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ABSTRACT
In this study, we tested whether GLS field symptoms on maize can be 
detected using hyperspectral data re-sampled to WorldView-2, Quickbird, 
RapidEye and Sentinel-2 resolutions. To achieve this objective, Random 
Forest algorithm was used to classify the 2013 re-sampled spectra to 
represent the three identified disease severity categories. Results showed 
that Sentinel-2, with 13 spectral bands, achieved the highest overall accuracy 
and kappa value of 84% and 0.76, respectively, while the WorldView-2, with 
eight spectral bands, yielded the second highest overall accuracy and kappa 
value of 82% and 0.73, respectively. Results also showed that the 705 and 
710 nm red edge bands were the most valuable in detecting the GLS for 
Sentinel-2 and RapidEye, respectively. On the re-sampled WorldView 2 and 
Quickbird sensor resolutions, the respective 608 and 660 nm in the yellow 
and red bands were identified as the most valuable for discriminating all 
categories of infection.

1. Introduction

Maize is the most important cereal crop in sub-Saharan Africa (SSA) and contributes 15–50% of 
energy in human diets in the region (Archetti et al. 2009; Kagoda et al. 2011). The current annually 
per capita consumption of maize is estimated to be about 112 kg, which is equivalent to 308 g per 
day per capita (Degraeve et al. 2016). Annual demand for maize in the region is projected to increase 
at a rate of 2.4% per annum up to 2025 (Pinstrup-Andersen et al. 1999). Currently, household and 
per capita maize consumption in the SSA region is highest among developing countries (Pingali and 
Pandey 2001), consequently measures to improve maize production are considered essential for food 
security in the region (Watkins and Von Braun 2003). Whereas studies in SSA have shown that there 
is an increase in total maize production over years (Beyene and Kassie 2015), most of this increase has 
been attributed to area expansion rather than optimization of production techniques and therefore 
increased yield on existing acreage (Beyene and Kassie 2015). Beyene and Kassie (2015) attribute 
the low yield in the region to the slow adoption of precision agriculture and associated technologies.

© 2017 Informa UK limited, trading as taylor & Francis Group

KEYWORDS
Field spectroscopy; grey leaf 
spot; spectral re-sampling; 
multispectral remote sensing

ARTICLE HISTORY
received 2 november 2016 
accepted 31 May 2017

CONTACT Inos Dhau   inos.dhau@ul.ac.za

GEOCARTO INTERNATIONAL
2018, VOL. 33, NO. 11, 1223–1236

mailto: inos.dhau@ul.ac.za
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/10106049.2017.1343391&domain=pdf


In the SSA, an interplay of biotic and abiotic factors is known to cause up to 80% maize yield losses 
(DeVries and Toenniessen 2001; Pingali and Pandey 2001). Among the major diseases that threaten the 
stability of maize production in the region, particularly South Africa, are grey leaf spot (GLS) (Derera 
et al. 2008), Northern Corn Leaf Blight (Welz and Geiger 2000; Degefu et al. 2004) and Phaeosphaeria 
leaf spot (Sibiya et al. 2011).

The GLS caused by Cercospora zeae-maydis was first identified from specimens collected in 1924 
by Tehon and Daniels in Alexander County in southern Illinois near the Mississippi River (Ward et al. 
1999). In South Africa, GLS was first noted in KwaZulu-Natal province in 1988 and has since spread 
rapidly to neighbouring provinces and other Southern Africa countries (Ward et al. 1997). More 
recently, molecular techniques have allowed a detailed analysis of the genetic variability of the path-
ogen population and the existence of two very distinct groups has been revealed (Meisel et al. 2009). 
A review of the literature suggests that there are two possible species complexes associated with GLS, 
namely the C. sorghi complex (C. sorghi and C. sorghi var. maydis) and the C. zeae-maydis complex 
(Groups I and II). The description of C. zeina has now resolved some of this taxonomic uncertainty 
by demonstrating that Group II is in fact a distinct species (C. zeina) and that Group I to which the 
name C. zeae-maydis applies apparently does not occur in South Africa (Dunkle and Levy 2000; Crous 
et al. 2006; Meisel et al. 2009).

