7 Toluenea 0.17 0.14 0.13 0.02 0.02 0.01 

16 17.76 Ethyl benzeneb - - - - 0.05 - 

17 18.03 p-Xyleneb 0.04 0.14 - - - 0.04 

20 18.75 o-Xyleneb - - - 0.02 - 0.01 

21 18.85 m-Xyleneb - - - 0.14 0.03 0.01 

39 23.07 p-Cymenea 
5.36 0.73 8.47 0.15 - 0.02 

46 24.43 m-Cymenea 0.06 - - - - 0.08 

  Aromatic alcohols       

52 24.98 Benzene ethanolb - 0.26 - 0.75 0.1 0.03 

61 26.88 p-Cresola - - - 2.01 - - 

65 27.67 Benzene propanola - - - 0.65 0.05 0.02 

68 28.92 Thymola 

Aromatic ketones 

- 0.52 - - - - 

42 23.7 Acetophenonea 0.09 0.73 0.44 0.88 0.12 0.31 

56 25.93 Phenylvinyl ketoneb 
2.45 - - - - 0.6 

70 29.15 p-Methoxy acetophenoneb - 3.03 4.38 - - 0.4 

  Aromatic esters       

98 35.75 Benzyl benzoatec 0.26 9.46 1.24 0.27 0.04 0.3 

  Phenyl propanoids       

67 28.25 Cinnamaldehydea 0.5 0.94 - 0.47 0.08 0.18 

73 30.26 Methyl cinnamateb 0.41 2.24 1.16 0.66 0.05 0.2 

99 35.78 Methyleugenola  0.13 - - - - 0.37 

  Monoterpenoid hydrocarbon       

23 20.62 α-Ocimeneb 0.12 0.25 - - - - 

29 21.85 β-Pinenea 0.02 - 0.06 - - - 

32 

33 

22.18 

22.2 

β-Myrcenea 

α-Pinenea 
0.26 

0.16 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

40 23.35 Limonenec 
2.18 1.51 0.09 - 0.02 0.03 

44 24 Campheneb 0.01 - - - - - 

45 24.07 3-Careneb - 0.30 0.57 - - 0.05 

53 25.38 α-Phellandreneb - 0.14 - 0.05 - - 

  Monoterpenoid alcohols       

30 21.96 trans-α-Dihydroterpeneolb - - - - 0.3 - 

41 23.6 1,8-Cineola 0.54 0.10 - - - 0.04 

51 24.92 Linaloolc 0.70 1.84 4.08 0.55 - 0.4 
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59 26.4 Isopulegolc 0.24 - - - - 0.07 

72 29.23 Mentholc - - - - - 0.18 

  Monoterpenoid aldehydes       

28 21.8 Citralc - - - - - 0.22 

66 27.72 Isogeranialb - - - - - 0.11 

97 35.35 Tetrahydrogeranialb - - - - - 0.22 

56 25.52 Linalyl acetatea - - - - - 0.12 

  Monoterpenoid ketones       

48 24.7 Fenchonea 0.22 0.17 0.26 - - 0.04 

49 24.73 cis-Dihydrocarvoneb - - - - - 0.02 

57 26.03 Camphora - - - 0.34 - - 

63 27.55 Pulegonec 0.22 - - - - 0.07 

  Monoterpenoid esters       

34 22.25 Dihydrocarvyl acetateb - 0.36 - - - - 

60 26.55 4-Thujene acetateb - 0.11 0.63 - - - 

  Irregular terpenoids       

43 23.87 Artemisia ketonea 0.30 0.17 - - - - 

47 24.67 Chrysanthenyl acetateb - 0.09 - - - 0.11 

  Sesquiterpenoid  hydrocarbons       

37 22.72 Germacrene Db - - 0.01 - - - 

76 30.62 trans-Caryophylleneb - 0.25 - - - 0.15 

78 30.95 Aromandendrenea - 0.18 - - - 0.09 

80 31.15 Satevene 0.40 0.10 - - - - 

87 32.85 α-Cubebeneb - - - - - 0.02 

90 33.35 β-Farneseneb - 0.24 - - - - 

91 33.9 β-Bisaboleneb - - - tr tr tr 

106 38.97 Isocaryophylleneb 

Sesquiterpenoids alcohols 

0.25 - - 0.05 - - 

89 33.12 Nerolidolc 
1.43 0.50 1.84 - 0.04 0.13 

94 34.25 α-Cedrol - - - - - 0.02 

95 34.98 β-Bisabololb - - 0.12 0.1 - - 

101 36.6 Farnesolc 
1.43 - 0.07 - - - 

  Sesquiterpenoid ketones       

81 31.37 Neryl acetonea - - - - 0.01 0.04 

82 31.41 Geranyl acetonea 0.15 0.32 0.89 - - - 

86 32.7 Caryophyllene oxidea - - 0.14 - - - 

  Azulenes       

78 30.94 Chamazuleneb - 0.05 - - - - 

  Norisoprenoids       

64 27.57 β-Cyclocitralb - 0.90 1.06 - - 0.11 

74 30.55 Damascenoneb - - 0.49 - - - 

75 30.6 cis-Jasmoneb 0.05 0.80 1.53 0.25 0.04 0.15 

77 

83 

30.8 

31.43 

β-Methyl iononeb 

α-Iononec 
- 

0.05 

- 

0.22 

0.36 

0.15 

- 

- 

- 

- 

- 

- 

85 32.08 β-Iononeb 0.45 1.11 0.73 0.25 0.03 0.09 

90 33.42 Megastigmatrienone 4b - 0.39 - - - 0.15 

92 33.92 Megastigmatrienone 1b - 0.19 1.97 - 0.02 - 

93 
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64 

34.05 

40.3 

42.62 

 

27.57 

Megastigmatrienone 2b 

Phytolc 

β-Allyliononeb 

Others 

Indoleb 

- 

0.80 

- 

 

0.19 

0.66 

1.2 

- 

 

- 

- 

1.29 

0.24 

 

- 

- 

- 

- 

 

- 

- 

0.42 

0.07 

 

- 

0.10 

0.8 

- 

 

0.04 

Components > 1 % in bold;  superscript refer to method of identification: a-retention time, mass 

spectrometry and co elution used to confirm identity of compounds, b-mass spectrometry used to identity 

of compounds, c-mass spectrometry and retention time used to confirm identity, - not detected and tr-trace 

amounts. 

 

Aliphatics were the most abundant compounds in the hydrodistillation, followed by 

aromatics, monoterpenes, sesquiterpenes, norisoprenoids and other miscellaneous 

compounds.   
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4.4.2 Floral volatiles 

The volatiles were also trapped from intact cowpea flowers using activated charcoal, 

reverse phase C18 bonded silica and porapak Q.  The eluants from different adsorbents 

were run on GC and GC-MS and the results are summarized in tables 8-10.  The GC 

chromatograms are in appendix 4. 

Table 8:  Composition of cowpea floral volatiles trapped in activated charcoal 
   Relative amounts (%)                                           

Peak 

No. 

Rt (min) Compound 219 269 524 B ICV 12 SP 46 SP 52 

  Aliphatic alcohols       

2 8.8 Butanolb 
5.66 47.04 0.03 - - 3.27 

4 8.08 2-Methyl butanolb 0.03 8.72 14.66 - 0.49 16.12 

7 9.43 2,2-Dimethyl butanolb - - - - - 0.96 

11 10.65 2-Butanone-3-hydroxyb 0.23 0.84 0.64 - 3.47 0.44 

12 13.23 2-Methyl pentanolb 0.04 0.18 0.03 0.20 0.25 0.03 

16 15.03 2-Hexanolb 
1.22 1.29 0.24 - 3.11 2.49 

18 16.43 3-Z-Hexenolb 0.10 0.12 7.79 - 0.25 7.82 

19 16.72 4-Hydroxy-2,5-dimethyl-3-

hexanoneb 
3.65 3.82 - - 12.70 7.82 

24 19.13 2-Nonanolb ― 0.24 0.09 0.03 0.42 0.04 

27 21.82 3-Octanolb 0.24 0.51 0.49 1.08 0.73 - 

28 22.28 1-Octen-3-olc 0.10 0.52 3.53 0.18 3.24 0.12 

49 36.6 trans-Undecene- 1-olb 0.24 0.08 0.46 0.22 0.71 0.15 

  Aliphatic aldehydes       

5 9.13 3-methyl butanalb 
9.54 2.47 24.45 11.42 22.39 0.48 

15 14.55 Hexanalb 0.10 0.46 0.36 0.16 0.59 0.10 

42 30.3 Decanalb 0.23 0.56 0.90 0.41 1.36 0.17 

52 39.45 Tridecanalb 

Aliphatic ketones 

0.06 0.04 1.16 0.59 0.03 0.02 

1 7.65 2-Butanoneb 0.22 0.35 - - - 0.22 

6 9.23 3-Methyl -2-butanoneb 0.31 - 11.81 61.26 28.55 - 

8 9.58 Cyclopentanoneb - - - - 0.37 9.65 

9 9.7 3-Methyl -3-butanoneb 
6.94 8.62 - - 0.62 0.56 

10 10.17 2-Pentanoneb 
9.82 1.08 18.95 8.48 0.64 14.57 

14 14.30 Ethylvinylketoneb 0.03 0.36 0.06 0.02 0.15 0.04 

23 18.38 2-Heptanoneb 0.03 1.60 0.49 1.08 1.46 0.05 

29 22.38 3-Octanoneb - 0.34 0.27 0.34 1.27 - 

35 26.30 2-Nonanoneb 0.05 3.01 0.14 0.03 0.18 - 

  Aliphatic esters       

3 8.52 2-Methyl-2,3-epoxy butaneb 
1.82 0.11 2.50 0.12 0.18 12.86 

21 17.75 Hexyl acetateb 0.01 0.09 0.09 - 0.11 0.80 

30 23.15 cis-3- Hexenyl acetatec 0.18 0.29 0.41 0.03 0.11 0.28 

41 30.00 Ethyl octanoateb 0.05 0.81 0.06 0.02 1.50 0.27 

45 33.18 Ethyl nonanoateb - 0.33 0.16 0.07 - 0.24 

47 36.18 Ethyl decanoateb 0.02 0.54 0.07 0.03 0.50 0.07 

53 41.60 Dodecanoic acid ethyl esterb - 0.19 - 0.31 0.38 0.09 

54 46.43 Ethyl undecanoateb 0.05 0.43 1.32 1.41 0.57 - 

  Aliphatic hydrocarbons       

43 30.65 Dodecanec 0.10 0.19 0.15 0.06 0.89 0.12 

55 50.83 Tricosaneb 
2.35 1.16 1.53 1.05 0.82 3.59 

56 53.08 Pentacosaneb 0.61 0.27 0.16 0.06 0.10 0.03 

57 55.28 Hexacosaneb - 0.18 - 0.14 0.06 - 

58 59.90 Heptacosaneb 0.06 0.18 0.29 0.16 - - 

59 62.70 Octacosaneb - 0.13 - 0.17 - - 

     Monoterpenoid alcohols       

17 16.03 Tetrahydromyrcenolb - 0.28 0.79 0.59 0.17 0.01 

25 20.48 Dihydromyrcenolb 0.20 0.51 0.15 0.06 0.21 0.77 
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36 26.63 Tetrahydrogeraniolb 0.05 0.49 0.70 0.14 0.18 1.38 

