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ABSTRACT 

Maize is one of the most important subsistence and commercial crops in the world. In Africa, it 
is regarded as one of the most popular food crops. Recently however, significant losses due to 
Phaeosphaeria leaf spot (PLS) infestation have been reported. Therefore, techniques for early 
detection of PLS infestation are valuable for mitigating maize yield losses. Recently, remotely sensed 
datasets have become valuable in crop assessment.  In this study, we sought to detect early PLS 
infestation by comparing the performance of commonly used higher spatial resolution sensors 
(WorldView, Quickbird, Sentinel series 2, RapidEye and SPOT 6) based on their spectrally resampled 
field spectra. Canopy training spectra were collected on leaves with signs of early infestation and 
healthy leaves spectral characteristics used for comparison. Training data was collected in 2013 
growing season while test data was collected under similar conditions in 2014.  The Random Forest 
algorithm was used to establish the Kappa and overall, user and producer's accuracies. Results 
showed that the RapidEye sensor with an overall classification accuracy of 86.96% and Kappa value 
of 0.76 performed better than the rest of the sensors while the Red, Yellow and Red-Edge bands were 
most useful for detecting early PLS infestation. The value of the RapidEye sensor in detecting early 
PLS infestation can be attributed to the optimally centred Red Red-Edge bands sensitive to changes 
in chlorophyll content, a consequent of PLS infestation on maize leaves. The study provides valuable 
insight on the value of existing sensors, based on their sensor characteristics in detecting early PLS 
infestation.  

Keywords: Phaeosphaeria leaf spot, Remote Sensing, sensors Random Forest, Variable 
importance 

1. Introduction 

Globally, maize is regarded as one of the most important subsistence and commercial crops. In 
Africa, a number of authors (eg Derera et al. 2007, Sibiya et al. 2011 and Benhin 2008) note that  
maize remains the most important food crop. However, recently maize production in the tropical and 
sub-tropical regions of the continent has significantly declined due to the Phaeosphaeria leaf spot 
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(PLS) disease infestation (Gonçalves et al., 2013; Moreira et al. 2009). The disease affects maize 
foliar and is caused by the ascomycete fungus Phaeospharia maydis (Henn.). Initially spotted in India, 
studies show that it has spread to North and South America, and recently east and southern Africa 
(Gonçalves et al., 2013; Moreira et al., 2009; Carson, 2005; Sibiya et al., 2011; Derera et al., 2007). 
The infestation often leads to premature leaf desiccation and consequent reduction in the crop cycle, 
decrease in grain volume and mass and under severe conditions death of the whole plant (Gonçalves 
et al., 2013; Paccola et al., 2001).  Previous studies have shown that substantial amount (11-60%) of 
grain yield is lost in cultivars sensitive to PLS (Derera et al., 2007; Paccola et al., 2001). Whereas 
losses due to PLS have not been determined in South Africa, agronomic conditions and preferred 
varieties suggest vulnerability to extensive infestation and possible significant yield losses. 
Consequently, early detection of infestation and adoption of appropriate mitigation measures is 
necessary for sustaining subsistence and commercial production. 

Traditionally, field visual surveys have been used to determine PLS infestations. This method 
requires constant monitoring and is often costly, time consuming and impractical on extensive fields 
(Al-Hiary et al., 2011; Liu, et al., 2008). However, there has been an increased awareness on the 
value of remotely sensed datasets, particularly crop leaf spectral reflectance characteristics for 
agricultural applications (Chen et al., 2010; Abdel-Rahman and Ahmed, 2008). Recent advances in 
sensors on satellite, aerial and ground based platforms in concert with robust algorithms and analysis 
techniques have further made it possible to reliably determine crop bio-physical status, due to among 
others change in agronomic conditions and pest and disease infestation (Upadhyay et al., 2012; Pinter 
et al., 2003). The adoption of remotely sensed datasets in disease mapping has particularly attracted 
a lot of interest (Estep et al., 2004; Jackson et al., 1986; Baret et al., 2007). Such applications are 
premised on the fact that disease infestation cause physiological alteration on leaves, hence a change 
in spectral reflectance (Estep et al., 2004; Jackson et al., 1986; Baret et al., 2007).  