GLS is currently recognized as one of the most maize damaging diseases in the region, especially in 
areas with warm temperatures and prolonged relative humidity (Ward et al. 1999; Wegary et al. 2003; 
Paul and Munkvold 2005; Derera et al. 2008; Meisel et al. 2009; Lyimo et al. 2012).

Recently, a number of countries, e.g. Kenya, Zimbabwe and South Africa, have reported 30–60% 
maize yield losses due to GLS, hence a serious threat to food security (Ward et al. 1997; Muriithi and 
Gathama 1998). The disease reduces maize yield by damaging photosynthetic tissue and increasing 
stem and root lodging (Derera et al. 2008).

In maize, the GLS symptoms first appear on the lower leaves as small tan spots typically long 
rectangular or irregular 1–3 mm shapes (Ward et al. 1999). At the early stage, immature GLS lesions 
are not easily distinguishable from lesions caused by other foliar maize pathogens (Ward et al. 1999). 
However, mature foliar lesions symptomatic of GLS can readily be distinguished from other maize 
foliar diseases; grey to tan rectangular shape (5–70 mm long by 2–4 mm wide) running parallel to 
the leaf veins (Ward et al. 1999). The latent period for GLS is long compared to other foliar pathogens 
and can take as long as 14–28 days after infection for lesions to sporulate (Beckman and Payne 1982). 
Under severe epidemics, lesions may coalesce and blight the entire leaves (Beckman and Payne 1982; 
Ward et al. 1999).

An integrated approach to planning and management of GLS in maize is critical for sustainable 
production and improvement in yield quality and quantity. This approach requires, inter alia that 
maize disease information is available in ways that allow for timely adoption of relevant management 
practice at the right place (de Bie 2000; Pingali and Pandey 2001; Geerts et al. 2006; Mulla 2013). A 
basic principle of precision agriculture is that the presence, distribution and intensity of a specific stress 
factor within a field must be identifiable (Hillnhütter et al. 2011). The distinctive patchy appearance 
on maize canopy due to GLS infestation makes the disease suitable for the adoption of precision 
agriculture tools such as geo-information and remote sensing techniques (Hillnhütter et al. 2011).

Visual field-based observation has been used to determine GLS severity and incidences (Elwinger 
et al. 1990; Bubeck et al. 1993; Nilsson 1995; Munkvold et al. 2001); however, such visual protocols are 
often expensive, time-consuming and prone to human error. The assessment of disease severity and 
its real-time field distribution could be valuable for the adoption and timing of relevant mitigation 
measures like fungicide applications. Since the GLS is a foliar fungal disease, and plant leaves have a 
well-known spectral signature, remote sensing technologies can be used to complement field-based 
protocol in determining infection onset and severity (Nutter and Schultz 1995).

The use of remote sensing in plant pathology and crop protection is well established (Jackson 1986; 
Hatfield and Pinter 1993; Nilsson 1995; West et al. 2003; Bock et al. 2010; Mahlein et al. 2012). For 
example, field spectroscopy has been used to detect maize dwarf mosaic viral disease (Ausmus and 
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Hilty 1973), wheat yellow rust (Bravo et al. 2003; Moshou et al. 2004), and bacterial leaf blight in rice 
(Yang 2010). Several studies have described the views of sensing leaf reflectance in the visible (VIS, 
400–700 nm), near infrared (NIR, 700–1000 nm) and short-wave infrared (SWIR, 1000–2500 nm) for 
detecting changes in plant vitality with emphasis on fungal plant diseases using non-imaging spectrora-
diometers (Steddom et al. 2005; Delalieux et al. 2007; Mahlein et al. 2010; Rumpf et al. 2010). Whereas 
field spectroscopy has proved to be useful in disease detection, up-scaling the developed models to 
the current available spaceborne or airborne sensors remains a common challenge. This is due to the 
fact that most of the current operational satellites lack the necessary fine spectral resolution sensors, 
and hence, the application of satellite remote sensing for crop disease detection is still in its infancy.