37 26.83 Linaloola 0.45 0.90 0.78 0.63 1.66 0.53 

46 34.92 3,6,6-Trimethyl-2-norpinanolb 0.23 0.09 - - - - 

  Monoterpenoid ketone       

39 28.4 Camphora 
2.48 1.12 0.81 6.54 - 3.40 

  Irregular terpenoid       

32 24.95 Artemisia alcoholb 0.28 0.05 0.10 0.04 0.15 0.07 

  Other monoterpene       

38 27.53 Geranyl nitrileb - 0.08 - - - 0.15 

  Sesquiterpenoid hydrocarbons       

50 37.18 α-Copaeneb - 0.15 - 0.02 0.26 0.03 

51 37.97 trans-Caryophylleneb 0.04 0.34 - 0.04 0.02 0.31 

  Sesquiterpenoid aldehyde       

48 36.45 α-Sinensal 0.08 0.06 0.07 - 0.27 0.03 

  Norisoprenoid       

40 28.67 cis-Jasmoneb 0.03 0.17 0.81 0.08 0.15 4.05 

  Aromatic hydrocarbons       

13 13.55 Tolueneb 0.42 0.76 0.42 0.36 0.56 0.88 

20 17.55 o-Xyleneb 0.44 0.25 0.20 0.12  0.69 

22 17.90 Ethylbenzeneb - 0.11 - 0.10 0.32 0.08 

  Aromatic aldehydes       

26 21.13 Benzaldehydeb 0.03 0.22 0.36 0.41 - - 

31 24.23 2-Methyl benzaldehydeb 0.28 0.87 0.67 0.37 2.73 0.53 

  Aromatic alcohol       

33 25.15 Benzenemethanolb 0.15 0.08 0.37 0.41 - - 

  Aromatic ketone       

34 25.28 Acetophenoneb 0.75 1.14 0.37 0.85 0.81 3.61 

  Aromatic ester       

44 32.48 Methyl benzoateb 
49.64 5.17 0.12 0.08 4.36 - 

Components > 1 % in bold;  superscript refer to method of identification: a-retention time, mass 

spectrometry and co injection used to confirm identity of compounds, b-mass spectrometry used to identity 

of compounds, c-mass spectrometry and retention time used to confirm identity, - not detected and tr-trace 

amounts. 

 

 

Table 9: Composition of cowpea floral volatiles trapped in C18 bonded reverse phase       

silica 

   Relative amounts (%)                                         
Peak No. Rt (min) Compound 219 269 524 B ICV 12 SP 46 SP 52 

  Aliphatic alcohols       

1 7.75 2,2-Dimethyl propanolb 
41.83 9.25 3.09 0.32 - - 

2 8.18 Butanolb 0.16 0.01 0.04 - 0.21 0.01 

3 8.38 2-Methyl-2-butanolb 0.08 0.21 4.64 2.88 0.17 0.94 

10 12.67 1-Pentanolb - 0.51 0.18 - 0.11 0.41 

12 13.23 2-Methylpentanolb 0.58 0.28 0.88 - 0.66 0.63 

17 14.73 2-Hexanolb 0.19 0.08 - 1.64 1.30 0.57 

32 21.8 Octanolb 
6.51 1.25 0.20 1.35 3.17 0.10 

55 38.48 Dodecanol 0.05 0.13 0.07 40.39 1.02 0.85 

56 38.5 Tridecanolb - 0.10 0.61 - tr 2.42 

61 43.75 Undecanolb 0.08 0.04 0.04 0.15 1.01 0.04 

  Aliphatic aldehydes       
5 9.15 3-Methylbutanalb 0.26 14.43 0.58 2.73 0.28 0.09 

7 10.13 Pentanalb 0.13 15.83 38.74 2.84 14.29 0.18 

8 10.9 4-Pentanalc - 0.35 - 2.52 9.37 0.11 

16 14.35 2-Hexanalb 0.34 0.05 0.18 0.66 0.32 1.00 

27 18.85 Cis-Heptenalb 0.30 0.11 tr tr 0.12 0.11 

43 26.72 Nonanalb - 0.12 0.62 0.50 tr 0.92 

  Aliphatic ketones       

4 8.85 3-Methyl-2-butanoneb 
10.06 1.21 12.65 6.69 2.17 1.32 

6 9.9 3-Methyl-2-butenoneb - 0.33 10.27 0.11 0.81 0.97 

9 12.3 3-Buten-2-one-3-methylb tr 0.12 0.64 0.93 0.45 0.06 

15 14.08 2-Hexanoneb 0.04 0.86 0.56 0.64 3.92 0.01 

20 15.78 n-Heptan-3-oneb 0.30 - 0.07 - 1.68 0.20 
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  Aliphatic hydrocarbons       

11 12.97 2,3-dimethylbut-1-eneb - 0.04 0.07 - - 0.01 

36 23.55 Decaneb 
1.27 0.16 0.02 0.26 1.03 0.46 

44 26.85 Undecaneb - 0.85 - - 6.38 1.01 

49 30.50 Dodecanec - 0.08 0.72 - - 1.15 

58 39.28 Eicosaneb 0.03 tr 0.98 0.23 0.30 tr 

66 55.15 Pentacosaneb 0.67 0.68 0.24 0.78 0.15 0.01 

67 57.53 Hexacosaneb 0.78 tr 0.21 0.42 - 0.02 

68 59.95 Heptacosaneb 0.72 tr 0.16 0.29 - 0.01 

69 62.78 Octacosaneb 0.69 tr 0.17 1.03 - 0.01 

  Aliphatic esters       

19 15.65 Methylpentanoate b - - - 0.34 0.87 0.13 

21 16.43 1,2,3-Propanetriol acetateb - 5.16 1.27 7.31 - 0.76 

22 16.90 4-hexenoic acid-3-methyl esterb - 0.03 - - 0.07 0.02 

35 23.37 Hexyl acetateb 0.64 0.14 0.03 0.23 0.44 0.94 

37 23.83 Methyl hexanoateb 0.51 0.15 0.03 tr 0.46 0.40 

46 27.25 Heptyl acetateb 0.30 0.40 3.96 5.45 1.25 1.41 

50 30.88 Methyl nonanoateb 0.34 0.10 0.51 tr 2.10 0.56 

  Aliphatic acids       

34 22.93 Heptanoic acidb 0.01 0.21 0.10 tr 2.93 1.45 

63 47.80 Palmitic acidb 0.08 0.29 5.03 tr 8.17 tr 

  Monoterpenoid alcohols       

38 24.53 Tetrahydrogeraniolb 0.21 0.07 0.11 0.97 1.95 0.49 

45 26.97 IsopulegolC 
3.36 0.03 - 0.92 0.28 0.09 

48 30.23 Mentholb 
1.50 0.06 1.15 0.74 5.93 11.20 

51 35.1 3,6,6-Trimethyl-2-norpinanolb 0.15 0.22 - - - 0.15 

54 37.75 Citronellolc 0.55 0.04 0.11 0.97 1.95 0.49 

  Monoterpenoid ketone       

31 21.55 Carvatanoacetoneb 0.07 0.09 0.03 - 0.49 1.50 

  Monoterpenoid ester       

57 38.65 5,6-Dioxobornyl acetateb tr 0.61 0.23 - - 6.94 

  Irregular terpenoid       

42 26.55 Artemisia alcoholb 0.34 0.07 0.07 0.50 2.09 15.96 

  Aromatic hydrocarbons       

13 13.55 Tolueneb 0.34 0.52 0.71 4.99 1.30 0.26 

24 17.45 o-Xyleneb - - - - 0.25 0.05 

  Aromatic alcohol       

47 28.46 Benzenemethanolb 0.05 0.06 0.03 0.20 1.31 0.09 

  Aromatic aldehydes       

30 21.03 Benzaldehydec 0.07 0.05 0.27 5.06 0.08 0.91 

39  4-Hydroxy benzaldehydeb 0.20 0.05 tr tr tr 0.08 

  Aromatic ketone       

40 25.76 Acetophenoneb 
13.76 0.05 0.69 0.62 3.00 1.68 

  Aromatic esters       

29 19.10 Methyl-1,2,4-benzenetricarboxylateb 0.20 0.15 0.08 - - 0.88 

41 26.43 Methylbenzoateb 0.71 0.12 - - - 11.78 

  Others       

14 13.48 Tetrahydrofurfurolb 0.58 0.28 0.21 0.64 0.73 0.31 

18 15.48 Furfuralb 0.07 - 0.07 - 1.67 0.32 

23 17.25 Tetrahydrofurfuryl acetateb - 0.04 - - 0.15 0.89 

25 18.45 1,2-butanolideb - 0.09 0.21 - 1.72 9.29 

26 18.75 2-Butylfuranb - - - - - 9.63 

28 18.98 Cyclohexyl-3-furanylmethanoneb - 0.03 0.02 - 0.79 0.50 

33 21.97 Tetrahydro-2-methylfuranolb - - 0.34 - 0.38 0.53 

Components > 1 % in bold;  superscript refer to method of identification: a-retention time, mass 

spectrometry and co injection used to confirm identity of compounds, b-mass spectrometry used to identity 

of compounds, c-mass spectrometry and retention time used to confirm identity,  - not detected and tr-trace 

amounts. 

 

Table 10: Composition of cowpea floral volatiles trapped in porapak Q 
   Relative amounts (%)                                          

Peak No. Rt (min) Compound 219 269 524 B ICV 12 SP 46 SP 52 

  Aliphatic alcohols        

1 7.75 2,2-Dimethylpropanolb 
1.82 0.69 0.03 0.10 0.40 0.24 

2 8.18 Butanolb 0.02 0.08 0.03 0.04 1.48 0.08 
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3 8.57 2-Methylbutanolb 
9.62 13.06 10.34 6.90 0.18 4.54 

4 8.87 2-methyl butan-2-olb 
15.47 14.31 10.36 6.93 6.63 5.94 

14 14.85 Hexen-2- olb  0.67 2.90 1.32 0.90 0.48 0.03 

15 14.9 1-Hexanolb 
2.05 1.33 0.66 0.90 0.77 0.87 

16 15.05 2-Hexanolb 
0.95 2.23 0.13 0.18 2.15 0.17 

17 16.45 3E-Hexen-1-olb 
11.04 7.26 3.63 12.61 4.54 4.85 

18 16.75 3Z-Hexen-1-olb 0.35 0.32 0.36 0.39 0.08 0.02 

19 17.17 2-Heptanolb 0.07 0.10 - - 0.78 - 

24 19.23 2-Nonanolb - 0.23 - - - 0.14 

29 22.25 1-Octen-3-olc 0.01 0.13 0.14 0.01 0.18 0.02 

38 25.67 1-Octanolb 
15.20 0.62 0.32 0.34 0.81 0.24 

72 38.48 Dodecanolb 0.12 0.07 0.11 10.02 0.26 2.10 

75 43.75 Undecanolb 0.19 0.02 0.07 0.04 0.26 0.11 

  Aliphatic aldehydes       

5 9.15 3-Methylbutanalb 0.49 0.36 0.32 0.29 0.67 0.33 

13 14.58 Hexanalb 0.03 0.30 0.03 0.01 0.66 0.31 

23 18.85 n-Heptanalb - - 0.01 0.07 0.55 0.09 

31 22.95 n-Octanalb 0.09 0.17 - - 2.74 0.57 

53 30.28 Decanalb 0.55 0.12 2.17 1.07 2.13 0.94 

70 36.57 Dodecanalb 0.30 0.37 2.36 2.40 0.80 0.36 

74 42.1 Octadecanalb 0.11 0.02 0.10 - 0.02 0.04. 

