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CHAPTER 1 

DIVERSITY AS A CONCEPT AND ITS MEASUREMENT 

1.1 Introduction and Summary 

Diversity is an important concept in community ecology. Under 

various names it also appears in several of the biological, social , 

and management sciences. Despite an extensive literature on diversity 

related issues, formal definition and logical development of diversity 

as a concept and its measurement have been largely lacking. Chapter 1 

attempt s to fill this gap. 

Section 1.2 puts forth the view that diversity is an average 

property of a community and identifies that property as species rarity. 

Introducing the concepts of dichotomy and ranking in this context, 

corresponding measures of species rarity are defined . It is shown that 

in either case the rarity measure R is uniquely determined by the 

diversity index Ll. 

Like any other concept, diversity remains elusive until it can be 

quantified with some underlying unity. It is shown in Section 1.3 

that the three standard indices called Species Count, Shannon, and 

Simpson can be interpreted in terms of a single formulation of intra

specific encounters. Further, the rarity measures associated with these 

indices satisfy what we call the proportionality equation. But other 

solutions of this equation exist and enable us to embed the three 

standard indices in a one-parameter family LlS of indices. Defining the 

MacArthur transformation to species richness scale, the log numbers 

equivalent of ti8 turns out to be the generalized entropy. Section 1.3 

also develops a general technique for associating species rarity 



measures with a given discrete probability distribution. Both the 

H-S Hurlbert-Smith index 6w and the index 6
8 

are obtained as special 

cases. 

Section 1.4 identifies two instances in which it can be argued 

on intuitive grounds t hat one community is more diverse than another. 

These cases are formalized into two operations called intr oducing a 

2 

species and transferring abundance. Intuitively, introducing a species 

increases the "species richness" component of diversity while transferring 

abundance increases the "evenness" component. Criterion Cl, which 

requires dichotomous rarity measures R to be decreasing functions, is 

shown to imply that introducing a species increases the diversity 

measure 6 of a connnunity. However, an example is given to show that 

this criterion is not sufficient to ensure that transferring abundance 

increases 6. This leads to Criterion C2 which requires that 6 increase 

under both operations. It is shown that 68 satisfies Criterion Cl for 

all B while Criterion C2 is satisfied for B ~ -1. Thus, the Species 

Count, the Shannon index,and the Simpson index satisfy both criteria. 

The Hurlbert-Smith index also satisfies both criteria. 

Different indices may inconsistently order a given pair of 

communities with respect to their diversity. In view of these incon-

sistencies, it becomes of interest to define an intrinsic diversity 

ordering without reference to indices. We introduce such an ordering 

in Section 1.5 and observe that it is a partial order, i.e., two commun-

ities may not be comparable. The choice of a particular index effectively 

smooths this partial order into a linear order. The inconsistencies · 

arise because different indices result in different smoothings. After 

reformulating the intrinsic diversity ordering in terms of majorization, 

we discover that Criterion C2 can be restated as t he requirement that 
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~ be Schur concave. This suggests the stronger Criterion C3 which 

requires that ~ be a concave function. 

Section 1.6 develops indices based on ranking. The simplest 

example is provided by taking the rarity of the ith ranked species to 

be R(i) = i - 1, which leads to the Average Rank index. A proportionality 

equation for ranks allows us to embed this index into a one- parameter 

family of rank type indices ~~rank). For the gener al measure of rarity 

based on ranks, the analogue of Criterion Cl requires R(i) to be an 

increasing function of i. In contrast wit h the case of dichotomous 

indices, this monotonicity is sufficient for Criterion C2 and Criterion 

C3. 

The choice of an index implicitly involves a decision regarding 

the di versity ordering of connnunities which are not intrinsically 

comparable. With such a wealth of indices available, there is a need 

for a theory of index sensitivity to assist in this choice. In Section 

1.7, we give a definition of the sensitivity of an index to rare species 

and relate it to the question of index inconsistency. The terni 

"sensitive to rare species" occurs frequently in the diversity literature 

but to our knowledge no precise definition has previously appeared. 

H- S The sensitivity of each of the three families of indices ~S' ~w ,and 

(rank) . 
~p is shown t o be a monotone function of their parameters. A 

revealing crossing point theorem is also established. Section 1.7 

concludes with a theory of response to perturbations. The indices ~S 

and ~H-S are characterized by the form of their response functions. w 

Section 1.8 is concerned with diversity decomposition. Sometimes 

it is possible to decompose a connnunity in some natural way and, a s in 

the analysis of variance, apportion the total diversity among and between 
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the various components. We consider two types of decompositions: two

way classifications and mixtures. As measured by the Shannon index, the 

total diversity of a two-way classification decomposes into the sum of 

two terms: the diversity of the row marginals and the average diversity 

of the normalized rows . We replace this last average by a "deflated" 

average and extend the decomposition to a wider class of indices through 

what we call a deflated ANOVA formula. The indices ~S are then charac

terized as the only indices to satisfy this formula. Section 1.8 also 

develops a mixture decomposition for indices satisfying Criterion C3. 

The between-connnunity component of this decomposition is identified 

.as the average rarity gain analogous to the information gain. Section 

1.8 concludes wi t h an application to genetics. A law of increasing 

entropy is established for the approach to Hardy-Weinberg equilibrium. 

Modifications of the argument lead to a general proof of the Hardy

Weinberg law. 

In recent years, there has been considerable interes t in the use 

of diversity indices as indicators of environmental quality. A problem 

associated with such an application is the time and level of professional 

expertise required for a complete taxonomic classification of the sample. 

A sequential comparison method has sometimes been employed to alleviate 

this difficulty. After a bias correction, the method is shown to 

provide an unbiased estimator of Simpson's index. Section 1.9 also 

establishes the asymptotic normality of this estimator via an extension 

of the Noether central limit theorem. 

Estimation of the number of species in the community is one of the 

more interesting and intriguing problems facing the ecologist. Section 
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1.10 discusses several methods for estimating species richness and 

proposes a new estimator based on the number of singletons in the sample. 

The previous sections have emphasized ecological diversity. 

Section 1.11 surveys several additional areas in which the diversity 

concept has found application . 

The last section discusses income inequality in some depth. It 

is first noted that inequality is not the opposite of diversity; it 

is the opposite of evenness. After developing the notion of relative 

inequality, we give an intrinsic inequality ordering, similar to the 

intrinsic diversity ordering, and observe that it is equivalent to 

the Lorenz ordering familiar in economics. Finally, we propose a general 

method of constructing a measure of inequality from a diversity index 

and pair up the Gini coefficient with the Average rank, the Theil index 

with the Shannon index, and the coefficient of variation with the 

Simpson index. 

1.1.l Notation and Conventions. The terms "increasing," 

"decreasing," "more," and "less" always have their loose interpretations 

unless qualified by "strictly." Except as otherwise indicated , 

logarithms are to the base e . When X = O, the expression X•Y is taken 

to be zero even if Y is infinite or undefined. All vectors are finite 

dimensional but are to be padded on the right with an infinite string 

of zeros. Thus (1, 2, 3) is identified with (1, 2, 3, O, O, 0, • •• ) 

and expressions such as (1, 2, 3) + (1, 2, 3, 4) are well-defined. 

Except briefly in Section 1.11. 2, there is no need to distinguish row 

and column vectors. The mathematical expectation of a random varaible 

Xis denoted E[X]. 



1.2 Diversity as an Average Property of a Community 

We view diversity as an average property of a community. 

But the average of what? To an outside observer, variety is a most 

striking feature of a diverse community. Alfred Russel Wallace's 

[l, p·. 65] description of a tropical forest is a vivid illustration: 

If the traveller notices a particular species and 
wishes to find more like it, he may turn his eyes in 
vain in any direction. Trees of varied forms, dimen
sions and colors are around him, but he rarely sees 
any one of them repeated. Time after time he goes 
towards a tree which looks like the one he seeks, but 
a closer examination proves it to be distinct. He 
may at length, perhaps, meet with a second specimen 
half a mile off, or may fail altogether, till on 
another occasion he stumbles on one by accident. 

6 

In a diverse community, such as that described by Wallace, the typical 

species is relatively rare. Consequently, we propose that diversity 

be defined as the average rarity within a community. To make this 

idea pr ecise, the concepts of "community" and "rarity" must be 

formalized. 

Consider . some quantity distributed among a countable set of 

categories, labeled i = 1,2,3, ••• , with 7Ti as the proportionate 

share received by category i. This quantity may be con tinuous 

(income, biomass, etcJ or it may be discrete (word occurrences in a 

text, biological organisms, etc.). For concreteness, we will usually 

speak of biological organisms grouped into species and call 

~ = (7T1 , 7T2 , 7T3, • •• ) the species abundance vector; arranging the 

components of 7T in descending order gives the ranked abundance vector, -
* * * * * * * 7T = (7T1 , rr2 , 7T3 , ••• ) where 7Tl _:::. 7T2 _:::. 7T

3 
_:::. •••• For our purposes, a 

community may be identified with the pair C = (s, 7T) where s is the -
number of nonzero components of 7T, i.eo, the number of species that are 



physically present; s is assumed to be fipite. A community is said 

* * * to be completely~ when rr1 = rr2 = ••• =Tis= l/s. 

Given the community, a numerical measure of rarity is to be 

associated with each species; denote the rarity of species i by 

R(i; TI). -
Definition 1.1: The diversity measure of a community C = (s, 1:) 

is its average rarity and is given by 6(C) = LTiiR(i; ~) where 6 is 

7 

the diversity index associated with the measure of rarity R. Sometimes 

we write 6(rr) instead of ~(C). -
The measures of rarity considered here will be based on one of · 

the following: 

Dichotomy: The rarity of species i depends only on the 

numerical value of Tii. For notational simplicity, write 

R(i; ~) as R(rri). 

Ranking: The rarity of a species depends only on its (descending) 

rank and not explicitly on the numerical values of the 

components of ~· Denoting the rarity of the ith ranked species 

* by R(i), the index takes the form 6 = !R(i)rri. The ranks may 

be assigned arbitrarily within tied sets without affecting the 

value of 6. 

We show that in either of these two cases the measure of rarity is 

uniquely determined by the diversity index. 

Theorem 1.1: a) Assume that the functions Q and R are defined 

and measurable on the interval (O,l] and that rrr.Q(rr.) = rrriR(rr.) for 
1 1 1 

all probability vectors~· Then Q(x) = R(x) for all x € (O,l]. 

b) Assume that Q(i) and R(i) are defined for each positive integer i 

* * and that tQ(i)Tii = !R(i)Tii for all probability vectors TI. Then Q( i) = R(i) 

for all i. 
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Proof: a) Let L(x) = x[Q(x) - R(x)] so that L is measurable, 

L(O) = 0 = L(l) and LL(rri) = 0 for all probability vectors rr • ... 
Take x, y E [O,l] with x + y < l; comparing the two equations 

L(x) + L(y) + L(l - x - y) = 0 

L(x + y) + L(l - x - y) = O, 

the function L is seen to be a measurable solution of Cauchy's equation 

on the unit interval so that ([2, p. 35]) L(x) = ex for some constant c. 

But c = 0 since L(l) = ·O. Thus L = 0 and Q(x) = R(x) for all 

x E (O,l] . The proof of b) is trivial. 

Remark 1.1: The assumption that both Q and R are measurable is 

essential. For suppose 6 = rrriR(rri) with R measurable and take 

Q(x) = R(x) + L(x)/x where L(x) is any nonmeasurable solution of Cauchy's 

equation with L(l) = O. Then Q is nonmeasurable but 6 = rrriQ(rri); in 

particular, measurability of the index does not imply measurability of 

the rarity measure. 

A given rarity measure R may always be replaced by a positive 

* affine transformation having the form R = bR + a where a and b are 

real numbers with b > O. The index is then transformed in the same 

* way: 6 = b6 +a . For a dichotomous index R(rr), the values of a and 

b can usually be fixed by imposing the standardizing requirements: 

R(l) = 0, 

R"'(l) = -1. 

(1. la) 

(1. lb) 

The first requirement has the effect of assigning diversity zero to a 

single-species community. The second is available only if R(rr) has a 

nonzero derivative at rr = 1. The corresponding requirements for a 
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rank type rarity measure are: 

R(l) = O, 

R(2) = 1. 

(1. 2a) 

(1. 2b) 

Here, (1. 2b) is available only when R(l) :f:. R(2). 

1.3 The Interpr etation of Diversity Indices With Exampl es. 

Three widely used i ndices of ecological diver sity ar e the Species 

Count, the Shannon index, and Si mpson index. These will be denoted 

as follows: 

Species Count: 6_1 = s - L 

Shannon index: 60 = -E'IT .log('IT.). 
l. l. 

61 1 -
2 Simpson index: = E'IT. 
l. 

All three assign diversity zero to a single-species connnunity. 

It is shown in Section 1.3.1 that these indices can all be . 

interpreted in terms of the single notion of interspecific encount ers 

and in Section 1.3.2 the three indices are embedded in a one-par ameter 

family {6(3 : (3 real} of indices . Section 1. 3.3 describes a general 

scheme for obtaining rarity measures from a given discrete probability 

distribution. This scheme yields 6(3 as well as the Hurlbert-Smith 

index as special cases. 

For the purpose of comparing t he diversity of two communities, 

any strictly increasing transformation of an index is effectively 

equivalent to the original index. After transformation, the interpre-

tation as average community rarity will, in general , be lost. But 

Section 1.3.4 shows that this interpretation, in an appropriate generalized 
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sense, is retained under a particular transformation introduced by 

MacArthur [4]. 

1.3.1 Interspecific Encounters. As Simpson [3] .has observed, 61 

is the probability that two randomly selected members of the conununity 

belong to different species. When rewritten in the form . 

61 = E'!Ti(l - '!Ti) = L'!TiR('!Ti)' the Simpson index may also be interpreted 

as average connnunity rarity, with the understanding that species rarity 

is measured by R{'TT) = 1 - 'IT. Now contemplate Wallace's traveler who 

first comes upon a member of, say, the ith species. As his journey 

continues, the traveler encounters other organisms, sometimes of this 

species and sometimes not. The rarer the ith species, the more likely 

are the interspecific encounters; but R('!Ti) = 1 - '!Ti is precisely the 

probability that a given encounter is interspecific. In what follows, 

t his concept of inter- versus intraspecif ic encounters is explored 

further. Three different schemes are considered. 

Waiting time for an intraspecific encounter. Again consider the 

traveler in search of the ith species as, for example, in Figure 1.1. 

With Y + 1 equal to the number of encounters up to and including 

the first intraspecific one, we have, 

when 

E[Yl'!Ti] = {l - '!Ti)/'!Ti' E[Y + ll'!Ti] = l/'1T1 , 

E[l/(Y + l)l'!Ti] = -'!Tilog('!Ti)/{l - '!Ti), 

P{Y = Yl'IT.) = '!Ti{l - 'IT.)Y, y = 0,1,2, •••• 
1 1 

Since large Y are associated with rare species, both Y and Y/(Y +1) 

are reasonable measures of rarity. But these are random variables 

• r 



~ 
t~ 

' 1'~~--~-
y 

y + 1 

Figure 1.1 Waiting Time for an Intraspecific Encounter 

11 
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and should be replaced by average quantities. There are several ways 

to interpret the "average" of a ratio; each gives rise to a different 

index. 

1. Species Count: 

R(rri) = E[Y!rr1 J = (1 - rri)/rri, 

ITI R(rr ) = s - 1. 
i i 

2. Simpson index: 

R(rri) = E[YjrriJ/E[Y + ljrri] = 1 - rri, 

IwiR{wi) = Iwi(l - wi). 

3. Shannon index: 

R(Tii) = E[l/(Y + l)!w1 ]•E[YlwiJ = -log(Tii)' 

IwiR(Tii) = -Irrilog(wi). 

4. An unfamiliar index: 

R(Tii) = E(Y/(Y + l)lrr1 J = 1 + rr1log(n1)/(l - Tii)' 

ITI.R(rr
1

) = 1 + In~log(TI1)/(l - TI.). 
1 1 1 

Waiting time for an interspecific encountero Here we suppose the 

traveler to be in search of a new species and put Z + 1 equal to the 

number of encounters up to and including the first interspecific one. 

See Figure 1 . 2. Small Z are associated with rare species and the 

variables of interest are l/Z and l/(Z + 1). 

1 . Species Count: 

2. Simpson index: 

- TI.• 
1 
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Figure 1.2 Waiting Time for an I n terspecific Encounter 



3. A second unfamiliar index: 

Note that E[l/Zlrr.] = 00 so that this case does not lead to a useful 
1 

measure of rarity. 
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The two unfamiliar indices can be related by a duality principle. 

Let R(rr) be a dichotomous rarity measure which has a finite limit as 

7T approaches zero from above, and define the dual measure by 

Rt(7T) = 1 - R(l t 
'IT) for 0 < 'IT< 1 and R (1) = R(o+). It is easy to 

show that: 

(i) Rtt = R, 

(ii) the Simpson index is its own dual, 

(iii) the two unfamiliar indices are duals of one another. 

Fixed number of encounters. Here we let Y be the number of inter-

specific and Z the number of intraspecific encounters out of a fixed 

total of N encounters. 

1. Species Count: 

2. Simpson index: 

Note that E[Y/Zl7T . ] = oo, while E[Y/(Y + Z)lrr.] = 1 - 'Tri. 
1 1 

Some biological motivations for considering interspecific encounters 

have been discussed by Hurlbert [5], who concluded that if an index is 

to be used, Simpson's is conceptually preferable to Shannon's. While 

it is curious that the Shannon index arises in only the first scheme, 

Hurlbert's negative assessment of this index would appear to be somewhat 

pessimistic . 
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1~3~2 The Proportionality Equation. Consider a species with 

abundance Tr and a subspecies whose abundance is a fractionq of 

n(O < q .::_ 1). The difference R(qTr) - R(n) will be compared with the 

corresponding change in rarity that occurs upon taking a fraction q of 

an entire community. For the Shannon index the two changes are equal, 

R(q•TI) - R(TI) = R(q•l) - R(l), 

while for the Species Count and the Simpson index we have, respectively, 

-1 R(qn) - R(n) =TI [R(q) - R(l)] 

and 

R(qTr) - R(TI) = Tr[R(q) - R(l)]. 

These suggest consideration of the functional equation 

R(q'IT) - R('IT) W(n)[R(q) - R(l)J, (1. 3) 

which will be called the proportionality equation with W('IT) as the 

deflation factor . Notice that (1.3) is invariant under affine trans-

formations of R. A degenerate solution is given by 

-- { 01 W('IT) 
if 0<'1T<l 

if 'IT= 1 

and, up to an affine transformation, 

RM= t if 0 < 'IT < 1 

if Tr = 1. 

The next theorem gives essentially all other solutions . 
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Theorem 1.2: Suppose R and W are defined on the interval (O,l] 

with R measurable and nonconstant. Then R and W satisfy the proportion-

ality equation (1.3) <=> either R and W are the degenerate solution or 

there is a real number S for which W(7T) = 7TS and, up to an affine 

transformation, 

__ { ( 1 - 7TS) IS 
R(7T) 

-log(rr) 

if s :F 0 

if .S = (). 

A similar conclusion holds if the interval (0,1] is replaced by either 

(O,oo) or [l,oo). 

Proof: Hardy, Littlewood and Polya [6, p. 69] give a proof under 

more stringent regularity assumptions; the present version requires 

only minor technical modifications in their argument. 

For any real number S, define the diversity index of order S, 

denoted ~S' as the dichotomous index whose rarity measure R(7T) is 

given by Theorem 1.2. Explicitly, 

where the usual limiting convention is understood when S = O. It will 

be shown in Section 1.4 that a restriction (6 ~ -1) must be imposed if 

~S is to have certain desirable properties. 

In Section 1.8.2 we also need the index ~ obtained from the 
CXl 

degenerate solution of (1.3). This index assigns diversity zero to a 

single-species community and diversity one to all other communities . 

