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Mycotoxins are harmful to health and mainly arise from ear rots, affecting maize in the field. This work 
analysed the effect of the cropping system on ear rot and final effect on mycotoxins from four sub-
counties (districts) of western Kenya, Butere, Kisumu, Siaya and Vihiga, where plots comprising maize 
planted either as pure stand or in mixture with legumes, predominantly common bean treated as “Maize 
Monocrop” (MM), were used as control for those of climate-smart push-pull strategy treated as “Push-
Pull” (PP). Symptomatic and asymptomatic maize ear samples were analysed for total aflatoxin (AF), 
total fumonisins (FB), deoxynivalenol (DON) and zearalenone (ZEA) using Enzyme-Linked 
Immunosorbent assay (ELISA). Cropping system had very high significant effect on ear rot incidence 
and severity. In general, low incidence was observed in PP (7.3 %) than MM (20.8 %). Similar trend was 
also observed on ear rot severity in PP and MM as follows: diplodia (1.15 and 1.85), gibberella (0.62 and 
0.84), aspergillus (0.09 and 0.25), fusarium (0.19 and 0.68) and penicilium (0.03 and 0.05). A high 
proportion of ZEA (100%), AF (93.3%), DON (80.0%) and FB (65.9%) were observed in symptomatic 
samples than in ZEA (90.3%), DON (51.6%), FB (38.7%) and AF (3.2%) in asymptomatic samples. Low 
ear rot incidence and severity was more in PP than MM, and proportion of mycotoxins on asymptomatic 
ears; suggesting the potential of cropping system in managing ear rots and ultimately limiting 
mycotoxins. Thus the study highlighted the need to adopt cropping systems to deal with mycotoxins, 
and also recommends surveillance and awareness on emerging mycotoxins: ZEA and DON. 
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INTRODUCTION 
 
Maize ear rots are fungal infections with worldwide 
distribution  and   presence  in  all  agro-ecologies  where 

maize is grown (Dragich and Nelson, 2014). Key fungal 
genera  prominent  for  maize  ear  rot  infections  in  sub-  
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Saharan Africa include Aspergillus, Fusarium, 
Sternocarpella and Penicilium (Kapindu et al., 1999), 
causing estimated yield losses ranging between 10 and 
30% (Kapindu et al., 1999; Ajanga and Hillocks, 2000; 
Bigirwa et al., 2007). Ravages caused by the ear rots are 
aggravated by mycotoxins, which are increasingly 
becoming the main sources of grain losses globally. Four 
agriculturally important mycotoxins with high occurrence 
are fumonisins, zearalenone, deoxynivalenol and 
aflatoxins (Gxasheka et al., 2015). These mycotoxins 
pose high risks to human and animal health (Zain, 2011), 
and have led to stringent regulation of their levels in food 
and feed in global grain trade (Otsuki et al., 2001).  