  Aliphatic ketones       

6 9.3 3-Methyl-2-butanoneb 
6.41 8.89 5.59 4.60 10.01 3.76 

7 10.23 3,3-dimethylbutanone b 
10.98 4.97 9.83 6.01 0.37 0.69 

9 11.85 3-Methoxy-3-methyl butanoneb  0.29 0.02 0.02 0.02 0.14 0.07 

12 14.15 4-methyl-2-pentanoneb 0.12 1.01 0.19 0.20 0.60 0.06 

21 18.45 2-Heptanoneb 0.14 0.20 2.01 2.27 0.33 0.05 

28 22.01 4-Octen-3-oneb 0.01 0.13 0.14 0.05 0.18 - 

30 22.37 3-Octanoneb 0.21 0.17 0.01 0.02 0.17 0.04 

49 29.57 4-Octanoneb - 0.08 0.08 0.06 0.18 0.07 

69 36.15 2-Decanoneb - - - - 0.16 0.11 

  Aliphatic ester       

32 23.15 3Z-Hexenyl acetateb 0.07 0.02 0.02 0.02 0.25 0.03 

  Aliphatic hydrocarbons       

8 11.35 2,2-Dimethyl butaneb 0.02 0.40 0.03 0.04 0.41 0.01 

10 12.18 Methyl cyclohexaneb 0.09 0.58 - 0.02 1.24 0.30 

25 19.63 Octaneb 0.01 0.06 0.52 0.33 - - 

43 26.78 Decaneb 0.73 0.29 0.28 0.22 8.88 2.86 

73 39.28 Eicosaneb 0.02 0.02 0.01 0.06 0.08 0.02 

76 55.15 Pentacosaneb 0.12 0.04 - 0.19 0.25 0.13 

77 57.53 Hexacosaneb 0.02 1.97 - 0.11 0.02 0.08 

78 59.95 Heptacosaneb 0.50 - - 0.07 0.03 0.03 

79 62.78 Octacosaneb 0.34 1.34 - 0.26 - - 

  Monoterpenoid alcohols       

40 26.42 Linaloolc  1.07 0.22 0.15 0.39 0.01 0.07 

41 26.63 Tetrahydrogeraniolb - 0.48 - - 0.15 2.02 

45 28.53 Citronellolb - 0.32 - - - 0.53 

  Monoterpenoid ester       

65 34.40 Terpeneol hydrateb - - - - 0.41 0.23 

  Monoterpenoid ketone       

35 26.63 Linalool oxideb 0.09 0.25 - 0.01 0.10 0.09 

  Irregular monoterpene       

26 20.48 Chrysanthemyl alcoholb - - - 0.02 0.16 0.45 

  Sesquiterpenoid hydrocarbon       

58 31.62 trans-caryophylleneb 0.08 0.09 0.02 0.01 0.03 0.04 

60 31.98 Aromandendreneb 0.32 0.01 0.07 0.01 0.10 0.01 

  Sesquiterpenoid alcohols       

55 30.57 Guaiolb 0.57 - 0.02 0.03 1.21 0.35 

71 36.90 Farnesolc 0.29 0.15 0.18 0.06 0.24 0.34 

  Aromatic hydrocarbons       

11 13.58 Tolueneb 0.45 0.07 0.36 1.42 0.12 tr 

20 17.58 Ethylbeneneb - - - 0.01 0.03 0.25 

22 18.70 Vinylbenzeneb - 0.10 - - 0.09 0.07 

39 26.35 2-(2-Propenyl) methyl benzeneb - 0.13 - 0.39 0.34 1.29 

42 26.67 1-Ethenyl-4-ethylbenzeneb  - 0.48 - - 0.61 2.02 

56 30.98 p-Cymeneb 0.35 - 0.02 0.11 0.51 0.84 
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59 31.90 o-Allyltolueneb - - - - - 3.73 

61 32.45 4-Isopropylbenzeneb - - - - 34.59 0.34 

  Aromatic alcohol       

33 24.08 Benzenemethanolb 
1.01 0.01 0.18 0.04 0.10 0.61 

36 24.85 Benzeneethanolb 0.09 0.24 - - - 0.03 

47 29.10 3-Ethylphenolb 0.10 0.05 0.04 0.52 0.10 0.73 

57 31.48 Carvacrolb 0.14 - - - - 0.79 

  Aromatic aldehydes       

27 21.05 Benzaldehydeb 0.01 0.26 0.14 2.27 0.28 1.94 

44 28.2 2,6-Dimethylbenzaldehydeb - - - - 0.04 - 

46 28.83 Ethylbenzaldehydeb - - - 0.06 0.69 20.86 

48 29.33 Ethenylbenzaldehyde b - - - - 4.38 2.76 

53 30.40 1,4-Benzenecarboxhaldehydeb - - - - 0.06 0.08 

  Aromatic ketones       

34 24.23 Methylacetophenoneb - - 0.09 0.04 - 3.21 

37 25.18 Acetophenoneb 
15.20 27.50 14.31 25.56 1.33 5.90 

52 30.15 3-Ethylacetophenoneb - 0.03 - - 1.33 4.33 

63 33.38 4-Phenyl-3-buten-2-oneb - - 32.60 - 0.73 0.30 

  Aromatic esters       

50 29.65 Thymylmethyl etherb - - - - 0.07 0.18 

62 33.3 Carvyl acetateb 0.15 0.06 - - - 7.78 

  Phenylpropanoids       

66 35.78 Methyl cinnamateb 0.15 4.31 0.52 10.02 0.45 1.95 

51 29.93 Cinnamaldehydeb 0.55 0.04 0.06 0.03 0.77 2.76 

67 36.00 Vanillinb 0.01 - - 1.24 0.13 1.95 

68 36.05 Methyl eugenolb 0.13 0.37 - 0.01 0.12 0.16 

 

Components > 1 % in bold;  superscript refer to method of identification: a-retention time, mass 

spectrometry and co injection used to confirm identity of compounds, b-mass spectrometry used to identity 

of compounds, c- mass spectrometry and retention time used to confirm identity, - not detected and tr-trace 

amounts. 

 

The cowpea floral volatiles trapped by the three adsorbents were composed of short-

chain fatty acid derivatives as the main class of compounds.  Porapak Q trapped the 

highest number of compounds (47-75) in all the six cowpea cultivars followed by reverse 

phase C18 bonded silica (43-66) and activated charcoal (44-58).  Benzenoids (21 

compounds) were mostly trapped by porapak Q.  This could be due to its polymeric 

nature resulting in the largest surface area per unit mass (Withycombe et al., 1978; 

Wyllie et al., 1978).  The number of compounds trapped by porapak Q conforms with 

the findings in C. brewerie (Raguso & Pellmyr, 1998). 

  

Reverse phase C18 bonded silica trapped the highest number of aliphatics.  Many furan 

derivatives were obtained from reverse phase C18 bonded silica traps, in which 
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sesquiterpenes and nor-isoprenoids were not trapped.  Activated charcoal and porapak Q 

did not trap any furan derivatives.   

 

Due to the large variation in the composition of cowpea floral volatiles trapped by the 

three adsorbents, they were connected in series and used to trap the volatiles to give a 

complete profile of the flower volatiles.  The composition of cowpea floral volatiles 

trapped in combined adsorbents is summarized in table 11.  The GC chromatograms are 

in appendix 3. 

Table 11:  Composition of cowpea floral volatile trapped in combined adsorbents.  
   Relative amounts (%)                                          

Peak No. Rt (min) Compound 219 269 524 B ICV 12 SP 46 SP 52 

  Aliphatic alcohols       

8 9.16 1-Butanolb 
16.41 0.72 25.55 0.74 0.4 6.72 

14 14.88 Hexanolb 0.67 2.45 1.42 3.31 0.53 0.78 

26 23.52 Nonanolb 0.13 4.31 0.07 3.10 0.22 0.11 

39 26.4 3-Octanol 2,3 dimethylb 0.35 - - 0.72 0.04 0.13 

  Aliphatic aldehydes       

1 

3 

7.8 

8.38 

Propanal 2,2 dimethylb 

3-Methyl butanalb 
1.97 

1.12 

- 

0.64 

0.03 

0.2 

- 

0.09 
2.57 

3.64 

0.08 

- 

6 

13 

9.35 

14.45 

4-Pentenalb 

n-Hexanalb 
0.4 

0.1 
9.77 

0.13 
0.97 

0.18 
6.5 

0.15 
3.48 

0.14 

0.15 

0.13 

20 18.85 Heptanalb 0.13 0.46 0.14 0.12 0.06 0.06 

53 30.28 Decanalb 
1.54 0.64 0.39 0.46 0.56 0.14 

  Aliphatic ketones       

4 8.9 3-Methyl-2-butanoneb 
10.53 17.71 32.08 17.28 5.44 3.43 

10 11.23 4-Pentene-2-oneb 0.08 0.05 0.49 0.06 0.02 - 

16 16.35 3-Hexanoneb 
4.12 8.54 - 7.09 1.41 2.54 

19 18.45 2-Heptanoneb 0.45 1.55 0.34 0.23 0.05 0.35 

  Aliphatic esters       

9 10.95 2-Propenoic acid methyl esterb 
1.67 0.09 - 1.63 0.08 - 

24 23.15 cis-Hexenyl acetateb 0.06 0.08 tr 0.002 0.12 0.06 

51 29.85 1-Octen-2-ol acetateb 0.16 - - 0.2 0.07 28.10 

  Aliphatic hydrocarbons       
11 12 2-Hexeneb 0.11 0.13 0.33 0.12 0.14 - 

27 23.61 Decaneb 0.03 0.07 - 0.05 0.02 - 

55 30.68 Dodecanec 
4.51 2.23 - 0.61 0.07 0.03 

65 35.68 Tetradecaneb - - 0.29 0.62 - - 

80 49.8 n-Tricosaneb 
4.2 0.04 - 0.5 1.33 0.57 

81 50.08 Pentacosaneb 
3.82 0.02 - 1.20 0.07 0.28 

82 55.28 Hexacosaneb 
1.03 0.03 - 0.02 - 0.05 

63 59.93 n-Heptacosaneb 0.56 0.02 - -  -  0.05 

115 62.7 n-Octacosaneb 0.01 0.01 - -  -  0.01 

  Other aliphatics       

2 8.13 Methanamine N butanoneb 0.02 0.02 - -  -  - 

7 9.95 2-Methoxy-2-methylbutaneb 
10.46 11.46 0.96 11.71  4.95  4.29 

8 10.35 3-Chloro-3-methylbuteneb 0.6 - - 0.19  -   - 

17 17.23 1-Chloro hexaneb 0.01 0.05 0.01 0.05  -   - 

  Monoterpenoid alcohols       

21 20.45 Dihydromyrcenolb 0.4 0.5 0.66 0.64  0.04  0.13 

25 21.35 Dihydrolinaloolb 0.03 0.05 1.09 0.02  0.12  0.04 

31 24.53 Tetrahydrogeraniolb 
1.06 0.12 0.15 0.2   -  0.03 
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33 24.63 1,8-Cineola  0.08 0.18 0.05 0.21  0.76  - 