1.3.3 The Hurlbert-Smith Index. Let w be a nonnegative integer. 

The Hurlbert-Smith index of order w is the expected number of species 

obtained when w + 1 individuals are randomly selected from the community. 
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The definition was given by Hurlbert [5] and by Smith [7] for sampling 

without and with replacement, respectively. Only the case of sampling 

with replacement will be considered here. It is also convenient to 

subtract one from the expected number of species so that a single-species 

community has diversity zero. With this change, the Hurlbert-Smith 

index takes the form 

~H-S = 
w E(l - rr.)[l - (1 - rr.)w] 

1 1 

U>+l = s - 1 - L' (l - n.) , 
1 

where the second summation ranges over the nonzero components of rr. Some 

special cases are tabulated below~ 

w: 

H-S 
~ : w 

0 

0 

1 00 

Simpson s - 1. 

H-S For a given community C, the plot of ~ (C) versus w is the w 
familiar species-individual curve. Empirical species-individual curves 

are generally concave and one may expect the same for the Hurlbert-

Smith index. For the proof, it is convenient to let the parameter w 

assume arbitrary nonnegative real values. 

Theorem 1.3: Both ~B(C) and ~:-s(C) are identically zero when C 

is a single-species community. Otherwise, ~B(C) is a strictly decreasing, 

strictly convex function of B with lim ~B(C) = 0 when B + 00 ; and 

~H-S(C) is a strictly increasi~g, strictly concave function of w. In w 

addition, 

~ ~H-S ~ w 1 < w < 1 if 0 < w < 1, 

and 
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The desired result now follows by taking the l's complement of these 

inequalities, multiplying by 1 - TI.,and summing over the nonzero 
i 

components of TI. 

Remark 1.2: The shape of the empirical species-individual curve 

depends on the sampling scheme as well as the underlying connnunity 

structure. The preceding theorem justifies a concave shape only for 

multinomial sampling. A similar analysis shows that the species-area 

curve is strictly increasing and strictly concave for Poisson sampling. 

It is perhaps well to point out that the sampling considered in the 

definition of the Hurlbert-Smith index is conceptual. There is no 

requirement that it be physically possible to draw a random sample. 

The Hurlbert-Smith index is of the dichotomous type with rarity 

measure R(TI) = (1 - TI)[l - (1 - TI)w]/TI. In this form R(TI) seems to 

have no obvious interpretation. However, there is a general unifying 

scheme for the construction of rarity measures which yields those of 

H-S both 6a and 6w after imposing the standardizing requirements (1.1). 

Consider once again Wallace's traveler who initially encounters a member 

of species i and subsequently encounters X additional individuals where 

X is a positive integer valued random variable. Define the type I 

rarity measure to be the probability that a new species is encountered, 

i.e., the probability that at least one of the X additional individuals 

belongs to a species different from i. A type II rarity measure, on 

the other hand, is the probability that each of the additional indivi-

duals belongs to species different from i. 

Both types of rarity measures are readily expressed in terms of 

the probability generating function G(t) of X as follows: 



I 

II 

Raw Form 

1 - G(TI) 

G(l - 'IT) 

R(TI) 

Standardized Form (1.1) 

[l - G(TI)]/G~(l) = [l - G(TI)]/E[X] 

G(l - TI)/G~(O) = G(l - 'IT)/P(X = 1) 
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Notice that, in the raw form, the two types of rarity measures are 

duals of one another as defined in Section 1.3.1. The type II rarity 

measure cannot be standardized unless P(X = 1) > 0, but it will be shown 

later that this is a necessary requirement if the associated index is 

to possess certain desirable properties. See Section 1.3 and Section 

1.5. 

Particular rarity measures may now be constructed by specializing 

on the distribution of X. Three cases will be considered by first 

letting the distribution be degenerate, then uniform discrete and, 

finally, log series. These give rise, respectively, to the index 

68, the Hurlbert-Smith index and, after a limit, the Shannon index. 

Letting X be degenerate at the positive integer S, the generating 

function is G(t) = t 8 and we obtain the following rarity measures: 

R('IT) 

~ Raw Form Standardized Form (1.1) 

I 1 - 'ITS (1 - 'ITS)/S 

II (1 - TI)B Not .possible unless S = 1 
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Here, ~S is the index associated with the standardized type I measure. 

The raw form of the type II measure will be used to generate counter-

examples in Section 1.4. 

Next, le t X be a discrete uniform random variable wi t h support 

{l, 2, 3, ••• ,w}. Since the generating function in this case is 

-1 w G(t) = w t(l - t )/(1 - t), we obtain: 

R('IT) 

Raw Form Standard Form (1 . 1) 

I 
-1 w 

1 - w 'IT(l - 'IT )/(1 - 'IT) -1 -1 w 
2 w(w + l)[l - w 'IT(l - 'IT )/(1 - 'IT)] 

II 
-1 w 

w (1 - 'IT)[l - (1 - 'IT) ]/'IT w 
(1 - 'IT)[l - (1 - 'IT) ]/'IT 

In this case, t he Hurlbert-Smith index is associated with the standardized 

type II rarity measure. Also, letting w ~ 0 in the two raw forms gives 

the unfamiliar indices of Section 1.3.1. Conceptually w is an int eger 

but real values make mathematical sense. 

Finally, let X have a log series distribution with parameter 9 

and generating function G(t) = log (1 - 9t)/log (1 - 9). The standard-

ized type II rarity measure is then R('IT) = -log (1 - 9 + 97r)/9 which 

converges to the rarity measure of the Shannon index when 8 ~ 1. Note 

that the number X of additional encounters converges to infinity under 

this limit. 

Other types of rarity measures could be def ined as the probability 

of particular events associated with the random variable X. Usually such 

a probability turns out to be a function of the entire vector 'IT and 

not merely 'Tri where i is the initially encountered species. The 
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resulting rarity measure then has the general form R(i;n) and is not 

of the dichotomous type. 

1.3.4 The Numbers Equivalent. MacArthur [4] has introduced a 

method for transforming diversity indices to a species richness scale. 

For a given community C and a given index 6, he poses the question: 

how many species must a completely even community have in order that its 

diversity be 6(C)? This number is called the equivalent number of 

species and is denoted by s6 (C). The same transformation has appeared 

in the economics literature as the numbers equivalent [8, 9, 10]. We 

will use the latter term. 

The numbers equivalent remains invariant under one-one transfor-

For a mations of the index, i.e., Sf(6 ) = s6 whenever f is one-one. 

dichotomous index, 6 = Err.R(n.), the numbers equivalent is any solution 
1 1 

of the equation R(l/S6) = 6; assuming that R is continuous and strictly 

monotonic, the solution is unique and may be written as 

-1 SA = l/R (Err.R(n.)). 
u 1 1 

(1.4) 

The denominator of the right hand side of (1.4) has the form of a 

generalized average with R as the Kolmogorov-Nagumo function [6, chap . 

3; 11]. Specializing to the index 6
6

, the numbers equivalent, 

s = 1/(1 - S6 )l/B 
B B 

(1.5) 

is the reciprocal of the generalized mean of order S of n1 , n2 , rr3 , ••• 

with weights n1 , rr2, rr
3

, ••• ; in particular, the numbers equivalents 

of the indices 6_
1

, 60 and 6
1 

are the respective reciprocals of the 

harmonic mean, the geometric mean and the arithmetic mean of 
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For a given community, the indices SB have the interesting property 

of being a monotone decreasing function of B. The reason for this 

effect is clear from (1.5): with B large, the rare species make only 

a negligible contribution to SB. In the limit as S approaches 00 , 

* s
8 

converges to l/rr1 -- the reciprocal of the abundance of the single 

most dominant species. Hill [12] has plot t ed SB versus distance along 

a line transect and has found that, to a remarkable degree, the plots 

have the same shape irrespective of B. 

In general, it is not possible to obtain simple closed form 

expressions for the numbers equivalent of the Hurlbert-Smith index. 

The logarithmic numbers equivalent log(S~) is sometimes useful . 

For the index ~B' 

B+l = -log(Erri )/B 

is Renyi's [11] entropy of order B + 1. Within the family of dichoto-

mous indices, the Shannon index is characterized as being its own 

logarithmic numbers equivalent. 

1.4 Two Criteria for Diversity Indices 

Recalling the definition of dichotomous indices, ~(C) = ErriR(rri), 

observe that R(O) is inherent ly undefined while the value R(l) is 

germane only to a single-species community, and, in fact, equals the 

diversity of such a community. R(l) = 0 is a natural normalizing 

requirement. 

What else might be required of R? On intuitive grounds, R(n) 

should be a decreasing function of 1T since rarer species correspond 

to smaller values of rr. 
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Criterion Cl: R is a decreasing function defined on the interval 

(O,l]. If the normalizing condition R(l) = 0 is also imposed, R will, 

as a consequence, be nonnegativeo 

This monotonicity requirement, simple and intuitive though it is, 

has a striking implication. Consider two collDllunities C = (s, ~) and 

C' = (s', ~). We say that C leads to C' by introducing a species 

(see Figure 1.3) if s' = s + 1 and if there are two distinct positive 

integers i and j such that 

1Tk if k :/: i,j 

1T' = ( 1T. - h if k = i k 1 

h if k = j 

where 0 < h < 1Ti. Note that 1Tj = O. A possible biological interpre

tation is that species i shares its resources with a newly arrived 

competing species. 

Theorem 1.4: Assume R(1T) is decreasing in 1T. Then introducing a 

species increases the diversity measure of a community. 

Proof: By assumption 1Ti > 1Ti - h > 0 and 1Ti > h > 0 so that 

R(1Ti - h) ~ R(1Ti) and R(h) ~ R(1Ti). But 

~(C') - ~(C) = (1Ti - h)R(1Ti - h) + hR(h) - 1TiR(1Ti) 

= h [R(h) - R(1Ti - h)] + 1Ti[R(1Ti - h) - R(1Ti)] 

> h [R(h) - R(1Ti - h)] + h[R(1Ti - h) - R(rri)] 

= h[R(h) - R(rri)] 

> o. 

Any conununity with finitely many species can be constructed from 

a single-species community by successively introducing new species 
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(see Figure 1.4). Theorem 1.4 asserts that the diversity increases at 

each step . None the less, indices satisfying Criterion Cl may have 

undesirable properties, as illustrated 

Example 1.1: Let R(TI) = l/TI
2 

- 1 

by the next example. 

s * and 6 = rl(l/Tii) - 1. 

This index satisfies Criterion Cl and assigns diversity zero to a single-

species community. Figure 1.5 includes a plot of the values of 6 for 

communities with ranked abundance vector (1 - TI, TI), 0 2_ TI 2_ 1/2. 

The point A represents a single-species community, while B, C and D 

represent successively more even two-species communities. In accord 

with Theorem 1.4, each of B, C and D is more diverse than A. But among 

the two-species communities, the diversity, as measured by 6, decreases 

as the evenness increases. 

In going from B to C to D in Example 1.1, the change in community 

composition may be described as a transfer of abundance from one species 

to another strictly less abundant species. The next definition formal-

izes this operation for many species communities. 

Definition 1.2: Let C = (s, TI) and C' = (s', rr') be two communities • .... 

C leads to C' by a transfer of abundance if s = s' and if there are 

positive integers i and j such that Tii > rrj > 0 and 

rk 
if k :/: i,j 

7T' . = TI. h if k = i k l. 

7T. + h if k = j 
J 

where 0 < h < 7T. - 7T • • 
l. J 

For mathematical purposes, it is sometimes convenient to consider 

the operation of introducing a species as a special case of transferring 

abundance: in Defini t ion 1.2, delete the requirement that s = s ·• and 
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and permit TI, to be zero. The two operations are conceptually quite 
J 

different, however; introducing a species increases the "species richness" 

component of diversity while transferring abundance increases the 

"evenness" component. 

Criterion C2: il(C) 2_ il(C') whenever C leads to c' either by 

introducing a species or by transferring abundance. 

Remark 1.3: The requirement that transferring abundance should 

increase the index is known in the economics literature as Dalton's 

[13) "principle of transfers" and was originally proposed in connection 

with the measurement of income inequality. We discuss income inequality 

in Section 1.12. 

While Criterion Cl is meaningful only for dichotomous indices, 

Criterion C2 makes sense for any proposed index irrespective of its 

functional form. But Criterion C2 should then be supplemented by 

the requirement that il(TI) be invariant to permutations of ~· Note 

that permutation invariance is automatic for dichotomous as well as 

rank type i ndices . 

It is an obvious (but useful) fact that Criterion C2 is preserved 

urider monotone transformations of the index. In particular, when an 

index satisfies Criterion G2 so does its numbers equivalent. 

To state conditions under which the two criteria will be satisfied, 

it is convenient to define an auxiliary function V by 

r 7TR(TI) if 0 < TI < 1 

V ('rr) L if 'IT = o ~ 
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For the index s - 1, V(TI) = 1 - TI for positive TI, which shows that V 

may be discontinuous at the origin. 

Theorem 1.5: Criterion C2 is satisfied <=> 

V(TI. + h) - V(TI.) > V(TI. - h) - V(Tii) 
J J - 1 

whenever Tii >TI - h >TI + h >TI. > 0 and TI. +TI. < 1. Assuming 
i - j J- 1 ]-

differentiability of V, (1. 6) may be replaced by V .... (TI.) > V .... (TI.) 
J - 1 

whenever TI. >TI > 0 and TI. +TI. < 1 . 
1 j- 1 J-

Proof: Straightforward. 

(1.6) 

Example 1.2: The condition (1.6) has a simple geometric interpre-

tation, as illustrated by Figure 1.6 for communities with abundance 

vectors (TI1 , TI2 , TI3). Points on the vertices, edges, and interior of 

the triangle represent respectively single-species, two-species, and 

three-species communities . The centroid of the triangle represents the 

completely even three-species community. Condition (1.6) requires that 

the diversity increase as a point moves toward the center of the 

triangle along any line segment parallel to an edge. The arrows on 

the segment AB in the figure indicate the direction of increasing 

diversity . 

Theorem 1.6: Criterion Cl and Criterion C2 are both satisfied 

if V is concave on the closed unit interval [O,l]. 

Proof: Criterion Cl: Let 0 < x < y 2_ 1. Observe that V(x)/x 

is the slope of the line from the origin to the point (x, V(x)) . The 

concavity of V implies that this slope is a decreasing function of x. 

Hence V(x)/x _:_ V(y)/y and R(x) _:_ R(y). Criterion C2: Referring to 

Figure 1.7, the condition (1.6) requires that the line L should have 

greater slope than the line L·'. But this is a well known consequence 

of concavity. 
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Remark 1.4: Because of the constraint TI.+ TI. < 1, the converse 
l. J -

of Theorem 1.6 is not quite true. For a counterexample take 

R(TI) = (1 - TI)B with B = 2 or 3. However, Criterion C2 does require 

that V(TI) be concave for 0 < TI < 1/2. 

Corollary 1.1: The index b.B satisfies Criterion Cl for all real 

B. Criterion C2 is satisfied <=> V is concave <=> B ..::_ -1. In particular, 

the Species Count, the Shannon index;. and the Simpson index satisfy both 

criteria. 

C 11 1 2 Wh > 0 h H lb S · h inde· x AH-S has a oro ary • : en w _ , t e u ert- mit uw 

concave auxiliary function and satisfies both Criterion Cl and Criterion 

C2. 

Corollary 1.3: Any index based on a type I rari ty measure has a 

concave auxiliary function and satisfies both Criterion Cl and Criterion 

C2. 

Proof: Apply Theorem lo 6 using the fact that a probability 

generating function is increasing and convex. 

Corollary 1.4: An index based on a type II rarity measure satisfies 

Criterion Cl but not necessarily C2. A sufficient condition for the 

auxiliary function to be concave is that P (X = i) be decreasing, i.e., 

P(X = 1) ..::_ P(X = 2) ..::_ P(X = 3) ..::_ ••• while P(X = 1) > 0 is a necessary 

condition. (The random variable X is defined in Section 1.3.3.) 

Proof: Criterion Cl is satisfied since R(TI) = G(l - TI) is 

decreasing in TI. For a conterexample to Criterion C2, take 

R(TI) = (1 - rr)S CB 4, 5, 6, ••• ) and check that the auxiliary function 

is not concave for 0 < TI < 1/2. To prove the last assertion, let 
00 

V(TI) = rrG(l - TI) where G(t) = E piti is the generating function of X. 
i=l 

Now, the second derivative of V(rr) is 
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V" ('IT) = -2G' (1 - TI) + 'ITG''' (1 - 'IT) 

= -
00 

i r (i + l)(i + 2)(pi + 1 - Pi + 2><1 - 'IT) • 
i=O 

Clearly V" ('IT)::._ 0 when p1 ~ p2 ~ p3 ~··· • On the other hand, if 

(1.7) 

pl= 0 the first nonzero term in the expansion (1.7) has a positive 

coefficient and V" ('IT) will be positive for 'IT sufficiently close to one. 

Example 1.3: Good [14] has proposed the family of indices 

C(m,n) = s * m * n L ('Tl'.) (- log TI.) (m, n = 0,1,2, ••• ) . 
i=l l. l. 

Criterion C2 is satisfied by only three members of this family: C(l , l) 

is the Shannon index; C(O,O) is the number of species; C(l,O) is 

identically one. The special case C(2,0) is the l's complement of the 

Simpson index. Thus -C(2,0) satisfies Criterion C2. More generally, 

the only members of Gqod's family whose negatives satisfy Criterion C2 

are C(m,O) (m = 1 , 2, 3, ••• ). Note that the affine transformation 

[l - C(rn, O)]/(m - 1) converts C(rn, O) into l. 1 and also gives the 
m-

Shannon index as the limiting case when m = 1. 

1.5 Diversity Ordering 

A numerical-valued diversity index imposes a linear ordering on the 

diversity of ecological communities. · But, as emphasized by Hurlbert [5], 

different indices may give inconsistent orderings. For example, the 

Species Count and the Simpson index order the two communities 

C = (2, (.5,0,.5)) and c~ = (3, (.1, .8, .1)) in the opposite sense: 

t._
1

(c) = 1 < 

t.
1 

(C) = • 5 > 

2=l. (C') 
-1 

.34 = t.1 (C ' ). 



35 

Inconsistent measures such as these are a familiar problem and should 

not be a cause for undue pessimism. The mean and the median are 

inconsistent measures of "central tendency"; the variance, the mean 

absolute deviation, and the range are inconsistent measures of "spread.'.' 

However, in view of these inconsistencies, it becomes of interest to 

define an intrinsic diversity ordering without reference to indices. 

We propose the following: 

Definition 1.3: Community C' is intrinsically more diverse than 

community C (written C' ~ C) provided C leads to C' by a finite sequence 

of the following operations: 

1 . Introducing a species; 

2. Transferring abundance; 

3. Relabeling species, i.e. permuting the components 

of the abundance vector. 

It is easy to see that this intrinsic diversity ordering is a partial 

order in the sense that (i) C ~ C; (ii) C" > C whenever C" > C' 

and C' > C; and (iii) a given pair of communities need not be comparable. 

Solomon [15] has also proposed a diversity ordering based on the notion 

of majorization [16]. A fundamental theorem of Hardy, Littlewood, Polya, 

and Rado [6, 17, 18 , 19, 20] shows that Solomon's definition is equiva-

lent to ours. For completeness we sketch a proof. 

Theorem 1.7: Le t C = (s, TI) and C1 = (s'·, v) be two communities. 

Then the following statements are equivalent. 

a) C' is intrinsically more diverse than C. 

b) v is a convex linear combination of permutations of TI. 

