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Abstract

Background

Many arboviruses transmitted by mosquitoes have been implicated as causative agents of

both human and animal illnesses in East Africa. Although epidemics of arboviral emerging

infectious diseases have risen in frequency in recent years, the extent to which mosquitoes

maintain pathogens in circulation during inter-epidemic periods is still poorly understood.

This study aimed to investigate whether arboviruses may be maintained by vertical trans-

mission via immature life stages of different mosquito vector species.

Methodology

We collected immature mosquitoes (egg, larva, pupa) on the shores and islands of Lake

Baringo and Lake Victoria in western Kenya and reared them to adults. Mosquito pools

(�25 specimens/pool) of each species were screened for mosquito-borne viruses by high-

resolution melting analysis and sequencing of multiplex PCR products of genus-specific

primers (alphaviruses, flaviviruses, phleboviruses and Bunyamwera-group orthobunya-

viruses). We further confirmed positive samples by culturing in baby hamster kidney and

Aedes mosquito cell lines and re-sequencing.

Principal findings

Culex univittatus (2/31pools) and Anopheles gambiae (1/77 pools) from the Lake Victoria

region were positive for Bunyamwera virus, a pathogenic virus that is of public health con-

cern. In addition, Aedes aegypti (3/50), Aedes luteocephalus (3/13), Aedes spp. (2/15), and
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Culex pipiens (1/140) pools were positive for Aedes flaviviruses at Lake Victoria, whereas at

Lake Baringo, three pools of An. gambiae mosquitoes were positive for Anopheles flavivirus.

These insect-specific flaviviruses (ISFVs), which are presumably non-pathogenic to verte-

brates, were found in known medically important arbovirus and malaria vectors.

Conclusions

Our results suggest that not only ISFVs, but also a pathogenic arbovirus, are naturally main-

tained within mosquito populations by vertical transmission, even in the absence of verte-

brate hosts. Therefore, virus and vector surveillance, even during inter-epidemics, and the

study of vector-arbovirus-ISFV interactions, may aid in identifying arbovirus transmission

risks, with the potential to inform control strategies that lead to disease prevention.

Author summary

The East African region is endemic to diverse mosquito-transmitted arboviruses, though

little is known about the role of vertical transmission in maintaining these viruses within

mosquito vector populations during inter-epidemic periods. We sampled mosquito larvae

from the Lake Baringo and Lake Victoria regions of Kenya and reared them to adults in

the laboratory before screening them for mosquito-associated viruses by multiplex RT-

PCR-HRM, cell culture, and sequencing. From the Lake Victoria region, we detected the

arbovirus, Bunyamwera, which can cause febrile illness in humans, in Culex univittatus
and vector competent Anopheles gambiaemosquitoes. We also identified diverse insect-

specific flaviviruses in Aedes aegypti, Aedes luteocephalus, Aedes spp. and Culex pipiens
mosquitoes. From the Lake Baringo region, we detected Anopheles flavivirus in An. gam-
biaemosquitoes. These findings demonstrate that naturally occurring vertical transmis-

sion potentially maintains viruses in circulation within the sampled vector species

populations. Therefore, mosquitoes may potentially transmit a pathogenic arbovirus dur-

ing their first bite after emergence. Because various insect-specific flaviviruses have

recently been found to either inhibit or enhance replication of specific arboviruses in mos-

quitoes, their vertical transmission, as observed in this study, has implications as to their

potential impact on both horizontal and vertical transmission of medically important

arboviruses.

Introduction

The East African Great Lakes region is a recognized hotspot for a broad diversity of arthro-

pod-borne viruses (arboviruses) [1] that affect humans and animals [2] and are transmitted by

several mosquito genera (mostly Culex Linnaeus, AedesMeigen, AnophelesMeigen,Mansonia
Blanchard, and Aedeomyia Theobald species) [3–5]. Some mosquito species are capable of nat-

urally maintaining viruses in circulation through vertical transmission [6–9]–up to 38 genera-

tions for San Angelo (SA) virus in Aedes albopictus, though with progressive decline in filial

infection rate (FIR) in laboratory population bottlenecks [10].