41 26.83 Linaloola  1.76 0.87 - -  - 0.41 

48 28.65 Isopulegolc 0.07 0.01 - -  -  - 

52 30.25 Mentholb - - - -  - 0.14      

56 31.1 β-citronellolb - - - 0.27  0.03 0.3 

58 31.63 Isopinocampheolb - 0.78 - 0.17   -  - 

64 35.3 Isocitronellolb - - - -  0.21  - 

  Monoterpenoid esters       

37 25.83 Linalyl acetateb 0.07 0.59 - 0.11 -  0.67     

63 34.4 3,8-terpeneol hydrateb 
1.76 0.2 0.1 0.81  - - 

64 35.13 Terpenyl acetateb 0.95 0.11 - 0.74 0.41          - 

76 38.65 Dihydrobornyl acetateb - - -  -  - 0.17         

  Monoterpenoid hydrocarbons       

32 24.6 Limonenea 0.08 0.18 0.05 0.21 0.76 - 

41 26.83 3-carenea 0.07 0.59 - 0.11 - 0.67 

43 27.53 Fenchenea 0.07 0.59 - 0.11 - 0.67 

  Monoterpenoid aldehyde       

45 28 2,3-Epoxyneralb - - - 0.02 - - 

63 34.25 Citronellalb - 0.21 - 0.003 - - 

  Monoterpenoid ketones       

46 28.4 Camphora 0.38 3.42 0.04 4.06 5.24 1.39 

59 31.9 Linalool oxideb 0.06 0.13 0.1 0.05 4.21 - 

69 36.6 Limonene dioxide 0.07 - 0.21 0.01 - - 

  Others       

30 24.35 Sorbic acidb - - - 0.08 - - 

43 27.53 Geranyl nitrileb 0.04 0.46 - - - 0.41 

  Irregular terpenes       

22 20.48 Chrysanthenyl alcoholb - - - - 0.04 - 

34 

43 

24.95 

27.53 

Artemisia alcoholb 

Lavandulolb 
- 

0.07 

- 

0.59 

- 

- 

- 

0.11 

- 

- 

0.30 

0.67 

60 31.91 Yomogi alcoholb 0.06 0.13 0.1 0.05 4.21 - 

  Sesquiterpenoid 

hydrocarbons 

      

71 37.16 Germacrene Db - 0.3 - - 1.63 - 

73 37.88 trans-Caryophylleneb 0.21 0.09 - - - - 

72 37.8 α-Cedreneb - - - 0.04 - - 

74 38.03 cis-Bisaboleneb 0.21 - 0.03 0.1 - - 

  Sesquiterpenoid aldehyde        
69 36.4 α-Sinensalb 0.32 0.31 - - - - 

  Sesquiterpenoid ketone       
70 36.47 Geranyl acetoneb 0.60 - 0.43 tr 3.16 0.13 

  Sesquiterpenoid alcohol       
77 41.4 Nerolidolc 0.05 - - - 0.84 0.18 

  Azulene       

54 30.58 Guaiolb 
4.51 0.13 0.11 0.61 0.09 0.03 

  Norisoprenoids       

48 28.65 cis-Jasmoneb - 1.14 - - - - 

61 32.08 β-Methyl iononeb 0.50 - - 0.24 - - 

  Aromatic hydrocarbons       

12 13.35 Tolueneb 0.02 0.8 0.04 2.00 0.14 0.13 

18 17.55 p-Xyleneb 0.03 0.05 - - - - 

28 24.1 1,3,5-Trimethylbenzeneb 
1.06 - - 0.10 - 0.10 

35 25.33 1,4-Diethylbenzeneb - - - 0.24 - - 

36 25.58 p-Cymeneb 0.12 - - 0.14 - 0.04 

  Aromatic alcohols       

42 27 Benzene methanolb 0.38 0.09 - - 0.04 1.39 

47 28.46 Benzene ethanolb 0.47 0.16 14.7 3.72 0.21 0.02 

57 31.49 Carvacrolb - - 1 - - 7.80 

  Aromatic ketones       

29 21.55 Carvatanoacetoneb - - - - - 0.05 

34 25.15 Acetophenoneb 
12.6 1.52 11.1 11.52 0.09 2.12 
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49 28.78 Phenyl propanone 0.42 17.03 0.04 4.12 5.24 28.1 

  Aromatic esters       

39 26.4 Methyl benzoateb 0.13 4.31 0.07 3.10 2.86 11.76 

62 33.3 Carvyl acetatec - - - - 1.46 - 

  Phenylpropanoids       

50 29.35 Cinnamaldehydeb - - - - 3.39 - 

67 36.03 Vanillinb 
2.88 0.09 0.13 1.00 0.16 0.37 

68 36.08 Methyl eugenolb  0.32 - - 0.62 0.09 - 

66 35.73 Methyl cinnamateb 
2.24 0.43 0.28 1.46 1.39 0.09 

  Others       

15 15.58 Furfuralb 0.2 0.14 0.31 - 0.06 0.05 

38 25.93 Tetrahydrofurfuryl acetateb - - - 0.02 1.52 2.70 

40 26.25 2-Furan methanolb - - 0.13 0.69 - - 

Components > 1 % in bold;  superscript refer to method of identification: a-retention time, mass spectrometry and co 

injection used to confirm identity of compounds, b-mass spectrometry used to identity of compounds, c- mass 

spectrometry and retention time used to confirm identity, - not detected and tr-trace amounts. 

 

The mass spectra for some selected volatile and essential oil compounds are in appendix 

5. 

 

4.4.2.1 Monoterpenes 

Monoterpenes, trapped in combined adsorbent constituted a larger portion than from 

hydrodistillation.  Linalool (46), a common floral volatile in most angiosperms was 

trapped by activated charcoal and porapak Q in all cultivars.  However it was not trapped 

by reverse phase C18 bonded silica in all the cultivars.  

 

Camphor (101) was found in the steam distillate of ICV 12 in small amounts but is 

abundant in the headspace collection of volatiles by combined adsorbents.  In the 

individual asorbents, it was trapped by all adsorbents except reverse-phase C18 bonded 

silica. Isopulegol was present more in the headspace of combined adsorbents than in the 

hydrodistillation, respectively.  

 

A number of acyclic monoterpenes were identified in cowpea floral volatiles.  These 

included nerol, geraniol (278), citronellol (49), citronellal (48) and citral (278) all of 

which have been reported in the floral volatiles of sweat pea (Porter et al., 1999). Small 

amount of linalyl acetate was detected in the oils of cowpea flowers.   
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Sorbic acid was present in the headspace volatiles of cowpea cultivar ICV 12 but absent 

in the steam distillate.   

Limonene (65) was present in steam distillate and combined headspace volatiles of all 

the cultivars except ICV 12 and SP46, respectively. It has been reported in many floral 

fragrances and it coelutes with 1, 8-cineole (eucalyptol) (72) during gas chromatography 

(Sazima et al., 1993).  1, 8-Cineole (72) can also be formed from limonene or menthol 

(71) (Scheme 2). 

  

Isocitronellol and epoxyneral among others were detected only in headspace volatiles of 

one cultivar, ICV 12.  Similarly, α-ocimene (43), β-myrecene (41), pulegone (69), and 

camphene (105) were detected in the steam distillate of one cultivar only.  

  

Irregular terpenenes were detected in both techniques especially headspace volatiles 

trapped by combined adsorbents compared to steam distillate. Interestingly, only 

artemisia alcohol, yomogi alcohol, lavandulol and chrysanthemyl alcohol were present in 

the headspace volatiles trapped in individual and combined adsorbents while artemisia 

ketone and chrysanthemyl acetate were present in the steam distillate.  3,6,6-

Trimethylnorpinanol was trapped by activated charcoal and reverse-phase C18 bonded 

silica only.   

 

4.4.2.2 Sesquiterpenes 

Just like the monotepenes, sesquiterpenes were trapped in higher amounts by the 

combined adsorbents than in steam distillate though the latter yielded larger number of 

compounds.  Guaiol (208) was exclusively present in the headspace volatiles of all the 

cultivars and has been reported previously (Knudsen et al., 2004). The highest amount 
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was recorded in cultivar 219.  Sativene was found only in the steam distillate of wild 

outcrossed cultivars (219 and 269) and is being reported for the first time in floral 

volatiles.  Nerolidol (156) was present and headspace volatiles and in the steam distillate 

while farnesol was present in steam distillate.  In the headspace geranylinalool co-eluted 

with farnesol during analysis (Buouwmeester et al., 1999).  Geranylacetone (155) was 

more abundant in the headspace volatiles than in steam distillates.  α-Cedrol, β-

caryophyllene (180), germacrene B (176) and D (178) were present in both the steam 

disillate and headspace volatiles Germacrene D (178) co-eluted with α-copaene and γ-

cadinene during GC analysis Aromandrene (199), α-cubene, bisabolol (164),  β-

farnesene (153), α-farnesene (152)  caryophyllene oxide (181), nerylacetone and β-

sesquiphellandrene were only present in the steam distillates.  Only present in the 

headspace were α-sinensal and α-cedrene.  

 

4.4.2.3 Norisoprenoids 

Norisoprenoid were more in the steam distillate than in headspace volatiles.  cis-Jasmone 

was present in the steam distillate and headspace volatiles of all cultivars trapped in 

activated charcoal but was only found in headspace volatiles of cultivar 269 trapped in 

combined adsorbents.  β-Methylionone was in the steam distillate and in the headspace 

volatiles of combined adsorbents.  β-Ionone (81), α-ionone (80); β-cyclocitral (79) 

megastigmatrienone 4, megastigmatrienone 2, megastigmatrienone 1, phytol, 

damascenone and allyl-β-ionone were exclusively present in the steam distillates.   

 

Steam distillate of cowpea flowers from cultivar 524B exclusively gave carotenenoids.  

In the individual adsorbents, only activated charcoal trapped cis-jasmone from floral 
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volatiles of all the six cowpea cultivars.  No norisoprenoids were trapped in porapak Q 

and reverse-phase C18 bonded silica.   

 

4.4 2.4 Aromatics  

These were the second most abundant class of compounds in the steam distillate and 

headspace floral volatiles in all cowpea cultivars. The aromatics detected included 

hydrocarbons, oxygenated benzenoids (alcohols, aldehydes, ketones, esters plus phenyl 

propanoids) and nitrogen containing benzenoids.   

 

The hydrocarbon detected included p-cymene (291), which occurred in volatiles from all 

the cultivars in both the steam distillate and headspace.  The two cultivars that registered 

the highest amounts were 524B and 219.  Toluene was detected in steam distillate and 

headspace trapping with ICV 12 giving the highest amount while all the isomers of 

xylene: p-xylene (292), m-xylene (293) and o-xylene (294), were detected in the steam 

distillates, while only m-xylene (292) was in the headspace volatiles.  1, 4-

Diethylbenzene (295) and 1,3,5-trimethylbenzene (296) were detected in the headspace 

volatiles only while ethylbenzene (297) was found in the steam distillates.  

 

 

 

 

 

The aromatic aldehydes detected include: 2-methylbenzaldehyde (298), in the floral 

steam distillate of cowpea cultivar SP 46 and headspace volatiles; and benzaldehyde 

(253), in the steam distillate and headspace floral volatiles.  The aromatic ketones were 

more prevalent with acetophenone (299) in the steam distillate and headspace volatiles 

291                          292                   293                      294                  295                            296                      297  
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while p-methoxyacetophenone (300) and phenylvinylketone (301) were detected in the 

steam distillates only.  Phenylacetaldehyde (254) was also found in cowpea floral 

volatiles.  Phenylpropanone (311) was exclusively in the headspace volatiles.   