* * c) v is stochastically greater than 7T , i.e., 

* * E \) > E TI., k = 1,2,3, ••• 
i>k i - i>k 1 
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d) * * 'IT majorizes v , i.e., 

* * t 'IT.> t v . , k = 1,2,3, •••• 
i<k 1 

- i<k 1 

Proof: For t he implicat ion a) => b), we suppose, by induction, 

that C leads to C' by one of the three operations of Definition 1.3. If 

v is a permutation of TI, there is nothing to prove; otherwise there are 

two positive integers i ~ j such that 'ITk = vk for k ~ i , j and 

vi= 'ITi - hand vj = 'ITj + h where 0 < h < 'ITi - 'ITj. Now vi lies between 

'ITi artd 'ITj and so may b.e written as a convex linear combination, 

By symmetry, v. = (1 - w)'IT. + W'ITi. Thus 
J J 

v = (1 - w)'IT + W'IT' where 'IT., is the same as 'IT but with components i and .. .. .. 
j interchanged . To prove the implication b) => c), notice that 

* r 'IT . > r 'IT. 
i>k 0'1 - i>k 1 

* for any permutation cr. But v (and hence v ) is a convex linear 

combination of permutations of 'IT , .. 
r w 'IT . 

O' 0'1 
a 

* 

(1. 8) 

(1.9) 

Sum (1. 9) for i > k and use (1. 8) to conclude that v is stochastically 

* greater than 'IT • Since the implication c) => d) is clear, it remains 

* *. 
only to prove that d) => a). Suppose that 'IT majorizes v • If .. 
* * * * 'ITi > v. for all i, then v = 'IT ; otherwise , let k be the smallest 

- 1 

* * posi t ive integer for which vk > 'ITk. By the majorization pr operty 

* * * * t (TI. - V. ) > V - Tik' 
l 1 - k 

i ' k 

* * * and so we may successively transfer abundance from Tik- l' Tik_2 , ••• ,TI1 

* * * * * to nk until Tik equals vk. Moreover, the inequali t ies Tii .::_vi, i < k, 
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can be maintained throughou t the transfers. Proceeding by induction, 

* * it follows that ~ is obtainable from TI by finitely many transfers of 

* abundance or (when Tik = O) introductions of species. Since v and TI are 

* * permutations of v and TI , the proof is complete • .... 

Remark 1.5: A fifth statement, namely , that v be a doubly 

stochastic transform of TI, can be added to the list of equivalences in .... 

Theorem 1.7 . See Mirsky [18]. 

With the help of Theorem l.7(b), the intrinsic diversity ordering 

may be conveniently represented on the abundance_ simplex. Figure 1.8 

shows a three-species community C together with the regions of the 

simplex which are intrinsically more or intrinsically less diverse than 

C. Also shown are the contours through C of the indices ~6 . Any 

community whose abundance vector lies between two of these contours 

would be inconsistently ordered by the corresponding indices. As B 

decreases toward -1, the contours become incr easingly elongated toward 

the vertices of the simplex and sweep out a region whose boundaries are 

labeled B = 00 and B = -1. (The index ~-l does not have well-defined 

contours. The boundary labeled B = -1 has defining equation 

TI
1 

TI
2 

TI
3 

= constant, while the boundary B = oo is defined by the equation 

* TI
1 

= constant.) The contours do not sweep out the entire region of 

incomparability and there are communities which are consistently ordered 

by the entire family {6B : B .:::_ -1} even though they are not intrinsi

cally comparable. The communities labeled C and c"· in Figure 1.8 are 

an example. A family of indices will be called complete i f C is 

intrinsically more diverse than C" <=> 6(C) .:::_ 6(C") for all indices 

~ in the family. Thus {6B B > -1} is not complete. 



Figure 1.8 Geometric Representation of the Intrinsic Diversity 

Ordering, Together with Some Contours of 66 
H-S and 6 (C = (3 , (.49, .36, .15)) and w 

C" = (3, (.62, .21, .17))) 
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6
1 

< 6H-S < w 6 if 1 < w < 00 , w 1 

provided C is not a single-species community. 

Proof: The first statement is clear and it is easy to see that 

lim 6a(C) = 0 when 8 ~ 00 • Now, the second derivative of 6a with respect 

to a is 

Write x = log ('IT~) and f (x) 
2 x x = -x e + 2xe + 2. It suffices to 

show that f(x) has the same sign as a, i.e., the sign opposite to x . 

But £(0) = 0 and f'(x) 2 x which is strictly negative when x I: o. = -x e 

This proves that 68 is strictly convex. But a nonnegative, strictly 

convex function which is asymptotically zero must be strictly decreasing. 

As for the Hurlbert-Smith index, the first derivative with respect to 

w is -E(l - 'IT.)w+
1log(l - 'IT.) > 0 while the second derivative is 

l. l. 

w+l 2 -E(l - '!Ti) log (1 - '!Ti) < O. Pictorially, the last two assertions of 

the theorem are obvious. A formal proof may be given by noting that, 

f i f (0 < < 1) (1 ) w • • 1 h as a unct on o 'IT _ 'IT , - 'IT is strict y concave w en 

0 < w < 1 and strictly convex when 1 < w < oo. 

implies that 

and 

For 0 < 'IT~ < 1, this 
l. 
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The contours of the Hurlbert-Smith index are also shown in Figure 

1.8. As w ~ 0 there is a limiting contour with, in this case, 

Z(l - Tii)log(l - Tii) = constant as the defining equation. The limiting 

contour is not shown in Figure 1.8 since it is graphically indistinguish-

able from the contour labeled w = 1. 

In view of Theorem l.7(b), Criterion C2 may be restated as the 

requirement that ~(~) > ~(TI) whenever V is a convex linear combination 

of permutations of ~· Functions which satisfy this property are sometimes 

called Schur Concave [16, 18]. Lewontin [21] has suggested the following 

somewhat stronger requirement. 

Criterion C3: ~(TI) is a permutation invariant concave functiort of 

the abundance vector TI. -
While we know of no intuitive motivation for this criterion, it 

will be essential to the mixture decomposition of Section 1.8.3. 

Criterion C3, unlike Criterion C2, is not preserved under increasing 

transformations of the index. For example, the numbers equivalent of 

the Simpson index, l/LTI~, satisfies Criterion C2 but not Criterion C3. 
1 

We also note that the conclusion of Theorem 1.6 can be strengthened 

as follows: 

Theorem 1.8: Criterion C3 is satisfied if the auxiliary 

function Vis concave on the closed unit interval [0,1]. In particular, 

~S satisfies Criter ion C3 <=> S > -1. 

criter ion when w > O. 

Proof: St raightforward. 

Also ~H-S satisfies this 
w 

By Corollary 1. 3 , Criterion C3 is met by any index based on a type 

I rarity measure, but, for a type II measure, it is necessary t hat 

P(X = 1) > 0, which is also necessary to standar dize the i ndex . 
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1.6 Indices Based on Ranking 

The indices discussed in Section 1.3 were based on dichotomous 

measures of rarity. A measure of species rarity, with a more detailed 

dependence upon community composition, is the number of more abundant 

species. For the ith ranked species, this number is i - 1 and average 

* * community rari t y becomes E(i - l)~i = Ei~i - 1 = Average Rank - 1. 

Solomon [15], from quite a different point of view, has introduced the 

Average Rank as a diversity index. (The -1 has the effect of assigning 

diversity zero to a single-species community and appears to be a gener-

ally useful convention.) 

A related index is Fager's [22] "Number of Moves" which is, in 

effect, the Average Rank rescaled to range between zero and one. However, 

Peet [23] has given persuasive arguments against rescaling diversity 

indices. Fager's basic idea is attractive, though. As an alternative 

to Fager's number of moves needed to convert a sample to an even 

distribution , one may consider the "work (= mass x distance)" required 

to construct a given community from a single-species community. This 

"work" is seen to be Average Rank - 1. 

For the general measure of rarity based on ranks, the analogue 

of Criterion Cl is the requirement that R(i) be an increasing function 

of i. In contrast with the case of dichotomous indices, this mono-

tonicity is sufficient for Criterion C2. In fact, 

Theorem 1.9: For the rank type index of form 6(~) 

the following are equivalent: 

a) R(i) is an increasing function of i. 

b) 6 satisfies Criterion CZ (Shur concavity). 

c) 6 satisfies Criterion C3 (concavity). 



Proof: That c) implies b) is clear . To show that b) implies 

a), let i be a positive integer and consider any community whose 

* * 
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ranked abundance vector satisfies Tii > Tii+l• Transfer a small amount 

of abundance h from the ith to the ( i + l) th ranked species. By 

Criterion C2 the change in the index must be nonnegative. Since the 

change is seen to be h[R(i + 1) - R(i)] , we may conclude that 

R(i + 1) ~ R(i). For the pr oof that a) implies c), observe that 6(~) 

is a well-defined and continuous (in fact, piecewise linear) function 

n · · n 
for TI E R • We will prove that A is concave on all of R • For 

n 
~, l E R , let ~(t) = ~ + tz, - oo < t < oo, be the straight line passing 

through x with direction vector y. It suffices to show that the second -
order difference of the function A(z(t)) is nonpositive at t = O, i.e., 

that 

A(z(h)) - A(x) < A(x) - A(z(-h)) (1.10) -
for all sufficiently small positive h. Since 6 is permutation invariant, 

* we may suppose that~ is ranked in descending order (x = x ). Define 

a tied set to be any equivalence class for the equivalence relation 

i ~ j <=>xi= xj. (Example: If x - x - x > x > x then 1 - 2 - 3 4 5, ••• , 

{l, 2, 3} and {4} are each tied sets.) The vector z(h) need not be -
ranked, but when h is small the ranking can be disturbed only within 

* tied sets. Define a permutation cr by z.(h) = z .(h) for all sufficiently i · cri 

small positive h. Clearly cr maps each tied set into itself and, within 

each tied set, arranges the direction vector l in descending order. 

Now, the left hand side of (1.10) will be compared with t he right hand 

side . Using the fact that x is r anked , a direct calculation shows that 

the left hand side is 
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* * 6(z(h)) ll(x) = l:R(i)[zi(h) xiJ ... 

= l:R(i)[zai (h) - xi J 

= I:R(i)[xai +· hyai - xiJ 

= h2:R(i)yai• (l.11) 

.. Similarly, 

(1.12) 

where the permutation T maps each tied set into itself and, within 

each tied set, arranges y in ascending order. Now compare (1.11) 

with (1.12), tied set by tied set, and apply the following lemma of 

Hardy, Littlewood, and Polya [6, p. 261] to conclude that (1.10) is 

true. 

Lemma 1.1: Then 

f (a) = I:a.b . is maximized when the permutation cr arranges b in 
· 1 en. · ... 

ascending ord.er and is minimized when cr arranges b in descending order. 

Remark 1.6: It follows from Theorem 1.7 and Theorem 1.9 that 6 

preserves stochastic ordering provided R(i) is an increasing function 

* * * of i. Consequently, I:R(i)Vi ~ I:R(i)~i whenever ~ · is stochastically 

* greater than ~ • This is, of course, a well known property of stochas-

tically ordered distributions. For example, see Lehmann [24, p. 73, 

p. 112]. 

The proportionality equation (1.3) has an analogue 

R(~ + i) - R(i) = W(i)[R(k + 1) - R(l)J, i, k = 1,2,3, ••• , 

i - 1 ' 
whose solution is W(i) = p and, up to an affine transformaUon, 
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i-1 
(1 - p )/(1 - p) if p .;. 1 

R(i) (1.13) 
i - 1 if p = 1, 

where p is a constant. A necessary and sufficient condition for R(i) 

to be increasing is that p ..::_ O. The index based on (1.13) will be 

d t d A(rank) eno e u , 
p p ..::. o. Average Rank - 1 is included as the special 

case p = 1 and is the analogue of the Shannon index in the sense that 

the deflation factor W is identically one for both indices. 

In Section 1.12, we need the numbers equivalent of Average ·Rank - 1 

* which may be shown to be 2(EiTii) - 1. In general, however, it is not 

possible to obtain a closed form expression for the numbers equivalent 

of /::,.(rank) 
p • 

With the aid of the partial summation formula, /::,.~rank) may be 

expressed as a right tail probability generating function, 

/::,.(rank) = 
p 

E ( E 
i>l j>i 

*> i-1 TI• p 
J 

(1.14) 

Clearly, then, /::,.(rank)(C) is an increasing function of p and is s trictly 
p 

increasing when s > 2. This may be compared with 1::,.

8
(c) which is a 

decreasing function of f3. Typically, the two families of indices 

behave oppositely with respect t o their parameters. 

. (rank) Figure 1.9 shows some contours of /::,. for three-species 
p 

communities. As is true for all rank type indices, the contours are 

piecewise linear. As p increas es, the contours become increasingly 

elongated toward the vertices and, unlike those 

out the entire region of imcomparability. Thus 

of /::,.B or 

{t.(rank) 
p 

H-S Li , sweep w 

p ..::_ O} is 
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complete for thr ee-species conununities . This fai l s for mor e than three 

species. 

Example 1.4: Let the communities C and C" have respective ranked 

abundance vectors (6,6,2,2)/16 and 

0 < a < 1. Put g(p) = /:;,(rank) (C") 
p 

(6 + a, 5 - a, 4, 1)/16 where 

_ /:;,(rank) (C) = -(p2 _ p + a)/l6• 
p 

Now C and c" · are not intrinsically comparable ; but the polynomial g(p) 

is always negative when a> 1/4 so that the family {/:;,(r ank) : p > O} 
p -

fails to detect this incomparability. When 0 < a < 1/4, g(p) has t wo 

positive roots and the i ncomparability is detected . 

1.7 Index Response 

The choice of an index implicitly involves a decision regarding 

the diversity ordering of communities which are not intrinsically com-

parable. Peet [25] discusses the need for a theory of index response 

to assist in this choice. For example, one may wi sh the index to be 

sensitive to the composition of the rare speci es but relatively 

indifferent to that of the abundant species. In Section 1.7.1, we 

give a definition of the sensi t ivity of an index and relate it to the 

question of index inconsistency . The term "sensitive to rare species" 

occurs frequently in the diversity literature but to our knowledge no 

precise definition has previously appeared . 

Peet [25] suggests that i ndex response be determined by examining 

the change in index value that results from a given change in the 

abundance of two equally common species. Expanding upon this idea in 

Section 1.7.2, we define the deflation factor of an arbitrary index 

and characterize b,S and /:;,~rank) by the form of their deflation factors. 
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1.7.1 Sensitivity to Rare Species. In this section we consider 

communities C, C', C" * '* * with ranked abundance vectors 1T , 1T , rr" • Recall -
that C" is iritrinsica·lly more diverse than C if the tail sum differe~ces, 

T = T (C" C) = 
k k ' 

* r (rr" 
i>k i 

* - 1T.), k = 
1 

1,2,3, ••• , 

are nonnegative. The next most complicated relation occurs when this 

sequence of differences has exactly one sign change. Taking the sign 

change to be from negative to positive, we say that C" is more diverse 

in the tail than C if there is a positive integer m for which 

T
1

,T
2

, • •• ,Tm are less than or equal to zero but not all zero while 

Tm+l' Tm+2, ••• are greater than or equal to zero but not all zero. 

Definition 1.4: A vector f = (f
1
,f2, ••• ) is a transfer vec tor 

if all its tail sums are nonnegative and f 1 + f 2 + ••• = O. A pair 

(~,!) of nonzero transfer vectors is separated at m (m = 2,3, ... ) if 

bi = 0 for m < i and fi = 0 for i < m. Call b the backward and f the ... 
forward component. 

If C" is intrinsically more diverse than C, the difference 

* * f = rr" - 1T is a transfer vector which codes the information needed to 

obtain C" from C by transfers to less abundant species (forward 

. transfers). When c" is more diverse in the tail than c, there is a 

pair (b,f) of nonzero transfer vectors separated at m for which 

11* * 
1T = 1T + f - b. In this case, C" may be obtained from C by a two-

* * * step operation: · 'TT + 1T + f -+ 1T + f - b. The first step increases 

the diversi ty in the intrinsic sense and does so by forward transfers 

among the species ranked rn, m + 1, rn + 2, •••• The second step 

decreases the divers.ity by backward transfers among the species ranked 

1., 2, 3, ••• ,m. 
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Example 1.5: We illustrate the preceding with a numerical example. 

Take 

* TI = ( . 18, .18,.16,.16,.16,.16) 

and 

n* 
TI = (.50,.0S,.05,.os, . os.,os,.os,.os,.os, . os,.os). 

The sequence of tail sum differences Tk is 

O, -.32, -.19, -.08, .03, . 14, .2S, .20, .lS, .10, .OS. 

Since there is only one sign change, C" is more diverse in the tail 

than C. Putting 

b = (-.32, .13, .11, . 08, O, O, O, O, O, O, 0), 

f = (b, 0, O, -.03, -.11, -.11, .05, .OS, .OS, .OS, .05), 

11* * the pair (b,f) is separated at m = 4 and TI = TI + f - b. Since ........ 

the two connnunities C" and C are not intrinsically comparable, they may 

be inconsistently ordered by a given pair of indices. But C" is more 

diverse in the tail so that we might anticipate the order 6(C") 2:_ 6(C) 

when 6 is "sensitive to rare species" and the opposite ordering when 

6 is "insensitive~" This behavior is illustrated for the indices 

"13, AH-S ·and "(rank) . T bl 1 1 u u u in a e • • w p 
Examination of the table suggests 

that 6
13 

is sensitive to rare species for small B while 6:-s and ~~rank) 

are sensitive for large values of w and p. Figure 1.10 is a plot of 

6 13 (C) and 6r/C") versus S. Notice that both graphs are decreasing and 

have exac:tly one crossing point . The analogous plots for the indices 
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Table 1.1: Response to Increased Tail Diversity 

(a 

-1 0 1 2 

llS (C): 5 1.79 .83 .49 

AS (C") : 10 1.84 .73 .44 

b 

w 

1 5 20 00 

.6.H-S(C): .83 2.99 4.87 5 
w . 

.6.H-S(C"): .73 2. 63 6.60 10 w 

c 

p 

0 .5 1 2 

ll (rank) (C): .82 1.31 2.42 9.14 p 

ll (rank) (C"): 
p 

.so • 90 2.75 101.80 



Figure 1.10 Illustration of the Crossing Point Theorem ~a 
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ti:-s and ti~rank) are increasing in w and p but again have a unique 

crossing point. See Figure 1.11 and Figure 1.12. 

The program for the remainder of this section is to (1) give a 

precise definition of the sensitivity of an index to rare species, 

(2) show that the sensitivity of ti6 is a strictly decreasing function of 

H-S (rank) a while the sensitivities of tiw and tie are strictly increasing 

functions of w and p, and (3) prove the uniqueness of the cros.sing 

points described in Example 1.5. 

* Start with an s-species community C = (s, 7T ) and let (b, f) be a - - -
pair of nonzero transfer vectors which are separated at m (1 < m ~ s). 

With h and k two small positive numbers, use b and f as direction 

vectors to construct the two communities 

C' •* * 7T = 7T + hf and 

* * C" : 7T11 = 7T + hf - kb. 

,* * To ensure that 7T and 7T11 are ranked, we assume that fi 2:. fi+l whenever 

* * * * 7Ti = 7Ti+l and that bi~ bi+! whenever both 7Ti = 7Ti+l and fi = fi+l• 

Now C' is intrinsically more diverse than C and li(C') 2:. 11(C) for any 

index ti which satisfies Criterion C2. On the other hand, 6(C") is 

a decreasing function of k and, for sufficiently small h, there is a 

k = k(h) for which li(C") = 6(C). We define the sensitivity of the 

index ti to be dk/dhlh=O and denote it cr(6;C;~,£). Figure 1 . 13 shows the 

communities C, C', C" along with the contour of /1 which passes through C. 

The sensitivity is the slope of t his contour at h = O. Comparison of 

Figure 1.13 with Figure 1.8 reveals that a sensitive index has contours 

which are elongated toward the vertices of the abundance simplex. Since 

contours are unaffected by strictly monotonic transformations, the 

sensitivity of an index is invariant to such transformations. In parti-

eular both A and its numbers equivalent have the same sensitivity . 
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Figure 1.12 Defining the Sensitivity of ~(rank) 
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Remark 1.7: Multiplying f by A> 0 and b byµ> 0 multiplies the - -
sensitivity by A/µ. A standardized sensitivity unit can be established 

by requiring that the positive components of ~ and of ~ sum to unity. 

Then h(k) is the net abundance transferred forward (backward) and a large 

value of the sensitivity means that a small transfer forward to the rare 

species requires a large offsetting transfer back to the abundant species. 