Recently, some researchers have suggested that this limitation could be overcome by re-sampling 
field spectral data to band settings of existing sensors. For mapping relevance, this can be followed 
by testing their capability in existing coarser spectral resolution formats for different remote sensing 
applications, where hyperspectral data are not available (Slaton et al. 2001; Crawford et al. 2003; Cho 
and Skidmore 2009). Indeed, several studies (Mutanga and Skidmore 2005; Adam et al. 2012; Mansour 
et al. 2012; Petropoulos et al. 2012) have re-sampled field spectra data to band settings of existing or 
planned sensors to broaden their remote sensing applications. Whereas these studies have been able to 
demonstrate the possibility to up-scale field spectra to airborne or satellite sensors, a major challenge of 
such up-scaling remains the field spectrometer’s higher signal-to-noise ratio than satellite or airborne 
images, due to the former’s shorter signal path length (Milton et al. 2009). Nevertheless, Mutanga et al. 
(2015) recently provided an insight into the magnitude of errors expected when up-scaling field 
spectral models to airborne or satellite image. They note that the minor difference between the model 
developed on the re-sampled field spectra in comparison to the actual image indicates the relevance 
of field spectroscopy and spectral re-sampling in mapping (Mutanga et al. 2015).

The advent of new multispectral sensors such as RapidEye, Sentinel-2 and WorldView-2 series is 
seen as a trade-off between benefits offered by multispectral and hyperspectral remotely sensed data. 
This is mainly due to their fine spatial resolution and reasonable number of spectral bands, which are 
configured within unique portions of the electromagnetic spectrum such as the red edge. These new 
sensors provide an opportunity for more crop monitoring and precision agriculture.

In this study, we sought to determine whether field spectrometry measurements re-sampled to 
different multispectral sensor resolutions can be used to detect the severity of GLS infection in maize. 
The specific objectives were the following: (i) to test if severity of GLS can be detected by hyperspec-
tral data re-sampled to Sentinel-2, WorldView-2, RapidEye and Quickbird sensor resolutions and (ii) 
to determine the best spectral bands that are important for detecting GLS. Reliable results from the 
study offer an opportunity for mapping and monitoring GLS infestations in maize crop using sensors 
on aerial and satellite platforms.

2. Material and methods

2.1. Identification of GLS stages

This study was carried out at Cedara Agricultural Research Farm, located at 1076 metres above sea 
level and approximately 100 km in-land of South Africa’s major port city of Durban in KwaZulu-Natal 
province (30º16 East, 29º32 South). GLS symptoms were carefully identified in the field over two 
seasons in March 2013 and 2014 for spectral data acquisition. In specific, GLS symptoms and severity 
were visually assessed using an expert knowledge approach (Elwinger et al. 1990; Bubeck et al. 1993; 
Munkvold et al. 2001; Bock et al. 2010; Sibiya et al. 2011). GLS severity was assessed by estimating 
per cent maize leaf area affected by the disease. The severity of the disease on the maize leaves was 
then rated using a modified scale of 0–5 as described by (Paul and Munkvold 2004). The six scales 
were 0 (no disease), 1 (10–20% leaf area affected by the disease), 2 (21–40% leaf area affected by the 
disease); 3 (41–60% leaf area affected by the disease), 4 (61–80% leaf area affected by the disease) 
and 5 (81–100% leaf area affected by the disease). Further, we followed a recommendation by Nutter  
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et al. (1991) that leaves with less than 20% GLS affected area were considered to be in an early stage 
of infection (herein is considered as healthy leaves), while leaves with 21–60% GLS affected area were 
considered to be in the moderate stage of infection. Leaves with 61–100% were considered to be 
severely infected (Figure 1).