 

 

 

The esters detected included: benzyl benzoate (250), in the steam distillate; while methyl 

benzoate (287) and carvyl acetate (302) were in the headspace volatiles only.  The 

phenylpropanoids included cinnamaldehyde (303), which was in both steam distillate 

and headspace. Methyleugenol (255) was present in the steam distillate and headspace 

volatiles while vanillin (246) was in the headspace volatiles only.   Methyl cinnamate 

(304) was in the steam distillates and headspace volatiles.  

O O

H

O

O O

302                              303                              304  

 

The alcoholic aromatics detected included; benzene ethanol (305), in both steam 

distillate and headspace volatiles; while benzyl alcohol (benzene methanol) (306), 

carvacrol (308), and 5, 7-dimethyloctahydrocoumarin (308) were present in the 

headspace volatiles only.  p-Cresol (309) and thymol (310)  were detected in the steam 

distillate only.  

 OH

OH OH

O O

OH

OH

305                      306                          307                             308                              309                       310

O O

O

O

O

298                           299                            300                            301
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Higher amounts of phenylpropanoids were found in the headspace volatiles.  Methyl 

cinnamate (304) was more abundant in the headspace volatiles than in the steam distillate 

contradicting earlier reports on floral volatiles of alfalfa where it was only found in 

traces (Tava et al., 2000).  Vanillin (246) was one of the major components identified in 

cowpea floral volatiles.  It has been reported in the floral volatiles of Clarkie breweri 

though as a minor constituent (Raguso & Pichersky, 1995).  Methyleugenol (255) has 

been reported in floral scents of C. breweri (Raguso & Pichersky, 1995) and in floral 

scents of Dianthus and Saponaria species (Jurgens et al., 2003).  Cinnamaldehyde (303) 

seems to be a rare floral volatile though it was abundant in cowpea floral volatiles.  The 

floral scent of Silene species contains cinnamaldehyde (303) in trace amounts (Jurgens et 

al., 2002).   

 

p-Cresol (309) was only detected in appreciable amounts in the steam distillate of ICV 

12 cowpea cultivar.  It was previously reported in abundance in floral oils of Silene 

species (Jurgens et al., 2002) and in one species of Theophrastaceae (Knudsen & Stahl, 

1994).  Thymol (310) was detected in the steam distillate of cowpea cultivar 269 while 

carvacrol (307) was present in large amounts in cowpea volatiles. Phenylmethanol (306) 

was detected in large amounts in the headspace volatiles of cowpea.  Benzyl alcohol 

(306) has previously been reported in steam distillate and headspace volatiles of alfalfa 

(Tava et al., 2000).   

Benzaldehyde (253) was found in higher amounts in the headspace volatiles than in the 

steam distillates in almost all the cowpea cultivars and was previously reported in 

abundance in alfalfa headspace volatiles (Tava et al., 2000), floral volatiles of Silene 

species (Jurgens et al., 2002), and several species of Theophrastaceae (Knudsen & Stahl, 
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1994). Other aromatic carbonyls like 2-methylbenzaldehyde (298), p-

methoxyacetophenone (300), phenylvinylketone (301) and phenylpropanone (311) were 

abundant in headspace volatiles only.  Acetophenone (299) is a major headspace volatile 

component though it also appeared in the steam distillate.   

 

The only nitrogen containing benzenoid, methyl anthranilate (312) was present in the 

headspace trapped volatiles and the steam distillates of all the cowpea cultivars.  It was 

previously reported in flowers and flower parts of mandarin, Citrus deliciosa (Flamini et 

al., 2003).  

NH
2

O O

O

311                                          312  

 

4.4.2.5. Aliphatic compounds 

This class had the most abundant compounds both in the steam distillate and headspace. 

The steam distillate contained the largest number of compounds compared to the 

headspace volatiles.  The groups of the aliphatic compounds included the aldehydes, 

ketones, esters, alcohols, hydrocarbon and carboxylic acids.  The most abundant 

aldehydes: trans-2-hexenal, 2-methyl hexane, tridecanal, 2, 4-decadienal and trans-2-

nonenal were only present in the steam distillate while 4-pentenal, 3-methyl butanal, 

decanal and 2, 2-dimethylpropanal were present in headspace volatiles.  n-Heptanal and 

n-hexanal in the headspace volatiles and n-hexanal, n-heptanal, 2-heptenal, 2-octenal and 

nonanal in the steam distillates were present in low amounts.   

 

The ketones present in high amounts in the headspace volatiles only included 4-octen-3-

one, 3-octanone and 5-methylhexanone.  The most abundant ketone in headspace 
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volatiles were short-chain hydrocarbons: 2-butanone-3-methyl 4-hydroxy-2, 5-dimethyl-

3-hexanone and 2-heptanone while methanamine-n-butanone and 4-penten-2-one in 

traces.  The major alcohols detected were n-butanol in the headspace volatiles only; n-

hexanol, 1-octen-3-ol and nonanol in steam distillates and headspace volatiles.  Several 

other alcohols: Z-3-hexen-1-ol (269), 3-octanol, trans-1-hexenol and 4-nonanol were 

detected in the steam distillates in small amounts.  

 

Carboxylic acids were mostly found in the steam distillates although some were present 

in the headspace volatiles.  Nonanoic acid (313) was detected in the headspace volatile.   

Lauric acid (314) and myristic acid (315) only appeared in the steam distillate.  Palmitic 

acid (316) was present in headspace volatiles and steam distillates and was most 

abundant aliphatic compound. 

 

O OH O OH O OH

O OH

 
313                                                           314                                                      315

316  

 

Several esters were detected: isopropyl myristate (317), isopropyl palmitate (317), oleic 

acid propyl ester (319), n-hexyl acetate (282) and ethyl palmitate (320) in the steam 

distillate while 2-propenoic acid methyl ester (321), 1-octen-2-ol acetate (322) and cis -

hexenyl acetate (282) were in the headpace volatiles. 
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Several hydrocarbons ranging from 5-28 carbon atoms were detected in the steam 

distillate only: cyclohexane, 2-methyl hexane, 3-methylhexane, 2-hexene, n-nonane 

heptacosane, decane and tetradecane.  Some were present in both headspace and steam 

distillates: n-eicosane, tricosane, pentacosane, octacosane and dodecane  

 

4.4.2.6. Miscellaneous compounds 

These compounds have no common biosynthetic origin.  They had the lowest abundance 

in both steam distillate and headspace volatiles.  Notably absent in the headspace but 

present in the steam distillate was indole.   Exclusively present in the headspace volatiles 

were furanoids: furfural (323) in all cultivars and 2-pentylfuran (324), 2-furanmethanol 

(325) and tetrahydrofurfuryl acetate (326) all in low amounts.  Furfural (323) was 

present in the headspace volatiles of cowpea flowers.   Other derivatives of furan like (2-

pentylfuran (325), tetrahydrofurfuryl acetate (326), 2-butylfuran (328) among others 

were found in the headspace volatiles only.  
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CHAPTER FIVE 

DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

5.1 Flowering and flower sizes 

 

Flower colours are important signals to pollinators just like odours (Dobson, 1991Barth, 

1985).  Many pollinating insects are discriminatory to flower scent and colour and 

variation may have an important impact upon reproductive isolation and speciation 

(Dobson, 1991; Beker et al., 1989; Stanton, 1987).  Just like other flowers cowpea 

produced colour morphs (different flower colours): family Theophrastacea (Knudsen & 

Stahl, 1994), Coridalis cava of Fumariaceae (Olesen & Knudsen, 1994), Medicago 

sativa flowers (Tava & Pecetti, 1997) and alfalfa flowers (Pecetti & Tava, 2000). 

 

Pecetti & Tava (2000) found out that there is great emanation of volatiles from dark 

coloured flowers than from light coloured ones, all colours can be associatively learnt by 

bees (Menzel, 1990).  The research findings of Odell et al., (1999) on the Snapdragon 

revealed that bumble bees discriminated against white flowers when the floral rewards 

were comparable.  Reinhard et al., (2004) also found out that bees discriminated bright 

colours. Attractive onion flowers produced highest nectar volumes (Silva & Dean, 2000; 

Van Wyk, 1993).  Bees are attracted to the bright saturated colours (Lunau, 1991; 1990; 

Kay, 1976).  Wild cowpea cultivars (219, 269, SP 46 and SP 52) had bright colours and 

would then be preferred by honey bees.  Genetic manipulation should be done to transfer 

genes from wild cowpea to the cultivated to pass the traits that would ensure and enhance 

efficient pollination and maximize production.  

 

5.2 Nectar production 

 

Pollinator visits are usually observed in the first hours of anthesis (Nepi et al., 1996b).  

The three nectar characteristics (volume, sectretion and composition) affect bee visits. 
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Bees visit flowers, which produce high nectar volume and have high rates of nectar 

production (Silva & Dean, 2000).  Nectar secretion usually begins a few hours before 

pollinators start visiting the flowers (Cruden et al., 1983).  Secretion of nectar by cowpea 

flowers in the early hours of the morning may be an adaptation to behaviour of bees, 

which are practically inactive in the heat of the day and the cold of the night (Gould & 

Gould, 1988).  Inactivity of bees and low evaporation of nectar water at night may 

explain large volume of nectar in the morning.   Environmental variations (temperature, 

soil moisture and humidity), may also have contributed to nectar production in the 

morning.  Anthesis for cowpea flowers is very brief with flowers closing before noon, a 

feature that might favor re-absorption of nectar resulting in low nectar volumes collected 

after 9.00 am.  The low nectar volume collected from wild inbred cultivars (SP52 and 

SP46) with small flowers and high volume collected from wild outcrossed cultivar (219 

and 269) suggests a correlation between flower size, nectarines and nectar reserves.  

Galetto & Bernardello (2004), Barnes & Furgala (1978) and Silva & Dean (2000) found 

that flower length correlated with nectary size and total volume of nectar produced 

suggesting structural constraints playin a major role in the nectar traits.  This agrees with 

results of the present study where 269 and 219 with the large flowers also produced more 

nectar that is a reward to the pollinators.  Silva & Dean (2000) recorded variation in 

nectar volumes in the cultivars a phenomenon we also established.  This may be due to 

genetic differences between plants hence variability (Silva & Dean 2000) though 

Southwick & Southwick (1983) in their research established that nectar volume varies as 

a function of flower age.  It would be interesting to investigate the nectar volumes of the 

cross of the cultivated and wild species for the purpose of increasing the nectar 

production since the production of more nectar may help to increase pollinator visits.   
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5.3 Nectar sugar composition  

Bees can effectively pollinate all the six cultivars since long tongued bees prefer sucrose 

dominant while short-tongued ones prefer sucrose rich nectar (Baker & Baker, 1983b).  

The hexoses (glucose and fructose) are similar to sucrose in density and energy content.  

Some nectar: SP 52 had glucose - fructose ratios of 1:1 suggesting that they could be 

products of hydrolysis of sucrose.  This agrees with the results of Van Wyk (1993).  

Glucose – fructose was not exactly 1:1 in nectar from 219, 269, 524B and ICV 12 

suggesting that they are secreted from the nectaries independently and are not products 

of hydrolysis (Nepi et al., 2001).  The chemical composition, production dynamics and 

removal
 
of nectar could not be related to the pollinator visits in these

 
cowpea

 
species.  