A number of pre- and post-harvest measures have 
been advanced to manage ear rots and mycotoxin 
contamination in grain crops (Hell et al., 2008), with 
sorting as a post-harvest measure being key. Studies 
have directly linked mycotoxin reduction to removal of 
fungal ear or kernel rot (Balconi et al., 2014), making 
sorting a primary tool for management of mycotoxins and 
quality enhancement of the harvested crop (Wild et al., 
2016). Moreover, uses of normal grain cleaners, largely 
in developed economies, have resulted in 50-60 % 
reduction of fumonisins and aflatoxins in some countries 
(Malone et al., 1998; Pacin and Resnik, 2012). Further 
improvement on grain sorting has also been made 
through development of high-capacity electronic optical 
sorters which target kernel discoloration and mycotoxin 
fluorescence (Pearson et al., 2010). Similar results have 
been obtained in Africa, where for instance, reports 
indicate 40% reduction of aflatoxin concentration through 
removal of moldy, damaged and broken grains in Benin 
(Fandohan et al., 2005). In addition, reports indicate 20% 
reduction of fumonisins in Tanzania, Kenya and South 
Africa as a result of sorting (Kimanya et al., 2009; van der 
Westhuizen et al., 2010; Mutiga et al., 2014). However, 
owing to the fact that 80 % of arable land (Wiggins, 2009) 
and 75% of total maize production (Nyoro et al., 1999) 
are from smallholders farmers, mycotoxin recycling and 
high exposure to consumers are preeminently promoted 
by alternative use of infected ears by fungal rot (Bigirwa 
et al., 2007; Mukanga et al., 2011). Since ear rot attacks 
begin in the field, pre-harvest measures can ensure 
achievement of good yields and grain quality in terms of 
mycotoxin reduction (Munkvold, 2003).  
Generally, factors including fungal taxon, humidity, 
rainfall, insect damage, drought, irrigation and maize 
germplasm influence incidence of maize ear rots in the 
field (Parsons, 2008).  Gibberella and diplodia ear rots, 
caused by Fusarium graminearum and Stenocarpella 
maydis, respectively, are encouraged by high rainfall, 
susceptible crop genotypes, continuous maize cultivation 
and poor crop residue management (Marasas, 2001). 
The recurrence of fumonisin and aflatoxin contamination 
in tropical regions, make fusarium and aspergillus ear 
rots, caused mainly by Fusarium verticillioides and 
Aspergillus flavus, respectively, of high concern; although 
diplodia  ear  rot  exceed  them  on  incidence  in  several  
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studies in maize growing regions (Bigirwa et al., 2007; 
Mukanga et al., 2010). Among the favorable factors for 
Fusarium and Aspergillus ear rots are water stress, insect 
damage and nutritional status of soil (Marasas et al., 
2001). Empirically, strong correlation of ear rots with 
insect attack, and correlation of silk-cut symptom with 
incidence of immature thrips population has been 
reported (Parsons, 2008; Ajanga and Hillocks, 2000). 
Thus reduction in insect damage has resulted in reduced 
ear rots and mycotoxin attacks. These measures are 
aimed to control damage to crops by insect pests, thus 
contributing to the management of ear rots and 
mycotoxin attacks on harvested crop (Munkvold et al., 
1997).  

Push-push technology, a novel companion cropping 
system where maize is intercropped with insect repellent 
forage legumes in the genus Desmodium and with 
grasses such as Brachiaria planted around this intercrop 
effectively controls stemborers, the key pests of cereals 
in eastern Africa (Khan et al., 2014; Midega et al., 
2015a,b). The technology, which is practiced by over 
130,000 smallholder farmers in eastern Africa to date, 
has the potential to contribute to management of ear rots 
and mycotoxin contamination in maize in the region. This 
study analyze the influence of push-pull technology on 
incidence and severity of maize ear rots in maize and 
quantify the level, incidence and range of mycotoxins on 
fungal infected (symptomatic) and clean (asymptomatic) 
maize ears.  

 
 
MATERIALS AND METHODS 

 
Study site 

 
The study was conducted in Butere (0° 09ʹ to 0° 20ʹ S, 34° 29ʹ to 
34° 33ʹ E), Vihiga (0° to 0° 15ʹ S, 34° 30ʹ to 35° 0ʹ E), Kisumu (0° 15ʹ 
to 0° 25ʹ S, 34° 55ʹ to 34° 67ʹ E ) and Siaya (0° 26ʹ to 0° 18ʹ S, 33° 
58ʹ to 34° 33ʹ E ) sub-counties (districts) of western Kenya, where 
push-pull technology has been widely disseminated and has been 
practiced by smallholder farmers since the year 2000 (Figure 1) 
(Khan et al., 2011). The study sites are characterized by a bimodal 
rainfall pattern and forms part of the larger grain basket of Kenya. 
The region has the highest concentration of smallholder farmers 
who grow maize largely in mixed stands with legumes and in 
combination with livestock (Khan et al., 2011). Occurrence of ear 
rots is one of the key constraints affecting growing and utilization of 
maize in the region (Ajanga and Hillocks, 2000). Other serious 
constraints also include insect pests, principally cereal stemborers, 
striga weeds and poor soil fertility (Midega et al., 2015b). Studies 
have shown a strong and positive correlation of ear rots (r=0.87) 
with insect damage (Ajanga and Hillocks, 2000). The current study 
was conducted in farmers' fields during the short (September to 
December) rainy season of 2014 and the long rainy season (March 
to August) of 2015, with treatments comprising maize grown either 
in push-pull or in sole stands (monocrop). In both plots, maize was 
planted at inter and intra-row spacing of 75 and 30 cm, respectively. 
The push-pull treatment had maize intercropped with greenleaf 
desmodium (Desmodium intortum (Mill.) Urb.), with Brachiaria cv 
Mulato II grown as a border crop around this intercrop at a spacing 
of 50 cm within and 50 cm between rows. Farmers in the sample 
districts  planted  their  local  maize  varieties,  ‘Nyamula’  and ‘Jowi’  
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 Figure 1. Map showing study sub-counties (districts) in western Kenya. 
org/10.1016/j.jscs.2010.06.006. 