2.2. Field spectral measurements and processing

Maize leaf spectral measurements from the three GLS infection stages; viz healthy, moderate and 
severe were collected using Analytical Spectral Devices (ASD) FieldSpec® 3 optical sensor (ASD, Inc., 
Boulder, CO, USA). Leaf spectra were taken under clear sunny and cloud-free sky from 10:00 to 14:00 
local time (GMT + 2) The ASD FieldSpec® 3 spectrometer has a 350 – 2500 nm spectral range with 1.4  
and 2 nm sampling intervals for the ultraviolet to visible near infrared region (350–1000 nm) and the 
short-wave infrared region (1000–2500 nm), respectively.

The plant and leaf samples representing each of the GLS infection stages were randomly chosen 
and six measurements per leaf were acquired. The six measurements were then averaged to derive 
the representative reflectance spectra for the leaf. A white reference spectral measurement on the 
calibration panel was performed every 10–20 measurements to offset any change in the atmospheric 
condition and sun irradiance spectrum. Field spectral measurements were done over two (2013 and 
2014) growing seasons. The 2013 field spectra were used for training the random forest (RF) classifier 
model, while the 2014 field spectra were used to test the stability and the accuracy of the RF classifi-
cation model. The sample size for each GLS infection stage is shown in Figure 1.

The visual GLS severity assessment was benchmarked by displaying narrowband normalised differ-
ence vegetation index (NDVI) boxplots of the three severity stages (i.e. healthy, moderate and severe) 
during the two seasons (Figure 2). The NDVIs were calculated using field spectrometric hyperspectral 
measurements. Figure 2 reveals that the spread of NDVIs during the two seasons was nearly the same.

The reflectance spectra from the three GLS infection stages (Figure 3) were then re-sampled to 
the Sentinel-2, WorldView-2, Quickbird and RapidEye spectral resolutions using a Gaussian model 
in ENVI 4.7 image processing software (ENVI 2009). The method uses a Gaussian model with a full 
width at half maximum (FWHM) equal to the band centres provided (Table 1). The re-sampled spectra 
were then used for the further analysis.

2.3. RF classifier and accuracy assessment

The RF algorithm was used to classify the re-sampled spectra to represent the three identified disease 
severity categories. RF is an ensemble learning technique developed by Breiman (2001) to improve 
the classification and regression of trees by combining a large set of decision trees. RF grows multiple 
unpruned trees (ntree) on bootstrap samples of the original data. Each tree is grown on a bootstrap 
sample (2/3 of the original data known as ‘in-bag’ data) taken with replacement from the original 
data (Breiman 2001). The samples not in the bootstrap sample are referred to as the out-of-bag (OOB) 
sample. The OOB sample (∼37% of the total data) can be used to estimate the misclassification error 
and variable importance. Trees are split to many nodes using random subsets of variables (mtry); the 
default mtry value is the square root of the total number of variables. From the mtry selected vari-
ables, the variable that yields the highest decrease in impurity is chosen to split the samples at each 
node (Breiman 2001). A tree is grown to its maximum size without pruning until the nodes are pure. 
This means that the nodes hold samples of the same class or contain certain number of samples. A 
prediction of the response variable (e.g. GLS stages) is made by aggregating the prediction over all 
trees. In a classification experiment, a majority vote from all the trees in the ensemble determines the 
final prediction (Breiman 2001). A more detailed description of RF can be found in among others 
Breiman (2001).

RF also provides variable importance measurement, which is a measure of the contribution of each 
variable (band) in the final predictive model. This is a metric of how much classification accuracy 
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Figure 1. Maize grey leaf spot (GlS) infection stages (healthy, moderate and severe) and their mean reflectance spectra. the reflectance 
spectra were collected under field conditions using analytical Spectral Devices (aSD) FieldSpec® 3 optical sensor during 2013 and 
2014 growing seasons. the arrows show the spectral regions where major differences between the three disease stages are observed.
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Figure 2. Boxplots showing the median, quartile and the spread of narrowband normalized difference vegetation index (nDVI) for 
healthy (H), moderate (M) and severely (S) grey leaf spot infected maize leaves during two growing seasons (March 2013 and March 
2014). nDVIs were calculated from field spectrometric hyperspectral measurements.

