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Abstract

While it is often recognised that agricultural technology adoption decisions are
intertwined and best characterised by multivariate models, typical approaches to
examining adoption and impacts of agricultural technology have focused on single
technology adoption choice and ignored interdependence among technologies. We
examine farm- and market-level impacts of multiple technology adoption choices
using comprehensive household survey data collected in 2010/11 and 2012/13 in
Ethiopia. Economic surplus analysis combined with panel data switching endoge-
nous regression models are used to compute the supply shift parameter (K-shift
parameter), while at the same time controlling for the endogeneity inherent in agri-
cultural technology adoption among farmers. We find that our improved technol-
ogy set choices have significant impacts on farm-level maize yield and maize
production costs, where the greatest effect appears to be generated when various
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technologies are combined. The change in maize yield and production costs results
in an average 26.4% cost reduction per kilogram of maize output (the K-shift
parameter). This increases the producer and consumer surpluses by US$ 140 and
US$ 105 million per annum, respectively. These changes in economic surplus help
to reduce the number of poor people by an estimated 788 thousand per year. We
conclude that deliberate extension efforts and other policies that encourage inte-
gration of technologies are important for maize technologies to yield their full
potential at both farm and market levels.

Keywords: Economic surplus; ethiopia; maize; multiple technology adoption; panel
data; poverty.

JEL classifications: C23, I32, O33, Q16.

1. Introduction

While it is recognised that agricultural technology adoption decisions among small-
holder farmers are best characterised by multivariate models (e.g. Dorfman, 1996; Wu
and Babcock, 1998; Kassie et al., 2013; Teklewold et al., 2013), the most common
approaches to examining adoption and impacts of agricultural technology have pre-
sented the decision to adopt as a single technology adoption choice. Yet the impacts
of any agricultural technology frequently arise from the judicious application of mul-
tiple interrelated practices at the farm level. A single technology cannot reach its full
potential unless interrelated technologies and complementary practices are also imple-
mented. In fact, it is arguable that the continued persistence of low yields among
smallholder farmers is partly and sometimes largely due to their failure to implement
new crop varieties with complementary production practices (Kassie et al., 2015a).
The focus on modelling adoption as a process involving the joint application of multi-
ple practices is therefore important to properly inform agricultural policies for
research and effective extension packages for farmer education to achieve maximum
impact from these technologies.

Since new agricultural technologies, whether better crop varieties or superior
agronomic management practices, can have far reaching impacts (De Janvry and
Sadoulet, 2002), it is also important to identify both the direct benefits of technol-
ogy adoption at the farm level and the indirect benefits that accrue on other eco-
nomic agents beyond the farm. The former includes private economic impacts and
the latter includes market-level economic impacts. There is a considerable body of
literature that has examined the impact of single agricultural technology in terms
of direct and indirect impacts (e.g. Lence and Dermot, 2005; Mendola, 2007;
Moyo et al., 2007; Krishna and Qaim, 2008; Alene et al., 2009; Kassie et al.,
2011; Zeng et al., 2015). However, the literature analysing technology combina-
tions and their direct and indirect effects beyond the household level is sparse.
Relatively recent papers such as Moyo et al. (2007), Alene et al. (2009) and Zeng
et al. (2015) consider the technology-induced price effect on poverty reduction but
exclusively examine improved maize and groundnut varieties in eastern Uganda
and West Africa and Ethiopia, respectively. Even then, there is limited considera-
tion of other indirect effects (such as benefits to poor non-farm household con-
sumers and employment creation along the value chain) with possible implications
for poverty.

� 2017 The Agricultural Economics Society

Impacts of technology combination on welfare 77



The contribution of this paper is threefold. First, we examine the empirical evidence
on economic impacts of maize production technologies at both farm and market
levels. Second, we estimate the implied poverty impacts of these maize technologies
beyond the farm level. Third, we examine these impacts based on combinations of
maize production technologies that affect farm- and, by extension, market-level
impacts.

The combinations of technologies/practices considered are: improved maize seeds,
chemical fertilisers, and legume diversification (maize–legume intercropping or rota-
tion). The basic framework of analysis relies on the combination of economic surplus
analysis with panel econometric methods to control for the endogenous adoption
decisions. The econometric methods are used to estimate a supply shift parameter (K-
shift parameter) through estimating changes in farm-level maize yields and costs of
production due to adoption. These parameters are then incorporated in the economic
surplus analysis to compute the total change in economic surplus gains. Finally, the
economic surplus benefits are used to estimate the poverty reduction effects of
adoption.