Whereas there has been a recent proliferation of "new generation" multispectral sensors (e.g. 
WorldView-2, Sentinel series 2 and RapidEye) with higher spectral resolution in addition to 
traditional sensors (e.g. Quickbird and SPOT), choosing the most suitable sensor and bands for early 
detection of PLS infestation remains a challenge. This is because existing sensors are characterised 
by a different number of bands and unique spectral configurations, which are sensitive to different 
vegetation properties. Therefore, in this study, we sought to determine the potential of commonly 
used and proposed sensors for detecting early PLS infestation. Specifically, we sought to compare 
the performance of the commonly used multispectral sensors and the importance of each of their 
respective bands in detecting early PLS infestation by resampling hyperspectral field data.  

2. Materials and methods 

2.1. Study Area and field spectral data collection 

This study was conducted at the KwaZulu-Natal Department of Agriculture - Cedara Experimental 
Farm (29°32 S and 30°16 E), in Pietermaritzburg, KwaZulu-Natal province, South Africa (Figure 1).  
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Figure1. The generalised study area showing the Cedara experimental farm. 

Field spectral data was collected on 5th of January 2013 and 10th of January 2014 from 138 plots 
measuring 3m, 0.75m and 0.3m and 0.75m intra row spacing and row length, respectively at full 
canopy cover.  Plots for the study were chosen based on the quantity of leaves with signs of early 
PLS infestation using optical evaluation (Sibiya et al., 2011).  Plots with less than 10% of the leaves 
with PLS were regarded as healthy while plots with between 80 to 100% of the leaves with signs of 
PLS were regarded to be in the early stage of infestation.  

Spectral reflectance for early stage PLS maize canopies were acquired using an Analytical Spectral 
Device (ASD Inc, Boulder, CO, USA) FieldSpec®3spectrometer. Spectral data was gathered under 
sunny and cloud-free conditions between 10h00 am and 14h00 pm local time in the two growing 
seasons (5th of January 2013 and 10th of January 2014). The ASD spectral measurement range is 350-
2500 nm, measuring radiation at 1.4 nm intervals for 350-1000 nm and 2.0 nm for 1000-2500 nm 
spectral regions. Fifteen to twenty measurements were taken from every plot.  The Spectral 
measurements were then averaged to represent the ultimate spectral measurements of each plot. In 
every 10 to 20 computations, a white based spectral measure was executed on the calibration panel 
to ameliorate any change in atmospheric conditions and sun irradiance. In total, 66 plots of early 
infestation and 72 plots of the healthy maize crop were represented separately.  Figure 2 provides a 
visual depiction of healthy leaves, early PLS infestation and respective spectral characteristics. On 
the 10th of January 2014 (the following growing season) field spectral measurements were acquired 
in the same location using a similar procedure and comparative conditions. Spectral measurements 
of 60 and 62 plots for early infestation and healthy maize crop were acquired separately.  
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Figure 2. Examples of visual status and spectra of healthy maize (a) and early stage of 
Phaeosphaeria leaf spot (PLS) infestation (b).  

2.2. Field spectra to sensor resampling 

Spectral reflectance data was resampled to SPOT6, RapidEye, Quickbird, WorldView-2 and 
Sentinel-2 to band centres using ENVI 4.7 image processing software (Table1). The method used a 
Gaussian model with a full width at half maximum (FWMAP) equal to the band spacing provided 
(Mutanga and Skidmore 2005). Spectral reflectance was resampled to the popular multispectral 
sensors to determine if their respective spectral bands can be used to map the early PLS infestation. 
If the results are positive, the mapping and monitoring of PLS could then be operational at lower cost 
using these sensor platforms compared by the use of hyperspectral data.  

 

Table1. Spectral bands and band centres (WorldView-2, Quickbird, Sentinel-2, RapidEye and 
SPOT 6).  

Sensor 
Band 

description 

Spectral 
range 
(nm) 

Band 
centre 
(nm) 

WorldView-2 Coastal 400-450 425 
 Blue 450-510 480 
 Green 510-580 545 
 Yellow 585-625 605 
 Red 630-690 660 
 Red-Edge 705-745 725 
 NIR 1 770-895 832 
 NIR 2 860-1040 950 

Quickbird Blue 450-520 485 
 Green 520-600 560 
 Red 630-690 660 
 NIR 760-900 830 
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Sensor 
Band 

description 

Spectral 
range 
(nm) 

Band 
centre 
(nm) 

Sentinel series 2 Aerosols 433-533 443 
 Classical blue 458-523 490 
 Green 542-578 560 
 Red 650-680 665 
 Red-Edge 1 695-713 705 
 Red-Edge 2 733-748 740 
 Red-Edge 3 773-793 783 
 Red-Edge 4 785-900 842 
 NIR 855-875 865 
 Water Vapour 935-955 945 

