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A B S T R A C T

This study examines the farm-level economic benefits and aggregate welfare impacts of adopting push–pull
technology (PPT)—an innovative, integrated pest and soil-fertility management strategy—with a set of house-
hold- and plot-level data collected in western Kenya. The evaluation is based on a combination of econometric
and economic surplus analysis. Treatment effect estimates are used to assess the technology-induced shift in the
maize supply curve, which is then used as an input to the economic surplus analysis. Finally, the aggregate
poverty impact is computed using the economic surplus estimates. We observe that the adoption of PPT led to
significant increases in maize yield and net maize income. The technology has significant potential benefit in
terms of increasing economic surplus and reducing the number of people considered poor in western Kenya.
Important factors influencing the decision to adopt PPT included access to information, household education,
social capital, and social networks. We conclude that effective policies and development programmes for pro-
moting PPT in Kenya should include information delivery and education mechanisms that are more effective.

1. Introduction

In this paper, we assess the factors that influence the adoption of
push–pull technology (PPT) in western Kenya, and the effects of such
adoption on farm-level outcomes and potential aggregate economic and
poverty reduction benefits in the research area. PPT is an organic
agricultural technology that does not rely on the increased use of che-
mical inputs, such as pesticides or nitrogen fertiliser. The effect of PPT
adoption is critical topic because it could potentially allow farmers to
increase their maize productivity and incomes without increasing their
impact on the surrounding environment or their reliance on frequently
unreliable agricultural input markets. Moreover, studies on the adop-
tion of agricultural technology and its farm-level impacts are relatively
common, but empirical studies on the aggregate welfare effects of
adoption of such technologies (e.g. by integrating economic surplus
analysis with econometrics, as we do here) are scant.

Improving food security and reducing poverty are policy priorities
in sub-Saharan Africa (SSA) and have been the focal point of policies on
agriculture and rural development in the region. Increasing agricultural
productivity is widely recognised as a major pathway to reducing food
insecurity and poverty in SSA (AGRA, 2014; Christiaensen and Demery,

2007; Gollin, 2010; Kijima et al., 2008; Owens et al., 2003; Thirtle
et al., 2003). The literature on SSA (Diao et al., 2010; Minten and
Barrett, 2008) suggests that growth in staple crop productivity has a
greater potential to reduce poverty than any other development in the
agricultural or non-agricultural sectors. However, agricultural pro-
ductivity in SSA countries is still inadequate to address poverty, achieve
food security, and lead to sustained economic growth (Dessy et al.,
2006; Pretty et al., 2011; World Bank, 2008).

The current situation also reveals that a large gap still exists between
actual and potential farm yields for major staple crops in SSA (Van
Ittersum et al., 2016). For instance, between 2003 and 2012, actual yields
of rain-fed maize—the dominant staple and cash crop in SSA—ranged
from 1.2 t/ha to 2.2 t/ha, which represents only 15%–27% of the yield
potential (Van Ittersum et al., 2016). The major constraints to increasing
productivity and, hence, closing yield gaps, include socioeconomic and
institutional hurdles to access farm input; poor soil fertility linked to soil
erosion and nutrient depletion; poor management of pests (i.e. insects,
diseases, weeds); and, more recently, climate change and variability
(AGRA, 2014; De Groote et al., 2008, 2010; Gibbon et al., 2007; Kfir et al.,
2002; Khan et al., 2014; Kijima et al., 2012; Minten et al., 2013; Reynolds
et al., 2015; Tadele, 2017). This phenomenon is illustrated by the fact that
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low soil fertility, low soil nitrogen, and drought have been shown to re-
duce maize yields in Africa by 62%, 76%, and 54%, respectively (Gibbon
et al., 2007). Another example is stemborer insects, which cause cereal
grain yield losses ranging from 10% to 88% (Kfir et al., 2002) and the
parasitic Striga weed (witchweed) destroying entire harvests (Kanampiu
et al., 2002). To overcome these challenges and close yield gaps, farmers
require multifunctional interventions that are feasible, economically sus-
tainable, and effective.

Researchers from the International Centre of Insect Physiology and
Ecology (ICIPE) in Kenya and Rothamsted Research in the United
Kingdom developed PPT to improve the long-term sustainability of the
agricultural system by reducing cereal crop pests such as stemborer
insects and Striga weed while increasing soil fertility and fodder pro-
duction in quality and quantity. In the PPT system, cereals such as
maize are intercropped with perennial fodder legumes (Desmodium)
that repel (‘push’) stemborers and suppress Striga. The cereal crops are
also surrounded by a border of perennial fodder grass (e.g. Pennisetum
purpureum/Napier grass or Brachiaria species) that attracts (‘pulls’)
stemborers away from cereal plants (Khan et al., 2014; Pickett et al.,
2014). The technology provides additional benefits such as enhancing
soil fertility through nitrogen fixation and the addition of organic
matter, practically eliminating soil erosion, suppressing weeds, and
providing high-quality livestock forage that increases animal health and
milk production, which contributes to improved incomes and nutri-
tional security in smallholder households. The PPT approach can also,
at least potentially, enhance human health and increase biodiversity
through reducing the use of costly synthetic insecticides and herbicides
that are unaffordable by most smallholder farmers (Pickett et al., 2014).

Despite PPT’s enormous potential benefits, its adoption is limited
and little is understood about its economic and welfare benefits.
Understanding the PPT adoption process and its impact are relevant to
design strategies that can facilitate its wider adoption. Notably, the
literature on PPT mainly focuses on its efficacy (Khan et al., 2008a),
how effective its dissemination pathways are (Amudavi et al., 2009;
Murage et al., 2012), and its profitability (De Groote et al., 2010;
Fischler, 2010; Khan et al., 2008b; Murage et al., 2015a, 2015b).

This paper contributes to the existing adoption and impact literature
through systematically exploring the farm-level economic benefits and
aggregate welfare impacts of PPT adoption. Specifically, this paper has
three objectives: 1) assess the determinants of PPT adoption, 2) assess
farm-level impacts of adoption of PPT (i.e. maize yield, cost of maize
production, and net maize income), and 3) assess the ex-ante aggregate
welfare effects (i.e. change in total economic surplus and poverty) of
adoption of PPT in western Kenya. An ex-ante impact study was con-
ducted because PPT is not sufficiently widespread to conduct an ex-post
aggregate welfare or market-level impacts analysis.

The ex-ante analysis is based on a combination of econometric and
economic surplus methods. We use econometric methods to compute
the PPT-induced shift in maize supply by estimating the changes in
maize yield and cost of production due to the introduction of PPT while
controlling for selection biases that stem from differences in the ob-
served and unobserved characteristics of adopters and non-adopters. In
the first step, the changes in maize yield and cost of production are
estimated using a cross-sectional fixed effects estimator. The second
step involves plugging changes in yield and cost of maize production
into an economic surplus model to compute potential economic surplus
gains. Finally, the estimated economic surplus is used to compute the
potential impact of adoption on aggregate poverty.