In the recent past, maize has emerged as a leading cereal crop in Ethiopia, sec-
ond only to teff in the production and subsistence profiles of many households. It
has been reported that more households now grow maize than any other cereal in
Ethiopia (Abate et al., 2015). In a study of market participation of maize growing
households in Ethiopia, Marenya et al. (2017) found that maize accounts for up
to 61% of all crop sales among male-headed households and 58% among house-
holds led by women; implying that maize is a major economic crop with impor-
tant implications for household welfare. The importance of maize is confirmed by
the focus of stakeholders – particularly the national research system, in conjunc-
tion with international research organisations and donor agencies – who have
invested considerably in maize research in Ethiopia, with the result that more
than 40 maize varieties adapted to diverse agro-ecologies have been released in
the country (Abate et al., 2015).

The emerging research evidence also clearly points to the need to compliment the
release of varieties with better agronomy and resource management practices to
achieve higher yield, food security, income and minimise risks (e.g. Di Falco and Ver-
onesi, 2013, 2014; Teklewold et al., 2013; Kassie et al., 2015a,b; Manda et al., 2016).

The rest of the paper is organised as follows. The next section describes the method-
ology used to analyse adoption and impacts of adoption. The third section describes
the study area, data and provides summary statistics. Section 4 presents our estima-
tion results. Section 5 concludes and draws policy implications.

2. Conceptual and Empirical Framework

2.1. Estimating impacts of adoption on farm-level yield and production costs

Evaluating the impacts of technology adoption requires controlling for potential
selection bias and unobserved heterogeneity. If the selection process is based on time
constant unobserved heterogeneity, a panel estimator solves the problem without an
instrumental variable (Wooldridge, 2002). However, the selection process might be
generated by time-varying unobserved heterogeneity that affects the outcomes (Wool-
dridge, 2002; Dustmann and Rochina-Barrachina, 2007). In this case, the availability
of panel data alone might be inadequate to estimate the effects of technology set
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choices on outcomes of interest. To circumvent this problem, we combine a panel data
estimator with an endogenous switching regression (ESR) model that enables us to
capture time-varying unobserved heterogeneity. The ESR model also allows the tech-
nology set choices (treatment variables) to interact with observable variables and
unobserved heterogeneity. This means that the effect of technology choice is not lim-
ited to the intercept of the outcome equations (as assumed by, for example, Zeng
et al., 2015), but can also have a slope effect.2 The ESR allows interaction by estimat-
ing separate regressions for adopters and non-adopters. The other advantage of the
ESR over other methods such as propensity score matching is that the ESR enables
the construction of a counterfactual based on returns to characteristics of adopters
and non-adopters. The means of variables/characteristics could be the same for both
groups but they may differ in terms of their returns (coefficient estimates) which have
implications on adoption and productivity. For example the mean farm size could be
equal but the returns to that land could differ substantially based on differential qual-
ity (e.g. one of them could be on flatter, less eroded land). Nevertheless, the ESR
model remains somewhat limited by the joint normality assumption for both adoption
and outcome equations.

We follow the Wooldridge (2002) approach for estimating unbalanced panel data
where we estimate pooled OLS and pooled selection models using the Mundlak
(1978) device. The fixed effects estimator does not provide consistent estimates in the
presence of unbalanced data (Wooldridge, 2002). To implement the Mundlak
approach, we include the means of all time-varying covariates in the adoption and
outcome equations. The Mundlak device combines the fixed-effects and the random-
effects estimation approaches. By including the vector of time-averaged variables, we
control for time-constant unobserved heterogeneity, as with fixed effects, while avoid-
ing the problem of incidental parameters in nonlinear models such as the multinomial
logit model.

The estimation of multinomial switching endogenous regression framework
involves a two-step estimation procedure. In the first step, a multinomial logit
(MNL) model accounting for unobserved individual heterogeneity is estimated to
generate inverse Mills ratios (selection correction terms).3 In the second step, the
outcome equations are estimated using OLS including the inverse Mills ratios as
an additional regressor to capture selection bias due to time varying unobserved
heterogeneity. Previous empirical studies have evaluated impact using an endoge-
nous switching regression include Di Falco et al. (2011), Teklewold et al. (2013),
Abdulai and Huffman (2014), Di Falco and Veronesi (2013) and Kassie et al.
(2015a,b).

The adoption of three technologies/practices (improved maize seeds, chemical fer-
tiliser and legume diversification) involves eight technology choice sets (including an
‘empty’ set where none of the technologies is adopted either singly or in combination)
(Table 1). That means eight adoption equations were estimated using the MNL
model. We base our analysis on the latent variable concept, where we assume that at

2Using Chow test statistics, we accept the alternative hypothesis in both yield and cost outcome
equations that technology set also has a slope effect in addition to an intercept effect (see
Table S1(A) in the online Appendix).
3Although the multinomial logit model depends on the assumption of Independence of Irrele-
vant Alternatives (IIA), it has been shown that the model is relatively robust in many cases in

which this assumption is implausible (McFadden, 1980; Bourguignon et al., 2007).
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each time period a farm household chooses a technology set that maximises expected
utility. Let a farm household’s utility of choosing a technology set j
(j = 0, 1, 2, . . ., 7, and ‘j = 0 ‘denoting that none of the practices was adopted, while
the remaining technology sets (j = 1, . . ., 7) contain at least one technology) be repre-
sented by Ujt. A farm household chooses a technology set j if and only if its utility Ujt

outweighs the utility (Ukt) that could be obtained from other technology sets i.e.,
Ujt > Ukt, j 6¼ k.