Flower size (width) was positively correlated to nectar volume, suggesting that structural
 

constraints may play a major role in the determination of nectar
 
traits in cowpea species 

(Galleto & Bernardello, 2004).  Flower size, colour, shape and fragrance are all means 

by which plants advertise to foraging pollinators (Heinrich & Raven, 1972; Waser & 

Price, 1983). 

 

5.4 Essential oils and floral volatiles 

Most of the essential oils in floral volatiles are common components of many scented 

angiosperm flowers (Knudsen et al., 1993). Floral scents emitted during the life span of 

the flower vary both in total output and in specific composition (Dudareva & Pichersky, 

2000). The terpenoids comprised of the oxygenated and the hydrocarbons.  The flowers 

of V.  unguiculata (cowpea) lines investigated varied quantitatively and qualitatively.  

The identified floral components like eucalyptol (72), α-pinene (94), octen-3-ol, 

limonene (65), linalool (46), bezaldehyde (253)  and others have been found in flowers 

pollinated by bees (Williams & Whitten, 1983), beetles (Thien et al., 2000) and 

butterflies (Pellmyr, 1986).   This compounds detected in cowpea should also enhance 



125 

 

 

125 

pollinator attraction.  Linalool is biologically active from previous studies usin honey 

bee.   

 

5.4.1 Monoterpenes 

The low levels of monoterpenes in the steam disillate volatiles may be due to their low 

boiling points and they may have been lost at high temperatures.  The observation 

conforms to earlier reports on low levels of monoterpenes in the steam distillate of 

alfalfa floral volatiles (Tava et al., 2000).   

 

Ocimene (43) has been reported in high amounts in volatiles of many plants by several 

authors (Loper et. al., 1971; Loper & Lapioli 1972; Buttery et. al., 1982; Miyake et. al., 

1998; Jurgens et. al., 2003).  Ocimene (43) is a predominant floral volatile in alfalfa 

though it has not been detected in some cases (Pecetti & Tava, 2000).  Low levels of 

ocimene (43) (0.37 %) in cowpea volatiles confirm the findings of Tava & Pecetti 

(1997).  Ocimene (43) is derived from linalool (46) via linalyl pyrophosphate and 

therefore the amounts of ocimene should be related to that of linalool (Raguso & 

Pichersky, 1995). 

 

Linalool is often found in the floral volatile of moth-pollinated plants (Miyake et al., 

1998; Raguso & Pichersky, 1995) and also commonly occurs in many diurnal flowers 

pollinated by bees (Borg-Karlson et al., 1996; Loper & Lapioli, 1972) as well as Faba 

bean foliage (Blight et al., 1985).  It may be located in pollen since it was not isolated 

from the flower during steam distillation (Flamini et al., 2003).  Linalool (46) is 

produced in plants from the universal monoterpene precursor, geranyl pyrophosphate 

(37), by a single enzymatic reaction (Pichersky et al., 1994).   It was found in the steam 
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distillates of all cowpea culivars except SP46 and in all headspace voltiles except from 

reverse phase C18 silica.    

 

Linalool oxides are presumably derived from linalool (46) via the 6, 7-epoxy 

intermediate.  Destruction of linalool synthase during hydrodistillation implies that no 

oxides can be formed.  However, during the trapping of headspace volatiles the flowers 

were intact and the enzymes available hence the presence of linalool oxide in headspace 

volatiles.  The absence of linalool oxide (280) and terahydrolinalool in the steam 

distillate could be due to denaturing of enzymes since these two monoterpenes were 

detected in the headspace volatiles.  Knudsen & Klitgard (1998) reported the presence 

linalool (46) together with its oxides in the moth pollinated species.  Linalool oxide has 

been reported to occur in large amounts in moth pollinated species (Knudsen & Tollsten, 

1993; Knudsen & Klitgard, 1998).  It also occurs in hawkmoth pollinated flowers 

(Miyake et al., 1998), flower scent in Silene latifolia (Dotterl et al., 2005), anther 

volatiles of Ranunculaceae (Jurgens & Dotterl, 2004) and also in floral volatiles in 

Clarkie breweri (Raguso & Pichersky, 1995) supporting our findings.  It was also absent 

in the steam distillate just like in our case.  Linalool oxide (280) also elicits a very strong 

antennal response in butterflies (Andersson & Dobson, 2003).  Consquently, 

electroantenography (EAG) and behavioral experiments should be done to find out the 

bee response to linalool oxide.   

 

Linalyl acetate has been reported in the steam distillate of Medicago sativa (Pecetti & 

Tava, 2000) in trace amounts and is supported by our research findings.  It has also been 

previously reported in floral volatiles of Michelia alba (Shang et al., 2000), Laurus 
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nobilis (Flamini et al., 2002) that also contained isobornyl acetate, and butterfly 

pollinated plants (Andersson et al., 2002). 

 

Citronellol (49) and geraniol (278) have also been reported to elicit antennal responses in 

butterflies (Andersson & Dobson, 2003).  Geranial (51) and neral attract insects but also 

serve as deterrents to grazing herbivores (Mann, 1978).  Terahydrogeranial, neral and 

isogeranial were also identified in the cowpea floral volatiles.  Their role in honey bee 

behavior should be investigated since they may be structural fits for Nasonov 

pheromone. 

 

Limonene (65) and α-pinene (95) found in volatiles of Anthonomus grandis attract cotton 

boll weevil while β-pinene (95), β-myrcene (41) and car-3-ene (93) attract female bark 

beetles, Dendroctonus brevicomis (Mann, 1978).  Limonene (65), β-pinene (95), β-

myrcene (41), α-pinene (94), β- myrcene (42) and 1, 8-cineole (72) have been found in 

many floral volatiles (Bergström, 1978). 

 

The biosynthetic pathway of irregular terpenes is enzyme controlled and may explain the 

reduced number in the steam distillate compared to the headspace volatiles. 

Chrysanthemyl skeletal derivatives are the most common because they are derived 

directly from chrysanthemyl pyrophosphate (115). 

 

5.4.2 Sesquiterpenes 

Nerolidol (156) is a constituent of many plant essential oils and headspace volatiles of 

several flowers (Knudsen & Stahl 1994; Miyake et al., 1998; Tava et al., 2000).  Geranyl 

linalool is an isomer of nerolidol (156) (Gabler et al., 1991).  Nerolidol (156) and 

farnesol (154) are isomeric sesquiterpenes derived from FPP (134) and NPP (135) 
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(Scheme 3).  In the steam distillate of cultivar 219, nerolidol (156) was found in equal 

proportion with farnesol suggesting thermal isomerization.  In 524B, nerolidol (156) was 

more than the farnesol (154) in the ratio 3:1.  This could mean that NPP (135) was more 

than FPP (129), the later forming farnesyl cation (231) and the NPP (135) forms neryl 

cation (232) (Bouwmeester et. al., 1999). Other sesquiterpenes whose production may 

have been enzymatically controlled from the universal precursors were also reported in 

both the steam distillate and headspace volatiles. 

 

Cadinene (166), β-caryophyllene (180), germacrene B (176) and D (178) have been 

reported in floral scent composition in humming-bird pollinated taxa (Knudsen et al., 

2004). From biosynthetic considerations, the presence of β-caryophyllene (180) and 

germacrene D (178) can be closely related to that of nerolidol (156) and farnesol (157) 

(Scheme 3).   However, only germacrene D (178) was detected in the floral volatiles.  

This could be due to the fact that it may be the only stable germacrene isomer.  

Germacrene D (178) is produced by cotton plants and attracts cotton boll weevil (Fraga, 

1998). Germacrene A (175) was not detected in the voaltiles.  It is highly sensitive to 

heat and the acidic conditions in plant vacuoles and undergoes cope rearrangements to 

form β-elemene (185) (De Kraker et. al., 1998; Fraga, 1998).  The sesquiterpenes 

identified in cowpea floral steam distillate and headspace volatiles have been reported in 

other floral oils (Shang et. al., 2001; Andersson et al., 2002).  However, the presence of 

sesquiterpenes in floral volatiles has not been reported in many cases (Olesen & 

Knudsen, 1994; Azuma et al., 2001) 
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5.4.3 Norisoprenoids 

Norisoprenoids are derived from caroteniods present in flowers (Scheme 8). The β-

norisoprenoid precursors, β-carotene (328) and β-cryptoxanthin (329) may have resulted 

in the formation of β-ionone (81) while α-carotene (330) may have undergone cleavage 

to yield α-ionone (80).  β-Cyclocitral (79) may be a product of β-carotene (328) cleavage 

(Knudsen & Stahl, 1994).  When acted upon by cleaving enymes, it forms trans-

crocetindialdehyde (337) and trans-crocetinhalbaldehyde (338).  4-Oxoisophorone (339) 

and 2, 6, 6- trimethyl-2-cyclohexene-1, 4-dinone and 2, 6, 6-trimethyl-1, 4-

cyclohexanedioxide (340) (Knudsen & Stahl, 1994). Cis-Jasmonic acid, a derivative cis-

jasmone, is used in plant deterrence to herbivores and is produced when a plant is 

wounded (Bodenhausen & Phillippe 2007; Mueller, 1993; Zenk, 1993).  The presence of 

cis-Jasmone points to the fact that cowpea plants may produce deterrent compounds to 

prevent herbivore feeding.  It has previously been reported in the floral volatiles of 

butterfly pollinated plants (Andersson et al., 2002) and in floral oils of mandarin 

(Flamini et al., 2003). 
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Scheme 8:  Biosynthesis of norisoprenoids from carotenoids (Puglisi et al., 2001;       

                   Knudsen & Stahl, 1994).   

 

Cowpea cultivar 524B, with yellow flowers, gave a higher percentage of β-cyclocitral 

(79).  This may be due to high amounts of carotenoids in the yellow flowers (Knudsen & 

Stahl, 1994).  β-Cyclocitral (79) has been reported in the floral volatiles of Lantana 

camara (Anderson & Dobson, 2003) while in the flowers of alfalfa it is found together 

with β-ionone (81) and α-ionone (80) (Tava et al., 2000).  β-Ionone has previously been 

reported in the floral volatiles of butterfly pollinated plants (Andersson et al., 2002). 

Damascenone (334) is one of the important flavour compounds (Pickenhagen, 1999).  It 
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is found in many fruit and vegetable products and is also used in fragrance industry.  It is 

formed from hydrolytic breakdown of complex secondary metabolites derived from 

secondary carotenoids such as neoxanthin (331) (Skouroumounis & Sefton, 2001).  

Neoxanthin (331) cleaves to produce grasshopper ketone (332), which leads to 3, 5, 9-

trihydroxymegastigma-6, 7-diene (333). β-Damascenone (335) has been found together 

with 3-hydroxydamascenone (334) and megastigma-5-en-7-yne-3, 9-diol (336) (Puglisi 

et al., 2001; Woo et al., 1991).  Megastigmatrienone (341) is a product of carotenoid 

cleavage (Puglisi et al. 2001) and a precursor of β-damascenone (335).  It exists as 

isomers and has been isolated from tobacco, several plant flower oils and Quercus 

petreae Liebl. heartwood oil (Nonier et al., 2005).  

    

O

341  

5.4.4 Aromatics  

Anthers and pollens emit distinctive floral odors (Cook et al., 2002).  Some components 

of volatiles from flowers elicit sticky antennal responses (Blight et al., 1995).  