Explicit expressions for the sensitivity are obtained by implicit 

differentiation with respect to h of the relation Li(C") = Li(C) = constant. 

* Theorem 1.10: The sensitivity of the rank type index Li = ErriR(i) 

* does not depend on TI and is given by 

In particular, 

cr(Li(rank). b f) = 
p ' C; ' 

Theorem 1.11: The dichotomous index Li * * = ErriR(rri) with auxiliary 

function V(rr) = rrR(rr) has sensitivity 

cr(Li; C; b, f) ' * ' * = Ef.V (rr . )/Eb.V (rr.). 
1 1 J J 

In particular, 

and 
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The next example illustrates the behavior of the sensitivity of 

6~rank) and of 6
8 

when C is a three-species community. Following the 

example, we show that the features illustrated hold, in fact, for multi-

species communities. 

* * * * Example 1.6: (Three-species conununity)e Take rr = (rr
1

, rr2 , rr
3
), 

(rank) b = (-1, 1, 0) and f = (O, -1, 1). By Theorem 1.10, cr(6 ; C; b, f) = p 
- p - -

which is a strictly increasing function of p and approaches infinity as 

p + oo. The sensitivity of 6
8 

depends on the community C which may vary 

over the region XYZ of the abundance simplex (see Figure 1. 6). Letting 

* * * * * cp = (rr
2 

- rr
3
)/(rr1 - rr2), reparametrize C with the pair (cj>, rr

3
), 

* 0 .::_ <P .::_ oo, 0 .::_ rr
3 

< 1/3. When <P is fixed, C varies along a straight line 

passing through the centroid of the simplex as shown in Figure 1.6. In 

Figure 1.14, the sensitivity of 6
8 

is plotted against 8 for several 

* values of rr
3 

when <P = 1. The following features should be noted: 

(i) The sensitivity of the Simpson index is 

* identically 1 (= ¢) independent of rr
3

• 

* (ii) When rr3 ~ O, the sensitivity of 68 is a 

strictly decreasing function of S which 

approaches zero as 8 + 00 and which has a 

finite positive limit as 8 approaches -1 

from above. 

(iii) The sensiti\dty to the introduction of a 

* species is covered by the case rr3 = O. The 

sensitivity is infinite for -1 2_ 8 2_ O; over 

the interval 0 < 8 < oo, the sensitivity is 

is a strictly decreasing function of 8 which 

approaches infinity as 6 + 0 and zero as S + 00 • 
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For other finite, nonzero values of <ti, these qualitative features of 

Figure 1.14 are unchanged except that the horizontal line L is at a 

height <t> above the a-axis. The value <t> = 0 is excluded by the requirement 

* * that f 2 2'_ f 3 
when 7T2 = 7T3. When <P = oo, the sensitivity is infinite for 

all a. Note that in this case there is a tie between the firs t and 

* * second ranked species (7T1 = 7T2) and that the sum of the corresponding 

components of b vanishes. 

For multispecies communities, a preliminary lemma is needed. The 

proof is given in Appendix A.l. 
00 

Definition 1.5: Let {ai}i=l be a sequence of extended r eal numbers. 

A tied set of {ai} is a maximal set I of subscripts such that ai = aj 

whenever i, j £ I. A transfer vector ~ vanishes over tied sets of 

{ai} if r bi = 0 for each tied set I of {ai}. 
i£I 

Lenuna 1.2: Let (~, !) be a pair of nonzero transfer vectors which 

are separated at m and 00 1 A. > A > ••• > -oo a monotonic sequence of ].- 2- -

extended real numbers. Assume that Am is finite and that fj 2'_ fj+l 

whenever Aj = Aj+l• For -w < x < 00 , define 

Then 

a) 

b) 

__ { Lfiexp(Aix)/Lbjexp(Ajx) 
cr(x) 

LfiA/LbjAj 

if x 1 0 

if x = o. 

cr(x) = 00 when ~ vanishes over tied sets of {Ai}. 

Suppose b does not vanish over tied sets of {A.} and that f . = 0 
l. l. 

whenever A. = -oo. Then cr(x) is a strictly decreasing function of x 
1 

with lim cr(x) = 00 and lim cr(x) = O. 
x+-oo X +oo 
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c) Suppose e does not vanish over tied sets o{ {).i} and that there is 

an i for which f i ~ 0 and Ai = ...oo. Then cr(x) = 00 for x 2_ O; over the 

interval 0 < x < 00 , cr(x) is a strictly decreasing function of x with 

lim cr(x) = 00 and lim cr(x) = O. 
x-+O x-+ 00 

* Now let C = (a, 7T ) be an s-species community and (~, f) a pair 

of nonzero transfer vectors which are separated at m (1<m2_ s). 

* * Assume that fi ~ fi+l whenever 7Ti = 7Ti+l and that bi 2_ bi+l whenever 

* * both 7Ti = 7Ti+l and fi = fi+l" 

(rank) The sensitivity of ~ is a strictly increasing 
p . . 

Theorem 1.12: 

function of p which approaches zero as p -+ 0 and which approaches 

infinity as p 

Proof: Write p = exp(-x) and apply Lemma l.2(b) with A. = -(i - 1). . 1 

Theorem 1.13: Let cr(S) = cr(~S; C; ~' !), S > -1, be the sensitivity 

* Then cr(S) = 00 when b vanishes over tied sets of 7T • .., 

* 
If b 

does not vanish over tied sets of 7T , there are two subcases depending 

on whether a species is introduced: the behavior of cr(S) is described 

under item (ii) of Example 1.6 when fi = 0 for all i > s and under item 

(iii) of Example 1 . 6 otherwise. 

* Proof: Write 7Ti = expC\) and apply Lemma 1.2 with x = a. 

Theorem 1.14: Let cr(w) H-S 
=a(~ ; C; b, f), w > 0, be the sensitivity w .., .... 

of the Hurlbert-Smith index. Then cr(w) = 00 when b vanishes over tied 

* sets of 7T ; otherwise cr(w) is a strictly increasing function of w which .... 

has a finite positive limit as w -+ 0 and which approaches infinity as 

* Proof: Write 1 - rr. = exp(-A.) and apply Lennna 1.2 with x = -w. 
1 1 

Next we state the crossing point theorem which was illustrated in 

Example 1. 5. 
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* * Theorem 1.15: Let C = (s, 1T ) and C"= (s"-, 1T11 ) be two communities ... ... 
with C" more diverse in the tail than C. 

a) Let g(p) = ti~rank)(C") - ti~rank)(C), p ~ O. * * Th (o') 1T 1T'1' _< o. en g = 1 -

On the interval 0 < p < co, g(p) is negative for Small p, positive 

for large p and has exactly one zero . 

b) Let g(S) = tia(C") - tia(C), S ~ -1. Then g(-1) = s" - s ~ O. On 

the interval -1 < 8 < co, either (i) g(S) is negative for all a or 

c) 

(ii) g(S) is positive for small a, negative for large a and has 

exactly one zero. Case (ii) must apply if s" > s. 

·H-S H-S 
Let g(w) = ti (C") - ti (C), w > O. 

w w -
Then g(O) = 0 and 

g(co) = s" - s ~ O. On the interval 0 < w < co, either (i) g(w) is 

positive for all w or (ii) g(w) is negative for small w, positive 

for large w and has exactly one zero. 

Proof: (a) It is easy to see that g(p) is positive for large 

p and negative for small p (see Remark 1.8, below). Thus g(p) has at 

least one positive zero and we need only show that this zero is unique. 

In fact, if Po is any positive zero, we show that g(p) > 0 for p > p0• 

Referring to Figure 1.13, let r and r
0 

be the 

hk-plane of the contours through C of ti(rank) 
p 

intersections with the 

and of li(rank) Since p • 
0 

Po > O, r and r0 can be shown to be one dimensional. At C, r has a 

strictly greater slope than ro so that, if g(p) were nonpositive, r 
would have to cross r

0 
at some point between C and C". But at the 

crossing point the slope of r will be less than or equal to that of ro 

and this contradicts the strict monotonicity of the sensitivity. 

(b) Let the first nonzero component of the backward transfer vector 

11* * ~ occur in the nth position so that 1Ti = 1Ti for i < n and 

* 1T" 
n 

* * * > 1T >TI +l >TI +2 > ••• • n- n - n -
Then S:g(S) equals 
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Since the term in brackets is asymptotically positive, g(S) must be 

negative for large S. The proof that the crossing point is unique if 

it exists is similar to (a). The cotmnunities C and C" of Figure 1.8 

show that g(l3) need not have a positive zero. Part (c) of the theorem 

is proved in the same manner as part (b); here again the crossing point 

need not exist. 

Remark 1.8: There is an alternative proof of Theorem l . 15(a) 

which yields more information. Using 1.14, g(p) may be expressed in the 

2 form T2 + T
3

p + T4p + ..• where {Tk} is the sequence of tail sum 

differences. By Descartes' rule of signs, the number of positive zeros 

of g(p), counting multiplicity, does not exceed the number of sign changes 

of {Tk} and the difference between the two is an even integer . Thus 

g(p) has exactly one positive zero when {Tk} has one sign change. 

The method of this section can also be used to define the sensitivity 

to abundant species and the sensitivity to intermediate species. The 

sensitivity to abundant species turns out to be the reciprocal of the 

sensitivity to rare species and gives nothing new. The sensitivity to 

intermediate species would be defined by making forward transfers among 

the intermediate species and offsetting backward transfers among both 

the rare and the abu~dant species. So defined, the sensitivity of 

A(rank) i d. . . u to nterme iate species is 
p 

a unimodal function of p which 

vanishes at both p = 0 and p = oo. (We conjecture, but have not proved, 

that the sensitivity of t:.8 to intermediate species is a unimodal 

function of B.) This may provide some insight into the behavior of 

the function g(p) of Example 1.4. In that example, C" is less diverse 



64 

than C among the abundant and also among the rare species but is more 

diverse among the intermediate species. For small p, /J.(rank) is 
p 

sensitive to the abundant species and g(p) is negative. As p increases, 

6.~rank) becomes more sensitive to the intermediate species and g(p) 

increases. 
(rank) 

Finally, for large values of p, 6.p is sensitive to the 

rare species and g(p) begins to decrease. 

1~7.2 Response to Perturbations. Consider a community C and a 

subcollection of species from this community. Label the members of 

the subcollection as i = 1,2, ••• ,n, denote their abundances by 

7T1 , 7T2 , ••• ,7Tn and let 1T = 7Tl + 7T 2 + ••• + 7Tn be their combined abundance. 

The subcollection forms a community C' with abundance vector 

(TI
1

/7T, 7T2/7T, ••• ,7Tn/7T). Keeping 7T fixed, let the subcollection be 

subjected to an infinitesmal perturbation of form 

The perturbation induces a change 06.(C) in the diversity measure of C 

and also a change 06.(C') in that of C'. We wish to compare the 

magnitudes of these two changes and we define the response function 

of 6. to be the ratio o/J.(C)/o/J.(C'). The dependence of the response function 

on the combined abundance 7T will be of particular interest. The most 

natural dependence occurs when the response function equals 7T (i.e • ., 

o/J.(C) = 7T•Ol1(C')). More generally write the response function as 7f•W and 

call W the deflation factor. (Values of W greater than one act as an 

inflation factor.) In general, W depends on the direction vector b as 
"' 

well as the parameters of C and of C'. We also remark that Wis invariant 

to affine transformations of the index but not to mono tone transformations 

in general. 
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An easy calculation shows that the dichotomous index with auxiliary 

function V has deflation factor W = EbiV'(TI1)/EbiV'(Tii/TI). For the index 

!18, this expression reduces to W = TIS which depends only on TI. The 

deflation factor of the rank type index is found to be W = EbjR(ij)/EbjR(j) 

where i 1 < i 2 < ••• <in are the ranks (within C) of the various species 

(rank) 
in the subcollection. In particular, l1 has deflation factor 

(i.-1) j 1 p . 
W = Eb.P J /Eb.P - ; in general, this expression depends on b but 

J J 

when the species are consecutively ranked within the community C 

i - 1 (i1 = i, i 2 = i + l, ••• ,in = i + n - 1), it reduces top which 

depends only on the rank of the most abundant species. In fact, the 

indices !1(rank) are characterized by this last property. 
p 

Theorem 1.16: Let l1 be a rank type index whose deflation factor 

depends only on the rank of the most abundant species when the species 

are consecutively ranked. Then there is a real number p such that l1 is 

an affine transformation of 6(rank). 
p 

Proof: Let i be the rank of the most abundant species and let k 

be a positive integer . Taking b1 = -1, h2 = b3 = ••• =bk= O, bk+l = 1, we 

find that 

W = W(i) = (R(i + k) - R(i))/(R(k + 1) - R(l)). 

Thus R satisfies the proportionality equation of Section 1.6 and the 

theorem follows from (1.11) . 

With suitable differentiability assumptions on V, one may similarly 

characterize 6S as the only index whose deflation factor depends only on 

the combined abundance TI . But in Section 1.8, we give a characterization 

of 6S which requires only very mild regularity assumptions. 
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1.8 Diversity Decomposition 

The calculated value of a diversity index provides only limited 

information concerning the overall structure of a community. Often it 

is possible to decompose the community in some natural way, and as in 

the analysis of variance, apportion the total diversity among and 

between the various components. We consider two types of decompositions: 

two-way classifications and mixtures. Allan [26] has discussed both 

types in the case of the Shannon index. 

As measured by Shannon index, the total diversity of a two-way 

classification decomposes into the sum of two terms: the diversity of 

the row marginals and the average diversity of the normalized rows. In 

Section 1.8.2 we replace this last average by a "deflated" average and 

extend the decomposition to a wider class of indices. In the important 

special case of hierarchial classification, the total diversity equals 

the diversity of the column marginals and the decomposition becomes 

a decomposition of marginal diversity. Pielou [27], Lloyd et al. [28] 

and Wilson [29] have used this hierarchial decomposition to apportion 

taxonomic diversity. Theil [30, 31] has discussed numerous applications 

in the social and administrative sciences. 

Lewontin [21] has pointed out a general method of decomposing 

marginal diversity even for nonhierarchial classifications. In a two-way 

classification, the vector of column marginals is a mixture of the 

normalized rows and, when the index is concave, the diversity T of the 

column marginals will be greater than or equal to the average diversity 

W of the normalized rows. Lewontin proposes that the "within" and the 

"between" components of diversity be defined as W and T-W, respectively. 
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Lewontin explicitly gives the decomposition only for the Shannon index 

while. Nei ·[32] has given it for the Simpson index. In Section 1 . 8.3 we 

discuss this mixture decomposition for the general dichotomous index. 

However, in the case of a hierarchial classification, the mixture 

decomposition coincides with the hierarchial decomposition only for the 

Shannon index. At present, we are aware of no reason for preferring 

one decomposition over the other. 

Since the decompositions of this section bear a formal resemblance 

to the analysis of variance, we begin by striking an analogy between 

diversity and variance ; the analogy is strengthened in Section 1.12.5. 

1.8.1 Diversity and Variance. Let x1 and X2 be independent 

realizations of a random variable X. The variance of X is given by 

cr2 = (l/2)EKX1-x2)~ ], and may be interpreted as the average difference 

(or differentness) between the two independent observations. By analogy, 

define the differentness between species i and species j to be 1 - oij 

where (oij) is the identity matrix. Simpson's index can be written as 

~l = L'ITi(l - oij)'ITj so that diversity (at least as measured by Simpson's 

index) is the average differentness between two randomly selected 

members of the community. 

2 Now ~l is a measure of diversity while a is a measure of spread. 

The analogy may be extended to one between diversity and spread in 

* general. Given a ranked abundance vector 'IT , define a SYl11Jlletric unimodal 

* probability distribution on the integers by syrmnetrizing !1: , i.e.; 

* * . P(O) = 'ITl and P(i) = P(-i) = 'ITi+/2 for i = 1,2,3,... • It is 

intuitively clear that introducing a species or transferring abundance 

will increase the spread of this distribution with any reasonable 

interpretation of spread. In fact, some of the standard measures of 
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spread, when applied to this distribution, become identified with 

previously considered diversity indices. The half range, for example, 

is the Species Count while the mean absolute deviation is the reduced 

Average Rank. 

1.8.2. Diversity of a Two-Way Classification. Ptelou [33, p. 7] 

has listed thr~e desirable properties of a diversity index: 

Pl. For a given number of species, the index should assign 

maximum diversity to the completely even communtty . 

P2. Given two completely even communities, the one.with 

more species should be assigned the greater diversity. 

P3. An ANOVA formula (1.16) with W(TI) = 1 should hold for 

two-way classifications. 

Theorem 1.17: Any diversity index ~ which satisfies Criterion C2 

also satisfies properties Pl and P2. 

Proof: Let C' = (s', v) and C = (s, TI) be two communities with C' ... 
completely even. Clearly v is a convex linear combination of permutations ... 
of TI whens< s'. Applying Theorem 1.7, it follows that ~(C') ~ ~(C). 

As has been shown by Khinchin (see [34, p. 67]), the three properties 

Pl, P2 and P3 together with some regularity assumptions characterize the 

Shannon index up to a constant multiple. However, deflated ANOVA 

formulas can be associated with certain other indices. Consider a two• 

way classification AxB with cell proportions Tiij' i = 1,2, ••• ,a, 

j = 1,2, ••• ,b. Without loss of generality, we may assume that the 

marginals ni•' i = 1,2, ••• ,a, and TI•j' j = 1,2, ••• ,b, are all nonzero. 

For now we restrict attention to dichotomous indices with rarity 

measure R. Putting 



and 

!J.(A) = 
a 
l: 

i=l 

!J.(BIA.) = 
1 

'TT. R('TT. ) ' 
1• 1• 

b 
l: ('TTi./'TT . • )R('TT.j/'TTi ), J 1 1 D 

j=l 

a b 
!J.(AxB) = l: l: 7T .. R('TT .. ), 

i=l j=l 1 J iJ 

the total diversity of the table may be written as 

!J.(AxB) 
a 

= !J.(A) + l: 
i=l 
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(1.15) 

For the index /J.a with rarity measure R('TT) = (1 - 'TTa)/S and with deflation 

factor W('TT) ='ITS, (1.15) reduces to the deflated ANOVA formula 

a 
/J.(AxB) = /J.(A) + l: '1Ti

0
W(7ri•)!J.(B!Ai), 

i=l 

or, more schematically, 

Since !J.(AxB) = !J.(BxA), interchanging the roles of A and Bin 

(1 . 16) leads to the equation 

!J.(B) = !J.(A) + EA[W('TT. )!J.(B!Ai)) - EB[W('TT .)!J.CAIB.)). 
. 1 • • J J 

(1.16) 

(1.17) 

With AxB classification as habitat x species, ecologists [26, 35, 36, 37], 

using the Shannon (or Brillouin) index, have attempted to interpret the 

last two terms of (1.17) as measures of "niche overlap" and "niche width," 

respectively. These interpretations are also reasonable for the Species 

Count and for the Simpson index; for example, with the Simpson index, 

EA[W('TTi.)!J.(B!Ai)) is the probability that two randomly selected organisms 

belong to the same habitat but different species. Accepting these 
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interpretations, (1.17) states that 

species diversity = habitat diversity + 

niche overlap - niche width. (1.18) 

Arguing from the Lotka-Volterra competition equations, MacArthur 

[38, p. 195) has obtained a multiplicative version of (1.18). 

A two-way classification is hierarchial if the rows are mutually 

orthogonal or, more specifically, if, for each j, all but one of the 

proportions Tiij' i = 1,2, ••• ,a, are zero. In this case fi(AxB) = fi(B) 

and (1.16) becomes a decomposition of marginal diversity, 

For example, taking the AxB classification as genus x species, (1.19) 

expresses the overall species diversity as the sum of the genus diversity 

and a deflated within-genus species diversity. 