Following the literature on adoption behaviour and impact in developing coun-
tries (e.g. Marenya and Barrett, 2007; Di Falco et al., 2011; Di Falco and Vero-
nesi, 2013; Kassie et al., 2013, 2015a,b,c; Teklewold et al., 2013; Abdulai and
Huffman, 2014), we specify the utility of adoption as a function of exogenous
variables including household-, plot- and village-level variables. The probability
that a farm household selects technology set j on a plot at time t conditional on
Xit can be represented as:

Prob jjXit;Hið Þ ¼ exp aj þ Xitbj þHi

� �
PJ

k¼1 exp ak þ Xitbk þHið Þ ; j ¼ 0; 2; 3; . . .; 7 ð1Þ

where i indexes individual farmer, j indexes technology set and t indexes time period.
The parameter aj represents the specific constant term of technology set j; Xit is a
matrix of observable household, plot and village characteristics and a time period
dummy that affects the probability of adoption; Hi denotes time constant unobserved
heterogeneity term and bj are unknown parameters to be estimated. As discussed
above, the unobserved heterogeneity (Hi) will be replaced by means of the time-vary-
ing explanatory variable ( �Xi), following Mundlak’s approach. Equation (1) is esti-
mated using a MNL model based on household- and plot-level panel data of
Ethiopian maize farmers.

In the second stage of ESR, the maize yield (Q) and cost (C) functions are estimated
for adopters and non-adopters separately controlling for the endogenous nature of
technology adoption decisions. The eight plot-level maize yield and cost equations are
specified as follows:

Table 1

Adoption of technology set choices (%)

Technology set D1 D0 F1 F0 V1 V0 2010 2013

F0V0D0 √ √ √ 29.89 23.29
F1V0D0 √ 12.66 10.56
F0V1D0 √ 9.18 7.63

F0V0D1 √ 2.4 3.79
F1V1D0 √ √ 36.67 41.59
F1V0D1 √ √ 1.8 1.99

F0V1D1 √ √ 1.15 1.18
F1V1D1 √ √ √ 6.26 9.97

Note: F, V and D refers to fertiliser, improved maize varieties and legume diversification; sub-
script ‘0’ denotes non-adoption while ‘1’ denotes adoption. The number of plot observations

are 4,555 and 3,914 during 2010/11 and 2012/13, respectively.
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it0b

c
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0 þHc
i0þ 2c

it0 if j ¼ 0
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J þHc
iJþ 2c

itJ if j ¼ J; 1; . . .; 7

8><
>: ð3Þ

where j = 0 denotes that neither of the technologies nor their combinations were
adopted and j = 1, . . . 7 represents adoption of either technology or their combina-
tions; Qitj and Qit0 are, respectively, maize yield per hectare (ha) of the ith household
on a plot at time t with and without adoption of technology set j; Zit is a set of
observable household, plot- and village-level characteristics, including a time period
dummy (T), that influence maize yield and production costs at time t; b and w are
parameters to be estimated; Hi is time invariant unobservable household heterogene-
ity; k̂ are inverse Mills ratios derived from equation (1) to capture time-varying indi-
vidual effects; r is the covariance between the error terms of adoption and outcome
equations; CitJ and Cit0 are, respectively, per hectare cost of maize production of the
ith household on a plot at time t with and without a technology set j, and consist of
labour (family and hired), fertiliser, seed (own and bought), chemical, manure, oxen
and tractor costs.4 As in the choice model, the time invariant unobserved variable (H)
is parameterised by the mean values of time-varying explanatory variables ( �Zi). The
interaction of k̂ and time period dummy (T) is based on Wooldridge (2002) for estima-
tion of unbalanced panel data models.

2.1.1. Expected actual and counterfactual outcomes
To assess the effect of technology set choice on maize yield and cost of production,
the counterfactual outcomes should be estimated. Equations (2) were used to generate
the expected actual (observed) and counterfactual of maize yield for a farm household
that adopted technology set j. The actual expected outcomes that are observed in the
data are computed as:

E QitJ=j ¼ Jð Þ ¼ Z
q
itJb

q
J þ k̂itJr

q
J þ ðk̂qitJTÞwq

J þ �Zq
iJu

q
J j ¼ 1; 2; 3. . .; 7 ð4Þ

On the other hand, the counterfactual expected value of maize yield on a plot with
a technology set j that contains one or more improved technologies is given as
follows:

EðQit0=j ¼ JÞ ¼ Z
q
itJb

q
o þ k̂itjr

q
0 þ ðk̂qitJTÞwq

0 þ �Zq
iJu

q
0 j ¼ 1; 2; 3; . . .; 7 ð5Þ

where the parameters bqo;u
q
0 and rq0 are coefficients obtained from estimation of maize

yield without a technology set (j = 0) and other variables are as defined above.