Figure 3. comparison between the mean reflectance of the three maize GlS infection stages (healthy, moderate and severely).
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would decrease if data of a particular variable (band) were removed while all variables remained the 
same (Breiman 2001; Verikas et al. 2011).

In this study, we used this variable importance measurement to determine the importance of 
each band from the different sensors in detecting GLS infection. The choice of the RF algorithm was 
motivated by its superiority over competing statistical methods such as discriminant analysis, canon-
ical variate analysis, classification trees, support vector machines and principal component analysis 
(Cochrane 2000; Mutanga and Skidmore 2004; Adam and Mutanga 2009) for vegetation monitoring. 
However, the superiority of a classification method is highly dependent on the type and features of 
the data under investigation.

In RF, only two parameters (i.e. mtry and ntree) have to be optimized. The default number of trees 
(ntree) is usually 500, while the default value for the number of variables (mtry) is √p where P equals 
the number of predictor variables within a data-set. In this study a grid-search approach based on 
the OOB estimate of error was used to find the optimal combination for these two parameters (ntree 
and mtry) (Adam et al. 2014). The grid-search value for mtry was varied from 1 to the total number of 
bands for each sensor with a single value interval, while the range of the grid search value for the ntree 
parameter was varied from 500 (default value) to 10,000 with an interval of 500 (20 steps). For example, 
the grid search yielded a total of 160 and 80 combinations of ntree and mtry values for WorldView-2 
and Quickbird, respectively. The data-set collected in 2013 was used to optimize and train RF model.

We used the 2013 data-set to train the RF model; while the 2014 data-set was used to assess the 
model accuracy (sample size for both 2013 and 2014 data-sets is shown in Figure 1). A confusion 
matrix was constructed to compute the overall accuracy (OA), user’s accuracy (UA) and producer’s 
accuracy (PA) as criteria for evaluating the generalization ability (accuracy) of the RF classifiers. OA 
is a ratio (%) between the number of correctly classified samples and the number of test samples, 
while UA represents the likelihood that a sample belongs to specific class and the classifier accurately 

Table 1. Multispectral sensors and their spectral properties.

Sensor Band description Band centre (nm) bandwidth (nm)

Sentinel-2 B1 443 20
B2 490 65
B3 560 35
B4 665 30
B5 705 15
B6 740 15
B7 783 20
B8 842 115
B8b 865 20
B9 945 20
B10 1380 30
B11 1610 90
B12 2190 120

WorlView-2 coastal 427 50
Blue 478 60
Green 546 70
Yellow 608 40
red 659 60
red-edge 725 40
nIr-1 831 125
nIr-2 908 180

Quickbird Blue 485 70
Green 560 80
red 660 60
nIr 830 140

rapideye Blue 475 70
Green 555 70
red 658 55
red-edge 710 40
nIr 805 90
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assigns it to such a class. PA expresses the probability of a certain class being correctly classified. Kappa 
statistic that uses the K statistic was also calculated to determine if one error matrix is significantly 
different from another. The kappa coefficient provides a measure of the actual agreement between 
reference data and a random classifier. If the kappa coefficients are equal or close to one, then there 
is perfect agreement.

3. Results

3.1. Optimizing RF parameters

Results from the grid search indicated that OOB error rate is sensitive to ntree and mtry parameters. 
Different combinations of ntree and mtry produced the lowest OOB error rates for the different sensors. 
The default settings for both ntree and mtry did not produce better results for the different sensors. 
For example, the combination of mtry value of 4 and ntree value of 500 produced lowest OOB error 
for Quickbird, while the combination of mtry value of 10 with different ntree values (3000, 4500 and 
9500) produced the lowest OOB error (0.08) for Sentinel-2 (Figure 4). The highest OOB error rates 
(0.13–0.16%) were produced with lowest mtry values across different sensors (Figure 4).