The indices fiS are essentially the only indices satisfying the 

deflated ANOVA formula (1.16). This may be proved under a variety of 

regularity assumptions (see Aczel and Daroczy [34, chap. 6J and the 

references therein); here we present two such characterizations both 

of whose proofs reduce to the proportionality equation (1. 3). In the 

first version the index is assumed to be of the dichotomous type. 

Theorem 1.18: Suppose that R is measurable and nonconstant on 

the interval (O,l]. If the dichotomous index~= ETiiR(Tii) satisfies 

the deflated ANOVA formula (1.16) for some deflation factor W then there 

is a real number S (possibly S = + 00 ) for which W(TI) = TIS and 

{ 

constant• (1 - TIS) 
R(rr) = 

constant • log(;r) 

if s :/: 0 

if s = o. 



If, in addition, W is assumed to be measurable then (1.16) need be 

assumed. only for independent classifications. 

Proof: First suppose that R(l) = O. Let 1T be an arbitrary 

n-dimensional probability vector and 0 < q < 1. Applying (1.16) 

to the 2xn classification 

q1T 
n 

1 - q 0 0 ••• 0 
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gives E1Ti[R(q1T.) - R(q) - W(q)R(1T.)] = O. For fixed q , the expression 
1 1 

in brackets is measurable; using Theorem 1.1, the pair (R,W) is then a 

solution of the proportionality equation (1.3). Theorem 1.2 now 

gives the result . Next suppose that R(l) :/: O. Applying (1.16) to 

nxl classifications shows that R(l)E1TiW(1Ti) = 0 for all probability 

vectors 1T . It follows from this that the rarity measure R(1T) - R(l) 

meets all the assumptions of the theorem and with the same def lation 

factor W. By the first part of the proof, W(n) = 1TB so that W(l) = 1 . 

Applying (1.16) to the lxl classification gives 0 = R(l)W(l) = R(l) 

which is a contradiction. Finally, if W is assumed to be measurable, 

apply (1.16) to the general independent two-way classification and 

proceed as above but with a double application of Theorem 1.1. 

For the second characterization we make no specific assumptions 

concerning the functional form of the index. 

Theorem 1.19: Suppose there is a deflation factor W such that the 

index b. = b.(~) satisfies (1.16) for all independent classifications. 

Also assume that (i) W is measurable and (ii) b.(1T) is nonconstant -
and permutation invariant. Then there is a real number B (possible 

B B = + 00 ) such that W(1T) = 1T and, provided B :/: O, b. = constant•t:.
6

• 
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(If f3 = 0, additional substantive assumptions are needed to characterize 

the Shannon index. A simple counterexample is provided by 6 = log(s). 

See [34, chap. 3; 39] for some possible additional assumptions.) 

Proof: Write H(~) = ErriW(rri). For independent classifications AxB, 

(1.16) takes the form of a multivariate proportionality equation 

6(AxB) = 6(A) + H(A)6(B). Consider an arbitrary independent classifica-

tion AxBxC where 6(C) :f:. O; expanding both sides of (Ax(BxC)) = ((AxB)xC) 

gives H(AxB) = H(A)H(B) . A double application of Theorem 1.1 to this 

last equation shows that W(xy) = W(x)W(y) for 0 < x, y < 1. It is 

easy to see that W is not identically zero so that W(x) = xf3 for some $. 

Take AxB as the independent two-way classification with marginals ~ 

and (1/2, 1/2). If f3 :f:. O, then also 1 - H(B) = 1 - 1/2$ :f:. O. Using 

(1.16) to expand both sides of 6(AxB) = 6(BxA) and solving for 6(A) gives 

6(A) = [6(B)/(l - H(B))](l - H(A)) = constant•6s(A). 

1.8.3. Diversity of a Mixture. For random variables, the variance 

of a mixture is greater than or equal to the average variance of the 

components; the difference is the between-component variance and is 

nonnegative. Here, we exploit the analogy between diversity and variance 

to effect an ANOVA-like decomposition for the diversity of a community 

C = (;, ~)which is a mixture of subcommunities c
1 

= (s
1

, ~(l)), 

c2 = (s2, ~( 2 )), • •• ,Cn = (sn' rr(n)) with w
1

, w
2

, ••• ,wn' as the mixing 

- (k) 
proportions. Note that ~ = Ewk~ and Ewk = 1. 

Example 1.7: In the two-way classification habitat x species take 

(1) (2) (n) . 
~ , ~ , ••• ,l'." as the normalized rows, the mixing proportions as 

the row marginals and rr as the vector of column marginals. -
Throughout this section the diversity index is assumed to satisfy 

Criterion C3 so that 6(C) ..:_ Ewk6(Ck). The within-community diversity 
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may then be defined as the average Ewk~(Ck) and the between-community 

diversity as the difference ~(C) - Ewk~(~). The structure of the 

between-community component of diversity will be discussed only for the 

dichotomous type of index A= ETiiR(Tii). Randomly select an individual 

from the subcommunity Ck. This individual may be regarded as a member of 

either Ck or C. Comparing these two viewpoints, the difference in 

average rarity is 

- (k) - (k) 
reek; C) = LiTii [R(Tii) - R(Tii )], 

which we call the rarity gain. With A as the Shannon index, r(ck; C) 

is known as the "information gain (of order l)" [11, 40] and measures 

the increase in information attributable to t he knowledge that the 

individual is a member of the particular subcommurii ty CK. While the 

information gain is known to be nonnegative, the rarity gain may be 

negative for indices other than the Shannon index (see [34, p. 114]). 

However, as stated by the next theorem, the between-community diversity 

is the rarity gain averaged over all the subcommunities so that this 

average is nonnegative. 

Theorem 1.20: Assume that the dichotomous index A satisfies 

Proof: Straightforward . 

Nei [32] has studied the decomposition of Theorem 1.20 in the case 

of Simpson index and has shown that the between-community diversity may 

be written as 

(1.20) 

where !·! is the ordinary Euclidian distance. It is clear from (1.20) 

that (for the Simpson index) the between-community diversity is zero if 

and only if all the subommunities with nonzero mixing proportions have 
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identical abundance vectors. In fact this will be true for any dicho-

tomous index whose auxiliary function V(TI) = TIR(TI) is strictly concave. 

In particular, it is true for the index ~S when S > -1. 

The decomposition of Theorem 1.20 is easily extended to higher order 

mixtures . For example, with a doubly indexed family of subcommunities 

Cij and with mixing proportions wij' one obtains, with the obvious 

notation, 

~(C. •) = Ewi.~(Ci.) + Ewi.r(C.j; C.) + Ew. r(ci; c .. ). J J J l. i• 1• • 
(1.21) 

1.8.4. Disorder, Hardy-Weinberg Equilibrium, and a Law of 

Increasing Entropy. This section attempts to show that entropy and 

diversity are not equivalent concepts, that entropy measures may be 

used as diversity measures but not conversely. 

There appears to be no precise definition, in the scientific liter-

ature, of entropy as a concept and none is offered here. Webster's 

Third International Dictionary [41, p. 759] states that entropy is 

" •• • the absence of form, pattern, hierarchy, or differentiation ••• the 

general trend of the universe toward final death and disorder." The 

key phrases here are "absence of pattern" and "disorder." A standard 

example from physics clarifies the point. Consider a chamber occupied 

by gas molecules. If most of the molecules are initially located 

in the left half of the chamber there will be a net motion to the right 

and work may be extracted from the system. Gradually the molecules 

will become more uniformly distributed throughout the chamber and once 

the state of complete uniformity (disorder) is achieved, the energy 

of the system is no longer available for doing work. 
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A similar trend toward disorder occurs when a biological population 

approaches Hardy-Weinberg equilibrium. The Hardy-Weinberg law states 

that, under certain restrictive assumptions, the marginal gene frequencies 

. remain constant from generation to generation while the gamete frequencies 

converge to a product probability measure. The restrictive assumptions 

[42, p. 60) include random mating, infinite population and no mutation, 

migration or selection. These assumptions ar e not likely to be met in 

practice; evolutionary dynamics resists the trend toward disorder by 

organizing the gene combinations into clusters that ar e best adapted to 

particular environmental conditions (Lewontin [21), Dobzhansky [43, p. 21)). 

It is shown below that the Shannon measure (but not the Simpson measure) 

of the gamete frequencies increases during the approach to Hardy-Weinberg 

equilibrium. Presumably, this law of increasing entropy is well-known 

to geneticists, but there seems t o be no ready reference. 

The simple case of two loci each having tWo alleles is considered 

first. Suppose the alleles at these two loci are represented by a1 , a 2 

and b1 , b2, respectively. The possible gametes are then a1b1 , a1b 2, a 2b1, 

and a2b2 and the gamete frequencies in the initial generation may be 

displayed in a 2x2 contingency table: 

(1.22) 

Let y0 = rr
11

TI22 - rr
12

rr21 = TI11 - rr
1

.rr . 1 be the covariance of this table 

when the value zero is assigned to a1 and b
1 

and the value one to a 2 and 

b2• Also suppose that 0 < A < 1 is the recombination fraction. In the 
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next generation, the covariance is 

(1. 23) 

and the gamete frequencies are: 

bl b2 

al 1Tll - A.y 
0 1Tl2 + A.yo 

a2 1T21 + A.yo 1T22 - A.yo (1.24) 

(For details of the derivation, see Elandt-Johnson [42, Section 4.51] or 

Kempthorne [44, Section 2.8].) Notice that (1.22) and (1.24) have the 

same marginals. Iterating (1.23), the covariance in the nth generation 

is (1 - A.)ny
0 

which converges to zero. Thus, in the limit, the gamete 

frequencies become independent, which is the state of maximum disorder 

given the requirement of fixed marginals. 

The transition from (1.22) to (1.24) will be called a Hardy-Weinberg 

transfer . Hoeffding [45] and Tchen [46] have considered a similar trans-

fer of probability in attempting to formalize the concept of correlation. 

Theorem 1.21: The Shannon index increases under a Hardy-Weinberg 

transfer. The Simpson index does not, in general. 

Proof: Let 7Tij (i,. j = 1,2) be fixed and write nij (A) = 

TI.. (-l)i+jA.y
0 

where 0 <A.< 1. Now, 
1J 

d[-l:n .. (A.)log n .. (A.)]/dA. = y
0 

log w, (1.25) 
1J 1J 

ratio is greater than, less than,or equal to one exactly when the 

covariance Yo is positive, negative,or zero . Thus, the right hand side 

of (1.25) is always nonnegative. A counterexample for the Simpson index 
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is given in the next exampie. 

Example 1.8: Let the initial gamete frequencies by rr
11 

= .26, 

rr12 = .22, rr21 = .27,and rr22 = .25 and suppose the recombination fraction 

is 1/2. The equilibrium frequencies are given in Table l.2(a). The 

values of the Shannon index and the Simpson index for successive gener-

ations are given in Table l.2(b). Note that the Simpson index first 

increases but then decreases. Examples can also be given in which the 

Simpson index steadily increases, steadily decreases, or first decreases 

and then increases. In all cases, however , the Simpson index is unimodal. 

The next theorem states that any dichotomous index which increases 

under Hardy-Weinberg transfers may also be used as a diversity index. 

No attempt has been made to identify the best possible regularity 

assumptions. 

Theorem 1 . 22: Let b be a dichotomous index whose auxiliary 

function V(rr) = TIR(TI) is continuously differentiable for 0 2_ rr 2_ 1. 

The possibility that V'(rr) is infinite at TI= 0 is not excluded. If 6 

increases under all Hardy-Weinberg transfers, then it also satisfies 

Criterion C2. 

Proof: Let 0 2_ y < x 2_ 1 and x + y 2_ 1. In Theorem 1.5, TI. and 
1 

TI .• correspond to x and y respectively. 
J 

First assume that x + y < 1 

and put z = (1 - x - y)/2 > O. The first table innnediately below has 

positive covariance so that the following is a Hardy-Weinberg transfer 

for all sufficiently small h > 0: 

x y x - h y + h 
+ 

z z z + h z - h 
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Table 1.2 Numerical Example of the Approach to 

Hardy-Weinberg Equilibrium (A = 1/2) 

(a) Gamete Frequencies 

Initial Equilibrium 

bl b2 bl b2 

al .26 • 22 .48 al . 2544 .2256 .48 

al .27 .25 .52 a2 .2756 02444 .52 

.53 .47 .53 .47 

(b) Parameter Changes 

Generation Covariance Shannon Index Simpson Index 

0 0.0056 0000 1.3834 4084 .7486 0000 

1 0.0028 0000 1.3836 3002 .7486 8064 

2 0.0014 0000 1.3836 7730 .7486 9744 

3 0.0007 0000 1.3836 8913 .7486 9996 

4 0.0003 5000 1.3836 9208 .7486 9975 

5 0.0001 7500 1. 3836 9282 .7486 9928 

6 0.0000 8750 1.3836 9301 .7486 9895 

7 0.0000 4375 1.3836 9305 .7486 9876 

00 zero 1.3836 9307 .7486 9856 
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We must have d6/dhjh=O .::._ 0 where 6 = 6(h) is the index evaluated on the 

second table. But this derivative is V' (y) - V' (x) + V' (z) - V' (z) = 

V'(y) - V'(x). Thus V'(y) .::._ V'(x). Taking limits, this inequality 

also holds when x + y = 1. Theorem 1.5 now gives the result. 

The notion of a Hardy-Weiberg transfer can be extended to the case 

of multiple alleles and/or multiple loci. However, the notation becomes 

very complicated and a different approach will be taken. The idea is 

to write each generation's gamete frequencies as a convex linear 

combination of marginal products for the preceding generation and then 

apply Criterion C3. We first illustrate the method in the previous case 

of two loci each having two alleles. Let 1T = (1T .. ) be the initial 
l.J 

. ' f . (l, 2) ( ) h il .b i f . generation s requenci.es, 1T = 1Ti 1T . t e equ I.rum requenci.es, 
- •• J 

and ~ the next generation's frequencies. Now (1.24) may be rewritten 

in the form;= (1 - A)~+ A~(l, 2 ). Since the Shannon index 6
0 

satisfies 

Criterion C3, this implies that ~0 (~) .::._ (1 - A) 60 (~) + A60 (~(l, 2 )). But 

(1 2) 
it is shown in the next lemma that ~0 (~ ' ) .::._ 60 (~) so that 

60 (~) .::._ ~0 (~), i.e., the Shannon index increases from generation to 

generation. 

Lemma 1.3: Let AxB be a two-way classification and A*B be the 

independent classification with the same marginals. Let ~O be the 

Shannon index. Then 

a) 60 (A*B) = ~0 (A) + 60 (B), 

b) ~o(A*B).::.. ~o(AxB) . 

Proof: The first assertion follows from the ANOVA decomposition 

(1 .16) since W(1T) = 1 for the Shannon index. But by Criterion C3, 

60 (B) .::._ EA[~0 (BjAi)]. Comparing part (a) with (1.16) gives the second 

assertion. 



The general proof that the Shannon index increases from generation 

to generation is now easy. Label the different loci as 1, 2, 3, ••• ,m 

and let '1T = ('TT. i . ) be the initial gamete frequencies. For each 
- 1 1' · 2---im 

partition of. {1, 2, 3, ••• ,m} into two nonempty disjoint subsets U and V 

(U,V) define a marginal product '1T as follows: 

'1T (U, V) . 
ii --i 

1 2 m 
= '1T 

u u ---u 1 2 m 
'1T 

v v ---v 1 2 m 

where the symbol uj stands for ij if j is in U and for • (dot) if j is 

in V and where vj stands for ij if j is in V and for • (dot) if j is in 

U. For example, if m = 4 and if the partition consists of the two sets 

· {l, 3} and {2, 4}, then 

,.. 
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Finally, let '1T be the gamete frequencies in the next generation. It is 

not hard to see that '1T is a convex linear combination of '1T and the mar

ginal products ~(U,V). Since 60 (~(U,V)) _.:: 60 (~), it follows as above 

Remark 1.9: The above ideas can be modified to produce a simple 

general proof of the Hardy-Weinberg law (provided, of course, that no 

two loci are rigidly linked). Just as before, a marginal product can 

be defined for a partition consisting of any number of sets. Thus 

each partition may be thought of as an operator acting on the class of 

possible gamete frequencies. The recombination laws induce a Markov 

chain whose states are the partitions. Transitions from one partition 

to another are possible only if the second partition is the same as the 
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first or is finer than the first. Moreover, the probability of a self-

transition is strictly less than one if no two loci are rigidly linked. 

Thus the finest partition is the unique absorbing state; but this parti-

tion induces the product probability measure. 

1.9 Estimation of Simpson's Index 

A problem associated with the use of diversity indices as indicators 

of environmental quality is the time and level of professional expertise 

required for a taxonomic classification of the sample. Cairns et al. 

[47, 48] have developed an ingenious technique to overcome this diffi-

culty. Their approach is a nice illustration of the concept of inter-

and intraspecific encounters discussed in Section 1.3.1. Given a random 

sample A1 , A2, ••• ,~, ~+l of specimens, define a run to be a maximal 

sequence of consecutive specimens of the same species. Cairns 

suggests the ratio, (# runs)/(N + 1), as a measure of the diversity of 

the sample. In implementing the technique, the investigator need only 

make the successive comparisons A1 vs. A2, A2 vs. A
3

, A
3 

vs. A4, etc., 

so that the method is rapid and does not call for sophisticated taxonomic 

skill. 

In what follows, it is shown that, with a minor bias correction, 

Cairns diversity measure becomes an unbaised estimator of Simpson's 

index ~1 • Asymptotic normality is also established. The unbiased 

version is obtained as CL = (# runs - l)/N and will be called Cairns 

linked estimator. The statistical analysis is facilitated by introducing 

indicator random variables T. with the property that each occurrence of 
l. 
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T. = 1 signals the start of a new run. The T. are defined by 
1 1 

1 if Ai and Ai+l belong to different species 

0 otherwise. 

Then T1 , T2, ••• ,TN are identical 0-1 random variables, but adjacent Ti 

need not be independent (since the comparisons are linked). Let p 

be the correlation between T
1 

and T2• 

Theorem 1.23: a) E[T1J = ill' b) Var[T
1

] = 6
1

(1 - 61), 

c) Cov(T
1

, T2) 3 2 2 d) p ~ 1/2. = E7r. o::7T.) , 0 < 
1 1 

The lower bound p = 0 is achieved only for a completely even community 

* while the upper bound p = 1/2 is approached as 7Tl ~ 1. (p is undefined 

* when 7T
1 

= 1.) 

Proof: a) and b) are obvious since T
1 

is a 0-1 random variable 

with P(T1 
= 1) = L\1. c) Cov(T

1
, T2) = Cov(l - Tl, 1 - T ) = P(T = o, 

2 1 

O) 
2 3 2 2 d) T2 = - (P(T = O)) = E7r. - o::7T i) • The covariance has the form 1 1 

of 2 2 a variance, l:7T. • rr. - (ETI.·rr.) • Hence p > 0 with equality <=> the 
1 1 1 1 

nonzero 7T. are all equal. We employ a standard inequality to show that 
1 

p ~ 1/2: 

([6, p. 28]) 

2 2 2 2 
< l:rr.(l - rr.) +(Err.) 
- 1 1 l 

2 3 4 2 2 
<En. - 2l:TI. +En.+ (E7r.) • 

l l 1 1 

Therefore, 
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Remark LlO: The bounds 0 2_ p 2_ 1/2 can be improved if the value 

of ~l is known. For given ~l' we have obtained sharp upper and lower 

bounds on p. The upper bound confirms the intuition that p tends to be 

small for highly diverse connnunities. 
N 

Theorem 1.24: a) CL= L T./N, b) E[CL] = ~l' 
1 l. 

c) Var[CL] = [1 + 2p - 2p/N]~1 (1 - ~1)/N 

: [l + 2p]~1 (1 - ~1)/N for large N 

2_ 2~1 (1 - ~1)/N, 

d) CL is asymptotically normal as N + 00 • 

Proof: a) and b) are obvious and c) is a routine calculation once 

it is noted that nonadjacent T. are independent. The asymptotic 
l. 

normality follows from Noether's central limit theorem which is stated 

next. 