4Since most of the surveyed farm households rely on family labour, we imputed an opportunity

cost of labour from the production function following Jacoby (1993).
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Equation (5) is defined as the maize yield of technology set j (j = 1,2,3, . . . 7) adopters
which would have been obtained if the returns (coefficients) on their characteristics
(Z, �Z and k̂) had been the same as the returns (coefficients) on the characteristics of
the non-adopters. The standard errors of equations (4) and (5) estimates are corrected
using bootstrapping to account for first-stage estimation of the inverse Mills ratios.
We followed a similar approach to generate the expected actual and counterfactual of
maize production cost.

Taking the difference between equations (4) and (5) gives the average effect of tech-
nology on adopters, often described in the literature as the average treatment effect on
the treated (ATT). The cost ATT estimation is also derived same way.

ATTyj ¼ EðQitJ=ðj ¼ JÞÞ � ðQit0=ðj ¼ JÞÞ
¼ ðbqJ � bq0ÞZq

itJ þ ðrqJ � rq0Þk̂itJ þ ðwq
J � wq

0Þ k̂qitJTþ ðuq
J � uq

0Þ �Zq
iJ ð6Þ

ATTcj ¼ EðCitj=ðj ¼ JÞÞ � ðCit0=ðj ¼ JÞÞ
¼ ðbcJ � bc0ÞZc

itJ þ ðrcJ � rc0Þk̂itJ þ ðwc
J � wc

0Þk̂citJTþ ðuc
J � uc

0Þ �Zc
iJ ð7Þ

The first two terms of equations (6) and (7) indicate yield change due to the differ-
ence in returns to observed characteristics and time-invariant unobserved characteris-
tics, respectively, and the last two terms are attributed to yield changes because of
time-varying unobserved heterogeneity difference.5

The ATT for yield and cost estimation generated from equations (6) and (7), in
addition to serving to measure direct effects of technology adoption, will be used as
an input in the economic surplus analysis model to compute the supply shift parame-
ter (K-shift parameter).

2.2. Estimation of economic surplus gains

The effects of technology choice do not end at the level of adopters. Farm households
supply part of their produce to the market and subsequently the direct effects of tech-
nology choices lead to an indirect effect on both other producers and consumers. We
use an economic surplus (ES) model to examine the changes in consumer and pro-
ducer surpluses.

The benefit of the technology to producers and consumers depends on how markets
function. In the absence of external trade (a closed economy), the benefits of technol-
ogy adoption are shared between producers and consumers. In a closed economy, a
technology induced supply shift would reduce the equilibrium price. The Ethiopian

5In estimating production and cost functions, there is a problem of how to treat legumes in the

case of maize-legume intercropping, particularly allocating the total inputs to each crop. One
approach is to convert legume yield into maize equivalent using price as a weight and the
maize-equivalent yield of legume added to the actual maize yield to provide total yield. How-

ever, this results in an artificial increase in maize production, which leads to a horizontal shift in
the maize supply curve. Our approach considers revenue generated from legume production as
a cost reduction for maize production (i.e. the revenue can serve to pay back inputs used for

maize-legume production). This generates a vertical shift in the maize supply curve.
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maize economy can be treated as a closed economy since the volume of maize exports
and imports is below 1% of total supplies.

Evaluating the ex-post effects of adoption of technology requires estimating the K-
shift parameter and counterfactual equilibrium price and maize volume production
(i.e. price and maize production in the absence of the technology). The K-shift param-
eter is the proportionate vertical shift in the supply curve and/or the cost reduction
per unit of output that is caused by changes in crop yield and cost of production
(Alston et al., 1995). Measuring the K-shift parameter is a difficult task in the impact
literature (Alston et al., 1995). Only a few impact assessment studies, such as Zeng
et al. (2015), have used a statistically estimated K-shift parameter to estimate the eco-
nomic surplus gains. To increase its accuracy and measure the true effects of adoption,
the econometric approach described above enables us to capture determinants of yield
and production costs, besides the independent effect of the technology itself. This is
the major reason for combining the ES analysis with econometric methods. The K-
shift parameter is expressed algebraically as follows (in the manner of Alston et al.,
1995):

K ¼ ATTy

2 � ATTc

1þATTy

� �
�Adoption rate(A) ð8Þ

where ATTy and ATTc are the yield and cost ATT estimated from equations (6) and
(7) but weighted by the adoption rate of each technology to arrive at the overall K-
shift parameter. As shown in equations (6) and (7), there will be seven ATT estimates;
that means estimating seven K-shift parameters. As there is one market for maize, an
overall yield and cost ATT have been calculated using adoption level (A) as a weight
to estimate the yield and cost ATT share contributed by a specific technology combi-
nation. The price supply elasticity value (e) in equation (8) is, set at 0.5 (Abrar et al.,
2004).