3.2. Classification results

The classification accuracies obtained using field spectra re-sampled to WorldView-2, Quickbird, 
RapidEye and Sentinel 2 sensor resolutions for both training and testing data-sets are shown in  
Table 2. RF produced the highest OA (84.04%) and kappa value of 0.76 for Sentinel-2. On the other 

Figure 4. optimization of the random forest parameters (mtry and ntree) using the grid search procedure. the ooB method was 
used to determine the error rates for the different combinations; 60 combinations for Quickbird (a), 240 combination for Sentinel-2  
(B), 160 combinations for WorldView-2 (c) and 80 combinations for rapideye (D).
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hand, the lowest OA (76.77%) was achieved when Quickbird was used. It is also worth noting that the 
difference between the results of training data-set and the test data-set for all sensors is about ± 2%, 
which can be considered insignificant.

Results on Table 3 provide further details about the confusion matrix, PA and UA accuracies 
achieved for Sentinel-2, the multispectral sensor with the highest accuracy.

3.3. Measuring the importance of multispectral variables (bands) in detecting maize GLS 
stages in maize

Figure 5 shows the most important bands in each sensor for detecting GLS in maize leaves. The impor-
tance of each band was measured using mean decrease in accuracy in RF algorithm (Figure 5). The 
most important bands are located at different electromagnetic positions for each sensor. For example, 
the red edge (705 nm) was found to be the most important (highest mean decease in accuracy) band 
for Sentinel-2. Using the WorldView-2, the yellow band located at 608 nm was the most important. The 
most important band for detecting the GLS using Quickbird was the red (660 nm), while red (658 nm) 
and the red edge bands (710 nm) were the most important bands when RapidEye was used (Figure 5).

4. Discussion

The GLS is considered one of the most serious diseases affecting maize production in many countries, 
particularly in North America and Africa. Timely detection and control of GLS requires intensive 
spatial data collection for designing optimal mitigation strategies (Mulla 2013). A number of studies 
have demonstrated the importance of remote sensing data in defining the spatial variability of pests 
and diseases in crops (Zhang et al. 2003; Qin and Zhang 2005; Falkenberg et al. 2007; Yang 2012). The 
main objective of this study was to test the use of the spectral resolution of the newly developed mul-
tispectral sensors in detecting the severity of GLS in maize. Results indicate that different stages of GLS 
can be reliably discriminated using the newly developed multispectral sensors such as WorldView-2, 
Sentinel-2 and RapidEye.

Table 2. random forest classification overall accuracy (oa) and Kappa coefficient for detecting maize grey leaf spot disease using 
ground-based hyperspectral data and resampled multispectral data (simulated to four sensors spectral resolutions). the classifica-
tion model was trained on the 2013 data and its accuracy was assessed using the independent 2014 test data.

Sensor Testing data

Hyperspectral oa KaPPa
FieldSpec® 3 spectroradiometer 89.2 0.83

Multispectral
Worldview-2 82.16 0.73
Quickbird 76.77 0.66
rapideye 81.22 0.72
Sentinel-2 84.04 0.76

Table 3. classification confusion matrix of random forest (rF) classifier for detection the three studied maize grey leaf spot (GlS) 
infection stages (H: healthy, M: moderate and S: severe) using the resampled Sentinel-2 bands for the 2014 data set.

notes: overall accuracy (%) = 84.04; Producer’s accuracy (%) = 89.39; User’s accuracy (%) = 86.76; Kappa = 0.76.

Class 

2014 test data 

H M S Total

H 59 6 3 68
M 2 64 4 70
S 5 14 56 75
total 66 84 63 213

GEOCARTO INTERNATIONAL  1231 



The spectral and spatial resolutions of the newly developed multispectral sensors offer significant 
potential in real-time data provision, necessary for precision agriculture. The newly developed mul-
tispectral sensors can be considered a compromise between multispectral and hyperspectral sensor 
limitations, useful for the adoption of improved agricultural management practices. Hyperspectral 
remotely sensed data are costly and difficult to process. However, it provides the ability to investigate 
spectral response of different vegetation stresses in narrow spectral bands (10 nm wide) within a wide 
spectral range, which is otherwise masked by relatively cheap, broad and limited bands inherent in 
existing multispectral sensors.