Theorem 1.25: (Noether [49]). Let z
1

, z2, z
3

, ••• be independent 

random variables. a) Let T
1

, T2, T3 , ••• be uniformly bounded random 
N 

variables with Ti a function of Zi and Zi+l only. Then SN = 

asymptotically normal provided Var[SN] is of exact order N. 

r T. is 
i=l l. 

b) Let 

T .. , i, j = 1,2, ••• be uniformly bounded random variables with Ti. a 
l.J N J 

function of Z. and Z. only. Then SN = r TiJ" is asymptotically normal 
l. J i,j=l 

3 provided Var[SN] is of exact order N • 

Remark 1.11: Noether presents a proof of b). The proof of a) 

requires only slight modifications in his argument. 

Remark 1.12: Theorem 1.24 is related to a result of Mood [50) who 

examined the distribution of the number of runs when a fixed sample is 

subjected to random permutations. 

Use of the exact formula for Var[CL] requires estimation of the 
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the correlation p. The pairs (T
1

,T2), (T
4

,T
5
), (T 7 ~T8 ) ••• constitute 

approximately N/3 independent observations on the bivariate distribution 

of (T
1

,T
2

) from which an estimate may be obtained. 

The nonnegativity of p indicates that linking the consecutive 

comparisons reduces the efficiency of the estimate and suggests an 

estimate based upon independent pairs of specimens. For M such pairs 

(2M specimens), define Cairns unlinked estimator as 

CU= (# of unlike pairs)/M. 

Then, trivially, 

Theorem 1. 26: a) E[CU] = /J. , 
1 

b) 

c) CU is asymptotically normal as M ~ 00 • 

Efficiency comparisons of the linked and unlinked estimators 

require a common yardstick. The number of specimens in the sample is 

a natural yardstick if specimens are difficult to obtain. For 

n = 2M = N + 1 specimens, 

Var[CL] = 
Var[CU] 

and (approximately), 

_! < Var[CL] 
[ ] < 1. 2 - Var CU 

Thus CL is at least as efficient as CU in these circumstances and may 

be twice as efficient. 

In the event that specimens are easily obtained, the number of 

comparisons seems to be a reasonable statistical yardsticko Here the 

situation is reversed. For N = M comparisons, 

Var [CL] _ 1 ? ( I ) -Var [CU] - + -P 1 - 1 N 1 + 2p 



and the relative efficiency is bounded by 

1 < 
Var [CL] 2 [ ] < • - Var CU 
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Operational considerations may give preference to the linked estimator, 

however; this is especially true for a highly diverse community where 

p may be expected to be small. 

We next turn our attention to the case of a complete taxonomic 

classification of the sample, which is taken to consist of t species 

and n specimens with x ,x
2

, ••• ,x as the species counts. Simpson [3] 
1 t 

has shown that D = rxi(n - xi)/(n(n - 1)) is an unbiased estimator of 

~1 • On the basis of the asymptotic behavior of the third and fourth 

moments, he also concluded that D was likely to be asymptotically 

normal (provided p 1 0). Bowman et al. [51] have also examined the 

moments of D. We show how Noether's central limit theorem can be 

used to establish the asymptotic normality without the need for laborious 

moment calculations. 

Theorem 1. 27: a) E[D] = ~l' b) 
2~1 (1 - 1\) 

Var [D] = n(n _ l) [l + 

2(n - 2)p], c) If p 1 O, Dis asymptotically normal. 

Proof: Let S = 
n 

n 
L T .. , where 

i ,j=l l.J 

if i < j and specimens i and j are of different species 

otherwise. 

It may be seen that D = 2S /(n(n - 1)). Using Theorem 1.23, the 
n 

calculation of E[D] and Var[D] is routine after it is noted that Tij 

and Tkm are independent whenever {i,j} and {k,m} are disjoint. Part 

3 b) implies that Var[S ] is of exact order n when p 1 O. The asymptotic 
n 

normality of D now follows from Noether's theorem. 



Remark 1.13: For small sample size, Nei and Roychoudhury [52] 

have found that the biased estimator Ex.(n - x.)/n
2 

has a smaller 
]. ]. 

mean square error than D. 

1.10 Estimation of Species Richness 

Estimation of the number of species in t he community is one 
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of the more interesting and intriguing probl ems facing the ecologist. 

Usually, he is no t in a position to establish sharp boundar ies for 

the community and finds it impossible t o describe his sampling scheme 

with any degree of statistical precision. Likewise we will not be 

precise about the sampling method, but shall suppose that the species 

are represented in the sample independently of one another and in 

accord with their own individual probability distributions. As usual, 

s is the number of species in the community and TI is the species 

abundance vector. 

Let p.(x), x = 0,1,2, ••• ,i = 1,2, •• ,s, be the probability that 
]. 

species i is represented in the sample by x individuals. The probability 

distributions p1 (x), p2(x), ••• ,ps(x) depend in an unknown way upon the 

vector TI, the sampling intensity,and the response of the various species -
to the sampling effort (catchability) . The number of species actually 

present in the sample (i.e. represented by a positive number of 

individuals) is itself a random variable. This random variable (and 

sometimes its observed value) is denoted by t. We have 

s 
E[t] = !: [l - p.(O)] = s[l 

i=l ]. 

s 
l !: p.(O)] = s[l - p(O)], 
s i=l ]. 

where p(O) is the average species absence probability . If an estimate 

p(O) of p(O) is available, then s may be estimated ass= t/(l - p(O)) . 
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Estimation Method 1: Assume that the probability distributions 

p1 (x), •• • ,ps(x) are members of a known parametric family p(x; 8) with 

possibly different values of 8: pi(x) = p(x; 8i), i = l, ••• ,s. 

Further assume that 8 is a scalar parameter and can be estimated from 

a single observation. Let i 1 , i 2, • •• ,it be the (unknown) labels of the 

species actually present in the sample. For j = i 1 , i 2, ••• ,it' estimate 

ej by, say, ej and p(O; ej) by p(O; 8j). 

estimate of p(O). 

Take ~ p(O; 8j)/t as the 
J 

Estimation Method 2: Assume that the probability distributions 

p1 (x), ••• ,ps(x) are all identical and equal to p(x; ~)where p(x; ~) 

is a known parametric family and 8 is a vector of parameters. Let -
x1 , x2, •• • ,Xt be the observed (nonzero) species counts in the sample, 

listed in some random order. It may be shown that, conditional on t, 

x1 , x
2

, ••• ,Xt are independent and identically distributed with common 

distribution p(x; 8)/(1 - p(O; 8)), which gives an estimate 8 of 8. 
~ ~ ~ 

Estimate p(O) = p(O; 8) by p(O; 8). - .... 

The above methods are standard in the literature. We suggest a 

third method that seems to be new and which leads to modified versions 

of Method 1 and Method 2. 

Es t imation Method 3: Let the sample consist of n individuals of 

which n1 are singletons. Assume the sample is representative of the 

community in the sense that the 'rare' species (i.e. singletons) in 

the sample correspond to the 'rare' species (i .e. unobserved) in the 

community. The singletons taken together comprise a fraction n
1
/n of 

the sample and they divide t his fraction among themselves into n
1 

equal 

parts. Extrapolating (not interpolating!) to the community, conclude 

that the unobserved species comprise a fraction n
1
/n of the community 
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and that they divide this fraction among themselves into n1 equal parts. 

In particular, estimate the number of unobserved species as n
1 

and the 

total number of species as t + n
1

• To correct for any bias of this 

estimator, note that 

s 
E[t] = s[l p(O)J, E[n

1
J = L pi(l) = sp(l), 

i=l 

E[t + n1 J = s[l - p(O) + p(l)]. 

Under the assumptions of either Method 1 or Method 2, both p(O) and 

p(l) may be estimated by,say;p(O) and p(l) . Takes= (t + n
1
)/(l - p(O)+ 

p(l)) as a modified estimate of s. 

Example 1.9: Both Method 1 and Method 2 and their modified versions 

were applied to the Rothamsted light trap data reported by Bliss [53). 

The underlying distribution for these methods was assumed to be Poisson. 

The results are presented in Table 1.3; for comparison the last column 

gives the estimate of s which Bliss obtained by fitting the lognormal 

distribution (Method 2). For the year 1934 Bulmer (54] has also 

obtained the estimate s = 226 by fitting the Poisson-lognormal distribu-

ti on. 

Table 1.3 Estimates of S£ecies Richness 

Method 

Year t nl (1) Modified (1) (2) Modified (2) Lognormal 

1933 183 32 232 250 183 215 208 

1934 176 34 226 252 176 210 199 

1935 202 39 260 289 202 241 239 

1936 157 51 243 296 157 208 222 
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Remark 1~14: In a different context and with a different viewpoint, 

Robbins [55] has suggested an estimator similar to n/n for estimating 

the proportion of unobserved outcomes. Also see Good [14]. 

1.11 The Diversity Concept in Other Fields 

The previous sections have emphasized ecological diversity. Here 

we survey several additional areas in which the diversity concept has 

been found to be of some value. 

1.11.1 Genetic Diversity. What proportion of human genetical 

variation is accounted for by a system of racial classification which is 

largely based on morphological characteristics? The question has 

generated a good deal of controversy. To obtain some quantitative 

answers, Lewontin [21] subdivides the human species into races and the 

races int o populations and develops the mixture decomposition (1.21) for 

the Shannon index. Examining the gene frequencies at 17 loci, he finds 

that, on the average, 6.3% of the genetic diversity is accounted for 

by racial classification, 8.3% by population differences within a race, 

and 85.4% by variation among individuals. His final conclusion: 

It is clear that our perception of relatively large 
differences between human races and subgroups, as compared 
to the variation within these groups, is indeed a biased 
perception and that, based on randomly chosen genetic 
differences, human races are remarkably similar to each 
other, with the largest part by far of human variation 
being accounted for by the differences between 
individuals [21, p . 397]. 

1.11.2. Linguistic Diversity. In a quite interesting paper, 

Greenberg [56] describes eight diversity indices which might be applied 

to the measurement of the connnunication potential among the inhabitants 

of a geographical region. The languages spoken within the region 



correspond to the species; Tii is the proportion of inhabitants 

who speak language i. 
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Greenberg's approach is to identify the special features of his 

problem and adapt Simpson's index to those features. He first observes 

that some languages are quite similar to one another and introduces a 

resemblance factor rij which measures the similarity between language i 

and language j. The monolingual weighted index is then given by 

B = 1 - ETiiri.TI .• As in Section 1.8.1, Bis the average linguistic 
J J 

differentness between two randomly selected inhabitants. 

The mathematical form of the monolingual weighted index also arises 

in assessing the effect on Simpson's index of taxonomic misclassification. 

Suppose the taxonomist classifies species i as species j with probability 

Pij so that P = (P .. ) is a (row wise) stochastic matrix. 
... l.J 

The true 

t t 
species abundance vector~ = (TI1 , rr2 , ••• ,rrs) is then observed as rr p and 

Si ' ' d 1 - ~tppt~. (N i h h (' j) f PPt i mpson s in ex as " " ot ce t at t e i, entry o s 

likely to be large when species i and j closely resemble one another.) 

There is no distortion in Simpson's index precisely when P is an 

orthogonal matrix. However, an orthogonal stochastic matrix is necessarily 

a permutation matrix and for all practical purposes misclassification will 

distort Simpson's index. I n some cases, it should be possible to obtain 

prior estimates of P and to correct for the distortion. 
. ... 

A second special feature identified by Greenberg is the possibility 

that n inhabitant might speak more than one language. He proposes 

several solutions; for example, in the random-speaker-hearer method, a 

randomly selected individual speaks one of his languages at random. The 

index iS the probability that a second randomly chosen individual cannot 

understand this language. As Greenberg points out, this does not take into 

account the relative frequency which which the speaker actually employs 
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the various languages in his repertoire. 

Observing that a geographical region may be an aggregate of several 

subregions, Greenberg also raises the question, as in the mixture 

decomposition of Section 1.8.3,of how the diversity of the whole can be 

computed from knowledge of the parts. He cites the example of Mexico 

and its 32 provinces and points out that the diversity of the whole 

may exceed the diversity of any or of all of its parts but he carries 

the analysis no further. Lieberson [57, 58] has extended Greenberg's 

indices to measures of the "diversity between two subpopulations." 

Greenberg suggests that high linguistic diversity will often 

be associated with inadequate communication, lowered economic productiv

ity, and political instability. By contrast, diversity is generally 

considered desirable in ecology. 

Diversity also occurs in word frequency studies as an index of 

literary style (cf. Guiraud [59], Herdan [60, 61] and Yule [62]). The 

word-types in an author's lexicon correspond to the species and the 

relative frequency of occurrence of these word-types to the species 

proportions. Literary text has a distinguishing feature though: the 

words are arranged in a linear order for which a stochastic model 

might be constructed. Brainerd [63], for example, has attempted to fit 

an inhomogeneous pure birth process. 

1.11 . 3 Industrial Concentration. Consider s business fin11s whose 

.proportionate shares of the market are rr
1

, rr
2

, • • • ,rr
8

• According to 

Horowitz [64], the diversity of the market shares will serve as a meaning

ful index of industrial competition. Usually economists prefer the 

dual notion of concentration but, to avoid confusion, we will stick to 

diversity. Both the Shannon index and the Simpson index are widely used 
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[8, 10, 64, 65, 66, 67], the latter under the name of Herfindahl 

index. Theil [30, 31] is a strong advocate of the Shannon index because 

of its ANOVA decomposition. Hall and Tideman [68] have suggested a 

variant of the average rank; they also advocate the principle of transfers. 

Arguing that the competitive patterns within an industry are 

largely determined by the dominant firms, Hart [9, 69) claims that the 

Simpson index is sometimes overly sensitive to the entry of a few small 

firms. (As discussed in Section 1.7 . 1, the Shannon measure is even 

more sensitive.) This is interesting since the highly sensitive index 

s - 1 is fashionable among ecol ogists . 

1.12 Income Inequality 

1.12.1 Inequality as Relative Unevenness. Suppose there are s 

individuals in a population and that the ith individual receives a 

fraction TI. of the total income. At first glance it might seem that the 
i 

diversity of~= (n1 , n2 , ••• ,ns) would serve as an inverse measure of 

income inequality. Indeed, Theil [30, p. 128] asserts that "concentration 

and inequality are essentially the same concepts" and that rn: (which is 
i . 

a decreasing transformation of the Simpson index) can be used as a measure 

of inequality. This is not the case, however. Perfect equality occurs 

when the income shares TI. are all the same; in these circumstances, a 
i 

measure of inequality should take on the same value irrespective of 

the number of recipients. On the other hand, industrial concentration 

decreases with an increase in the number of firms in an equally distri-

buted market. 

of inequality. 

2 
Thus rn. is a suitable measure of concentration but not 

i 
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We have pointed out that diversity is influenced by two fac t ors: 

evenness and richness. In light of the preceding paragraph, it appears 

that a measure of income inequality should take into account only the 

unevenness of the income distribution and not the number of recipients. 

In fact, it is desirable to relativize this last statement: if the 

population is partitioned into subpopulations, we identify income 

inequality with the unevenness of the income shares of these subpopu-

lations relative to their population shares. Consider, for instance, 

two subpopulations A and B with respective total incomes of $40,000 and 

$20,000. While total income is different for the two subpopulations, per 

capita income is the same if A has four members and B only two. In 

general, we suppose that there are s subpopulations and let Tii be the 

fraction of total income and V. the proportion of individuals in the 
1 

ith subpopulation. Some of the Tii may be zero; but, in any case, ~ 

is absolutely continuous with respect to ~· As Theil [30, p. 102] 

point s out, per capita income in the ith subpopulation is proportional 

to the likelihood ratio rr./v.; the constant of proportionality is the 
1 1 

per capita income in the overall population. We refer to rri/v1 as 

the standardized per capita income. 

1.12.2 The Lorenz Ordering. An intrinsic inequality ordering, 

similar to the diversity ordering of Section 1.5, may be defined on the 

set of pairs (TI, v) by considering finite sequences of the following - -
operations: 

Il. Simultaneously permuting the components of ~ and v 

does no t change the inequality of ~ relative to v. 

12. Combining two subpopulations which have the same per 

capita income does not change inequality. Specifically, 
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if 1Ti/vi = 1Tj/vj, this operation replaces the two 

components 1Ti and 1Tj by the single component 1Ti + . 7rj 

and also replaces vi and vj by vi+ vj. Conversely, 

splitting a subpopulation into two subpopulations with 

the same per capita income does not change inequality. 

13. (Principle of transfers). Inequality is increased by 

a transfer of income from one subpopulation to another 

provided the second has a larger per capita income. 

This operation changes ~ but not v. 

Operations Il and 12 are symmetrical in 1T and v but 13 is not; consequently, 

measures of inequality need not be symmetrical in ~ and ~· Operation 12 

permits the comparison of populations with different numbers of indivi-

duals and was suggested to us by axiom AS of Dasgupta, Sen and Starrett 

[17]. 

The intrinsic diversity ordering admitted a simple geometric 

representation on a simplex. The inequality ordering can also be 

represented on the cartesian product of two simplices but this requires 

too many dimensions to be useful. Easier to visualize is the Lorenz 

curve which is discussed by Theil [30, p. 121] for discrete distributions, 

by Kendall and Stuart [70, p. 48] for continuous distribution~ and by 

Thompson [71] in general. Thompson [71] also suggests some interesting 

biological applications. Arranging the subpopulations in order of 

decreasing per capita income 

Til/vl > rr2/V2· > •• • > rr Iv ' - - - s s 

the Lorenz curve is the polygonal path joining the successive points 
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pk= ( L Vi' L TI.), k = 1,2, ••• ,s . 
i>k i>k l. 

Refer to Figure 1.15. The slope of the segment PkPk + 1 is the 

standardized per capita income Tik/vk of the kth subpopulation. Operation 

12 has the effect of inserting or removing "extra" vertices (e.g., P
3 

of Figure 1.15) on any straight line segment. Transferring income 

lowers the Lorenz curve as shown in Figure 1.15. A simple induction 

argument shows that(~',~') is intrinsically more unequal than 

(~, V) <=>the Lorenz curve of (TI', v') is uniformly below that of 

(TI, v). This generalizes a previous result of Kolm [72]. 

1.12.3. Measures of Inequality. An obvious measure of income 

inequality is twice the area between the Lorenz curve and the 45° line. 

This number is known as the Gini coefficient G(TI; V) and varies between 

zero and one. Still supposing that the subpopulations are arranged in 

order of decreasing per capita income, Theil [30, p. 121] and others 

have shown that G(TI; v) is symmetrical in TI and v and that 

G(TI; V) = (l/2)rv.v.ITI./v. - TI.Iv.I 
l.J l. l. J J 

(1. 26) 

and 

G(TI; v) = 1 - 2r.TI.( r v.) + r.TI.v .• 
- - 1.1. , ·<.J l.l.l. 

J_l. 

(1.27) 

From (1.26), the Gini coefficient is one half the mean absolute 

difference between the standardized per capita incomes of two randomly 

selected subpopulations. When vis completely even (i.e., when each 

Vi= l/s), (1.27) simplifies to 

G(TI; v) = 1 - [2E(iTI.) - l]/s, 
- - l. 

(1. 28) 
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where TI > rr
2 

> ••• >TI • 
1- - - s 

Sen [73) gives an axiomatic characterization 

of G(7T; \>) when V is completely evene -
The Gini coefficient and several other standard measures of 

inequality can be constructed by adapting a method which has been employed 

by ecologists to measure the evenness of a distribution. They use the 

ratio .of the actual value of a diversity index to the maximum value that 

the index could assume for a community with the same number of species 

(Pielou [33, p. 15]). This ratio, however, is not invariant to monotone 

transformations of the index and it is preferable to first convert to 

the numbers equivalent and use the ratio S/:J./s as a measure of (absolute) 

evenness . To convert this ratio to a measure of inequality several 

decreasing transformations are possible : 1 - (S/:J./s), log(s/S/:J.), ·or .. 