Moyo et al. (2007) and Manda et al. (2017) estimate the ex-ante
economic surplus effects of the adoption of improved groundnut vari-
eties and maize–soybean rotation practice, respectively, and use the
economic surplus estimates to evaluate the ex-ante poverty impacts of
the adoption of groundnut varieties and maize–soybean rotation. Ex-
post impact studies in the literature link economic surplus analysis with
poverty analysis and include Alene et al. (2009), Zeng et al. (2015), and
Kassie et al. (2018).

In this paper, the approach employed by Alene et al. (2009) to
evaluate the impact of improved maize varieties on economic surplus
and poverty is used. However, instead of using econometrics to estimate
the shift in supply, Alene et al. (2009) rely on a combination of on-farm
variety evaluation trials, adoption surveys, and expert estimates. Zeng
et al. (2015), by contrast, use a cross-sectional econometric approach to
estimate the supply shift in their attempt to determine the impact of
improved maize varieties on the total change in economic surplus and
poverty in Ethiopia. Kassie et al. (2018) extend the approach for panel
data and adoption of multiple technologies—to calculate the cost re-
duction per unit of output and evaluate the impact of combinations of
maize production technologies and practices (i.e. maize varieties, che-
mical fertilisers, and cropping diversification) on the total change in
economic surplus and poverty. The study we report on in this paper
employs the same methods as those in Kassie et al. (2018).

2. Methodology

2.1. Estimation strategy

When using observational data to estimate the causal effect of
technology adoption on farm-and market-level outcome variables, an
important econometric challenge is to cater to selection bias causes by
the observable and unobservable attributes that simultaneously affect
household adoption decisions and outcomes of interest. Technology
adopters may be systematically different from the non-adopters with
respect to characteristics that are observed (e.g. resource endowments,
proximity to input and output markets, access to extension, education,
training, land quality) and unobserved (e.g. motivation, risk preference,
managerial ability), resulting in inconsistent estimates of the effect of
agricultural technology adoption on outcomes of interest. For example,
the most motivated farmers with greater managerial abilities are as-
sumed to be more likely to (i) adopt improved agricultural technologies
such as PPT and (ii) engage in other yield-augmenting farm manage-
ment practices. If the assumption of such a systematic difference be-
tween adopters and non-adopters is correct, the estimated effect of
adoption would be biased upwards due to a positive correlation with
unobserved management skills.

In this study, three measures were taken to overcome the potential
selection bias. The first measure was to include several explanatory
variables that influenced PPT adoption and outcomes of interest.
Secondly, the data allowed for the use of household and county fixed
effects to capture household and county-specific unobserved hetero-
geneities. The data derived from two growing seasons and repeated plot
observations per household had a panel structure that enabled the use
of a household cross-sectional fixed effects estimator to control for
unobserved characteristics.1 Studies that use plot-level information to
construct panel data and control for farm-specific effects include Kassie
and Holden (2007) and Udry (1996). The county-specific characteristics
could include weather influences as well as differences in development
services (e.g. access to extension, credit, markets) and the policy en-
vironment, which can influence PPT adoption and farmers’ perfor-
mance.

As a third measure, we used the endogenous switching regression
(ESR) framework—a variant of the instrumental variables approach—to
instrument the adoption decision (Abdulai and Huffman, 2014; Carter
and Milon, 2005; Di Falco et al., 2011; Kassie et al., 2015a, 2017;
Shiferaw et al., 2014; Teklewold et al., 2013). In the ESR framework,
separate regressions were estimated for the adopters and non-adopters
of PPT, respectively. This separation allows us to capture the slope

1 Of the total usable maize plot observations (2,148), approximately 4% of plots have
one observation. We ran fixed effects model including and then excluding these ob-
servations and observed no remarkable difference in the results (the results are available
from the authors). We therefore included the 4% of households in our final analysis.
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effect of the adoption variable because it permits full interaction of the
adoption variable with other explanatory variables in the outcome
equations. The separate regression estimation also has the benefit of
capturing the differential returns to covariates of adopters and non-
adopters in estimating the average adoption effects.

The ESR framework involves a two-stage impact estimation process.
The first stage involves the adoption decision model for the PPT to
understand factors influencing such adoption and to compute the in-
verse Mills ratios to control for selection bias. The second stage entails
using the inverse Mills ratios as an additional regressor to estimate the
direct effects of PPT adoption on maize yield, cost of production, and
net income.

2.2. Empirical model specification

2.2.1. Measuring the farm-level economics impact of PPT adoption
As mentioned in Section 2.1, assessing the farm- and market-level

impacts of PPT adoption involves a two-stage impact estimation pro-
cess, as described below.

2.2.1.1. First stage: adoption equation. The decision to adopt PPT is
conceptualised by following the random utility framework. We assume
that farmers will use PPT if doing so maximises their net benefit (utility)
given the constraints, such as inadequate resources and information and
knowledge about the technology. Drawing from the adoption literature
(e.g. Kassie et al., 2013, 2015b; Marenya and Barrett, 2007), we specify
the utility of adoption as a function of exogenous variables, including
household-, plot-, and village-level variables, as follows:

= + + + = ⎧
⎨⎩

>A φX αZ C ϖ A if A
otherwise

, where 1 0
0

ip ip i i ip ip
ip*
*

(1)

In Eq. (1), i denotes an individual farmer and p denotes a specific
plot. The variable Aip

* represents the unobservable or latent variable for
PPT adoption (the difference in utility associated with adopting PPT or
not); Aip is the actual adoption dummy variable (equal to 1 if the ith

farmer adopts PPT on plot p, and 0 otherwise) expressed as a function
of a vector of household socioeconomic, plot, and village character-
istics; X is a vector of household-, plot-, and village-level variables that
affect adoption and outcomes of interest; Z represents a vector of
household level variables that influences adoption but not outcomes-of-
interest variables; Ci is a vector of the average of plot-varying ex-
planatory variables to capture unobserved plot heterogeneity. φ and α
are unknown parameters to be estimated, and the parameter ϖ denotes
the error term. The Z variables include the number of adopters known
by the respondents in a village (used as a proxy to measure farmers’
exposure to PPT), the number of rural institutions in a village, the
distance to the nearest input distribution centre, the distance to the
nearest information source, a respondent’s confidence in the skill of
extension officers, and the number of PPT field days attended by the
respondent farmers.

2.2.1.2. Second stage: outcome equations. The plot-level yield functions
are specified in Eq. (2a) for an adopter and (2b) for a non-adopter, as
follows:

= + + =Y β X σ λ ω AAdopter: ˆ if 1ip ip ε ip ip ip1 1 1 1 1 1 (2a)

− = + + =Y β X σ λ ω ANon adopter : ˆ if 0ip ip ε ip ip ip0 0 0 0 0 0 (2b)

The variable Yip is the maize yield (kg/acre) of household i on plot p;
β is a vector of parameters to be estimated; X denotes the vector of
independent variables, including input variables (i.e. seed, fertiliser,
pesticide, and labour), household socioeconomic variables, and plot
and village characteristics; σ is the covariance between the error terms
of the adoption and outcome equations; λ̂ is the estimated inverse Mills
ratio derived from the first stage, Eq. (1); and ω represents the error

terms. The net maize income is the net of variable input costs, namely
seed, fertiliser, pesticide, and hired labour.