The K-shift parameter along with observed maize price (P1) and other parameters
are used to compute the counterfactual equilibrium price (P0) that would prevail if the
technology were not adopted, following Alston et al. (1995):

P0 ¼ P1ðeþ gÞ=ðeþ g� KeÞ ð9Þ

where g is the absolute price demand elasticity. The observed price P1 is obtained as
an average of national producer prices (FAOSTAT) over the period 2009–2012, US$
0.199 per kg. Zeng et al. (2015) used a price demand elasticity value of 1, which we
also use.

The counterfactual maize production (Q0) is derived as a function of using observed
maize quantity of production (Q1) and change in maize yield due the technology
(ATTy), i.e.

Q0 ¼ Q1

ð1þATTyÞ :

Q1 is represented by the 2009–2012 average observed quantity of maize production
(5.3 million tons, FAOSTAT).
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Assuming linear demand and supply curves (Alston et al., 1995), changes in pro-
ducer surplus (ΔPS) and consumer surplus (ΔCS) attributed to the new technology
under a closed economy are calculated as follows:

DPS ¼ P0Q0 K� Zð Þ 1þ 0:5Zgð Þ ð10Þ

DCS ¼ P0Q0Z 1þ 0:5Zgð Þ ð11Þ

where Q0 is the counterfactual equilibrium quantity and Z is the relative change in
price Z ¼ P0�P1

P0

� �
(Alston et al., 1995). The total change in economic surplus (ΔES) is

the sum of changes in producer and consumer surpluses.

2.3. Poverty impact analysis

In sub-Saharan Africa, growth in agriculture combats poverty on different fronts.
First, most of the poor still depend on agriculture, thus any attempt to improve the
sector benefits them. Second, enhancing agricultural productivity, particularly for sta-
ple crops such as maize, improves supply and reduces the staple food price, and in so
doing helps to lift the poor (typically net consumers) out of poverty. Third, agriculture
has stronger growth linkages with other sectors than other economic sectors, and thus
creates employment opportunities for the poor along the value chain, thereby con-
tributing to poverty reduction (De Janvry and Sadoulet, 2002; Christiaensen and
Demery, 2007; Diao et al., 2010).

Zeng et al. (2015) examined the implications of technology-induced economic sur-
plus change on household poverty in Ethiopia using cross-sectional farm household
survey data. Although their approach accounts for a technology-induced price effect
on poverty, it fails to consider other indirect effects (such as employment creation
along the value chain) with possible further implications for poverty. To account for
direct and indirect effects of adoption on poverty reduction beyond the farm level, fol-
lowing Alene et al. (2009), we link the technology-induced change in economic sur-
plus to poverty reduction based on a poverty reduction elasticity with respect to
agricultural growth. The number of people who escape poverty at the current level of
technology adoption is estimated as follows (Alene et al., 2009):

P ¼ DES
AgGDP

� d

� �
�N ð12Þ

where P is the number of people who can be lifted out of poverty, ΔES is the change
in total economic surplus due to technology adoption (and represents the social value
of additional production), AgGDP represents the value of agricultural gross domestic
product, d is the elasticity of poverty with respect to AgGDP driven by growth of the
staple crops, and N denotes the number of poor people in the country. We use a 3-
year (2010/11–2012/13) average AgGDP (US$ 12.7 billion) and the official poverty
incidence for the same 3-year period from the national Bank of Ethiopia reports. The
total population data (2010/11–2012/13) to derive number of poor people were
obtained from the Central Statistics Bureau of Ethiopia from various annual reports.6

6The total population in 2010/11, 2011/12 and 2012/13 was 79.5, 82.1 and 84.3 million, respec-

tively, while headcount ratio for same year was estimated at 29.6, 27.87 and 26%, respectively.
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The poverty elasticity specific to staple crops was adopted from Diao et al. (2010),
who estimated that a 1% annual increase in Ethiopia’s GDP driven by staple crops
growth leads to a 1.8% reduction in the country’s poverty headcount rate per year.7

3. Study Area, Data and Descriptive Statistics

Our data come from two waves of comprehensive farm household surveys collected in
2010/11 and 2012/13 by the International Maize and Wheat Improvement Centre
(CIMMYT) in collaboration with the Ethiopian Institute of Agricultural Research
(EIAR). The survey covered 39 districts from the five regional states of Ethiopia cov-
ering various agro-ecologies (Figure S1, in the online Appendix). The first-round sur-
vey elicited information from 2,374 farm households, who had grown maize on 4,555
plots while the second-round survey collected information from 2,132 farm house-
holds, who had managed 3,914 maize plots.8 Sample farm households were selected
using multi-stage stratified sampling. First, maize growing districts were identified in
each region. Second, three to six kebeles9 were randomly chosen in the selected dis-
tricts according to their population size. Third, 16 to 24 farm households in each
selected kebele (proportional to their population size) were randomly chosen for face-
to-face interviews with trained enumerators.