The Lake Victoria and Lake Baringo regions of Kenya have historically been associated with

arboviral diseases [11] and have unique lake and island biogeographies [12] in which arbovi-

ruses exist [5]. Outbreaks in the 1960s around the Lake Victoria basin involved Semliki Forest,

chikungunya, and o’nyong-nyong viruses that are vectored by Culex, Aedes, and Anopheles
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mosquito species, respectively [13]. More recent studies have found seropositivity for arbovi-

ruses in humans [14–16]. During the recent 2006–2007 Rift Valley fever (RVF) outbreak in

Baringo County, 10 mosquito species were implicated as potential vectors, among which Aedes
pembaensis Theobald, Culex univittatus Theobald, and Culex bitaeniorhynchus Giles were

reported as potential vectors for the first time [11].

Although widespread arboviral activity in human populations has been documented in the

Lake Victoria and Lake Baringo basins, the role of vertical transmission among mosquito vec-

tors in the maintenance of arboviruses within ecologies remains poorly understood [17]. To

ascertain the competence of mosquitoes to horizontally transmit arboviruses between hosts,

many methods have been used to collect and test different mosquito body parts (abdomen,

saliva, and legs) for arboviruses [18]. However, vertical transmission of arboviruses from adult

female mosquitoes to their offspring can also maintain viruses in circulation for generations

within mosquito populations [6–10]. To investigate how vertical transmission in different

mosquito species in Homa Bay and Baringo counties of Kenya may be maintaining endemic

arboviruses in circulation, we set out to identify arboviral infections in laboratory-reared

adults of field-caught larvae and pupae.

Methods

Study area, mosquito sampling and rearing

In 2012, immature mosquitoes were sampled from islands and mainland shores of Lake Bar-

ingo (in Baringo County along the Great Rift Valley) and Lake Victoria (in Homa Bay County)

of Kenya (Fig 1) during the rainy season. In Baringo County, samples were collected in July

and October 2012 from Kokwa Island, Nosuguro, Salabani, Kampi ya Samaki, Sirata, and

Ruko. In Homa Bay County, samples were collected in April, May and November 2012 from

Ringiti, Chamaunga, Kibuogi, Rusinga, Takawiri, Mfangano and Ngodhe Islands, and Ungoye,

Luanda Nyamasare, Mbita and Ngodhe mainland sites on the Kenyan part of Lake Victoria.

Sampling was conducted on unprotected public land concurrently with an adult mosquito

genetic diversity survey conducted in the same study areas [19].

We collected eggs, larvae, and pupae with 350-ml standard dippers (Bioquip Products,

USA) from their breeding sites and transported them to the Martin Lüscher Emerging Infec-

tious Disease (ML-EID) Laboratory at the Duduville campus of the International Centre of

Insect Physiology and Ecology (icipe) in Nairobi, Kenya. In the laboratory, we reared them to

adults in their field-collected breeding water at 28˚C temperature, 80% relative humidity, and

12-hour day and night cycles [20,21].

Ethics statement

Before sampling, we obtained ethical clearance for the study from the Kenya Medical Research

Institute (KEMRI) ethics review committee (Approval Ref: Non-SSC Protocol #310) and no

protected species were sampled.

Mosquito morphological identification and homogenization

All reared adult mosquitoes were identified and sorted using morphological keys [22–25] in

petri-dishes on frozen ice packs to keep them cold and to avoid degradation of any viruses in

the samples. The ice packs were wrapped with paper towels to absorb moisture and prevent

frosting of the petri-dishes. We stored pools of�25 reared adult mosquitoes in well-labelled

1.5 ml microcentrifuge tubes according to species, larval collection sites, sex, and dates in

tubes in a -80˚C freezer.

Vertical transmission of Bunyamwera and ISFVs
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Ten pieces of 2.0-mm yttria-stabilized zirconia beads (Glen Mills, Clifton, NJ) and 400 μl of

cold homogenization media (2% L-glutamine, 15% fetal bovine serum) (Sigma-Aldrich,

St. Louis, USA) were added to each tube, which were placed on ice to keep them cold. The

mosquito pools were then homogenized for 10 seconds in Mini-BeadBeater-16 (BioSpec, Bar-

tlesville, OK, USA) followed by centrifugation for 10 seconds in a bench top centrifuge

(Eppendorf, USA) at 1,500 relative centrifugal force (rcf) and 4˚C. Aliquots of 210 μl of each

homogenate were used for nucleic acid extraction and the remaining aliquots were stored in

-80˚C freezer as stock.