The adoption of an agricultural technology is also expected to sti-
mulate changes in input expenditure. For instance, adoption may lead
to increased expenditure due to increased labour requirements for ac-
tivities such as planting, threshing, and harvesting, and the adoption
may also potentially lead to reduced expenditure due to a reduced need
for pesticide. In Eqs. (3a) and (3b) for adopters and non-adopters, re-
spectively, we specify the cost function as follows, to test whether PPT
adoption can induce adjustments in input expenditure:

= + + =C τ W σ λ ψ if AAdopter: ˆ 1ip ip ε ip ip ip1 1 1 1 1 1 (3a)

− = + + =C τ W σ λ ψ if ANon adopter : ˆ 0ip ip ε ip ip ip0 0 0 0 0 0 (3b)

In these equations, Cip represents the cost of maize production in
KSh per acre2 incurred by household i on plot p; τ indicates the vector
of parameters to be estimated; W represents the vector of variables,
such as input prices, maize yield, household socioeconomic character-
istics, and plot and village characteristics, which affect the cost func-
tions; and ψ denotes the error terms. The cost of production includes the
expenditure on inorganic fertiliser, seed, and pesticide, as well as the
cost of hired labour and opportunity cost of family labour used in maize
production. We use village-level wage rates to compute the value of
family labour.3

We use a random effects probit model to estimate Eq. (1), and cross-
sectional household fixed effects models to estimate all outcome
equations (i.e. 2a, 2b, 3a, and 3b). The Hausman specification test of
the outcome equations rejects the null hypothesis of cross-sectional
random effects in favour of cross-sectional fixed effects models. Al-
though the outcome equation estimates are consistent, they have in-
efficient standard errors because of the two-stage nature of the esti-
mation procedure or generated regressor λ̂. We use the bootstrap
method to correct this problem.

The choices of explanatory variables, in the adoption and outcome
regression models, are based on the adoption and impact literature
(Abdulai and Huffman, 2014; Di Falco et al., 2011; Kassie et al., 2013,
2015a, 2015b, 2018; Marenya and Barrett, 2007; Shiferaw et al., 2014;
Teklewold et al., 2013; Zeng et al., 2015).

2.2.2. Estimating the average adoption effects
We use the yield and cost functions specified in Eqs. (2a) and (2b))

and (3a) and (3b) to estimate the conditional actual and counterfactual
outcomes of adoption and evaluate the adoption effects. With respect to
outcomes, Eqs. (4a) and (4b) reflect the maize yield expectations (E)
observed in a sample, whereas Eqs. (4c) and (4d) represent the coun-
terfactual maize yield expectations, as follows:

⎡

⎣
⎢ = ⎤

⎦⎥
= +E Y X λ A β X σ λ| , ˆ , 1 ˆip ip ip ip ip ε ip1 1 1 1 1 1 1

(4a)

⎡

⎣
⎢ = ⎤

⎦⎥
= +E Y X λ A β X σ λ| , ˆ , 0 ˆip ip ip ip ip ε ip0 0 0 0 0 0 0

(4b)

⎡

⎣
⎢ = ⎤

⎦⎥
= +E Y X λ A β X σ λ| , ˆ 1 ˆip ip ip ip ip ε ip0 1 1 , 0 1 0 1

(4c)

⎡

⎣
⎢ = ⎤

⎦⎥
= +E Y X λ A β X σ λ| , ˆ , 0 ˆip ip ip ip ip ε ip1 0 0 1 0 0 0

(4d)

2 The exchange rate was US$1 = KSh100 during the survey period, namely July to
August 2016.

3 The net maize income model can be specified in the same manner as the yield and
cost functions; however, the same explanatory variables are not used in the regression
models.
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The expected actual and counterfactual cost of maize production
and net maize income can be generated in a comparable manner.

The average adoption effect on maize yield for PPT adopters (ATTy)
is derived as the difference between Eqs. (4a) and (4c), as specified in
Eq. (5):

= ⎡

⎣
⎢ = − ⎡

⎣
⎢ = ⎤

⎦⎥

= + −−

ATT E Y X λ A E Y X λ A

X β β λ σ σ

| , ˆ , 1] | , ˆ , 1

( ) ˆ ( )

y ip ip ip ip ip ip ip ip

ip ip ε ε

1 1 1 0 1 1

1 1 0 1 1 0 (5)

The average adoption effect on cost of maize production for PPT
adopters (ATTc) can be specified similarly, as presented in Eq. (6):

= = − =

= + −−

ATT E C W λ A E C W λ A

W τ τ λ σ σ

[ | , ˆ , 1] [ | , ˆ , 1]

( ) ˆ ( )

c ip ip ip ip ip ip ip ip

ip ip ε ε

1 1 1 0 1 1

1 1 0 1 1 0 (6)

The net maize effects following adoption can be generated in ana-
logous manner. The estimates from Eqs. (5) and (6) are then used as the
input for estimating the aggregate ex-ante economic surplus and pov-
erty reduction impacts of PPT adoption, as discussed in Sections 2.2.3
and 2.2.4.

2.2.3. Measuring the economic surplus impact of PPT adoption
An increase in the widespread adoption of PPT would affect the

adopting farmers and the regions in which they live and sell their
products. A change in agricultural technology will shift the supply
curve for crops being produced, directly changing the welfare of
adopting farmers and indirectly influencing the welfare of non-adopting
farmers and consumers of that crop by causing changes in the crop price
and wages. To estimate how large these effects would be if PPT is more
generally adopted, we use the methodology from Alston et al. (1995):
economic surplus analysis. Both the ex-ante and ex-post research eva-
luation literature use the economic surplus approach. The first step in
applying this approach is to estimate the cost reduction per unit of
output, which Alston et al. (ibid.) call the K-shift parameter (K), com-
puting it as follows:

⎜ ⎟= ⎛
⎝

−
+

⎞
⎠

×K
ATT

ε
ATT

ATT
A

1
y c

y (7)

The variables ATTy and ATT ,c derived from Eqs. (5) and (6), are,
respectively, the estimated average adoption effects for maize yield and
cost of maize production, which represent yield and cost changes due to
the technology. The A in Eq. (7) represents the adoption rate in the
sample, namely 14.4% of the total maize area of sample households. A
sensitivity analysis on the extent of adoption was performed to examine
the implications for estimated ex-ante economic surplus and poverty
reduction impacts. The price elasticity of supply ε is from the literature

(De Groote et al., 2016).
The overall impact of PPT adoption on the producer and consumer

surplus in a region depends on its openness to trade. No price changes
would be observed in a region that is completely open to trade—leading
to only changes in the producer surplus, and prices would decline be-
cause of the new technology in a region completely closed to trade,
leading to changes in the consumer surplus as well. The actual welfare
impact would be between these two extreme cases; thus, estimating the
welfare impact of these two cases provides upper and lower bounds for
the overall impact.

Assuming linear demand and supply curves, the ex-ante changes in
producer surplus ( PSΔ ) and consumer surplus ( CSΔ ) in the closed
economy case can be computed as follows, according to Alston et al.
(1995):

= − +PS PQ K Z ZηΔ ( )(1 0.5 ) (8)

= +CS PQZ ZηΔ (1 0.5 ) (9)

In Eqs. (8) and (9), P is the pre-adoption maize price; Q is the pre-
adoption maize production volume; η is the price elasticity of demand;

and Z is the relative change in price, defined as = +( )Z K * ε
ε η (ibid.).