 
 
 

(Midega et al., 2015b), with only a small proportion planting medium 
maturity hybrids WH505. 
 
 

Sampling and determination of incidence and severity of maize 
ear rot  
 

A total random sample of 224 maize plots was picked from a 
sampling frame comprising push-pull and maize monocrop plots of 
equal number (112) in the study sub-counties. Each plot was 
surveyed for ear rot incidence and severity through a randomized 
sampling process during each cropping season, short rain and long 
rain. Siaya sub-county was however not surveyed during the 
second cropping season as only a few farmers planted maize 
during the season. At the beginning of harvest, 100 maize cobs 
were randomly picked per plot from which ear rot incidence was 
determined by physical count as described by Mutitu et al. (2003). 
A score of severity on a scale of 0-5 where: 0= No infection, 1=1-
10%, 2=11-25%, 3=26-50%, 4=51-75% and 5=76-100% infection 
was used to estimate severity (Jeffs, 2002). Compendium with well-
illustrated photographs of maize ear rots was used and tested 
before identification and characterization. Samples of infected 
(symptomatic) and clean (asymptomatic)  maize ear were also 
collected and transported in a coolbox to the laboratory at the 
international centre of insect physiology and ecology (icipe), 
Thomas Odhiambo Campus at Mbita Point in western Kenya. 
These samples were further dried in an open air to moisture level of 
13% measured using moisture meter (Model KM-36G, AWR Smith 
Process Instrumentation cc, South Africa). Samples were then hand 
shelled and milled before storage in a refrigerator (-4°C), waiting 
further mycotoxin analysis.  
 
 

Mycotoxin extraction and analysis 
 

Mycotoxin extraction and assay was conducted using ELISA 
commercial kit (Helica Biosystem Inc., Fullerton, CA, USA) for total 
aflatoxin, Cat. No.941AFLO1M-96; total fumonisin, Cat. 
No.951FUM01C-96; zearalenone, Cat. No.951ZEA01N-96; and 
deoxynivalenol, Cat. No.941DON01M-96 as described by Gutleb  et 

al. (2015). A total of 20 mg of sub-samples of maize flour was 
extracted in 100 ml of solvent. Total aflatoxin was extracted in 70% 
methanol, total fumonisin and zearalenone in 90% methanol, and 
deoxynivalenol in distilled water. The mixture was blended and 
filtered with Whatman filter paper number one. Filtrate was used to 
measure for total aflatoxin directly, but diluted with distilled water for 
total fumonisins (1:20) and deoxynivalenol (1:10), and 70% 
methanol for zearalenone (1:10). The ELISA assay was conducted 
according to manufacturer’s instructions. Optical density (OD) of the 
reaction for AFB, FB, ZEA and DON was measured using a 
microplate reader (EZ Read 400, biochrom) at a wavelength of 450 
nm. Standard curve for each mycotoxin tested was generated using 
OD of five standards with known concentration as provided in the 
kit. Test (unknown samples) value was then determined by 
interpolation from the standard curve. Sample was tested within the 
range of 1-20 ppb for total AF; 100-6,000 ppb, total FB; 15-500 ppb, 
ZEA; and 500-10,000 ppb, DON. Sample which had exceeded 
upper limit of quantification was subjected to additional extract 
dilution. The final result was converted from parts per billion (ppb) to 
equivalent microgram per kilogram (μg/Kg).  
 
 
Data analysis 
 
Effects of cropping system and season on ear rot incidence were 
analyzed using generalized linear model, while ear rots severity 
were analyzed by analysis of variance using R software version 
3.3.1 (R Core Team, 2013). Mean, frequency and percentage of 
samples contaminated with mycotoxins were presented by simple 
descriptive statistic using SPSS version 22 (IBM Corp, 2013).  