Detection and identification of viruses in adult mosquitoes reared from

immatures

Nucleic acid (NA) was extracted from the 210-μl mosquito homogenate aliquots using the

MagNA 96 Pure DNA and Viral NA Small Volume Kit (Roche Applied Science, Penzberg,

Germany) in a MagNA Pure 96 automatic extractor (Roche Applied Science) and eluted into a

final volume of 50 μl according to the manufacturer’s instructions. A reverse transcription-

multiplex polymerase chain reaction with high-resolution melting (RT-PCR-HRM) analysis

based arbovirus screening protocol recently developed by Villinger et al. [26] was used to rap-

idly screen many samples and detect the presence of four arbovirus genera, namely, Alphavirus

Fig 1. Map of the study areas in and around Lake Baringo along the Great Rift Valley and Lake Victoria on the western part of Kenya.

https://doi.org/10.1371/journal.pntd.0006949.g001
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(family Togaviridae), Flavivirus (family Flaviviridae), Bunyamwera-group Orthobunyavirus
(family Peribunyaviridae), and Phlebovirus (family Phenuiviridae). Briefly, the High Capacity

cDNA Reverse Transcription (RT) kit (Life Technologies, USA) was used to synthesize com-

plimentary DNA (cDNA) of the nucleic acid extracts. cDNA synthesis from 5 μl of extracted

nucleic acids was performed in 10-μl reaction volumes with final concentrations of 1x RT

Buffer, 4 mM dNTP mix, 2.5 U/μl MultiScribe Reverse Transcriptase, 1 U/μl RNase Inhibitor,

600 μM non-ribosomal random hexanucleotide primers [27]. Reverse transcriptions were per-

formed in a Veriti 96-Well Thermal Cycler (Applied Biosystems, Singapore) at 25˚C for 10

minutes, 37˚C for 2 hours, 85˚C for 5 minutes and held at 4˚C.

We used established multiplex RT-PCR thermocycling conditions [26] in a HRM capable

Rotor-Gene Q real-time PCR thermocycler (Qiagen, Redwood city, CA, USA) to screen for

virus sequences in cDNA templates. Ten microliter reactions consisting of 1 μl cDNA tem-

plate, 5 μl 2x MyTaq HS Mix (Bioline, UK), 1 μl of 50 μM SYTO-9 saturating intercalating dye

(Life Technologies), and multiplex PCR primers at concentrations given in Table 1. The QIA-

gility robot (Qiagen) for liquid handling was used to set up the reaction mixture. Touchdown

PCR cycling conditions as detailed by Villinger et al. [26] included an initial denaturation at

95˚C for 5 minutes, followed by 50 cycles of denaturation at 94˚C for 20 seconds, annealing at

63.5–47.5˚C for 20 seconds, and extension at 72˚C for 5–30 seconds, followed by a final exten-

sion at 72˚C for 3 minutes. Immediately after PCR, the product was held at 40˚C for 1 minute

before HRM analyses of PCR product double stranded DNA stability by measuring SYTO-9

fluorescence at 0.1˚C temperature intervals increasing every 2 seconds from 75˚C to 90˚C.

PCR grade water was used as negative control, and Bunyamwera (Orthobunyavirus), dengue

and West Nile (Flavivirus), sindbis and Middelburg (Alphavirus), and Rift Valley fever (Phle-
bovirus) viruses were used as positive controls. Positive samples were re-run in singleplex reac-

tions (using primers from only one genus; Table 1). Amplicons from singleplex runs were

purified with ExoSAP-IT for PCR Product Kit (Affymetrix Inc., USA) and Sanger-sequenced

at Macrogen (Korea). Samples that were positive for the Flavivirus genus by HRM analysis

were further sequenced from nested PCR products using the 2NS5F (5’-GCNATNTGGTWY

ATGTGG-3’) and 2NS5Re (5’-TRTCTTCNGTNGTCATCC-3’) primers that amplify longer

nucleotide fragments (~930 nt) of FlavivirusNS5 genes [28]. Resulting nucleotide sequences

were edited using Geneious R7.1.9 software (created by Biomatters) [29].