The price elasticity of demand η is from the literature (De Groote et al.,
2016; Karanja, 2003). The sum of Eqs. (8) and (9) provides the change
in total change in economic surplus ( TSΔ ) due to the adoption of the
technology. In the closed economy, consumers may benefit from a price
reduction in response to a downward supply shift due to PPT adoption,
whereas producers gain from the cost reduction per unit of maize
output. A decrease in the price and per unit cost of production will
increase incomes and has the potential to lift poor people above the
poverty line.

In the case of the open economy, consumers do not benefit
( =CSΔ 0) from the introduction of the technology because changes in
production ascribed to PPT adoption do not influence the open market
price (i.e. the price remains constant). Thus, welfare benefits due to the
PPT-induced shift in supply accrue only to producers. The change in
total economic surplus ( TSΔ ) equals the change in producer surplus
(ibid.), as specified in Eq. (10):

= = +PS TS KPQ KεΔ Δ (1 0.5 ) (10)

The values of the parameters used in Equations (7)–(10) and their
sources are reported in Table 1.

The change in total economic surplus ( TSΔ ) is used as an input to
compute the potential aggregate poverty impact of the technology, as
shown in Section 2.2.4.

2.2.4. Measuring the aggregate poverty reduction impact of PPT adoption
The available evidence suggests multiple pathways through which

Table 1
Parameters for economic surplus and poverty estimation.

Parameter Value Source

Price elasticity of supply (ε) 0.5 De Groote et al. (2016)
Price elasticity of demand (η) 0.56 De Groote et al. (2016); Karanja (2003)
Average maize production (t) (Q) 1.07 million Ministry of Agriculture, Livestock and Fisheries (2015) for 2011–2014
Average maize price (USD/t) (P) 395 FAOSTAT 2011–2014
Poverty headcount ratio in Kenya (%) 45.2 Kenya National Bureau of Statistics and Society for International Development

(2017)
Poverty headcount ratio in western Kenya region (%) 47.3 Kenya National Bureau of Statistics and Society for International Development

(2017)
Total population of western Kenya region 9.8 million Kenya National Bureau of Statistics (2012)
Number of poor in western Kenya region (N ) 5.3 million (Computed by multiplying region’s population by headcount ratio)
Average value of agricultural gross domestic product (AgGDP) USD 5223.45 million World Bank (2016) for 2011–2014
Elasticity of poverty with respect to growth in staple food crops (δ) 1.19 Diao et al. (2010)
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technology adoption can reduce poverty at household and society le-
vels, including increasing incomes, generating employment in agri-
cultural and non-agricultural sectors, and reducing food prices
(Christiaensen and Demery, 2007; De Janvry and Sadoulet, 2002;
Minten and Barrett, 2008; Moyo et al., 2007; Thirtle et al., 2003). The
impact of technology adoption on food security and poverty is direct
and indirect (Christiaensen and Demery, 2007; De Janvry and Sadoulet,
2002). The direct effects include increased growth in productivity and a
lower per-unit cost of production, which can lead to increased farm
income and food security (Christiaensen and Demery, 2007; De Janvry
and Sadoulet, 2002). The indirect gains include reduced prices of food
staples due to outward shifts in supply, which benefit a broad spectrum
of poor farm and non-farm households because of the high percentage
of their budgets spent on food (De Janvry and Sadoulet, 2002; Minten
and Barrett, 2008; Thirtle et al., 2003). Increased agricultural output
resulting from technology adoption could also lead to the creation of
employment in the agriculture and non-agriculture sectors, such as jobs
in input supply and food processing (De Janvry and Sadoulet, 2002;
Moyo et al., 2007; Thirtle et al., 2003).

The literature (Diao et al., 2010) indicates that growth in the agri-
cultural sector contributes more to poverty reduction than growth
generated in other sectors, and that growth in a staple sector (e.g.
maize) has a greater reduction effect on poverty than growth in an
export/cash crop sector.

In this study’s context, we investigate how the adoption of PPT
would affect maize production, and its potential to affect poverty as a
result. Thus, to estimate the impact that PPT adoption would have on
aggregate poverty, we followed the approach in Alene et al. (2009),
defined as follows:

⎜ ⎟= ⎛
⎝

× ⎞
⎠

×N TS
AgGDP

δ NΔ Δ
(11)

where NΔ represents the number of people lifted out of poverty due to
changes in economic surplus; TSΔ is the change in total economic
surplus due to PPT adoption (also representing the value of additional
agricultural production); AgGDP represents the agricultural gross do-
mestic product (GDP); δ is the elasticity of poverty with respect to

Fig. 1. Study areas and distribution of sample households.
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AgGDP growth influenced by the growth of staple crops (based on Diao
et al., 2010); and N is the number of people who are considered poor in
western Kenya. Diao et al. (ibid.) find that a 1% annual increase in
Kenya’s GDP influenced by a growth in staple crops leads to a 1.19%
reduction in the country’s poverty headcount ratio per year. The data
we use to estimate Eq. (11) are presented with their sources in Table 1.

2.3. Study area and data collection

The data for this study is from western Kenya, where PPT was de-
veloped and tested and where PPT is promoted to increase maize pro-
ductivity through controlling Striga weed and stemborers and im-
proving soil fertility. Striga weed is a major maize production constraint
in western Kenya (De Groote et al., 2008, 2010; Khan et al., 2014).

Farmers in western Kenya have two growing seasons, namely the
long (March–August) and short (September–December) rainy seasons.
Between the 2011 and 2014 growing seasons, western Kenya produced
an average of 1.1 million t of maize from 0.6 million ha, representing
approximately 30.1% and 26.7% of the country’s total maize produc-
tion and area, respectively (Ministry of Agriculture, Livestock and
Fisheries, 2015). Approximately 25% of Kenya’s population live in the
western part of the country. It is estimated that 77% of western Kenya’s
population live in rural areas and depend mainly on agriculture for food
and income. Western Kenya is a region where 47.3% of the population
is estimated to be living below the national poverty line; this figure is
close to the national poverty headcount ratio of 45.2% (Kenya National
Bureau of Statistics and Society for International Development, 2017).

Data for this study were derived from focus group discussions,
household surveys and secondary sources, among others. The focus
group discussions were used to inform the design and development of
the household survey instrument as well as generate information re-
lated to the adoption of PPT and other issues. The household survey
data were collected between July and August 2016 through face-to-face
interviews and administered by trained enumerators who spoke and
understood the respondents’ languages.

Due to budget limitations, we selected 8 of the 11 counties where
PPT was being used by farmers. The selected counties were Bungoma,
Busia, Homa Bay, Kakamega, Kisumu, Migori, Siaya, and Vihiga
(Fig. 1). Next, between 3 and 11 villages were randomly selected in
each county (Table 2). Within each village, between 2 and 21 house-
holds were randomly selected. In total, 56 villages and 642 farmers (i.e.
328 adopters and 314 non-adopters) operating on 4496 plots were
surveyed. Table 2 also shows the distribution of villages and sample
households by county. Adopters are defined as farmers that had been
using PPT for more than a year at the time of the survey.