 
 
RESULTS 
 
Effect of cropping system on incidence and severity 
of maize ear rots 
 
The study revealed that cropping system had a significant  



 
 
 
 
effect (p ≤ 0.001) on the incidence of ear rots as shown in 
Table 1. Generally, there was high total ear rot incidence 
(20.8%) observed with sole maize than with push-pull 
system (7.3%). Similarly, there were significantly higher 
(p≤0.001) incidences of each of the ear rot types with 
sole maize than with push-pull. The sequence of 
incidence of ear rot types in sole maize and push-pull 
from highest to lowest was as follows: Diplodia < 
Gibberella < Aspergillus < Fusarium < Penicillium. The 
respective incidences of ear rots in sole maize and push-
pull were 7.31 and 3.33%, Diplodia; 4.48 and 1.30%, 
Gibberella; 2.09 and 0.65%, Aspergillus; 0.51 and 0.21%, 
Fusarium; and 0.40 and 0.11%, Penicillium. The results 
in Table 2 showed that the severities were also 
significantly different (p≤0.001) between the two cropping 
systems; however, they seemed to be influenced by 
incidence of the ear rots. For instance, Diplodia and 
Gibberella ear rots had the highest severities of 1.85 and 
1.15 in sole maize, and 0.84 and 0.62 in push-pull, when 
compared to other ear rots. However, for Aspergillus and 
Fusarium ear rot this seemed not to be the case, as 
Aspergillus had higher incidence than Fusarium, yet it 
had the lower severity rating (0.25 and 0.09) than 
Fusarium (0.68 and 0.19) with sole maize and with push-
pull, respectively. Conversely, insignificant and least 
severities of 0.05 and 0.03 were reported in Penicillium 
ear rot with sole maize and push-pull, respectively.  
 
 
Influence of cropping season on incidence and 
severity of maize ear rots 
 
Short rainy season reported the highest (16.0%) 
incidence of total ear rot compared to the long rainy 
season (10.1%) (Table 1). However, incidence of 
Penicillium, Diplodia and aspergillus ear rots ear rots was 

significantly higher (p0.01) in the long rainy season than 
in the short rainy season. Conversely, incidence of 

Diplodia ear rots was significantly higher (p0.001) in the 
short rainy season than in the long rainy season. In terms 
on incidence levels, the highest ear rot incidence was 
recorded in Diplodia in both short (8.02 %) and long (3.12 
%); while the lowest incidence was recorded in 
Penicillium in the short (0.05 %) and long (0.7 %) rainy 
seasons. Severities of ear rots were mostly insignificant 

with season, except for Penicillium (p0.043). There was 
no significant observable interaction between cropping 
system and season on incidence and severity of all types 
of ear rots (Tables 1 and 2). 
 
 
Ear rots and mycotoxin incidence levels 
 

Incidence of mycotoxins was higher in symptomatic than 
asymptomatic ears samples (Table 3). Based on 
mycotoxin type, the order of decreasing incidence on 
symptomatic  samples  was  zearalenone  (ZEA)  (100%),  
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total aflatoxin (AFB) (93.3%), deoxynivalenol 
(DON)(80.0%) and fumonisins (FB) (65.9%). However, 
asymptomatic ear samples had unexpected high 
incidence of ZEA (90.3%) and DON (51.6%). The 
mycotoxin ranges were also wider in symptomatic (ZEA, 
18.7-688 µg/Kg, AFB, 0.35-28.9 µg/Kg; DON, 0-18,260 
µg/Kg; and FB, 0-8,280 µg/Kg) than in asymptomatic 
(AFB, 0-11.7 µg/Kg; DON, 0-4,360 µg/Kg; FB, 0-6,460 
µg/Kg; and ZEA, 0-405.8 µg/Kg) samples. The respective 
average levels of four quantified mycotoxins, ZEA, AFB, 
DON and FB, were 274.3, 6.1, 3,672 and 4,193.9 µg/Kg, 
respectively on symptomatic samples, showing high 
levels of mycotoxins compared to 48.4, 0.39, 633.9 and 
1,616.8 µg/Kg on asymptomatic ears samples. The 
incidences of samples with mycotoxins beyond 
acceptable levels were also high; higher on symptomatic 
ears with 46.7, 28.9, 50.0 and 56.8% reported for ZEA, 
AFB, DON and FB, respectively. On asymptomatic 
samples, incidences were as low as 3.2% for AF and 
ZEA, and 19.4% for DON and FB. 
 