Table 1. Multiplex primers used for virus RNA identification.

Target virus genus Primer name Primer Sequence (5’-3’) Reaction concentration (nM) Reference

Bunyamwera group Orthobunyavirus Bunya group F CTGCTAACACCAGCAGTACTTTTGAC 167 [30]

Bunya group R TGGAGGGTAAGACCATCGTCAGGAACTG 167

Phlebovirus Phlebo JV3a F AGTTTGCTTATCAAGGGTTTGATGC 500 [26]

Phlebo JV3b F GAGTTTGCTTATCAAGGGTTTGACC 500

Phlebo JV3 R CCGGCAAAGCTGGGGTGCAT 500 [26]

Alphavirus Vir 2052 F TGGCGCTATGATGAAATCTGGAATGTT 400 [31]

Vir 2052 R TACGATGTTGTCGTCGCCGATGAA 400

Flavivirus Flavi JV2a F AGYMGHGCCATHTGGTWCATGTGG 200 [26]

Flavi JV2b F AGCCGYGCCATHTGGTATATGTGG 125

Flavi JV2c F AGYCGMGCAATHTGGTACATGTGG 125

Flavi JV2d F AGTAGAGCTATATGGTACATGTGG 50

Flavi JV2a R GTRTCCCADCCDGCDGTRTCATC 400

Flavi JV2b R GTRTCCCAKCCWGCTGTGTCGTC 100

https://doi.org/10.1371/journal.pntd.0006949.t001
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Virus culture

To validate that the sequenced targets were truly viral and not viral genome segment inserts in

the mosquito genome, a fraction of the original mosquito homogenates that were PCR-positive

for potential arboviruses were subjected to cell culture in vertebrate BHK-21 (Kidney of Syrian

hamster, Lot: 59300875 from ATCC) and Ae. albopictus clone C6/36 (Whole larva of Asian

tiger mosquito, Lot: 60400699 from ATTC) cell lines. Stock mosquito homogenates of 19 sam-

ples with sequences that aligned with known viruses on GenBank [32] and RNA virus data-

bases were subjected to cell culture. The homogenates were thawed on ice and clarified by

centrifugation at 15,000 rcf and 4˚C in a bench top centrifuge (Eppendorf 5417R) for 5 min-

utes. One hundred microlitres of the clarified supernatant were aseptically inoculated in each

of sub-confluent BHK-21 and C6/36 cell lines in a 24-well culture plate. The BHK-21 cells

were initially aseptically grown in growth media (GM; pH 7.5) made of 2% Minimum Essential

Media (MEM; +Eagle’s salt, +25 Mm HEPES) with 10% FBS, 2% L-glutamine and 1% antimy-

cotic (Sigma-Aldrich). The C6/36 GM contained same proportions of respective constituents

as the BHK-21 GM, but with the addition of 1% non-essential amino acids (GIBCO, UK). The

inoculated cell lines were incubated for 14 days and observed daily for any change in the mor-

phology of the cell line caused by viral infection, also known as the cytopathic effect (CPE).

Virus presence was ascertained as CPE. During the initial 14-day incubation period, any con-

taminated cell culture was purified using a 0.22 μm syringe filter [33] and re-tested. Further,

RNA was extracted from cell culture wells that showed CPE and tested in single-genus arbovi-

rus RT-PCR-HRM reactions and re-confirmed by sequencing, as described above.