The surveys generated rich information at farm household, plot and village levels.
The data include human capital variables (family size, education, age, the number of
years living in a village), self-reported natural resource endowments (plot fertility, slope,
depth, plot distance from homestead, plot tenure, plot size), agronomic practices (e.g.
maize-grain legume intercropping, rotations), input use (seed, fertiliser, labour, other
chemicals) and their associated costs, crops grown and output produced at plot level,
physical capital ownership (livestock, farm size, major farm equipment and furniture),
and distance to input distribution centres and agricultural information offices.

The dominant maize varieties used by 49% of sample households were hybrids,
with 6% of sample farm households planting open pollinated varieties (OPV). We
represent chemical fertiliser use as a dummy variable that indicates that a plot is trea-
ted with chemical fertiliser (Diammonium phosphate (DAP) + Urea). Legume diver-
sification refers to a maize plot that is planted with legumes, either through rotation
and/or intercropping.10 In the study areas, the most widely used intercrop/rotated
legume crop with maize is haricot bean.

These three improved technologies provide eight possible technology combina-
tions from which farm households can choose (Table 1). Among the possible tech-
nology sets, combining improved maize seed with chemical fertiliser is the most
popular, whereas improved maize seed with legume diversification is the least

7Diao et al. (2010) also estimate that a 1% annual increase in Ethiopia’s GDP driven by the
agricultural growth leads to a 1.78% reduction in the country’s poverty headcount rate per
year.
8242 farm households were not interviewed during the second round survey because 56 house-
holds dropped from one of the regions due to budget constraint and the rest of households had
either were not at home after two visits, left the village or were deceased.
9Kebeles are the lowest administrative unit in Ethiopia.
10We combine legume intercropping and rotation because there are no adequate observations

to run separate regressions for each practice.
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popular. The implied marginal and conditional probabilities of improved tech-
nologies are shown in Table 2, which indicates complementarity among technolo-
gies; adoption of one technology improves the likelihood of adoption of the other
technology. The adoption of improved maize seed increases the odds of chemical
fertiliser adoption and vice versa. This suggests that many farm households are
aware of the complementary nature of improved maize seed and chemical fer-
tiliser. Table 2 shows that legume diversification increased the likelihood of chemi-
cal fertiliser and improved maize seed adoption and vice versa. This does not,
however, necessarily imply that it increased the intensity of chemical fertiliser use
(see Table 3). Chemical fertiliser was the most widely adopted improved technol-
ogy followed by improved maize seed. The adoption of improved technologies
increased somewhat in the second-round survey.

Table 3 presents the intensity of input use, cost of production and yield patterns by
technology set. Fertilisers were applied with improved maize seeds, but relatively
smaller amounts of fertiliser were used with legume diversification, which is consistent
with the nitrogen fixing properties of legumes, which thus reduce fertiliser costs. In
addition, maize–legume intercropping generated additional revenue from legume pro-
duction (Table 3). On average, the observed legume revenue (subtracting costs of seed
and labour for harvesting and threshing) is ETB 4,714–7,583 per hectare.11

The cost of labour (both family and hired labour) formed the largest share of total
costs of maize production followed by fertiliser and seed (Table 3).12 Other costs (her-
bicides, insecticides, manure and tractor) were small. The survey data show higher
maize yields with improved technologies.

Time period and regional dummy variables are included in both yield and cost func-
tions to capture temporal and spatial differences in agro-ecology, price and institu-
tions. Table 4 presents the descriptive statistics of these and other variables included
in the analysis.

Table 2

Marginal and conditional probabilities of technology adoption

D D F F V V
2010 2013 2010 2013 2010 2013

P(AT = 1) 11.3 16.4 54.5 62.5 52.4 59.1
P(AT = 1/AD = 1) 100 100 67.9 70.3 63.4 65.5

P(AT = 1/AF = 1) 14.1 18.5 100 100 75.6 80.1
P(AT = 1/AV = 1) 13.7 18.2 78.6 84.8 100 100
P(AT = 1/AD = 1 & AF = 1) 100 100 100 100 78 83

P(AT = 1/AD = 1 & AV = 1) 100 100 83.5 89.1 100 100
P(AT = 1/AF = 1 & AV = 1) 14.5 19.1 100 100 100 100

Note: Subscripts T, D, V and F denote type of technology, legume diversification, improved
maize varieties and chemical fertiliser, respectively.

111 US$ = 16.11 Ethiopian local currency (ETB) on average during survey periods.
12Following Jacopy (1993), the wage for family labour is generated by estimating a maize pro-

duction function (see Table S1(E) in the online Appendix).
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4. Results and Discussion

Our primary objective is to estimate the impacts of technologies adoption. We thus do
not discuss our endogenous switching regression estimates, which are presented in the
online Appendix (see Tables S1(B)–S1(D)). However, we note that in some of the out-
come equations, the inverse Mills ratios, the mean of time varying variables and inter-
action of time period dummy with Mills ratios are significant, indicating the presence
of sample selection in technology set choice.