 
DISCUSSION  
 
Maize ear rots reduce grain yields and quality, with some 
of the causative pathogenic fungi producing mycotoxins 
that pose health risk to humans and livestock (Mukanga 
et al., 2010). Such ear rots are thus an important 
component of the myriad factors responsible for the high 
rates of food insecurity and health complications among 
smallholder farm families in sub-Saharan Africa. There is 
evidence that attack of maize by the ear rots and 
mycotoxins begin before the crop is harvested (Mukanga 
et al., 2011), and the attack is aggravated by grain 
handling and storage conditions (Mutiga et al., 2015). 
Indeed, incidence of ear rots in the study region, pre-
harvest, often exceeds 20% (Ajanga and Hillocks, 2000), 
as confirmed by the current study. Notably, results of the 
current study, which to the best of our knowledge is the 
first study that directly relates ear rots and mycotoxins 
with cropping system under field conditions, 
demonstrated that maize grown under the push-pull 
cropping system suffered significantly less ear rots than 
sole maize, reducing the incidence level to 7.3%.  

Attack of maize by stemborer pests has been shown to 
predispose the grains to ear rots and mycotoxin attack.  
Studies by Ajanga and Hillocks (2000) reported positive 
and high correlation between stemborers and incidence 
of ear rots in maize. Additionally, an interplay of other 
factors such as increase of organic matter (Alakonya et 
al., 2008), cover cropping (Tédihou et al., (2012), and 
intercropping (Vincelli, 1997; Flett and Ncube, 2015) have 
been reported to reduce ear rot incidence in maize. The 
push-pull cropping system effectively controls stemborers 
in maize (Khan et al., 2014; Midega et al., 2015a, b), 
improves soil organic matter content (Midega et al., 2005) 
and  provides other  soil improvement benefits. Therefore  



2228        Afr. J. Agric. Res. 
 
 
 
Table 1. Effects of cropping system, season and their interaction on percentage incidence of ear rot disease. 
 

Factor Level Gibberella x ±SE Fusarium x ±SE Penicillium x ±SE Aspergillus x ±SE Diplodia x ±SE Total incidence  x ±SE 

System Push-Pull (PPT) 1.30±0.1 0.12±0.1 0.11±0.04 0.65±0.1 3.22±0.2 7.30±0.3 

 Maize Monocrop (MM) 4.48±0.2 0.51±0.2 0.40±0.1 2.09±0.2 7.31±0.3 20.8±0.4 

Season Long rains (LR) 2.02±0.1 2.67±0.1 0.70±0.1 1.38±0.1 3.12±0.2 10.1±0.3 

 Short rains (SR) 3.00±0.2 0.22±0.2 0.05±0.04 0.96±0.1 8.02±0.3 16.0±0.4 

System x Season       

 PP- LR 3.21±0.2 0.20±0.1 0.22±0.1 1.58±0.15 4.7±0.2 13.9±0.4 

 PP- SR 2.19±0.2 0.26±0.1 0.21±0.03 1.05±0.14 4.93±0.3 12.1±0.3 

 MM –LR 2.19±0.2 0.26±0.2 0.21±0.1 1.05±0.2 4.93±0.3 12.1±0.5 

 MM-SR 2.19±0.3 0.26±0.3 0.21±0.1 1.05±0.2 3.93±0.5 12.1±0.6 

Source of variation       

System  *** *** *** *** *** *** 

Seasons  Ns *** *** ** *** *** 

System x Season Ns Ns Ns Ns Ns Ns 
 

LR = Long rain; SR = Short rain; MM=Maize Monocrop; PP=Push-Pull; ns=not significant; x=Interaction, 
x  SE, Standard error of the mean.Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05. 

 
 
 

Table 2. Mean severity of ear rots disease by cropping system, season and their interaction. 
 

Factor Level Gibberella x ±SE Fusarium x ±SE Penicillium x ±SE Aspergillus x ±SE Diplodia x ±SE 

System Push-pull 0.62±0.09 0.19±0.05 0.03±0.01 0.09±0.03 0.84±0.1 

 Maize momocrop 1.15±0.09 0.68±0.04 0.05±0.01 0.25±0.03 1.85±0.1 

       

Season Long rains 0.82±0.10 0.45±0.04 0.06±0.01 0.19±0.03 0.89±0.1 

 Short rains 0.95±0.09 0.41±0.04 0.01±0.01 0.14±0.03 1.79±0.1 

System x Season      

 PP – LR 0.58±0.1 0.23±0.06 0.06±0.02 0.11±0.04 0.45±0.1 

 PP – SR 0.66±0.1 0.16±0.06 0.004±0.02 0.06±0.04 1.22±0.1 

 MM-LR 1.06±0.1 0.68±0.06 0.07±0.02 0.27±0.04 1.32±0.1 

 MM-SR 1.23±0.1 0.67±0.06 0.02±0.02 0.22±0.04 2.37±0.1 

Source of variation      

System  *** *** Ns *** *** 

Seasons  Ns Ns ** Ns Ns 

System x Season Ns Ns Ns Ns Ns 
 

LR = Long rain; SR = Short rain; MM=Maize Monocrop; PP=Push-Pull; x=Interaction; Ns=not significant; 
x  SE, Standard error of the mean.Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05. 
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Table 3.Mycotoxin incidence and levels on symptomatic and asymptomatic ear samples. 
 