Phylogenetic sequence analysis

Using Basic Local Alignment Search Tool (BLAST) [34], initial searches were performed for

comparison of all obtained virus sequences with those in GenBank. This was followed by

sequence alignments using the default settings of the MAFFT v7.017 [35] plugin in Geneious

software, to identify virus segments. Maximum likelihood phylogenetic relationships of the

study’s insect-specific flaviviruses (ISFVs) NS5 sequences with those of related ISFVs were

analyzed using PhyML version 3.0 [36], employing the Akaike information criterion [37] for

automatic selection of the general time reversible (GTR) sequence evolution model. Tree

topologies were estimated using nearest neighbour interchange (NNI) improvements over

1000 bootstrap replicates. Rooting the phylogeny to the yellow fever vaccine strain sequence

(GenBank accession NC_002031) as an outgroup, the phylogenetic tree was depicted using

FIGTREE version 1.4.2 [38].

Results

A total of 4,453 adult mosquitoes comprised of nine Aedes, six Anopheles, 16 Culex and one

Mimomyia species were reared from immatures (Table 2). Among 612 pools of�25 mosquito

samples per pool, 92 pools were from Baringo County and 520 pools were from Homa Bay

County. Among mosquito pools from 32 species sampled in Homa Bay County, Bunyamwera

virus (Orthobunyavirus) was the only vertically transmitted arbovirus (pathogenic to verte-

brates) detected. It was identified by HRM analysis (Fig 2A), culture, and DNA sequencing

(143 nt; 100% identity to GenBank accession KM507344, S1 Fig) from female Anopheles gam-
biae from Luanda Nyamasare (1/77 pools) and Cx. univittatus from Rusinga (2/31 pools)

(Table 2) that were reared from larvae sampled in November 2012. However, no vertically

transmitted pathogenic arbovirus was detected in Baringo County samples.

Further, we detected (Fig 2B) and sequenced ISFV NS5 sequences from 12 mosquito pools

(Table 2, GenBank accessions: MG372051-MG372060, MK015647-MK015648) among May

Vertical transmission of Bunyamwera and ISFVs
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2012 collections. Among Baringo samples, we sequenced three ISFVs from female An. gambiae
mosquitoes (3/15 pools; one pool from Ruko and two pools from Kampi ya Samaki) collected

in October 2012 that were closely related to Anopheles gambiae flaviviruses (An(g)FV) that

were previously detected in mosquitoes sampled from Kenya’s North-Eastern Province [26],

as well as Western and Coastal Provinces (Fig 3). Among Homa Bay County samples, we

found Aedes flavivirus (AeFV) NS5 sequences in Ae. luteocephalus (3/13 pools; two pools from

Table 2. Viruses identified from pools of reared mosquito species from Baringo and Homa Bay Counties of Kenya.

Mosquito

species

Grand Total Lake Baringo (Baringo County) Lake Victoria (Homa Bay County)

Number of mosquitoes Number of pools Virus positive pools Number of mosquitoes Number of pools Virus positive pools

Ae. hirsutus 5 0 - - 5 3 -

Ae. furcifer 3 0 - - 3 2 -

Ae. aegypti 729 0 - - 729 50 3-CFAV

Ae. cumminsi 17 0 - - 17 1 -

Ae. dentatus 1 0 - - 1 1 -

Ae.