Results in this study suggest that the new generation Sentinel-2’s 705  nm red edge band, the 
WorldView-2’s 608 nm yellow band, the Quickbird’s 660 nm red and RapidEye’s 710 nm red edge 
bands are all suitable for detecting GLS disease. However, the re-sampled Sentinel-2 data-set can 
discriminate healthy from GLS-infected leaves with highest OA (84%) and a Kappa value over 0.76. 
Results in this study also suggest that the WorldView-2 is valuable for detecting GLS under field con-
ditions (OA of 82% and Kappa of 0.73).

These results demonstrate for the first time that the Sentinel-2 wavebands are strategically posi-
tioned for agricultural applications, suitable for discriminating healthy from GLS-infested maize as 
well as different levels of infestation. Conversely, the OA achieved in this study suggests that existing 
multispectral sensors such as QuickBird, RapidEye and WorldView-2, in comparison to Sentinel-2, are 
less optimally positioned and therefore less suited for detecting GLS infestation. Overall, our results 
highlight the value of multispectral image data in detecting and mapping plant diseases.

Although the Sentinel-2 achieved the highest accuracy, due to its high spectral resolution (13 bands), 
its spatial resolution (10 m) is coarser than the WorldView-2 (2 m). Thus, WorldView-2 provides a 
viable up-scaling option for mapping GLS, as it is characterized by a higher spatial resolution and an 
acceptable level of classification accuracy achieved with less bands than Sentinel-2.

Our results concur with findings from literature (Moshou et al. 2004, Yang et al 2005, Graeff et al 
2006). For instance, Moshou et al. (2004) reported that the reflectance at 680, 725 and 750 nm could 

Figure 5. the importance of each band for different sensors used in this study for distinguishing the three maize GlS infection stages 
using random forest (rF).
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be used to detect yellow rust in winter wheat while (Yang et al. 2005) established that the band centred 
at 694 nm can be used to detect green bug infestation. (Graeff et al. 2006) successfully distinguished 
powdery mildew infested from healthy wheat leaves with reflectance at 490, 510, 516, 540, 780 and 
1300 nm during early infestation.

The high accuracy achieved in this study contributes towards the development of operational 
remote sensing systems on advanced multispectral sensors. This approach is valuable for mapping 
crop diseases, particularly in Africa where high cost of hyperspectral image data-sets has impeded 
wide adoption of remotely sensed imagery. These findings may be useful in assessing the spectral 
configurations of new sensors under development and inform spectral adjustments and optimization 
for specific applications on the up-scaled image data (Mutanga et al. 2005; Adjorlolo et al. 2012).

5. Conclusions

This paper aimed at discriminating GLS severity in maize using field spectrometry data re-sampled 
to different multispectral sensor resolutions.

The results demonstrate that:

(1)  Field symptoms of GLS in maize can be detected using hyperspectral field spectra re-sampled 
to different multispectral sensor resolutions.

(2)  Using RF algorithm, Sentinel-2 and WorldView-2 have a higher and acceptable accuracy
level, respectively, in discriminating different maize GLS stages using the red, red edge and
SWIR regions of the spectrum.

Overall, our results open up opportunities for discriminating GLS in maize using multispectral 
sensors such as Sentinel-2 and WorldView-2. We however recommend that more studies should be 
pursued to investigate the feasibility of using multispectral sensors and their spatial resolutions to 
detect and map the spatial distribution of maize GLS severity. The use of new generation multispectral 
sensors offer a great opportunity for detection and mapping of GLS from space, offering real-time 
operational data, ultimately improving strategies for mitigating crop damage and yield loss.
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