Of the total plots (4496) cultivated by the total sampled farmers,

2374 were planted with maize (i.e. 709 with PPT and 1665 without).
After dropping observations that had missing values for some variables
and discarding the top and bottom 3% extreme values of maize yield
and cost of maize production using Winsorisation, the number of usable
sample households was 627 maize farmers (i.e. 309 adopters and 318
non-adopters) operating on 2148 maize plots (i.e. 633 with PPT and
1515 without).

The survey questionnaire captured detailed data at the household,
plot, and village levels, including human capital, input and output data,
farming practices such as PPT adoption, plot characteristics, productive
assets (labour, land, and livestock), and utilisation of crop and livestock
products. The questionnaire also captured variables related to house-
hold social capital and social networks, such as the number of adopters
known by respondents in a village, which was used as a proxy to
measure farmers’ exposure to PPT; the number of rural institutions in a
village; and the number of PPT field days attended by respondent
farmers. Social capital and networks play a key role in technology
adoption through facilitating the exchange of information and re-
sources and reducing the cost of accessing such information and re-
sources (Bandiera and Rasul, 2006; Di Falco and Bulte, 2013; Isham,
2002). Thus, improved access to information can enhance adoption
because PPT is knowledge-intensive (Khan et al., 2014).

Data on farmers’ confidence in the skill of extension agents, credit
constraints (if a household needed credit but was unable to obtain it),
and access to agricultural services, such as distance to input distribution
centres or markets, was also collected. In addition, historical data
(targeting the six years immediately prior to the survey) were collected
on selected variables, including family size, livestock, education, farm

Table 2
Distribution of villages and sample households by county.

County Number of villages Sample households

Adopters Non-adopters Total

Bungoma 6 18 55 73
Busia 3 14 16 30
Homabay 10 32 51 83
Kakamega 4 27 16 43
Kisumu 5 34 40 74
Migori 11 62 66 128
Siaya 10 100 24 124
Vihiga 7 41 46 87
Total 56 328 314 642

Table 3
Descriptive statistics: Plot-level characteristics (mean).

Variable description PPT adopter PPT non-
adopter

Difference

Outcome variables
Maize yield (kg/acre) 1572.99 929.51 643.48***
Maize production costs (KSh/acre) 29,486.63 19,902.27 9,584.36 ***
Net maize income (KSh/acre) 40,139.46 25,739.31 14,400.14 ***
Plot characteristics and investment

variables
Soil fertility (1–3:

Poor–Average–Good)
1.47 1.76 −0.29***

Plot slope (1–3:
Gentle–Medium–Steep)

1.43 1.57 −0.14***

Soil depth (1–3:
Shallow–Medium–Deep)

2.48 2.39 0.09***

Plot distance from residence
(Walking minutes)

2.20 4.60 −2.39***

Plot shock (= 1 if plot suffered a
natural shock such as a pest
infestation or drought)

0.29 0.58 −0.29***

Season (1 = Long rainy season, 0
= Short rainy season)

0.50 0.53 −0.03

Plot managed by head of household
(1 = Yes)

0.58 0.55 0.04

Plot managed by spouse (1 = Yes) 0.22 0.22 0.00
Plot managed jointly (1 = Yes) 0.19 0.24 −0.04**
Chemical fertiliser use (kg/acre) 73.76 57.46 16.30**
Labour use (Person-day/acre) 68.71 42.13 26.57***
Other input – Seed and pesticides

(KSh/acre)
1546.89 1,115.19 431.69***

Wages (KSh/day) 282.26 305.90 −23.63
Fertiliser price (KSh/kg) 54.55 55.88 −1.33
Seed price (KSh/kg) 173.30 142.99 30.31***
Observations 633 1515

Note: *** , **, and * denotes significance level at 1%, 5% and 10%, respec-
tively.

M. Kassie et al. Land Use Policy 77 (2018) 186–198

191



size, and age at the time of PPT adoption. These historical data were
collected because many farmers had already adopted PPT six years
before the study. Tables 3 and 4 list the definitions of all the variables
used in the empirical analysis and report the descriptive statistics of the
variables employed in this study.

The primary data were augmented with market data to generate
parameters for the estimation of the impact of PPT adoption on eco-
nomic surplus and the impacts of PPT adoption on aggregate poverty
impact of PPT adoption. These secondary sources of data were derived
from the United Nations Food and Agricultural Organisation (FAOSTAT
2011–2014), the World Bank (2016), and reports by the Kenyan Gov-
ernment.

3. Results and discussion

3.1. Descriptive analysis

On average, sample households allocated approximately 1.15 acres
(50%) of their land for maize production. Approximately 14.4% of the
total maize area is under PPT. The amount of chemical fertiliser applied
to maize plots with PPT was approximately 74 kg per acre, compared
with 57 kg per acre applied on plots without PPT (Table 3); this is
probably because PPT reduces variability and risk—an aspect that re-
quires further research. Labour use per acre on maize plots was sig-
nificantly higher among PPT adopters than among non-adopters
(Table 3). The unconditional cost of maize production, including the
opportunity cost of family labour, was 48% higher for plots planted
with PPT than those that did not employ PPT.

The unconditional mean maize yield from plots with PPT was
1573 kg per acre, compared with 930 kg per acre from plots without
PPT (Table 3). The PPT system also generated additional benefits from
fodder production, either through direct sales of fodder or by increasing
livestock products. Notably, these benefits are not captured in the
analysis: because of frequent fodder harvesting (five to six times per
season), farmers have difficulty estimating exact fodder production.

PPT adoption also appears to stimulate milk productivity, which

may be attributable to the increased availability of high-quality fodder
for livestock. The annual mean milk production for PPT adopters was
approximately 460 ℓ per cow per year, relative to 263 ℓ per cow for the
non-adopters. This statistic corroborates the results of the focus group
discussions, where farmers reported that push–pull companion plants
(Desmodium and Brachiaria fodders) more than doubled their cows’
daily milk production. For example, focus-group farmers from three
counties (Kakamega, Kisumu, and Migori) reported an average increase
in milk yield from 1.6 ℓ to 4.3 ℓ per day per cow due to PPT.

A similar pattern of increase is observed with respect to per-capita
milk and maize consumption and market participation. PPT adopters
consumed 56 ℓ of milk per capita during the 2015/16 cropping season,
relative to 39 ℓ for non-adopters. PPT adopters consumed 132 kg of
maize compared with 113 kg by non-adopters.

Market participation comparisons revealed similar increases.
Notably, an average PPT adopter sold approximately 406 ℓ of milk per
year, compared with only 161 ℓ sold by non-adopters. Adopters of PPT
also sold more maize (378 kg) during the 2015/16 cropping season and
purchased smaller quantities of the product (34 kg) than the non-
adopters, who sold approximately 298 kg and purchased approximately
82 kg, respectively. In terms of net maize income, adopters achieved a
55% higher return in comparison with their counterparts’ returns.

All of these results demonstrate higher productivity and income
from PPT adoption, which can translate into improved household food
security and reduced poverty.