4.1. Adoption impact on yield and production costs

Tables 5 and 6 present the actual and counterfactual yield and cost estimates and the
average treatment effect (ATT) on adopters. Results show that there are significant
maize yield and production cost differences between maize plots planted with a set of
technologies and those plots planted without these technologies. The greatest impact
is observed when these technologies are used jointly. Maize yield is 13.1 percentage
points higher (ATT divided by average counterfactual yield value) with legume diver-
sification technology (F0V0D1), after controlling for other determinants of yield
(Table 5).13 Similarly, the technology set that consists of only improved maize seeds
(F0V1D0) or only chemical fertiliser (F1V0D0) enhances maize yields by 13.2% and
22.2%, respectively. Moreover, the results show that combining both improved seeds
and chemical fertiliser enhances maize yield by 38.7 percentage points. The adoption
of all improved technology sets can enable the farmers to enjoy the greatest maize
yield increase (97.8%).

Among the technology sets considered, crop diversification appears to be (rela-
tively) the cheapest technology option to produce maize (Table 6) – which in part

Table 5

Impact of technology set choices on maize yield (kg/ha)

Technology

set

Outcome by adoption status

Actual outcome
(maize yield if household

adopt technology

set choice j)

Counterfactual outcome
(maize yield if household
did not adopt technology

set choice j) ATT

A B C D=B–C
F1V0D0 2,281.62 1,865.94 415.68 (33.75)***
F0V1D0 2,058.83 1,818.04 240.79 (43.63)***
F0V0D1 2,063.17 1,823.48 239.72 (79.85)**

F1V1D0 2,729.89 1,968.73 761.15 (53.07)***
F1V0D1 2,856.28 1,868.36 987.92 (148.31)***
F0V1D1 2,723.41 1,820.21 903.30 (155.40)***
F1V1D1 3,548.78 1,793.74 1,755.05 (54.28)***

Note: Standard errors in parentheses; ***P < 0.01, **P < 0.05, *P < 0.1.

13We also estimate the outcome questions using random effects in Mundlak’s framework and
assuming balanced panel data. Results are qualitatively similar (not reported here) as in unbal-

anced panel model estimations.
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reflects our specification because we subtracted the revenue generated from legumes
from the total cost of production. On the other hand, maize production with both
improved maize seeds and chemical fertiliser was relatively the most expensive, due to
dependence on purchased seed and chemical fertiliser (F1V1D0). Our results also sug-
gest that maize production could be made relatively cheaper by integrating improved
seeds and chemical fertiliser with legume diversification. For instance, maize produc-
tion costs with a fertiliser technology set (F1V0D0) (+54%) can be reduced to 19.3%
when it is combined with legume diversification (F1V0D1). This reduction reflects posi-
tive interactions, e.g. legume diversification can reduce pests, diseases and weeds infes-
tations, and legumes also fix nitrogen, thus reducing the demand for pesticides and
chemical fertiliser, which (apart from labour) is the greatest cost item. A simple gross
margin analysis reveals that adopters reap a significant net crop income and that
higher net income is obtained from adoption of a combination of technologies
(Table 7).14 Recent empirical evidence (Teklewold et al., 2013; Kassie et al., 2015b;
Manda et al., 2016) in Ethiopia and elsewhere also demonstrate that a combination
of technologies (including those used in this paper) provide higher net maize income
than when only a single technology is adopted.

Impacts of adoption at the market level

The above ATT estimates for yield and cost are used to examine impacts of adoption
on economic surplus changes that were used as an input to estimate poverty impacts
of adoption. The weighted ATTs on adopters’ yield and cost of production are 32%
and 39.3%, respectively.

Table 6

Impact of technology set choices on maize costs of production (ETB/ha)

Technology
set

Outcome by adoption status

Actual outcome
(maize production costs

if household adopt
technology set choice j)

Counterfactual
outcome (maize
production costs

if household did not
adopt technology set choice j) ATT

F1V0D0 5,261.07 3,415.33 1,845.74 (77.09)***
F0V1D0 3,211.87 3,086.04 125.83 (59.14)**
F0V0D1 2,981.73 3,242.15 –260.42 (168.54)
F1V1D0 5,954.76 3,669.81 2,284.95 (65.52)***
F1V0D1 4,246.74 3,560.95 685.79 (258.54)***
F0V1D1 3,145.95 3,234.30 –88.34 (273.30)
F1V1D1 4,194.03 3,876.75 317.28 (90.14)***