RapidEye Blue 440-510 475 
 Green 520-590 555 
 Red 630-685 658 
 Red-Edge 690-730 710 
 NIR 760-850 805 

SPOT 6 Blue 455-525 490 
 Green 530-590 560 
 Red 625-695 660 
 NIR 760-890 825 

2.3. Statistical analysis 

Random Forest (RF) algorithm was used to classify and predict healthy maize and the early PLS 
infestation. Random Forest is a bagging process in which various classification trees are created with 
reference to random subsets of samples arising from training data (Adelabu et al., 2013). The 
algorithm classifies and measures important variables in high dimensional data such as hyperspectral 
data and therefore decreases the “curse of dimensionality” without losing important information in 
the dataset (Adam et al., 2012). For an exhaustive explanation of the Random Forest algorithm see 

Breiman (2001). In this study, the RF classifications were computed using the ‘rattle’ package 
available in R software and used to generate confusion matrices that provide overall accuracy (OA), 
user accuracy (UA) and producer accuracy (PA). Cohen’s Kappa coefficient were calculated using 
the formula:  

K= Pr(𝑎𝑎)−Pr(𝑒𝑒)
1−Pr(𝑒𝑒)

 

Where Pr(a) is the actual detected agreement and Pr(e) represents unpredicted agreement 
(Hallgren, 2012). Kappa gives measured values of agreement between varying observations (Viera 
and Garrett, 2005). It provides a determination of variability that range from -1 to +1 where +1 
represents absolute agreement between different observations, 0 representing an agreement that can 
happen by coincidence and -1 represent lower possibility of agreement between observations (Viera 
and Garrett, 2005). 
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2.4. Determination of variable importance 

Variable importance in large datasets identifies a variable that yields outstanding performance 
compared to other variables. Variable importance in RF computes different measures such as how 
often a variable is determined, the Gini significance and permutation significance. The permutation 
importance is considered better than other measures because it assesses value of the variable using 
mean decrease accuracy based on out-of-bag postulations (Breiman, 2001). The RF can compute the 
significant variables through the mean decrease in accuracy. Values of mean decrease in accuracy 
that are high indicate greater significance of that particular variable while low values indicate low 
significance. Typically, as aforementioned, all bands in the spectrum are focused at a specific range 
and are sensitive to specific attributes of feature/s being mapped. 

3. Results 

3.1. Accuracy Assessment 

Table 2 shows the accuracy for Quickbird, RapidEye, Sentinel-2, SPOT 6 and WorldView-2 
sensors. The overall accuracy refers to observations that have been correctly classified. User accuracy 
refers to probability that an observation classified represents a category on the ground while producer 
accuracy refers to an observation being classified. The overall accuracy values for training data 
ranged from 83.33% to 89.13% while overall values for test data ranged from 79. 71% to 86.96%. 
Kappa values for training data sets ranged from 0.62 to 0.78 while the accuracy for test data ranged 
from 0.59 to 0.76. The Kappa values indicate the level of agreement between the predictions and the 
classified observations. The highest overall accuracy in the classification of the early stage of PLS 
was achieved using RapidEye (overall accuracy of 86.96%, producer accuracy of 87.50%, user 
accuracy of 87.50 and Kappa of 0.76). The lowest overall accuracy on the other hand was obtained 
using SPOT 6 (overall accuracy of 79.71, producer accuracy of 79.17, user accuracy of 81.43 and 
Kappa of 0.59 (see Table 2). 

Table2. Accuracy Assessment for early stage Phaeosphaeria leaf spot (PLS) infestation using 
different sensors.  User Accuracy (UA), Producer Accuracy (PA), Overall Accuracy (OA). Healthy 
Stage (HS), Early Stage (ES). 