Regarding household and village-level characteristics, on average,
households with PPT adopters had more years of education, attended
more field days, and had more access to rural institutions than non-
adopters (Table 4). Thus, the unconditional summary statistics and tests
in Tables 3 and 4 show systematic differences between adopters and
non-adopters that may have implications for adoption decisions and
outcomes.

3.2. Econometric results

In this section, we discuss the determinants and impacts of PPT

Table 4
Descriptive statistics – Household and village characteristics (mean).

Variable description PPT adopter PPT non-adopter Difference

Household characteristics and assets
Age of household head (years) 54.71 52.10 2.60***
Average household education (years) 6.98 6.13 0.86***
Family size 6 years ago 6.77 6.21 0.58***
Family size during survey period (in adult equivalent) 5.57 5.41 0.16
Family labour (in person equivalent) during survey period 3.57 3.23 0.31***
Credit-constrained household (1 = Yes) 0.52 0.64 −0.12***
Number of cows owned 6 years ago 1.18 1.27 −0.09
Other livestock owned (Tropical livestock unit – TLU) 6 years ago 1.70 1.95 −0.24***
Livestock owned during survey period (TLU) 1.90 1.78 0.13
Farm size 6 years ago (acres) 2.65 2.72 −0.07
Major furniture and equipment value (‘000 KSh) 1198.44 1,471.18 −272.74
Number of PPT field days attended by a respondent 2.55 0.55 2.02***
Confidence in skill of extension officers (1 = Yes) 0.84 0.69 0.15***
Village-level and social network variables
Distance to nearest input distribution centre (walking minutes) 53.15 48.52 4.63
Number of PPT adopters respondents know in a village 225.07 156.49 68.58***
Number of rural associations respondents know in a village 3.28 2.81 0.47***
Observations 6333 1515 –

Note: *** , **, and * denotes significance level at 1%, 5% and 10%, respectively.
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adoption on plot-level maize yield and cost of production using the
econometric specification outlined in Section 2.2. The primary objec-
tive of this study is to understand the impacts of PPT; thus, we do not
discuss the estimates of outcome equations but rather briefly review the
determinants of adoption. (The outcome regression estimates are
available in Tables A1–A3 of the Appendix A.)

3.2.1. Factors explaining the adoption of PPT
Table 5 reports the results from the pooled probit model (ignoring

the panel structure of the data) and the random effects model estima-
tions of the adoption equation. The results show that the probability of
adopting PPT appeared to increase according to the number of PPT field
days farmers attended, the number of adopters there were in a village, a
household’s education levels, and the farmers’ confidence in the skills of
extension workers. These results reveal the knowledge-intensive nature

of the technology (Khan et al., 2014) and the role of exposure as
measured by the number of PPT adopters and access to information in
facilitating PPT adoption. The positive impact of farmers’ confidence in
the skill of extension workers is consistent with that found by Kassie
et al. (2015b), namely that the quality of extension workers enhanced
the adoption of minimum tillage, soil and water conservation, and crop
diversification in eastern and southern Africa.

The likelihood of adoption also increased with distances to the
nearest input distribution centre. This result suggests that farmers
might start using PPT as an alternative to purchase external inputs to
control insects and weeds.

Another determinant of adoption was ownership of productive re-
sources such as dairy animals, which could take advantage of the fodder
production. Similar to the literature on sustainable intensification
technologies and practices (Kassie et al., 2015b, and the references
therein; Teklewold et al., 2013), this study also found that household
and farm characteristics (age of the farmer, plot distance from home-
stead, and soil fertility) influenced PPT adoption.

A simple correlation analysis (r) between adopting PPT and mai-
ze–grain legume intercropping ( = − =r p0.56; 0.000) and adoption of
PPT and rotations (r=−0.04; p= 0.055)shows a negative correlation
at the 1% and 10% significance levels (p), respectively. These variables
(maize–grain legume intercropping and rotations) were not included in
the adoption model because of their perfect collinearity with PPT
adoption.

The combined impact of these findings implies that scaling up PPT
and reaching poor farmers requires enhancing access to information
and that PPT must be adapted to existing farming systems to encourage
its wider use in western Kenya.

3.2.2. Impact of adoption of the PPT on farm-level economics
The causal effect of PPT adoption on maize yield using fixed effects

models is approximately 619 kg per acre, representing a 61.9% increase
in maize yield after controlling for selection bias and other maize yield
determinants (Table 6). Adoption is estimated to have increased the
cost of maize production by 15.3%, from KSh 20,903 to KSh 24,110 per
acre (Table 6). However, average net maize income increased by
38.6%, to KSh 40,139 from KSh 28,971 per acre (Table 6); this increase
represents an additional KSh 2034 per capita per year, approximately
11% of the rural poverty line of KSh 18,714 per capita per year (Kenya
National Bureau of Statistics and Society for International
Development, 2017).4 De Groote et al. (2010), using long-term re-
searcher-managed trial data and partial budget and marginal analysis,
found that PPT was more profitable than other practices used to control
Striga weed and stemborer. These results, coupled with the descriptive

Table 5
Factors that influence PPT adoption.

Variables Random effects
probit model

Pooled probit
model

Ln(distance to input market) 0.13** 0.14***
(0.052) (0.038)

Ln(number of adopters in a village) 0.16** 0.11**
(0.074) (0.055)

Number of rural institutions in a
village

0.04 0.05**

(0.027) (0.021)
Number of field days attended 0.15*** 0.11***

(0.021) (0.015)
Confidence in skill of extension

agent
0.33*** 0.24***

(0.107) (0.083)
Ln(household head age) −0.02*** −0.01***

(0.005) (0.003)
Average household education 0.05*** 0.04***

(0.018) (0.014)
Credit-constrained household −0.10 −0.09

(0.088) (0.067)
Household size 6 years ago 0.02 0.02

(0.017) (0.013)
Number of cows 6 years ago 0.10** 0.08**

(0.043) (0.031)
Other livestock 6 years ago −0.08*** −0.07***

(0.027) (0.019)
Ln(farm size 6 years ago) 0.13** 0.08*

(0.061) (0.045)
Ln(major furniture and equipment

value)
−0.01 −0.01

(0.037) (0.029)
Soil fertility −1.72*** −0.57***

(0.153) (0.058)
Plot slope −0.40** −0.10*

(0.175) (0.062)
Soil depth 0.23 −0.02

(0.197) (0.054)
Ln(plot distance to residence) −0.40*** −0.27***

(0.064) (0.036)
Plot managed by spouse −0.21 −0.00

(0.269) (0.083)
Plot managed jointly −0.61** −0.08

(0.294) (0.084)
County dummy Yes Yes
Constant −1.39* −0.64

(0.735) (0.551)
Wald chi2 279.38*** 338.23***
Log pseudolikelihood −1072.71 −1089.11
Observations 2148 2148

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 6
Farm-level impacts of PPT adoption.

Outcome variables Mean outcome Average adoption
effects (ATT)

Actual Counterfactual

A B C D = (A–B)
Maize yield (kg/acre) 1619.06 999.79 619.27 (49.75)***
Maize production cost

(KSh/acre)
24,109.53 20,903.17 3,206.36 (485.13)***

Net maize income
(KSh/acre)

40,139.46 28,971.06 11,168.39
(1100.84)***

Note: Standard errors in parenthesis. *** denotes significance level at 1%.