Phenylacetyldehyde (254) elicits a strong antennal response and foraging behaviour 

(Omura, 1999a; 1999b) and it stongly attracts day and night active Lepidoptera species 

(Honda et al., 1998).  Since it was also detected in the cowpea volatiles, it should be 

tested to investigate the effect on honey bee behaviour and antennae. 

 

A number of aromatic compounds detected in cowpea floral volatiles have been reported 

in other plants. Their effect on foraging response of bumble bees has been reported 

(Odell et al., 1999). Aromatic compounds are present at high concentrations in the floral 

bouquets of other leguminous flowers such as white (Jacobsen & Olsen, 1994) and red 



132 

 

 

132 

clover (Buttery et al., 1984).  The presence of toluene in both steam distillates and 

headspace volatiles confirms earlier observations on alfalfa floral oils (Tava et al., 2000) 

where its existence in both techniques was also reported. The exclusive presence of 1, 3, 

5-trimethylbenzene in the headspace volatiles of cowpea flowers confirms earlier 

observations in alfalfa volatiles (Tava et al., 2000).  However, the presence of 

ethylbenzene only in the steam distillate in cowpea floral volatiles does not conform to 

previous observations on alfalfa where it was found in the headspace volatiles only (Tava 

et al., 2000).  In Medicago sativa floral volatiles, 1,2-dimethylbenzene and 1,3-

dimethylbenzene were both found in the steam distillate but the latter was only present in 

the headspace volatiles (Tava et al., 2000).  In cowpea floral volatiles, 1,4-

diethylbenzene was found in the headspace volatiles only.  p-Cymene (291) was in 

cowpea floral volatiles while it has not been reported in alfalfa oil (Tava et. al., 2000).  

This confirms the earlier findings on butterfly pollinated plants (Andersson, 2003) and 

SPME floral volatiles (Flamini et al., 2003).  p-Cymene (291) elicited large antennal 

responses in butterflies (Andersson et al., 2002) and was also present in the floral 

volatiles of Dianthus and Saponaria species (Jürgens et al., 2003).  p-Xylene (292) has 

been reported in floral volatiles of Lavandula species (Mansfield, 2000).   

 

Methyl cinnamate (304) has been reported in the floral odours in Theophrastaceae 

(Knudsen & Stahl, 1994).  Interestingly, methyl cinnamate (304) has not been found to 

deter nor stimulate foraging bumble bees (Odell et al., 1999).  Carvacrol (307) was 

previously reported in the floral oils of several species of Theophrastaceae (Knudsen & 

Stahl, 1994) and floral oils of plants pollinated by butterflies (Anderson et al., 2002).  

Similarly phenyl methanol (306) was previously reported in traces in floral oils of plants 

pollinated by butterflies (Anderson et al., 2002).  Benzaldehyde (253), which is present 
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in floral volatiles of all cowpea cultivars, has been reported as a characteristic attractant 

in generalist flower.  It also shows a significant antennal response in butterflies even 

when present in small amounts (Anderson & Dobson, 2003).  Phenylvinyl ketone, (301) 

phenylpropanone (311), 2-methylbenzaldehyde (298), p-methoxyacetophenone (309) 

and acetophenone (299) have not previously been reported in floral volatiles and 

therefore behavioral and EAG studies should be done to investigate their significance on 

foraging by pollinators.  Methyl anthranilate (312) has been reported in the floral oils of 

bitter gourd (Fernando & Grun, 2001).  It is also found in the floral oils of Plantantheria 

biflora (Plepys et al., 2002b) and plants pollinated by butterflies and  evoked EAG 

responses of silver Y moth (Anderson et al., 2002).   

 

5.4.5 Aliphatic compounds 

The numerous acids may have been formed from breakdown of carotenoids: lycopene 

(342), antheroxanthin (343) and flavoxanthin (344), found in the petals.  Carotenoids are 

wideliy distributed in non-photosynthetic tissues of plants and are responsible for the 

yellow, red and orange color of flowers (Britton, 1991).   
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Several aliphatic compounds like heptanal, eicosane, pentacosane and methyl esters 

among many others have been identified in nectar (Jakubska et al., 2005).  Aliphatic 

compouds may be abundant in floral volatiles because appreciable quantitities of lipids 

can be present in the nectar and also on the surface of pollen (Ross & Murphy, 1986, 

Simpson & Neff, 1983).  In hydro distillation, the intense heating (Buchmann, 1987) 

may have resulted in numerous straight chain compounds such as esters, ketones, acids, 

alcohols and aldehydes from pollen, nectar and floral oils. There were lower molecular 

weight compounds in the headspace volatiles than in the steam distillate as reported in 

floral oils of alfalfa (Tava et al., 2000) and volatiles of Faba beans (Porter et al., 1999).  

They are most likely produced by enzymatic activity of flower lipoxygenases and 

hydroperoxide lysases, which are active under normal conditions but are denatured by 

heat (Tava et al., 2000).   

 

Very few long chain hydrocarbons and esters were detected in cowpea volatiles.  The 

presence of tricosane, eicosane and pentacosane in cowpea volatiles confirms their 

presence in floral oils of flowers pollinated by bees as previously reported (Sazima et al., 

1993) and in the SPME collected volatile constituents of Mechelia alba flowers (Shang 

et al., 2001).  Like in the SPME collected Mechelia alba floral volatile (Shang et al., 

2001) and flowers pollinated by bees (Sazima et al., 1993) tricosane was found in higher 

amounts in the headspace cowpea floral volatiles. 

  

The long chain acids, myristic, lauric and palmitic acids were detected in the steam 

distillate only and have been reported in alfalfa floral volatiles together with oleic and 

stearic acids (Tava et. al., 2000).  The presence of palmitic acid in headspace volatiles in 

small amounts conforms to earlier results in perfume flowers of Cyphomandra species 
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(Sazima et al., 1993).  Palmitic acid is the preliminary end product of fatty acid 

biosynthesis through fatty acid synthase (FAS) and is ubiquitous. A part from producing 

nectar, the flowers of Brysonima crassifolia L. contains fatty acids (palmitic, stearic, 

oleic) together with their esters (Rezende & Fraga, 2003).  The high temperatures used 

for steam distillation may have caused the thermal degradation of amino acids, sugars 

and fatty acids resulting in the accumulation of the many aliphatic compounds and 

facilitated extraction of the less volatile compounds such as long chain hydrocarbons and 

fatty acids.  

 

Most of the alcohols found in the cowpea floral volatiles (octanol, hexanol, cis–3-

hexenol, nonanol, 1-octen-3-ol amongst many others) have been previously reported in 

the floral oils (Andersson et al., 2002; Tava et al., 2000; Bergstrom et al., 1995; Jurgens 

et al., 2003; Flamini et al., 2003).  Hexyl acetate (282) and cis-3-hexenyl acetate found 

in the cowpea floral volatiles have also been reported in floral oils of various plants 

(Anderson et al., 2002; Tava et al., 2000).  4-Octen-3-one present in the cowpea floral 

steam distillate is being reported for the first time in the floral oils.  Nonanal (290), 

trans-2-hexenal, hexanal (247), decanal and heptanal found in cowpea floral volatiles 

have been reported in the floral oils of other plants (Anderson et al., 2002; Tava et al., 

2000; Bergstrom et al., 1995; Jurgens et al., 2003; Flamini et al., 2003).  Heptanal and 

nonanal have been reported in the nectar of Orchideceae plants (Jakubska et al., 2005).  

The many aliphatic compounds (alcohols; aldehydes and ketones) are most likely 

produced by enzymatic degradation of fatty acids during sampling in headspace trapping 

and thermal degradation of floral oils during distillation.  3E-Hexen-1-ol (270) and 3Z-

hexen-1-ol (269) may have come from the green flower sepals (Hatanaka, 1993).  In 

general, the aliphatic C6 compounds (hexanal and 2E-hexenal, alcohols 3Z-hexen-1-ol 
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(269) and 2E-hexen-1-ol), contribute to the "green" notes of the aroma that is present in 

the majority of the petals of mums (Jakubska et al., 2005).  The formation of these 

compounds in the plant is related to cell destruction or cellular breakdown due to 

maturation of the flowers. 1-Octen-3-ol has also been detected in several mums 

suggesting the activity of lipoxygenase and hydroperoxidase that produce C8 compounds 

from linoleic acid (Jakubska et al., 2005).  It is also an aglycone produced by acid 

hydrolysis of glycosidically bound volatiles (Radonic & Mastellic, 2008).  

 

5.4.6 Miscellaneous compounds 

Furfural (323) was reported in alfalfa steam distillate only (Tava et al., 2000). It is also 

found in the nectar of orchids (Jakubska et al., 2005).  The presence of furfural in 

cowpea cultivars is of good value because of its anti-fungal and anti-bacterial properties 

(Jakubska et al., 2005).   

 

Indole has been found in hawk moth pollinated flowers (Miyake et al., 1998), butterfly 

pollinated plants (Andersson et al., 2002) and perfume flowers of Cyphomandra species 

(Sazima et al., 1993).  Indole (257) was found in cowpea floral volatiles as previously 

reported in alfalafa floral steam distillates (Tava et al., 2000).  It has also been reported 

in the floral scents of Dianthus and Saponaria species (Jurgens et al., 2003), Lantana 

camara (Andersson & Dobson, 2003), Magnola kobus (Azuma et al., 2001), bitter and 

ridge gourd (Fernando & Grun, 2001)  The presence of indole (257) in the floral steam 

distillate only may be due to degradation of nectar constituents.  A related compound 3-

{2-{3-{3-(benzyloxy) propyl}-3-indole has been found in the orchid nectar (Jakubska et 

al., 2005).  Together with skatole (258), they attract insects (Williams & Whitten, 1983) 

that forage on the hawk moth pollinated flowers. 
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Ethers have been reported in the floral volatiles of cowpea.  Jacobsen & Olesen (1994) 

also reported ethers like thymyl methyl ether, 2-methoxy-2, 3-epoxy butane and eugenol 

methyl ether in the floral volatiles of Trifolium repens.  Radonic & Mastellic, (2008) 

have also reported thymol methyl ether, carvacrol methyl ether, and 4- hydroxyl-3-

methoxy acetophenone in the essential oils of Thymus pulegioides.  

  

5.5 Conclusion 

Wild outcrossed (219 and 269) and cultivated (524B and ICV12) cowpea produced large 

flowers while wild inbred (SP46 and SP52) produced small flowers.  Plants with large 

flowers gave higher yields of nectar.  The three most common sugars in nectar were 

sucrose, glucose and fructose.  The nectars were sucrose rich.  Mannose and raffinose 

were rare in the nectar.  Steam distillate produced more compounds than trapping using 

adsorbents (activated charcoal, reverse phase silica gel and porapak Q).  However, in the 

two techniques aliphatic compounds were the most abundant.  Porapak Q adsorbent 

trapped the largest number of volatile compounds especially aromatics.  More acids were 

found in the steam distillate than headspace.  Headspace technique had numerous short 

chain aliphatic cmpounds that were lacking in the steam distillate.  Similarly, more 

isoprenoids were collected from the headspace technique.  Norisoprenoids were mostly 

in the steam distillate. 

 

5.6 Recommendations 

Since the release of volatiles and nectar are controlled by a number of factors (climatic 

environmental and soil), it is therefore necessary to undertake further research to 

establish the best conditions for the optimum production of attractants and rewards for 

pollinators to maximize cowpea crop yields.   
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Reflectance spectrum of cowpea flowers should be done to establish if colour affects bee 

visitation (pollination), improves efficiency of pollination and enhances crop yield.  