                                                        Training data
Sensor OA                     UA                       PA KAPPA

HS ES HS ES
Quickbird 83.33 84.85 81.94 81.16 85.51 0.67
RapidEye 88.41 89.39 87.5 86.76 90 0.77

Sentinel Series 2 81.16 78.79 83.33 81.25 81.08 0.62
SPOT 6 82.61 83.33 81.94 80.88 84.29 0.65

WorldView 2 89.13 90.91 87.5 86.96 91.3 0.78

 



South African Journal of Geomatics, Vol. 7. No. 1, AARSE 2017 Special Edition, January 2017 

7 

                                            Test data
Sensor OA                      UA                       PA KAPPA

HS ES HS ES
Quickbird 82.61 81.82 83.33 81.81 83.33 0.65
RapidEye 86.96 86.36 87.5 86.36 87.5 0.76

Sentinel Series 2 80.43 75.76 84.72 81.97 79.22 0.61
SPOT 6 79.71 80.3 79.17 77.94 81.43 0.59

WorldView 2 84.78 84.85 84.72 83.58 85.92 0.70

 

3.2. Variable importance 

Figure 3 shows the performance of sensors rated in terms of variable importance of their respective 
spectral bands. Based on the mean decrease percentages, the Red band was identified as the most 
significant in detecting early PLS infestation. Other significant bands include the Yellow and the Red-
Edge bands. 

 

Figure 3. Variable importance of (a) Quickbird, (b) SPOT 6, (c) RapidEye, (d) Worldview-2 and (e) 
Sentinel-2. (MDA = Mean Decrease in Accuracy).  
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4. Discussion 

This study sought to discriminate between early PLS infestation and the healthy maize crop by 
resampling hyperspectral data to SPOT 6, Quickbird, RapidEye, Sentinel-2 and WorldView-2. 
Spectral resampling was performed using the Random Forest, a robust algorithm for predicting and 
classifying variables. Results in this study show that RapidEye, with an overall accuracy of 86.96% 
and Kappa of 0.76, offer better detection of early PLS infestation than other sensors. These findings 
are consistent with Adam et al. (2012) who found that using relevant bands without redundancy 
increases classification accuracy in vegetation mapping. According to Adam et al. (2012), the 
RapiEye's Red and Red-Edge bands are particularly valuable in vegetation analysis. Whereas the 
WorldView-2 and Sentinel-2 are also characterised by the Red and Red-Edge bands, their overall 
classification accuracy, 84.78 and 80.43, respectively and were lower in detecting early PLS 
infestation than the RapidEye.  

This study showed that the RF algorithm could be used to determine the value of each of the bands 
in the commonly used sensors in determining early PLS infestation. Variable importance showed that 
the Red band in the visible region of the spectrum, the Yellow band and the Red-Edge band were 
most valuable in detecting early PLS infestation. A number of studies (e.g. Digital Globe, 2010, 
Zhang et al., 2005 and Apan et al., 2005) have noted the value of the Red band in vegetation studies. 
Zhang et al. (2005) for instance noted that the   Red band was sensitive to crops infested by diseases 
while Apan et al. (2005) found that the Red band in the visible region was valuable in predicting 
Alternaria solani fungal infection on  tomatoes. The Yellow band's ability to determine early PLS 
infestation can be attributed to its ability to identify “yellowness’’, a common characteristic in 
diseased plants (Digital Globe, 2010; Oliveira et al., 2010 ). The Red-Edge band has the ability to 
assess plant nutrition, health and discriminate vegetation species (Filella and Peñuelas, 1994; Pinar 
and Curran, 1996; Daughtry et al., 2000; Rodriguez et al., 2006). According to Eitel et al. (2011), the 
Red-Edge band can determine both the amount of chlorophyll and Nitrogen, the main determinants 
of the crop health. 

Results obtained from this study demonstrate the potential of multispectral resolution imagery, 
such as RapidEye in early detection of PLS infestation. The WorldView-2 is also recommended for 
PLS detection for its three important bands (Red, Yellow and Red-Edge). This study provides an 
indication of the most useful sensors for PLS infestation. However, for image applications, this must 
results should be treated with caution as spatial resolution is also known to significantly influence 
mapping accuracy. The influence of spatial resolution on the optimum sensor's (eg RapidEy) mapping 
accuracy needs further investigation.  

5. Conclusion 

The aim of this study was to detect early PLS infestation by resampling spectral data to different 
multispectral sensors. Results in this study showed that early PLS infestation can be better detected 
using RapidEye's multispectral bands. The significant bands for early PLS infestation were the Red, 
Yellow, and the Red-Edge bands. Using the Random Forest algorithm, an overall accuracy of 86.96% 
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on RapidEye image to detect early PLS infestation was achieved. This study demonstrates the 
potential of the Random Forest algorithm in determining the useful sensor and sensor characteristics 
for early detection of PLS infestation, critical for image up-scales and timely adoption of mitigation 
measures.  
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