Note: Standard errors in parentheses; ***P < 0.01, **P < 0.05, *P < 0.1

14Authors have a draft paper that shows the impact of a combination of technologies on net
crop income using the same panel data as used in this paper. Table 7 figures are not directly
comparable with those in Table 6, which are based on the regression results, and are also

adjusted for legume revenue.
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The combination of a 32% average yield increase and a 39.3% average cost increase
generate a 26.4% cost reduction per kilogram of maize output (K-shift parameter).
The estimated counterfactual maize price and volume of maize production are US$
0.223 and 4.0 million tons, respectively. Assuming a closed economy, the 26.4% cost
reduction per kilogram of maize output would result in US$ 245 million change in
total economic surplus (US$ 140 and 105 million increases in producer15 and con-
sumer surpluses, respectively) at the current level of adoption.16 The higher benefit to
producers reflects the closed economy model assumption combined with the relative
sizes of the demand and supply elasticities and the parallel supply shift assumption.17

Assuming the estimates hold true in our context and considering the change in total
economic surplus gains as an additional income to AgGDP, the number of poor peo-
ple who can escape poverty is estimated to be 788 thousand per annum in the coun-
try18 or 3.5% of poor people in the country, which is 22.8 million.

5. Summary and Conclusions

Improved technologies adopted to produce staple crops such as maize could have pro-
found indirect effects on both producers and consumers through market impacts.
There have been relatively few studies that have attempted to measure the economic
and social effects of multiple technology sets used for maize production by considering
their indirect effects. Using two rounds of data from a large comprehensive household
survey in Ethiopia, we evaluated both the farm- and market-level impacts of adoption
of multiple technologies (improved maize varieties, fertiliser use and legume intercrop-
ping/rotation). We use a combination of econometric techniques and economic sur-
plus approaches to achieve these objectives.

To address sample selection and unobserved heterogeneity often associated with
survey data, we employed a multinomial switching endogenous regression model and
exploited the panel nature of the data following Mundlak (1978). Our results support
the presence of both time-varying and constant unobserved heterogeneity that affect
both technology set choices and outcome variables (yield and cost of production),
implying the importance of controlling selection bias in evaluating technology sets.
The average treatment effect (ATT) results show that all the technologies have posi-
tive and significant impacts on maize yields, but combinations of technology provide
the highest payoffs. Diversifying maize with legumes appears as the cheapest option
for maize production.

The market-level impact analysis shows that the change in maize yield and costs of
production due to adoption generate a 26.4% cost reduction per kilogram maize out-
put on average. Based on the current level of adoption, domestic market structure

15The increase in producer surplus would be US$ 223 million if an open economy model was
assumed.
16The K-shift parameter would have been 20.8% without subtracting grain legume intercrop-

ping revenue from maize costs of production and this produces a total economic surplus benefit
of US$ 187 million. Further, if we lower the price elasticity of supply to 0.4, the K-parameter
would rise to about 38.7%. Thus, the total economic surplus would increase to about US$ 376

million and producers would claim the largest share.
17We thank an anonymous referee for suggesting this point.
18This is equivalent to 718 thousand per year under a small open economy assumption.
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and the volume of maize production, technology-induced cost reduction leads to an
increase in producer and consumer surplus gains of US$ 140 and 105 million per
annum, respectively. Furthermore, we found that the technology sets reduce the num-
ber of poor people by an estimated 788 thousand per annum. This study indicates that
development policies that aim to promote integration of agricultural technologies
have substantial impacts on improving economic growth, food security and reducing
poverty in Ethiopia.

Some caveats on this study are appropriate. There are limitations to the way we
identify and measure technologies. In our study, improved seed technology was an
indicator variable that differentiated whether a seed is a local variety or improved
variety. However, both improved and local seeds comprised different seed varieties
with varying degrees of yield and seed price. Similarly, chemical fertiliser technology
was identified as a dummy variable that denoted whether chemical fertiliser is applied
on a plot without regard to the intensity or timing of application. Legume diversifica-
tion was also a dummy variable that indicated whether maize crop was diversified
with legumes, but we did not distinguish the type of diversification (temporal or spa-
tial) or intensity of diversification (proportion of area covered by legumes). Second,
our economic surplus analysis is based on the impacts of technologies on crop yield
and costs of production. Technology adoption could, however, provide additional
benefits such as risk management (e.g. Di Falco and Veronesi, 2014; Kassie et al.,
2015c) and environmental benefits (e.g. Teklewold et al., 2013). Thus, our results
should be taken as indicative rather than definitive. Nevertheless, these results do con-
firm the positive impacts of improved technologies associated with maize production
on poverty alleviation in Ethiopia.

Supporting Information

Additional Supporting Information may be found in the online version of this article:
Figure S1. Distribution of sample districts where the survey was conducted.
Table S1. (A) Chow test statistics; (B) Drivers of adoption; (C) Maize yield determi-

nants (kg/ha); (D) Maize costs of production determinants (ETB/ha); (E) Production
function estimation for computing marginal value of family labour (fixed effects esti-
mation; dependent variable: Ln(maize yield, kg/ha).
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