4 If the pooled OLS (ordinary least squares) model is used instead, the qualitative re-
sults are similar: the changes in maize yield, cost of maize production, and net income are
estimated as 48.7%, 25.7%, and 44.8%, respectively. We also tried a random effects
model and found the results to be close to the pooled model estimates.
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statistics, imply that policies and programmes aimed at promoting PPT
adoption can improve rural households’ food security because in-
creasing agricultural yield enhances the availability and accessibility of
food.

3.2.3. Potential impacts of adoption of the PPT on aggregate welfare
outcomes

The farm-level impact estimates presented in Section 3.2.2 were
then used to compute the K-shift (i.e. the cost reduction per kilogram of
maize output). Next, the K-shift was used as an input to calculate, ex
ante, what the impact of PPT adoption would be on the overall eco-
nomic surplus. If the changes in maize yield (61.9%) and cost of maize
production (15.3%) due to PPT adoption are combined, the K-shift is
16.5% at the current adoption rate of 14.4%.

The aggregate economic surplus change at the 14.4% level of
adoption is estimated at USD 72 million under the closed economy
assumption (with the total change in consumer surplus at USD 34
million, and a total change in producer surplus of USD 38 million) and
USD 73 million under the open economy assumption. This would lead
to a decline of 75,077 in the total number of people considered poor for
the closed economy scenario and of 76,504 for its open economy
counterpart. Moreover, estimates of the extent of potential income
gains and poverty reduction could have been higher if the fodder
benefits of PPT had been considered in the analysis as well. Future
studies could close this gap.

Table 7 presents the results from the sensitivity analysis.5 With a
25% adoption rate, the change in total economic surplus is USD 140
million in the case of a closed economy and USD 142 million for an
open economy. These changes would lead to a decrease of 147,121 in
the number of people considered poor in the closed economy and a
decrease of 149,864 in the open economy. If the adoption rate increased
to 30% of the maize area in western Kenya, the economic surplus is
predicted to be USD 173 million in the closed economy and USD 177
million in the open case. In addition, the number of people considered
poor in the closed and open economy would decline by approximately
182,128 and 186,405.

4. Conclusions and policy implications

The adoption of agricultural technology is crucial to increasing
agricultural productivity, reducing poverty, and sustaining ecosystem
services that support livelihoods. Several studies document the micro-
economic impacts of adopting agricultural technologies but few analyse
the macroeconomic impacts. In this study, we first analysed the impetus
for adopting multifunctional PPT and their impacts on farm-level out-
comes; next, we estimated the potential macroeconomic impacts of
such adoption on aggregate welfare using farm-household survey and
secondary data collected in western Kenya. Our analysis relied on a

combination of econometric analysis and economic surplus modelling.
Our results imply that adopting PPT generates sizeable farm-level

benefits and a substantial economic surplus while reducing poverty.
This research also demonstrates that a combination of many variables
shapes farmers’ decisions to adopt PPT. The probability of adoption is
observed to increase as the number of adopters in a village and number
of PPT field days farmers attended increases, and with a respondent’s
confidence in the skills of extension officers. Another major finding was
that the household’s education levels, input markets, and access to
productive assets such as dairy cows were important to farmers in
considering whether to adopt the PPT.

While this study confirms that PPT associated with maize produc-
tion has positive impacts on economic surplus and poverty alleviation
in western Kenya, we acknowledge that there are limitations. One is
that the study is based on cross-sectional data that does not answer
critical policy questions, such as adoption and impact dynamics.
Second, the push–pull system provides fodder benefits, but this is not
captured in the analysis because farmers find it difficult to provide
accurate quantified data on fodder production because of frequent
harvests during each season. A third limitation of the study is that the
lack of recent human population data and region-specific agricultural
GDP data may bias the poverty estimation results. A fourth limitation is
that a binary definition of adoption ignores the important impacts of
heterogeneity and how a technology is used (e.g. spacing between
maize and Desmodium). More research is required to close these gaps.

Even with these caveats, the results have important implications.
Primary among these is that the evidence presented in this study sup-
ports the belief that PPT adoption can increase agricultural pro-
ductivity, net maize income, and economic surplus and, consequently,
reduce food insecurity and poverty. Another significant implication is
that effective policy measures to promote PPT adoption should include
the improvement of household levels of education and information
channels, such as quality extension services, field days, and social
networks. Finally, it is crucial not only to adapt the PPT system to ex-
isting farming practices (e.g. intercropping and rotation to encourage
adoption) but also to engage the private and public sectors to actively
promote PPT adoption and ensure that information about the PPT is
effectively disseminated and the technology is subsequently adopted.
Given the sizeable impacts on potential economic surplus and poverty
already achieved with the current low adoption rates, additional
widespread adoption should clearly be a policy goal.

Conflict of interest

There is no conflict of interest.

Acknowledgements

We acknowledge the International Centre of Insect Physiology and
Ecology (icipe) core funding provided by the United Kingdom’s
Department for International Development (DFID); the Swedish

Table 7
Changes in economic surplus estimates and number of people considered poor escaping poverty at different levels of adoption.

Adoption rate K-shift
(%)

Open economy market Closed economy market

Total economic
surplus (USD
millions)

Number of people considered
poor who escape poverty
(thousands)

Total economic
surplus (USD
millions)

Consumer surplus
(USD millions)

Producer surplus
(USD millions)

Number of people considered
poor who escape poverty
(thousands)

25% 28.6 142.25 149.86 139.64 65.87 73.77 147.12
30% 34.3 176.93 186.41 172.87 81.54 91.33 182.13
40% 45.7 249.83 263.21 241.19 113.77 127.42 254.11

5 The potential impact of the adoption of PPT (at a 25%, 30%, and 40% adoption rate)
is estimated using the average adoption effects on treated and untreated sample house-
holds because we assume that some of the current non-adopters will adopt PPT in the
future.

M. Kassie et al. Land Use Policy 77 (2018) 186–198

194



International Development Cooperation Agency (Sida); the Swiss
Agency for Development and Cooperation; Germany’s Federal Ministry
for Economic Cooperation and Development; and the Kenyan
Government. The work on push–pull technology is funded primarily by
the European Union with additional support from the Biovision

Foundation and DFID. We also thank the Kimathi Emily for generating
the map of the study areas, the enumerators and supervisors for their
dedication in the field, the farmers for their time, and the icipe staff for
logistic support. The views expressed herein do not necessarily reflect
the official opinion of the donors or icipe.

Appendix A

.

Table A1
Determinants of yield function [Dependent variable: ln(maize yield, kg/acre)].