luteocephalus
68 0 - - 68 13 3-AeFV

Ae.metallicus 275 0 - - 275 22 -

Ae. ochraceus 1 0 - - 1 1 -

Ae. vittatus 301 0 - - 301 20 -

Aedes spp. 185 0 - - 185 15 1-AeFV, 1-CFAV

An. coustani 1 0 - - 1 1 -

An. funestus 3 0 - - 3 3 -

An. gambiae 300 35 15 3-An(g)FV 265 77 1-BUN

An. pharoensis 6 6 3 - 0 - -

An. rufipes 1 0 - - 1 1 -

An. ziemanni 2 0 - - 2 2 -

Cx. annulioris 4 0 - - 4 1 -

Cx. duttoni 15 0 - - 15 4 -

Cx. neavei 26 9 3 - 17 6 -

Cx. pipiens 1732 337 32 - 1395 140 1-AeFV

Cx. poicilipes 87 3 2 - 84 12 -

Cx. simpsoni 24 0 - - 24 15 -

Cx. striatipes 2 0 - - 2 1 -

Cx. terzii 2 0 - - 2 2 -

Cx. theileri 1 0 - - 1 1 -

Cx. univittatus 100 37 15 - 63 31 2-BUN

Cx. vansomereni 10 0 - - 10 4 -

Cx. watti 44 0 - - 44 15 -

Cx. zombaensis 19 5 3 - 14 3 -

Cx. tigripes 24 0 - - 24 15 -

Cx. adersianus 8 0 - - 8 2 -

Cx. rima 20 0 - - 20 2 -

Culex spp. 427 18 10 - 409 53 -

Mi. splendens 10 9 9 - 1 1 -

Total 4453 459 92 3 3994 520 12

Species positive 5 1 5

BUN is Bunyamwera virus; An(g)FV is Anopheles gambiae flavivirus; AeFV is Aedes flavivirus; CFAV is cell fusing agent virus. Aedes spp. and Culex spp. are mosquito

specimens that could only be identified to genus.

https://doi.org/10.1371/journal.pntd.0006949.t002

Vertical transmission of Bunyamwera and ISFVs

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006949 November 19, 2018 7 / 16

https://doi.org/10.1371/journal.pntd.0006949.t002
https://doi.org/10.1371/journal.pntd.0006949


Ungoye and one pool from Mbita) and Aedes sp. (1/15 pools; from Takawiri Island), as well as

in Cx. pipiens (1/140 pools; Rusinga Island). We also found cell fusing agent virus (CFAV), the

first ISFV originally identified in Ae. aegypti using an Ae. albopictus cell line (C6/36) [39],

among Homa Bay County Ae. aegypti (3/50 pools; Mfangano Island) and Aedes spp. (1/15

pools; from Ungoye) samples.

Discussion

We identified natural infections of Bunyamwera virus and ISFVs in diverse anopheline and

culicine mosquito species reared to adults from field-collected larvae, demonstrating that these

viruses persist transstadially through development to adult stages from naturally infected

immature life stages. Since vertical transmission was first identified of vesicular stomatitis

virus by phlebotomine sandflies [40] followed by La Crosse virus in Aedes triseriatus [41, 42],

this mode of maintaining arboviruses within ecosystems has been observed in numerous arbo-

viruses of medical importance circulating in East Africa, including West Nile virus by Culex
and Aedesmosquitoes [43–47], Ndumu virus [48] by Cx. pipiens, and Zika [49,50], dengue

[51–53], chikungunya [54], and RVF [8] viruses by Aedesmosquitoes [55]. However, how

widespread or important this mode of transmission is in natural ecologies remains poorly

understood. While we attribute the naturally occurring virus infections that were transstadially

transmitted from immature life stages in this study to vertical transmission from their parents,

we cannot completely rule out the possibility that the immature mosquitoes were infected with

these viruses from viral contamination in their aquatic environment during early develop-

ment. However, this mode of transmission if far less likely as past studies indicate that such

infection of immature mosquitoes requires unrealistically high viral doses in their aquatic

environment [56].

We documented the vertical transmission of the Orthobunyavirus, Bunyamwera virus,

from naturally occurring infections in two mosquito species–An. gambiae and Cx. univittatus–
the former of which has previously been found to competently transmit Bunyamwera virus

during blood-feeding on suckling mice [57]. This is of public health importance and needs to

be monitored closely, as Bunyamwera is an important cause of acute febrile illness in humans

Fig 2. Virus HRM profiles from mosquito pools positive for (A) Bunyamwera virus and (B) insect-specific flaviviruses (ISFVs).

https://doi.org/10.1371/journal.pntd.0006949.g002

Vertical transmission of Bunyamwera and ISFVs

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006949 November 19, 2018 8 / 16

https://doi.org/10.1371/journal.pntd.0006949.g002
https://doi.org/10.1371/journal.pntd.0006949


Vertical transmission of Bunyamwera and ISFVs

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006949 November 19, 2018 9 / 16

https://doi.org/10.1371/journal.pntd.0006949


(Bunyamwera fever) [58] that is able to reassort with closely related arboviruses to form new

viruses, such as Ngari virus, which can cause haemorrhagic fever in humans [59]. With the

well-established role of vertical transmission in Ae. triseriatusmosquitoes of the closely related

Orthobunyavirus, La Crosse virus [60], the potential of Bunyamwera virus to remain in circula-

tion by vertical transmission within mosquito populations in East Africa, highlights the impor-

tance of control strategies focused on vectors and the replication of arboviruses within the

vector.