 

EAG and behavioral experiments should be conducted to establish the floral volatile 

compounds, which attract honeybee to cowpea flowers with a view of breeding cultivars 

rich in such compounds to enhance pollination and hence improve cowpea yields.   

 

Further work should also be done to establish nectar sugar composition on hourly basis 

after withdrawing nectar.   

 

The amino acids in the cowpea nectar also need to be analysed to establish their effect on 

foraging insects and birds. 

 

The organic acids in the cowpea nectar need to be analyzed to establish their effect on 

foraging insects and birds. 

 

During this work it was noted that the cultivated variety of cowpea was readily attacked 

by viral diseases.  The chemical bases of resistance to pests and viral diseases by inbred 

and wild cowpea cultivars should be investigated.  

 

Since some cowpea varieties may have medicinal value, the compounds responsible 

should be isolated and investigated for the therapeutic properties. 

 

Dynamic headspace trapping and SPME should also be done on cowpea cultivars to 

compare the volatiles profile with static method.   
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Extraction of volatiles needs to be done using different solvents to establish qualitative 

and quantitave differences to establish the pollinator attractants 

 

Cowpea pollen also needs to be analyzed for the volatiles they release and amino acid 

content to establish the amount of rewards in them for the honey bee visitation.   

 

More work should also be done on the EFN to establish if they also affect pollination 

efficiency.   
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APPENDICES 

 

Appendix 1: Combined UV analogues and LC-MS profiles 

 
Appendix 1a: Combined UV analogue and LC-MS profile for cultivar 219 

 

 
 

Appendix 1b: Combined UV analogue and LC-MS profile for cultivar 269 
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Appendix 1c: Combined UV analogue and LC-MS profile for cultivar SP46 

 

 
Appendix 1d: Combined UV analogue and LC-MS profile for cultivar SP52 
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Appendix 1e: Combined UV analogue and LC-MS profile for cultivar 524B 

 

 

 
Appendix 1f: Combined UV analogue and LC-MS profile for cultivar ICV12 
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Appendix 2: GC profiles for essential oils 

 

Sample CAA/ 219/ E O (I nj.40µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)
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Appendix 2a: GC profile of essential oil of cowpea cultivar 219 
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Appendix 2b: Magnified GC profile of essential oil of cowpea cultivar 219 

 

 

Sample CAA/ 269/ E O (I nj.15µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)
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Appendix 2c: GC profile of essential oil of cowpea cultivar 269 
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Appendix 2d: Magnified GC profile of essential oil of cowpea cultivar 269 

 

Sample CAA/ 524B / E O (I nj.6µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)
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Appendix 2e: GC profile of essential oilof cowpea cultivar 524B 
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Sample CAA/ 524B / E O (I nj.6µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)
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Appendix 2f: Magnified GC profile of essential oil of cowpea cultivar 524B 
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Sample CAA/ I CV12/ E O (I nj.12µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(35)
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Appendix 2g: GC Chromatogram of essential oil of cowpea cultivar ICV12 

 

Sample CAA/ I CV12/ E O (I nj.12µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(35)
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Appendix 2h: Magnified GC profile of essential oil of cowpea cultivar ICV12 

 

Sample CAA/ SP46/ E O (I nj.40µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)
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Appendix 2i: GC profile of essential oil of cowpea cultivar SP46 
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Sample CAA/ SP46/ E O (I nj.40µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)
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Appendix 2j: Magnified GC profile of essential oil of cowpea cultivar SP46 

 

Sample CAA/ SP52/ E O (I nj.15µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)
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Appendix 2k: Normal GC profile of essential oil of cowpea cultivar SP52 
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Appendix 2l: Magnified GC profile of essential oil of cowpea cultivar SP52 
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Appendix 3: GC profiles for floral volatiles trapped in combined adsorbents 

Sample 219 COM B . VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

Date: 19-Nov-2004 T ime:  12:30:09I NS: VG 12-250 UPGRADE
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Appendix 3a: GC profile of floral volatile from cowpea cultivar 219 
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Sample 219 COM B . VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)
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Appendix 3b: Magnified GC profile of floral volatile from cowpea cultivar 219 

 

Sample 269 COM B . VOL .(I nj.7µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

Date: 19-Nov-2004 T ime:  15:39:24I NS: VG 12-250 UPGRADE
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Appendix 3c: GC profile of floral volatile from cowpea cultivar 269 
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Sample 269 COM B . VOL .(I nj.7µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)
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Appendix 3d: Magnified GC profile of floral volatile from cowpea cultivar 269 

 

Sample 524B  COM B . VOL .(I nj.7µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)
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Appendix 3e: GC profile of floral volatile for cultivar 524B 
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Appendix 3f: Magnified GC profile of floral volatile for cultivar 524B 
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Sample I CV 12 COM B . VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)
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Appendix 3g: GC profile of floral volatile for cultivar ICV 12 
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Appendix 3h: Magnified GC profile of floral volatile for cultivar ICV12 

 

Sample SP46 COM B . VOL .(I nj.12µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

Date: 22-Nov-2004 T ime:  12:47:31I NS: VG 12-250 UPGRADE

10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00
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C A22114B  Sb (65,0.10 ) Scan EI+ 
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Appendix 3i: GC profile of floral volatile for cultivar SP46 
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Sample SP46 COM B . VOL .(I nj.12µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)
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Appendix 3j: Magnified GC floral of floral volatile for cultivar SP46 

 

 

Sample SP52 COM B . VOL .(I nj.12µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)
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Appendix 3k: GC profile of floral volatile for cultivar SP 52 

Sample SP52 COM B . VOL .(I nj.12µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

Date: 22-Nov-2004 T ime:  18:15:40I NS: VG 12-250 UPGRADE

10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00
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Appendix 3l: Magnified GC profile of floral volatile for cultivar SP52 
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Sample I CV 12 AC. VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

Date: 24-Nov-2004 T ime:  17:48:54I NS: VG 12-250 UPGRADE
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Appendix 4a: GC profile of floral volatile for cultivar ICV 12 trapped in activated 

charcoal 

 

Sample I CV 12 AC. VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

Date: 24-Nov-2004 T ime:  17:48:54I NS: VG 12-250 UPGRADE
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Appendix 4b: Magnified GC profile of floral volatile for cultivar ICV 12 trapped in 

activated charcoal 

 

Sample SP46 PQ. VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

Date: 12-Nov-2004 T ime:  18:36:37I NS: VG 12-250 UPGRADE
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Appendix 4c: GC profile of floral volatile for for cultivar SP 46 trapped in porapak 

Q 
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Sample SP46 PQ. VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

Date: 12-Nov-2004 T ime:  18:36:37I NS: VG 12-250 UPGRADE
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Appendix 4d: Magnified GC Chromatogram of floral volatile for cultivar SP 46 

trapped in Porapak Q 

 
Sample SP46 PQ. VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)
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Appendix 4e: GC profile of floral volatile for cultivar SP 46 trapped in C18 bonded 

reverse phase silica 

 

Sample SP46 C18 VOL .(I nj.5µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)
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Appendix 4f: Magnified GC Chromatogram of floral volatile for cultivar SP 46 

trapped in C18 bonded reverse phase silica 
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Appendix 5: Mass spectra for selected volatile and essential oil compounds 

 

Sample SP52 C18.VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

B pI : 17199B pM : 95

Date:  26-Nov-2004 T ime:  17:26:07I NS: VG 12-250 UPGRADE
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Appendix 5a: Mass spectrum of furfural 

 

Sample SP52 C18.VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

B pI : 56974B pM : 81
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Appendix 5b: Mass spectrum of hexylfuran 

 

Sample 269 AC VOL .(I nj.12µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

B pI : 4067B pM : 71
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Appendix 5c: Mass spectrum of linalool  
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Sample CAA/ 524B / E O (I nj.6µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)

B pI : 22714B pM : 69
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Appendix 5d: Mass spectrum of β-damascenone 

 

Sample CAA/ SP46/ E O (I nj.40µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)

B pI : 858B pM : 43
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Appendix 5e: Mass spectrum of hexyl acetate 

Sample CAA/ SP46/ E O (I nj.40µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)

B pI : 1680B pM : 68
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Appendix 5f: Mass spectrum of limonene 
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Sample CAA/ SP46/ E O (I nj.40µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)

B pI : 15596B pM : 105
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Appendix 5g: Mass spectrum of  acetophenone 

 

Sample CAA/ SP46/ E O (I nj.40µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)

B pI : 329B pM : 119
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Appendix 5h: Mass spectrum of O -xylene 

 

Sample CAA/ SP46/ E O (I nj.40µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-100(0)@ 10-280(50)

B pI : 1315B pM : 91
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Appendix 5i: Mass spectrum of benzeneethanol 
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Sample I CV 12 COM B . VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

B pI : 1913309B pM : 43
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Appendix 5j: Mass spectrum of 2-pentanone 

 

Sample I CV 12 COM B . VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

B pI : 60050B pM : 57
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Apppendix 5k: Mass spectrum of 1-octen-3-ol 

 

Sample I CV 12 COM B . VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

B pI : 1413B pM : 43
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Appendix 5l: Mass spectrum of eucalyptol (1, 8-cineole) 
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Sample I CV 12 COM B . VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

B pI : 87629B pM : 105

Date:  24-Nov-2004 T ime:  15:44:17I NS: VG 12-250 UPGRADE
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Appendix 5m: Mass spectrum of methylbenzoate 

 

Sample I CV 12 COM B . VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

B pI : 8235B pM : 57
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Appendix 5n: Mass spectrum of nonanal 

 

Sample I CV 12 COM B . VOL .(I nj.10µl) Column: HP UL T RA 1(M eSil.) 50mX0.2mmX0.33µm Prog: 40(5)@ 5-280(20)

B pI : 69851B pM : 95
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35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125130135140145150155

m/z0

100

%

0

100

%

C A24114A 836 (28.401) C m (836-(833+840)) Scan EI+ 

6.99e495

81

41

39

38

6955

53

43 51
50

67

656356
57

7977

70
74

83

9391
84

89

108

96 107
97

105

109
152

110

137111 123117 136124 138
153

W ILEY 27942 C AM PHOR Library

25595

81

41

39

38

55

53
43 51

50

6967

6556 63
57

80
77

70

83

93

9184

108

96

97 107
105

109
152

110

137111
123119 124 138

153

155

 
Appendix 5p: Mass spectrum of camphor 
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Appendix 5q: Mass Spectrum of β-ionone 
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Appendix 5r: Mass spectrum of benzyl benzoate 
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Appendix 5s: Mass Spectrum of isopropyl myristate 
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Appendix 5t: Mass spectrum of methyl cinnamate 
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Appendix 5u: Mass spectrum of benzaldehyde 
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Appendix 5v: Mass spectrum of methyleugenol 
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Appendix 5w: Mass spectrum of α-cedrol 
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Appendix 5x: Mass spectrum of  β-bisabolene 
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Appendix 5y: Mass spectrum of  β-cyclocitral 
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Appendix 5z: Mass spectrum of methyl anthranilate 
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Appendix 5ii: Masss of cis-jasmone 
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Appendix 5iii: Mass spectrum of α-ionone 
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Appendix 5iv: Mass spectrum of nerolidol 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