(s/S/:J.) - 1. All three are instances of the transformation 

(1.29) 

Applying (1.29) with S = -1 to the Average Rank index gives Gini's 

coefficient in the form (1. 28). Applying (1. 29) to the ind.ex 6.S gives 

(1. 30) 

as a measure of absolute inequality. To obtain a measure of relative 

-1 
inequality, we replace s by V. 

l. 
in (1.30) yielding 

s o (TI; V) = [LTI.(7T./V.) - l]/S. s- - l. l. l. 

The measure 0
8 

is propvr tional to the directed divergence of type 

(1.31) 

8 + 1 [34, p. 208; 74] and log (1 + SoS)/S is Renyi's information gain 

of order 8 + 1 [11, 40). 

Remark 1.15 : Hill [12) has proposed the ratio 80 /S , a, 6 > -1, 
µ a -

as a measure of evenness. (SS is the numbers equivalent of 6.
6
.) 
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Peet [25, p. 301] remarks that "These ratios do not measure equitability 

(evenness) as it .is normally defined •••• " While it is unclear what 

Peet means by this statement, it may be verified that Hill's ratios 

violate the principle of transfers unless a = -1 or, trivially, unless 

B = a. Thus only the ratio s8/s is a suitable measure of evenness. 

When a= -1, oa(~; ~) reduces to the proportion of the population 

which has no income. Here we have used the convention that 0• 00 = O. 

Some other special cases should be mentioned: 

2 
Pearson's X : Putting B = 1 in (1.31) gives 

2 = E(rr. - v.) /v. 
1 1 1 

which is the variance of the standardized per capita incomes or, 

equivalently, the squared coefficient of variation of the unstandardized 

per capita incomes. 

Theil index: With B = O, (1.31) becomes 

which has been used by Theil as a measure of income inequality. 

Bhattacharyya's divergence: Putting B = -.5 in (1.31) gives 

= 2[1 - E(n.v.) 1121 
1 l. 

= 4 sin
2

(9/2) : e2
, 

where e is the angle between the two unit vectors (/if1 , ITI2, • • • ,/iTs) 

and (;v;:-, ;v;-, ... ,v\J:). Bhattacharyya [75] uses e2 as a measure of the 

distance between two multinomial populations. Note that B = -.5 is the 

only instance in which 0 8 (~; ~) is symmetrical in TI and v. 



Assuming 8 ~ -1, we have the following properties: (i) 

(ii) 0 (1T; v) = 0 <=> 1T = v, provided 8 ~ -1; (iii) oQ(~'; a- - - - p--

whenever (rr', v') is intrinsically more unequal than (TI, v). 
.., 
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0 8 (~; ~); _: O; 

V1
) > 0 (TI; V) 

- - B - -
There is 

also a decomposition for two-way classifications AxB (occupation x age 

group, for instance); it takes the form 

o 8 c~; v) = o8 c~CA); ~CA)) + 

L1T.(A)[1T.(A)/Vi(A)J 8 oQ(1TIA.; vlAi) 
1 1 µ - 1 -

(1.32) 

where: 1T and v are the arrays of income shares and population shares, 

respectively; ~(A) and ~(A) are the vectors of row marginals; ~IA1 and 

~IAi are the normalized ith row vectors. The last term of (1.32) is 

an average with respect to the income sha.res but, when 8 strictly 

greater than -1, it may be written more naturally as an average with 

respect to the population shares: 

8+1 Ev.(A)[rr.(A) /v.(A)] 00 ( ••• ). 
1 1 1 µ 

The factor [rri(A)/Vi(A)JB+l inflates the contribution of inequality within 

high per capita income groups while deflating that of low per capita 

income groups. Such an effect is desirable in a measure of industrial 

concentration (Section 1.11.3) but may be undesirable in a measure of 

income inequality (Chiswick [76]). If desired, the contribution of low 

per capita income groups can be inflated by interchanging 1T and V and -
* adopting 0 8 (~; ~) = 0 8 (~; ~), 8 _: 0, as the inequality measure. This 

measure preserves the Lorenz ordering on the pairs (n, v) but becomes - .., 

infinite when any of the subpopulations have zero income. 
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1.12.4 The Incomes Equivalent Approach. We have motivated the 

inequality measure 0
8 

by transforming a numbers equivalent. Atkinson 

* [77] has given a similar justification for 08 by transforming an incomes 

equivalent. He considers a utility function U(•) so that per capita 

social welfare is LV.U(ATI./V.), where A is the per capita income for 
1 1 1 

the entire population. The incomes equivalent AU is defined as that 

level of per capita income which would achieve the same per capita social 

welfare if income were evenly distributed, i.e., 

With the usual assumption that the utility function is concave and 

increasing, it is not hard to show that the standardized incomes equi-

valent AU/A is an inverse measure of inequality provided A is held 

constant; i.e., AU/A is unchanged by operations Il and !2 and decreases 

under operation I3. Requiring AU/A to be independent of A further 

restricts the utility function to be a positive affine transformation of 

* The inequality measure 0
8 

is obtained by taking U = u
8 

and applying the 

transformation (1.29) to the ratio AU/A. Atkinson [77] suggests using 

1 - (AU/A) as the measure of inequality, pointing out that it is the 

proportion of national income which could be "saved" if income were 

evenly distributed. 

1.12.5 Completi~g the Circle. Our starting point for the inequality 

measure 0
8 

was the diversity index 6
8
. Conversely, 68 may be obtained 

from 08 by regarding the latter as a measure of distance and by further 

exploiting the analogy between diversity and variance. Recall that the 
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variance of a random variable X is the minimum value of the mean square 

2 
error E [ (X - a) ], and that the minimum is achieved when a = l..l = E [X]. 

This is usually proved by noting the decomposition 

2 2 2 
E[(X - a) ] = (l..l - a) + crx. 

Consider an abundance vector TI and write it in the form TI = LTI E(k) 
... k-

whe re E(k) is the kth coordinate vector. The mean deflated distance 

between an arbitrary abundance vector v and a random observa t ion on TI 

decomposes as 

The minimum value of this expression is Lis C~) and the minimum is achieved 

when v =TI= LTik:(k). 

Using the mixture notation of Section 1.8.3, one might similarly 

attempt to minimize, with respect to v, the expression ... 

Here the situation becomes somewhat unpleasant; in particular, (l o33) 

is minimized by ~ = ~ = rwk~(k) in only two cases: (i) when S = 0 

(the Shannon index) or (ii) when the abundance vectors TI(l), ... 
(2) (n) 

~ , ••• ,~ are mutually orthogonal. This anomaly appears to be 

related to the failure of the mixture decomposition (Theorem 1.20) to 

coincide with the hierarchial decomposition (1 .19). Sibson [40] or 

Jardine and Sibson [78, chap. 2] may be consulted for more details 

concerning the problem of minimizing (1.33). 
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The principal results and conclusions of this section on income 

inequality may be sununarized as follows: 

1. Inequality is the opposite of evenness not of diversity. 

Inequality is best regarded as a relative concept: the inequality_ of 

the income shares relative to the population shares. 

2. An intrinsic inequality ordering similar to the intrinsic 

diversity ordering, has been defined and shown to be equivalent to 

the Lorenz ordering. 

3. In general, the measures of equitability proposed by Hill 

[12] do not preserve the intrinsic inequality ordering (in the opposite 

· sense). 

4. A technique has been given for associating inequality 

measures with diversity indices . The association pairs the Gini 

coefficient with the Average Rank index, the Theil index with the 

Shannon index, and the coefficient of variation with the Simpson 

index. More generally, the directed divergence of type 8 + 1, 

denoted 0
8

, is paired with the diversity index ~8 • 

5. A decomposition, applicable to two-way classifications, 

has been given for 0
8

• The decomposition reveals that 08 inflates 

the contribution to inequality due to high per capita income groups 

and deflates that due to low per capita income groups. A modified 

form of 0
8 

inflates the contribution of low per capita income groups. 

The modified index is a transformation of the incomes equivalent 

corresponding to a certain family of social welfare functions. 

6. There has been established a diversity analogue of the 

familiar decomposition 
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E[(X - a)
2J = (E[X] - a)

2 + Var[X] 

for random variables. The directed divergence oa corresponds to the 

2 first term (X - a) while the diversity ~S corresponds to the variance. 



CHAPTER 2 

DIVERSITY OF RANDOM COMMUNITIES 

2.1 Introduction 

Throughout Chapter 1, the community abundance vector was assumed 

to be fixed. Often it will be realistic to regard the abundance vector 

as a realization of some stochastic generating mechanism. In this case, 

our interest will focus on the "diversity producing capacity" of the 

mechanism and not on the diversity of particular realizations. 

As in Chapter 1, two separate problems can be distinguished. First 

of all, we may wish only to rank random communities : to be able to 

say that one random community is more diverse than another. This is 

the ordinal problem and is dealt with in Section 2.4. The problem of 

quantification, on the other hand, calls for a numerical measure of 

the diversity of random communities. Two possibilities immediately 

* suggest themselves: E[A(7T)] and A(E[7T ]). These will be called the 

EA and AE measures corresponding to the diversity index A. However, if 

the abundance vector is a member of some parametric family, it may be 

more natural and, from the inferential standpoint, more appropriate to 

adopt some function of t he parameters as the diversity measure. 

Usually this function will pertain specifically to the underlying model 

and will not fall into the framework considered in Chapter 1 . Of course, 

some justification must be given for the function that is chosen. A 

central theme of Section 2.2 and Section 2.4 is the justification of 

Fisher's "alpha" as a diversity measure associated with the (synmetric) 

Dirichlet model. 
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In addition to its attractive theoretical properties, the Dirichlet 

1 model often provides an acceptable fit to empirical data. One usually 

finds the index k to be small and the number of species s to be large. 

This leads one to idealize the model by letting k + 0 and s + 00 with 

the product a = sk held fixed. While the negative binomial sampling 

distribution converges under this limiting scheme, the symmetric Dirichlet 

does not. This would seem to lead to the anomoly of a sampling distri-

bution without a valid underlying population model. In Section 2.2, we 

make this limit rigorous at the population level by introducing a new 

concept called size-biased permutation. It is shown that the size-

biased permutation of the Dirichlet model does have a valid limit. More-

over, this limiting Dirichlet is itself invariant under size-biased 

permutation and can be simply described in terms of iid random variables 

by means of what we call a residual allocation model. Further, the 

limiting Dirichlet is the only residual allocation model which is 

invariant under size-biased permutation. 

The limiting Dirichlet has but one parameter--Fisher's a. We show 

that the result of randomly deleting a fraction 1 - p of the species is 

still a limiting Dirichlet but with parameter pa. This provides some 

justification for interpreting a as a species richness parameter. 

Treating a community as random introduces an additional component 

of variability into the sampling distribution. In an effort to eliminate 

this component, there has been some interest in identifying fixed models 

that closely resemble realizations of the limiting Dirichlect. Two 

1The Dirichlet model predicts a negative binomial sampling distri
bution under the additional assumption that the total (unnormalized) 
abundance has an independent Gamma distribution. The log series sampling 
distribution results after taking Fisher's limit. See Section 2.3. 
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criteria for such fixations are considered in Section 2.3 and both the 

2 2 geometric series model and the exponential integral model are assessed 

against these criteria. First, it is shown that, every realization 

of the limiting Dirichlet is asymptotically geometric in a certain weak 

sense. Both models meet this requirement--but in a much stronger sense. 

The second criterion requires that the sampling distribution3 match the 

log series distribution, at least approximately. The exponential integral 

model meets this requirement but the geometric series model does not. 

It is further shown that the sampling distribution corresponding to the 

geometric series model is a smoothly truncated rectangular hyperbola and 

has a tail much shorter than the log series. Empirical data usually 

requires a tail at least as long as the log series and, for this reason, 

the geometric series model will seldom provide an adequate fit. We also 

show that the exact sampling distributions of these models exhibit a 

periodicity that makes likelihood estimation impractical. 

Section 2.4 extends the intrinsic diversity ordering to random 

communities. Four possible definitions are considered and these are 

shown to be equivalent for fixed, but not for random, communities. One 

of these formulations permits ~s to show that the obvious estimator 
4 

of a diversity index t:. is always negatively biased when t:. satisfies 

Criterion C3. 

As was the case for fixed communities, the stochastic diversity 

ordering is only partial and two communities need not be comparable. 

2This model is described in Section 2.3. 

3The term "distribution" refers to the expected frequencies . This 
rather peculiar terminology has become standard in the present context. 

4 Replace population proportions with sample proportions. 
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In fact, comparability is the exception not the rule. However, it is 

shown for the Dirichlet model that the pair of parame.ters (s, k) is 

. 5 approximately a complete diversity measure. Further, any two limiting 

Dirichlet models are comparable and here et i s a comple te diversity 

parameter. 

The conventions for this chapter are as gi ven in Section 1.1.1 except 

that infinite dimensional vectors are sometimes considered. 

2.2 Random Communities 

By a random community is meant any community whose abundance vector 

1T is random. In general, the number of species may vary from realization 

to realization. This section gives a number of examples of random 

communities which are referred to in the sequel. Also, it is shown 

how Fisher's limit can be made rigorous and how Fisher's CL can be 

interpreted as. a species richness measure. 

Example 2 .1: (Fixed community.) Any fixed community is als.o a 

random community whose abundance vector has a degenerate distribution. 

Example 2.2: Let 1T take the values (1, O, 0), (.5, .5, 0), and 

(.4, .3, .3), each with probability 1/3. In this example, the number 

of species varies with the realization. 

Example 2.3: Let 1T assume the two values (.5, .3, .2) and ( . 6, .31, 

.09), each with probability 1/2. As examples of Eli and liE measures, 

take 6 to be Simpson's index. One finds that E[61 (~)] = .5779 and 

* ti1 (E[~ ]) = .58345 . 

5 
See Theorem 2.18 for a precise statement. 
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E:;cample2.4: Let v assume the two values (.5, .4, .1) and 

(.2, .2, .6), each with probability 1/2. Then E[v) = (.3S, .3, .3S) 

* and E(v ] = (.SS, .3, .lS). Notice that E(v] is intrinsically more ... ... 
diverse than any realization of v and is not at all representative of ... 

* v. On the other hand, E[v ] gives a better overall description of the ... 
community structure without regard to species identity. Here, 

* E[61 (~)] = .570 and 61 (E[~ ]) = .S8S. Note that the E61 and 6
1

E measures 

inconsistently rank ~ in comparison with the connnunity TI of the previous 

example. In each case, though, the E61 measure is less than the 61E 

measure . It is a simple consequence of Jensen's inequality that this 

will always be so when the index satisfies Criterion C3. 

Example 2.5: (Random sample.) Let!= (Y
1

, Y2, Y3, ••• ) be a 

random sample from a fixed community ~ where Yi is the number of times 

the ith ranked species is represented in the sample. Then Y/N is a ... 
random community whose abundance vector has a rescaled multinomial 

* distribution. Note that E[Y/N) = n • ... ... 
Example 2.6: (Random permutation.) Let v be obtained from the 

random community ~ by subjecting the components of ~ to a permutation. 

In general, the permutation may be random and its distribution may 

depend on the realized value of ~· Species identity may be lost after 

a random permutation since, for example, v
1 

may reference different 

species in different realizations. But species identity is unimportant 

for questions of diversity so that ~ and ~ may be regarded as equivalent. 

Two types of random permutations are quite useful. The ranked 

* permutation ~ = TI arranged the components of TI in descending order and 

* •* is canonical in the sense that ~ and TI are equal in distribution when-

ever TI' is a random permutation of TI. 
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The size-biased permutation v = rr# is obtained as follows: Randomly 

# select an individual from the community and put rr1 = 1Ti where i 1 is the 
1 

label of the species to which the selected individual belongs. Now 

remove species i
1 

from the community and r andomly select a second 

II individual. Put rr2 = rri where i 2 is the label of the species to which 
2 

the second individual belongs. Remove species i
1 

and i
2 

and randomly 

select a third individual, etc. Alternatively, the partial sums rr1 , 

rr
1 

+ rr2, rr
1 

+ rr2 + rr3 , ••• :partition the unit interval into the sub

intervals Ii= (rr1+ ••• +ni-l' rr1+ ••• +1Ti], i = 1,2,3, ••• • Now let 

bution where U is independent of ..., 

ul and, by induction, let I!+1 

sample from the Uniform (0,1) distri-

rr. Let I~ be the subinterval containing 

be the subinterval which contains the 

f · f u h i i d · h i f I
11 

1
11 

I
11 

irst component o ..., t at snot conta ne in t e un on o 1 , 2 , ••• , m· 

II II 
Put 1Ti equal to the length of Ii. 

It should be clear that the size-biased permutation is canonical 

in the sense defined above. fl IHI *II In particular, 1T , 1T and 1T are equal 

in distribution. 

The size-biased permutation arises naturally in the problem of 

"heaps" which has been considered by Kingman [79]. A number of items 

labeled i = 1 , 2, ••• ,N are stored in a heap and are demanded from time 

to time. After being used, the item is replaced on the top of the heap. 

The successive arrangements of items in the heap form an irreducible 

aperiodic Markov chain with N! states. The equilibrium distribution 

II is easily seen to be the distribution of TI where ni is the proportional 

demand for item i. 

As a numerical example of size-biased permutation, take 1T to be 

the fixed community (.6, .3, .1). The probability distribution of 
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II the random community Tr is given in Table 2.1. Notice that ·rr" arranges 

the components of n so that large abundances are likely, but not 

certain, to appear early in the list. The next theorem makes this 

precise. 

Table 2.1: 

(.6, 

(.6, 

(.3, 

( . 3, 

( . 1, 

(.1, 

Ii Probability Distribution of Tr 

x p (Tr/I = :> 

.3, .1) . 450 

.1, .3) .150 

.6, .1) .257 

.1, • 6) .043 

.6, .3) .067 

.3, • 6) .033 

Ii 
Theorem 2.1: Let ~ be the size- biased permutation of the random 

Ii • # 
community!· Then Tri is stochastically greater than rri+l' i = 1,2,3, •••• 

Ii fl Consequently, E[rr1] .:::_ E[rr
2

] .:::_ ••• and the components of the fixed 

Ii 
community E[~ ] are already arranged in descending order. 

Proof: By conditioning on the value of Tr, it will suffice to 

prove the theorem when Tr is a fixed community. Also, it is only 

necessary to prove that Tr~ i s stochastically 

general case than follows by conditioning on 

II greater than rr2 since the 

fl fl II 
rr1 , rr2, ••• ,ni-l" Let 

x1 .:::_ x2 .:::_ x
3 

.:'.'..••• be the components of Tr listed in descending order 

and, for the moment, assume that there are no ties among the nonzero x .• 
l. 
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(2.1) 

Let 0 < y < 1 be fixed. The function x(y - x)/(l - x) is concave on 

the unit interval. Applying the principle of forward transfers, the 

first term of (2.1) is maximized when x1 = x2 =e••~ xm = y/m and has 

maximum possible value y(y - y/m)/(l - y/m). On the other hand, the 

function x/(l - x) is convex on the unit interval so that backward 

transfers increase the second sum in (2.1). Holding x fixed and 
m 

bearing in mind the constraint xm ~ xm+l ~ xm+2 ~ • •• , the second sum is 

maximized when xm = xm+l = xm+2= ••• = xm+n and xm+n+l.;. o where 

1 ~ y = nx + o with 0 < o < x • Therefore, m m 

L: x
1
y/(l - xi) ~ y[nxm/(l - x ) + 0/(1 - o)J 

i>m 
m 

< y[nx /(1 - x ) + 0/(1 - x )] - m m m 

~ y(l - y)/(l - x ) m 

~ y(l - y)/(1 - y/m). 

Putting these two upper 

which proves that TI~ is 

II II bounds toge ther gives P(TI2 ~ xm) ~ y = P(7T1 ~ xm) 

stochastically greater than TI~. In the event 

of ties among the nonzero x., first break these ties by a slight defor
l. 

mation, then apply the above result and take the limit as the deformation 

goes to zero. For example, if x1 = x2 > x
3 
~ ••• , we have 

ff * x) = lim P(TI2 ~ x 2 - hi~ = (x1 + h, x
2 

- h, x
3

, ••• )) 
h+O 
h>O 

II * > lim P(TI
1 

..::_ x
1 

- hi~ = (x1 + h, x2 - h, x3, ••• )) 
h+O 
h>O 
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Example 2.7: (Symmetric Dirichlet connnunity.) Let rr have a 

synnnetric Dirichlet distribution with s components and with index k > O. 