Recent laboratory vector competence studies have found that Bunyamwera virus can be

competently transmitted by An. gambiae and Ae. aegyptimosquitoes [57], and can naturally

infect Aedeomyia africana, Anopheles coustani, andMansonia africanamosquitoes [5]. How-

ever, Culex quinquefasciatus was found to be refractory to Bunyamwera virus infection experi-

mentally [57]. Our findings demonstrate that Bunyamwera infection persists from larval stages

to adults in Cx. univittatusmosquitoes as well as in Bunyamwera competent An. gambiae. This

expands the mosquito species, and indeed genera, that may play key roles in maintaining

Bunyamwera virus in circulation. Though the vectorial competence of Cx. univittatus to trans-

mit Bunyamwera virus has not been established, the species is thought to prefer birds as a

source of bloodmeals [61] and has recently been found to also feed on dogs, donkeys, sheep,

and toads [5], as well as humans [62]. Therefore, Cx. univittatusmay have a greater potential

for transmitting arboviruses between birds and other vertebrates to humans, in contrast to the

more anthropophilic An. gambiae.
The vertically transmitted ISFVs, AeFV and CFAV, were only detected in samples from the

Lake Victoria region, not only in Aedesmosquitoes, but also in Cx. pipiens (AeFV), though we

cannot fully rule out accidental Aedesmosquito contamination in the Cx. pipiens sample.

While vertical transmission of ISFVs has been reported experimentally [63–66], which may be

as high as 90% [67], this study corroborates its occurrence in natural ecologies [64,65,68,69].

Although ISFVs do not infect mammals and generally have been found to cluster within dis-

tinct phylogenetic clades associated with distinct mosquito genera [70–72], Aedes flavivirus,

which is phylogenetically distinct from related Culex flaviviruses, has previously also been

found in Cx. pipiensmosquitoes sampled in Italy [73]. Our findings therefore support not only

the vertical transmission of ISFVs in mosquitoes, but also the potential of occasional horizontal

transmission between mosquito species and genera. Therefore, ISFVs in mosquito populations

represent a promising model for the study of the evolution of host specificity of flavivirus

infectivity [72].

Some ISFVs (Palm Creek flavivirus and Culex flavivirus) have been found to inhibit replica-

tion of West Nile and Murray Valley encephalitis viruses in the Ae. albopictus C6/36 cell line

and in Cx. pipiensmosquitoes [65,66]. In contrast, CFAV, also identified in this study, has

recently been found to increase susceptibility of dengue virus in an Ae. aegypti cell line (Aa20)

[74] and to be inhibited by theWolbachia endosymbiont (wMelPop) used for dengue control

in Ae. aegyptimosquitoes [75,76]. Because there is considerable variability in how ISFVs effect

arbovirus superinfections, how vertical transmission of ISFVs affects the competence of mos-

quito populations to transmit arboviruses, either horizontally to vertebrate hosts or vertically

to the next generation, remains largely unknown.

Fig 3. PhyML tree of insect-specific flavivirus NS5 gene sequences associated with mosquito pools from Lake Baringo and Lake Victoria. The phylogeny was

created from 779–908 nt fragments. GenBank accessions are indicated in parentheses, followed by collection country with province in parentheses, and the mosquito

species in which they were identified. Viruses identified from mosquitoes reared from larval collections in this study are indicated in bold with specimen ID’s in

brackets. Bootstrap percentages at the major nodes are of agreement among 1000 replicates. The branch length scale represents substitutions per site. The gaps

indicated in the branches to the yellow fever virus outgroup represent 3.0 substitutions per site. (LB: Lake Baringo; LV: Lake Victoria; NEP: North-Eastern Province;

WP: Western Province; CnP: Central Province; CP: Coastal Province; RVP: Rift Valley Province).