Mycotoxin 
Symptomatic ears  Asymptomatic ears 

AFB DON FB ZEA  AFB DON FB ZEA 

 Total sample (N) 45 30 44 45  31 31 31 31 

Positive N (%) 29 (93.3) 24 (80.0) 29 (65.9) 45 (100)  1 (3.2) 16 (51.6) 12 (38.7) 28 (90.3) 

Range (µg/Kg) 0.35-28.9 0-18,260 0-8,280 18.7-688  0-11.7 0-4,360 0-6,460 0-405.8 

Average (µg/Kg) 6.1 3,672 4,193.9 274.3  0.39 633.9 1,616.8 48.4 
 

N, Number of ears sample; (%), Percent; AFB, Total Aflatoxin; DON, Deoxynivalenol; FB, Fumonisins (Total fumonisins B1+B2+B3); and ZEA, (Zearalenone); ML, Maximum Limit of 
concentration for mycotoxins. 

 
 
 

the significant reduction in incidence of ear rots 
observed in the push-pull plots might have 
resulted from the multiple ecological benefits 
provided by the technology.   

Planting seasons are important on disease 
forecasting and appropriate for decision by 
farmers (De Wolf et al., 2003). Maize is grown in 
seasons which have varied amount of rainfall and 
temperature, the two major factors for ear rot 
incidence and severity. In Uganda, Diploda was 
the most abundant ear rot found in areas 
receiving high rainfall (Bigirwa et al., 2006), thus 
Bigirwa et al., (2007) reported more ear rot during 
first season.  There was similar observation in 
study, but during the second season and not first 
season which received high rainfall. This may be 
due to wet conditions at silking stage favourable 
for Diplodia and Gibberella infection and 
progression (Miller, 2001; Woloshuk and Wise, 
2010); which was met when late rainfall cessation 
extended beyond silking stage in short rain (Mugo 
et al., 2016). Similarly, push-pull cropping system 
could as well promote cooler conditions due to 
high evapotranspiration from intercrop; thereby 
predisposing ears to potential infection with 
Diplodia or Gibberella ear rot as observed on 
insignificant by slightly high Gibberella and total 
ear rot incidence by interaction of push-pull and 
long rain season.  

Fusarium mycotoxins are abundant in cereals and 
their products (Yazar and Omurtag, 2008), and 
are diverse in nature. They can cause food 
poisoning upon ingestion. Deoxynivalenol 
poisoning is characterized by diarrhea, vomiting, 
nausea, headache, dizziness and fever (Zain, 
2011), while zearalenone is known to cause 
reproductive problems mostly in pigs, sheep and 
human beings (de Rodriguez et al., 1985; Smith et 
al., 1986; Kuiper-Goodman et al., 1987). 

These two mycotoxins have received little 
attention due to their causal agents’ devastation 
on wheat (Zain, 2011) than in maize, and less 
acute outbreaks compared to aflatoxin (Darwish et 
al., 2014) and fumonisin (Fadhohan et al., 2003) 
in the Sub-Saharan region. However, a likelihood 
of high population exposure might be seen from 
high average levels of zearalenone (3,663 µg/Kg) 
and deoxynivalenol (23,586 µg/Kg) tested from 
household maize samples in Tanzania (Degraeve 
et al., 2016). Similarly, these two mycotoxins were 
found in high amount from our samples, with 
difference of less amount of mycotoxin on 
asymptomatic ear compared to symptomatic.  
 
 
Conclusion 
 
Conclusively, impact  of  cropping  system  on  ear 

rot was evident and the system should be 
integrated with other management system to 
control ear rots and mycotoxins. The high 
incidence and amount of zearalenone and 
deoxynivalenol in these studies and elsewhere in 
sub-Saharan suggests that there is need for their 
surveillance by screening their presence and 
sensitizing of farmers on their management  
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