Variables Endogenous switching regression

Fixed effects models Pooled OLS models

Adopters Non-adopters Adopters Non-adopters

Ln(F) 0.01 0.01 0.02*** 0.03***
(0.019) (0.012) (0.007) (0.006)

Ln(KA) 0.03** 0.03*** 0.01*** 0.01***
(0.012) (0.008) (0.004) (0.004)

Ln(L) 0.44*** 0.19*** 0.27*** 0.16***
(0.144) (0.064) (0.035) (0.022)

Soil fertility −0.81 0.13 0.06 0.03
(1.505) (0.498) (0.054) (0.040)

Plot slope −0.39 −0.04 −0.05 −0.02
(0.404) (0.149) (0.052) (0.033)

Soil depth −0.30 −0.10 −0.06 0.02
(0.820) (0.113) (0.047) (0.029)

Ln(plot distance to
residence)

−0.36 0.02 0.01 −0.05**

(0.355) (0.112) (0.035) (0.022)
Plot shock −0.20*** −0.24*** −0.17*** −0.12***

(0.063) (0.067) (0.053) (0.041)
Season 0.15*** 0.18*** 0.14*** 0.18***

(0.031) (0.032) (0.045) (0.028)
Plot managed by

spouse
−0.15 −0.16 0.00 0.02

(0.274) (0.219) (0.067) (0.046)
Plot managed

jointly
−0.44 −0.02 0.06 0.02

(0.613) (0.246) (0.069) (0.047)
Ln(household head

age)
0.00 0.00

(0.002) (0.002)
Average household

education
−0.02* 0.03***

(0.011) (0.007)
Livestock owned

during survey
period

−0.02* 0.01*

(0.011) (0.007)
Ln(major furniture

and equipment
value)

0.04** −0.02

(0.018) (0.017)
Credit-constrained

household
−0.16*** −0.02

(0.046) (0.041)
Inverse Mills ratio 0.92 −0.17 −0.27** −0.02

(1.390) (0.362) (0.119) (0.064)
County dummy N/A N/A YES YES
Constant 7.26** 6.23*** 6.09*** 6.01***

(3.136) (0.590) (0.417) (0.294)
Wald chi2 61.20*** 134.42*** 199.51*** 613.40***
Observations 633 1,515 633 1,515

Note: Bootstrapped standard errors in parentheses. Inputs include fertiliser (kg/acre, abbreviated as F), labour (person-day/acre, abbreviated as L), and seed and
pesticides (KSh/acre, abbreviated as KA). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A2
Determinants of cost function [Dependent variable: ln(maize cost of production, KSh/acre)].

Variables Endogenous switching regression

Fixed effects models Pooled OLS models

Adopters Non-adopters Adopters Non-adopters

Ln(W) 0.00 0.06 0.04*** 0.06***
(0.111) (0.038) (0.015) (0.011)

Ln(Ps) 0.01 0.00 −0.00 0.02***
(0.007) (0.006) (0.005) (0.004)

Ln(Pf) 0.03*** 0.01** 0.03*** 0.03***
(0.009) (0.006) (0.007) (0.004)

Ln(Y) 0.19*** 0.25*** 0.43*** 0.38***
(0.058) (0.033) (0.036) (0.024)

Soil fertility 0.24 0.63** −0.10* 0.11***
(0.536) (0.253) (0.061) (0.040)

Plot slope 0.14 0.10 0.04 −0.01
(0.161) (0.081) (0.048) (0.030)

Soil depth 0.29 −0.16* −0.12*** −0.05*
(0.231) (0.088) (0.037) (0.029)

Ln(plot distance to
residence)

0.12 0.11* 0.10*** 0.07***

(0.121) (0.060) (0.035) (0.017)
Plot shock 0.01 0.01 0.12** 0.21***

(0.036) (0.026) (0.054) (0.035)
Season −0.00 0.03 −0.08* −0.03

(0.016) (0.018) (0.046) (0.029)
Plot managed by spouse 0.06 0.34 −0.08 −0.03

(0.118) (0.247) (0.062) (0.037)
Plot managed jointly −0.02 0.15 −0.05 0.02

(0.243) (0.165) (0.074) (0.049)
Ln(household head age) 0.00 0.00

(0.003) (0.002)
Average household

education
0.02* 0.00

(0.013) (0.010)
Family size during survey

period
0.05** 0.05***

(0.024) (0.015)
Family labour during

survey period
−0.02 −0.07**

(0.038) (0.027)
Livestock owned during

survey period
0.00 −0.02**

(0.012) (0.006)
Ln(major furniture and

equipment value)
0.02 −0.04**

(0.030) (0.016)
Credit-constrained

households
0.13*** 0.08***

(0.044) (0.031)
Ln(distance to input

distribution centres)
0.01 −0.02

(0.032) (0.023)
Inverse Mills ratio −0.30 −0.45** 0.30** −0.22***

(0.486) (0.185) (0.118) (0.061)
County dummy N/A N/A Yes Yes
Constant 7.52*** 7.27*** 5.91*** 7.25***

(1.377) (0.516) (0.603) (0.330)
Wald chi2 39.38*** 148.57*** 457.26*** 1,108.07***
Observations 633 1,515 633 1,515

Note: Bootstrapped standard errors in parentheses. Price vectors include those of Labour (W, KSh/day), Fertiliser (Pf, Ksh/kg), and Seed (Ps, KSh/kg). Yield (kg/acre)
is denoted as Y. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A3
Determinants of net maize income (KSh/acre).

Variables Endogenous switching regression

Fixed effects models Pooled OLS models

Adopters Non-adopters Adopters Non-adopters

Soil fertility −44,521.39 −5,772.60 2,905.47 1,047.32
(91,179.915) (17,167.010) (2,556.175) (1,192.866)

Plot slope −18,815.91 −3,882.91 −167.03 −357.91
(22,025.303) (4,949.271) (2,379.743) (963.313)

Soil depth −6,359.97 −1,209.25 1,159.45 219.96
(43,956.328) (4,011.527) (1,925.820) (765.195)

Ln(plot distance to residence) −15,319.29 −2,562.70 1,184.42 −856.68
(16,779.719) (4,231.364) (1,675.856) (689.360)

Plot shock −11,189.31*** −6,894.36*** −5,410.86** −3,538.51***
(4,156.383) (2,478.729) (2,603.047) (939.488)

Season 3,204.49 5,288.42*** 3,509.28* 5,296.18***
(2,244.738) (976.172) (2,128.192) (1,015.982)

Plot managed by spouse −3,921.38 −6,420.45 2,319.45 −7.17
(16,656.774) (5,430.748) (2,286.550) (1,271.250)

Plot managed jointly −8,940.86 −4,924.03 1,473.06 383.48
(32,044.608) (7,004.762) (2,995.846) (1,226.927)

Ln(household head age) −202.50* −6.84
(105.120) (47.476)

Average household education −1,026.73* 476.91
(531.900) (293.454)

Livestock owned during survey period −403.64 242.71
(612.062) (187.155)

Ln(major furniture and equipment value) 1,970.61** −1,059.18*
(806.807) (558.328)

Family labour during survey period −196.99 690.73*
(774.320) (402.520)

Credit-constrained households −201.85 −558.10
(2,316.145) (1,116.553)

Inverse Mills ratio 47,285.02 2,789.25 −7,462.82 −2,142.21
(74,342.906) (12,548.569) (5,644.757) (2,171.238)

County dummy N/A N/A Yes Yes
Constant 117,335.64 46,697.50** 32,736.25** 43,620.63***

(188,719.746) (19,032.577) (15,772.214) (8,647.800)
Wald chi2(10) 11.88 55.88*** 52.55*** 158.44***
Observations 633 1,515 633 1,515

Note: Bootstrapped standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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