https://doi.org/10.1371/journal.pntd.0006949.g003
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We also detected An(g)FVs only in mosquito populations from the Lake Baringo region,

despite the more than seven times greater sample size of An. gambiae tested from the malaria

endemic Lake Victoria region. While it is curious that this ISFV was only detected in malaria

mosquitoes from regions with relatively low malaria transmission rates [77], they have been pre-

viously identified in An. gambiae and Anopheles squamosusmosquitoes from malaria endemic

North-Eastern Province [26], and Coastal and Western Provinces of Kenya (Fig 3). Other

closely related Anopheles flaviviruses (AnFVs) (Fig 3) have since been reported in anopheline

mosquitoes from Australia [71], Liberia and Senegal [78], and Turkey [79] (Fig 3). Furthermore,

transcriptionally active Flavivirus-derived endogenous viral elements have been identified in

Anopheles minimus and Anopheles sinensis genomes via in silico and in vivo analyses [80], which

suggests a historical presence of ISFVs in anopheline mosquitoes. Though ISFVs may have

important implications in the transmission of medically important arboviruses [70], the study

of AnFVs has been limited by their inability to replicate in standard Aedes cell line cultures, or

even in cell lines of heterologous Anopheles species [26,71]. Appropriate Anopheles cell line cul-

tures for the in vitro replication of the AnFVs will have to be established to further study their

role in co-infection with other arboviruses, and possibly malaria parasites [26].

We recorded more diverse vector mosquito species and viruses in samples from Homa Bay

County (Table 2), which concurs with reports from previous studies around the Lake Victoria

basin [5,16,19,81]. Although adult Aedesmosquitoes have been sampled in both study areas

[5,82], we only sampled Aedes spp. larvae from Lake Victoria. In a previous study, we found that

many of the suitable larval habitats for Ae. aegypti sampled in the Lake Victoria region correlated

with increased ammonium and phosphate levels, which are key components of commonly used

fertilizers [83]. Our larval sampling strategy may have been more favourable for sampling Aedes
mosquitoes in the Lake Victoria region where agricultural activity is more intensive in compari-

son to the Lake Baringo region. Though there was an RVF virus outbreak in Baringo County in

2006/2007 and surveillance studies around the area reported possible mosquito vectors [11,84],

none of our mosquito samples from Baringo County tested positive for any pathogenic virus.

Our identification of both a pathogenic arbovirus and three ISFVs in larval mosquitoes

from both lake basins suggests complex ecologies involved in their circulation and mainte-

nance. Although Omondi et al. [5] did not detect any virus from blood-fed mosquitoes around

the Lake Victoria region where we found vertical transmission of Bunyamwera virus, AeFVs,

and CFAV, the study found Bunyamwera virus in blood-fed mosquitoes from the Lake Bar-

ingo region, where we found no Bunyamwera infected larvae. Though these discrepant find-

ings may be a result of inadequate sample size required to reliably identify specific arboviruses

circulating in a region, the conditions for the maintenance of arboviruses by vertical transmis-

sion may depend on environmental factors of the mosquito vector’s reproductive environ-

ment. Nonetheless, our findings indicate that in the Lake Victoria region environmental

context, An. gambiae, and possibly Cx. univittatus, can act as a reservoir that can both verti-

cally and horizontally transmit Bunyamwera virus, ISFVs, and possibly other arboviruses. This

is important towards understanding how arboviruses are maintained and geographically

spread in different ecological contexts and can be used to forecast risks and improve preven-

tion and other vector management strategies to mitigate future outbreaks. Continued arbovi-

rus surveillance in diverse mosquito and other arthropod vector species in the region will help

to more accurately identify the most important vectors of arboviruses possibly associated with

febrile illnesses, while a better understanding of the role of ISFVs in the vertical transmission

of arboviruses may open new control strategies.

Insect-specific flavivirus NS5 gene sequences from twelve mosquito pools were deposited

into the GenBank nucleotide database (accessions MG372051- MG372060, MK015647-

MK015648).
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Supporting information

S1 Fig. Alignment of Bunyamwera sequence obtained from study samples (grey consensus)

with GenBank reference sequence (accession KM507344). Yellow = Guanine;

Red = Adenine; Blue = Cytosine; Green = Thymine.
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