Write rr - D(s, k). With probability one, every realization has exactly 

s species. Recall that~ can be obtained as (A1 , A2, ••• ,As)/EAi where 

A1 , A2, ••• ,As are iid Gamma random variables with common index k and 

with common, but arbitrary, scale parameter . A useful fact is that the 

fractions are jointly independent of the total, i.e., rr is independent -
of Al+ A

2 
+ •• • +A

8
• The next theorem gives the E6 measures of the 

Dirichlet connnunity for the indices 6
8 

= Erri(l - rr~)/B, 

6:-s = E(l - rri)[l - (1 - rri)w], and 6irank) = E(i • l)rr:. The 

function ~ is the digamma function: 
00 

~(z + 1) = d log r(z + l)/dz = -y + r z/[n(n + z)]. 
n=l 

Theorem 2.1: Let~= (rr1 , rr2, ••• ,rrs) - D(s, k). The components 

n1 , rr2, ••• ,rrs are identically distributed and the common distribution 

is a Beta of the first kind with parameters k and (s - l)k. Furthermore, 

B-1 [1 - r(sk + l)r(k + 1 + B)/(r(sk + 1 + S)r(k + l))] 

b) 

c) 

if B ~ -1, B ~ o 

~(sk + 1) - ~(k + 1) if B = O, 

r(sk + 1 + w)f(sk + 1 - k) - r(sk + l)f (sk + 1 + w - k) 
kr(sk + 1 + w)r(sk - k) 

if w ~ 0, 

= s - 1[1 _ r(2k + 1) ].' 
2 4kf (k + 1)

2 

Proof: The first assertion is clear and parts a) and b) are easy 

calculations since the nonzero components of ~ are identically distributed. 
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(rank) ] The expression for E[A1 (~) has been obtained by Kingman [79, 

equation (14)] in a different context. 

Remark 2.1: In general, there are no simple closed form expressions 

for E[A(rank)(rr)]. If there were, using (1.14), one could obtain closed p .., 

form expressions for the expected order statistics from a Gamma distri-

bution. 

Sometimes one wishes to replace a random community with a "typical" 

fixed community. As has been pointed out, E[rr] is not an appropriate 

interpretation of "typical." In fact, E[~] is a completely even 

community when the nonzero components of ~ are identically distributed 

as in the Dirichlet model. Better choices are E[rr#] or E[rr*]. (See - .., 

Section 1.3 and Section 1.4, however.) The size-biased permutation 

of the Dirichlet community is quite manageable and a number of its 

* properties are established below. On the other hand, rr is usually -
intractable; the Dirichlet community with k = 1 is an exception and is 

considered next. 

Example 2.8: (MacArthur's model.) MacArthur [80] supposed that s 

species were competing among themselves for a fixed resource. The 

total available resource was represented by the unit interval and was 

apportioned among the species by selecting s - 1 points at random from 

the unit interval and arranging these points in increasing order: 

0 = v0 .::_ V1 .::_ v2 .::_ ••• .::_ V
9

_ 1 .::_Vs= 1. Species i then received an 

amount of resource equal to rri =Vi - Vi-l" Defined in this way, the 

community~= (rr1 , rr2 , rr3 , ••• ,rr
8

) is called MacArthur's random model 

* with s spec ies while E[~ ] is MacArthur's fixed model. The next theorem 

was proved by Cohen [81]. 
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Theorem 2.3: MacArthur's random model with s species is equal in 

distribution to the symmetric Dirichlet model with s species and with 

index k = 1. 

Proof: Let v - D(s, k) and obtain v as (A1, A2, ••• , A )/A where 
- ... s 

the Ai are iid exponential random var iables and where A= A1 + A2+ ... +As. 

Conditional on A, the variables w1 = A1 , 

w2 = A1 + A2 , ••• ,Ws-l = A1 + A2+ ••• +As-l are jointly distributed as t he 

order statistics of a random sample of size s - 1 from a Uniform (0,A) 

distribution. It follows that, conditional on A, t he variables 

Vi = Wi/A are jointly distributed as the order statistics from a Uniform 

(O,l) distribution. Moreover the qualifying phrase "conditional on A" 

can be dropped from the previous sentence since (V1 , v2, ••• ,Vs-l) is 

independent of A. With v0 = 0 and Vs = 1, vi is obtained as Vi - Vi-l' 

just as in MacArthur's model. 

Corollary 2.1: For MacArthur's random model with s species, 

H-S (rank) 
E[ti13 (~)], E[8w (;.'.)],and E[81 (~)] are obtained by putting k = 1 in 

Theorem 2.1. 

* Corollary 2.2: Let v = E[rr ] be MacArthur's fixed model with s 

species and define H
0 

= 0 and H = 1 + 1/2 + 1/3 + ••• +l/m. 
m 

vi= (Hs - Hi_1)/s, i = 1,2, ••• ,s. 

Then 

Proof: Let TI be obtained as (A
1

, A
2

, ••• ,A
8

)/A as in the proof of 

Theorem 2.3. Without loss of generality suppose E[Ai] = 1 and E[A] = s. 

* * * * * * Then Tii =Ai/A where Al~ A2 ~ A3 ~···~As are the descending order 

statistics from the standard exponential distribut ion. Since the 

fractions are independent of the total, it follows that 

* * * E[rriJ = E[Ai/A] = .E[A1]/E[A] * * = E[Ai]/s. But E[Ai] = Hs - Hi-l• 
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Feller [82, p. 20] gives an int uitive as well as a rigorous proof of 

the last assertion. 

MacArthur's fixed mod~l is discussed further in Appendix A.2 where 

there is given a mnemonic device for recalling the mathematical form 

* of E[7r ] . 

Example 2.9: ·(Residual allocation model.) Because of the const raint 

t7ri = 1 , the components of ~ are necessarily dependent. Calculat i ons are 

simplified if the distribution of 1T can be described in terms of inde-

pendent random variables. The Dirichlet distributi on , for example, can 

be described in terms of independent Gammas as in Example 2.7. Her e we 

consider another method that sometimes works. 

Given the random community~= (7r1 , 7r2, ••• ,rrs)' define the residual 

fractions Q1 , Q2, ••• ,Qs as 

Ql = 1Tl 

Q2 = 7T2/(l - 7T ) 1 

Q3 = 7T3/(l 1T 1 - 1T ) 2 

. 
Q = 1T /(1 - 7T s s 1 7T2-· • .-rrs-1) - 1. (2.2) 

The residual fractions specify a sequential resource allocation scheme: 

Let the total resource be represented by the unit interval as i n 

MacArthur's model, Species 1 receives a fraction Q
1 

of the total, then 

species 2 receives a fraction Q2 of the residual 1 - rr
1

, then species 

3 receives a fraction Q3 of the new residual 1 - rr1 - rr2 , etc. 

Theorem 2.4: Let 0 <TI, < 1, i = 1,2, ••• ,s - 1, subj ec t t o 
1 

rr1 + n2+ ••• +Tis-l < 1 and 0 <Qi< 1, i = 1,2, ••• ,s 1. Then the 

transformation (n1 , n2, • • • ,Tis-l) + (Q1 , Q2, •• • ,Q
8

_ 1) given by (2.2) 
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in one-one, onto, and has Jacobian 

(2.3) 

The residuals are given by 

1 - 7Tl 

1 

and the components of 7T by 

7Tl = Ql 

7T2 = (l - Ql)Q2 

7T == 3 

7T = (1 - Ql)(l - Q2) ••• (l - Q l)Q - . s s- . s (2.5) 

Proof: All parts of t he theorem are a straightforward calculation 

using equation (2.2). 

A random community'.!:= (n1 , n2, • •• ,7Ts) is called a residual 

allocation model when the residual fractions are independently 

distributed with P(O < Q. < 1) = 1, i = 1,2, ••• ,s - 1, and 
]. 

P(Q = 1) = 1. 
s 

Theorem 2.5: Let the random connnunity be a residual allocation 

model with residual fractions Q
1

, Q2, ••• ,Qs. The fixed connnunity E[rr] .., 

is then a residual allocation model with degenerate residual fractions 
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Proof: Take expectations of (2.5) and use the independence of the 

residual fractions. 

Theorem 2.6: Let~ - D(s, k). Then ~ is a residual allocation 

model with residual fractions given by 

Q1 - Beta1 (k, (s - l)k) 

Q2 - Beta1 (k~(s - 2)k) 

Q3 - Beta1 (k, (s - 3)k) 

Q
8 

- Beta1 (k, (s - s)k) _ 1. 

-

Proof: This follows by a change of variables using Theorem 2.4. 

The next theorem, which is a principal result of this section, 

asserts that the size-biased permutation of the Dirichlet model is also 

a residual allocation model. 

Theorem 2.7: Let~# be the size-biased permutation of ~where - -
~ - D(s, k). Then TI# is a residual allocation model with 

Ql - Beta1(k + 1, (s - l)k) 

Q2 - Beta1 (k + 1, (s - 2)k) 

Q3 - Beta1 (k + 1, (s - 3)k) 
• . 
Qs - Beta1 (k + 1, (s - s)k) :: 1. 

Proof: By Theorem 2.4 , the sample space of Q1 , Q2, ••• ,Qs-l is a 

Cartesian product. For notational simplicity take s = 4 and define the 

function h (t) to be one when t < x and zero otherwise. Suppose that 
x 

0 < x , x2, x3 < 1. Then the joint probability distribution function 
- 1 -

of the residual fractions Q1, Q2, and Q3 is given by 
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P(Ql ~ xl' Q2 2. x2, Q3 2. x3) = E[E;ri.;rj/(l - rri) x 

'1T /(i - '!Ti - '1T.)·h . ('1Ti)h (;rj/(l - '1Ti))h ('1T /(1 - 'IT. - 'ITJ.))J, (2.6) m J x1 x2 x3 m i 

where the sum ranges over all triplets (i, j, m) of distinct integers 

with 12_ i, j, m 2_ 4. Now each term in the sum is identically distributed 

so that the right hand side of (2.6) is proportional to 

which, in turn, is proportional to 

where R is the region defined by 

0 2. '!Tl 2_ xl, 

0 2_ '1T2/(l - ;rl) 2_ x2, 

Q ~ '1T3/(l - '!Tl - '1T2) ~ X3• 

Make the change of variables zl = '1Tl' z2 = '1T2/(1 - ;rl) , and 

z3 = 'IT/(1 - '1T1 - rr2) and apply Theorem 2.4 to find that 

P(Q1 ~ xl' Q2 2_ x2, Q
3 
~ x3) is proportional to a product of integrals, 

which completes the proof. 

· II 
From Theorem 2.7 and from (2.5), it follows that ;ri' i = 1,2, ••• ,s, 

is a product of independent Beta1 random variables. However, the 

factors do not have the structure necessary for their product to possess 

a Beta1 distribution. See Kotlarsky [83] for results concerning the 

product of independent Beta
1 

random variables. 



119 

Open Problem: Characterize the class of residual allocation models 

whose size-biased permutation is also a residual allocation model. 

Example 2.10: (Infinite residual allocation model.) Let Q1, 

Q2, Q3, ••• be an infinite sequence of independent random variables with 

P(O <Qi< 1) = 1. Let n1 , n2, n3, ••• be defined as in (2.5). Then 

~ = (1T
1

, 7T2 , 71'
3

, • • • ) is called an infinite residual allocation model 

provided 

~( lim (1 - 71'1 - n2- ••• -'Jl'n) = 0) = 1. 
n-+ co 

(2.7) 

Theorem 2.8: Equation (2.7) holds when Q1 , Q2, Q3, ••• are indepen

dent and identically distributed. 

Proof: Take the negative logarithm of both sides of (2.4) to find 
n 

that -log{l - tr1 - 71' - ••• -71' ) = L -log(l - Q ). Since the -log(l - Qi) 
2 n i=l i 

are iid positive random variables, this last sum diverges to +a> with 

probability one. Now (2.7) is inunediate. 

Remark 2.1: This is the first time we have considered communities 

with infinitely many species. A measure theoretic framework adequate 

for our purposes is sketched in Appendix-A.3. Measurability questions 

will be ingnored in the body of the text. 

Example 2. 11: (Engen's model.) This is the infinite residual 

allocation model 'JI' whose residual fractions are iid with common distri-

bution Beta
1

(1, a) where a> O. From (?..5), E[TI
1
], E[TI

2
], E[TI

3
], •• • 

forms a geometric progression with ratio e = a/(a + 1) and odds ratio 

8/(1 - 8) = a. By matching moments of first moment distributions, Engen 

[84] has associated his model with Fisher's limiting Dirichlet. The 

next example makes this association a bit more precise. 
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Example 2.12: (Fisher's limiting Dirichlet.) For the Dirichlet 

model of Example 2.7, Fisher (85) introduced the product a= skas a 

diversity measure. For fixed k, a is proportional to the number of 

species and may be regarded as a species richness parameter. As justi-

fication for the use of a, Kempton & Taylor [86] point out that, for 

most data sets, it is not possible to efficiently estimate s and k 

separately although the product a= sk can be efficiently estimated. 

Fisher found that s was usually very large and k very small which led 

him to idealize .the model by taking the formal limit as s ~ 00 and k ~ 0 

with the product a = sk held fixed. The sampling distribution considered . 

by Fisher did converge (to the log series distribution) permitting the 

development of inferential techniques. But the underlying population 

model does not converge. More precisely, by Theorem 2.2, each component 

of the Dirichlet model converges to zero. The existence of a sampling 

distribution with, apparently,no valid underlying population model 

has caused some difficulty of interpretation especially concerning the 

parameter a. 

The reason the Dirichlet fails to converge becomes clear once we 

note that there is no community ~ with infinitely many species and whose 

components 7Ti are identically distributed. As Kingman (79] points out, 

such a community would have to satisfy the imcompatible requirements 

E[7rl] = E[7T2] = E[7r3] = ••• , 

E E[7r.] = 1. 
l. 

This difficulty can be avoided by subjecting the Dirichlet community to 

an appropriate canonical random permutation before ta~ing the limit. 

For example, results of Kingman [79] imply that the ranked permutation 



121 

* . 1 
TI does converge in distribution under Fisher's l imiting scheme, ..., 

* Unfortunately, the limiting distribution of TI is quite intractable 

(Kingman (79, Appendix I]). On the other hand, our next theorem shows 

the the size-biased permutation converges in distribution to Engen's model. 

Furthermore, the ranked permutation of Engen's model is equal in 

distribution to Kingman's limit so that Engen's model and Kingman's limit 

can be regarded as alternative descriptions of the same underlying 

conununity structure; this will be provided in Chapter 4 using the Gannna 

process. 

Theorem 2.9: Let TI .... D(s, k). Then TI# converges in distribution 

to Engen's model with parameter a when s ~ oo and k ~ 0 such that 

sk = a > O. Here convergence in distribution means weak convergence 

of the finite dimensional marginals. 

Proof: This follows from Theorem 2.7 and (2.5) using the fact 

that convergence in distribution is preserved by a continuous transfer-

mation. 

Open Problem: Let the sequence ~l' ~2 , ~3 , ••• of random connnunities 

converge in distribution to the random community TI. Prove or disprove: 

* II fl II 
~l' ~2 , ~3 , ••• converges in distribution to TI • Using (2.6), this 

~be proved when the number of species is uniformly bounded. 

true in general, it has the important implication that TI and TI# ..., ..., 

If it is 

are 

equal in distribution when ~ is Engen's model (use Theorem 2.9 and the 

equality in distribution of n11 and Tiii#). Actually, it will be proved 

1The possibility of a connection between Kingman's work and 
Fisher's limiting Dirichlet was raised by Cox [87] and, curiously, 
Kingman [79, p. 22] replied that he saw no connection. 
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later that Engen's model is invariant under size-biased permutation. 

Anticipating this result, we next give a characterization of Engen's 

model. 

Theorem 2.10: Eugen's model is the only infinite residual alloca-

tion model whose residual fractions are iid and which is invariant under 

size-biased permutation. 

Proof: Let ~ be a random connnunity meeting the assumptions of the 

theorem. n n Put A(n) = E[Q
1

] and B(n) = E[(l - Q1) ], n = l,2,3, •••• We 

use the fact that the distribution of the bounded random variable Q1 is 

uniquely determined by its moment sequence A(n) (Feller (82, p. 225]). 

Notice that B(l) = 1 - A(l), B(2) = 1 - 2A(l) + A(2) and in general, 

B(n + 1) = L(n) + (-l)n+lA(n + 1) where L(n) is a linear combination 

of 1, A(l), A(2), ••• ,A(n). Now 

A(n) = E(Q~] = E[V~] = E[(V~)n] 
= Efr v~+1 1 = rE[v~+ll 
= E[Qn+11 + E[(l _ Q )n+lQn+11 + E[(l _ Q )n+l(l _ Q

2
)n+1Qn+

3 
l]+ ••• 

1 1 2 1 

= A(n + 1)(1+B(n+1) + B2(n + 1)+ ••• ] 
. n = A(n + 1)/(1 - B(n + 1)] = A(n + l)/[1 - L(n) + (-1) A(n + 1)). 

Solving for A(n + 1), one finds that (1 - (-l)nA(n)]A(n + 1) is a 

polynomial function of A(l), A(2), ••• ,A(n). By assumption 

P(O < Q1 < 1) = 1 so that 0 < A(n) < 1 and the coefficient 1 - (-l)nA(n) 

is nonzero. Thus the moment sequence is uniquely determined by the first 

moment A(l). But for Engen's model, the first moment is A(l) = l/(a + 1) 

which ranges over the entire open unit interval as a varies from zero to 

infinity. The proof is now complete since Engen's model meets the 
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assumptions of the theorem. Note that it was only necessary to use the 

II equality in distribution of the first components v
1 

and v
1

• We 

conjecture that the assumption that the residual fractions are identically 

distributed can be dropped when the full force of invariance is used. 

Example 2.13: (Random deletion of species.) Let 0 < p < 1 and 

suppose v is a random community with P(O <vi <1) = 1 for i = 1,2,3, • ••• 

Further suppose £1, £2 , £ 3, ••• are independent Bernoulli random variables 

wi~h P(Ei = 0) = 1 - p and P(Ei = 1) = p. 

~ = Crr1, rr2, rr3, ••• ) is a random community 

Call £
1

,E
2

,E
3

, ••• the selection variables. 

Put rr = 
l. 

obtained 

Defined 

ViE/Ev jEj. Then 

by screening v. 

in this way, · rr has 

infinitely many components equal to zero. If desired, the zero components 

can be omitted by the following device: Let X(l), X(2), X(3), • •• be 

independent geometric random variables with P(X(i) x-1 = x) = p(l - p) , 

x = 1,2,3, •••• Put Ti= vX(l)+X(Z)+ ••• +X(i) and rri = Ti/T where 

Part (a) of the next theorem is proved in. 

Chapter 4; a direct verification appears to be difficult. 

Theorem 2.11: Let ~ be Engen's model with parameter a.o Then 

a) T = ET1 has a Beta1 (pa., (1 - p)a.) distribution and is independent 

of rr = (Tl' T2' T3, ••• )/T, 

b) rr is equal in distribution to Engen's model with parameter pa. 

Proof: b) For reference, note that E[Qt(l - Q)T] = 

a f(t + l)f(a. + T)/f(a. + t + T + 1) when Q - Beta1 (1, a). The joint 

distribution of a uniformly bounded collection of positive random 

variables is known to be uniquely determined by the joint Mellin transform 

of the finite .dimensional marginals. Now, for Engen's model with 

parameter a, the joint Mellin transform of v
1

, v
2

, ••• ,vn is 
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n t(.) 
E[ 'IT V. J ] 

j=l J 

n 
= E[ 'IT QJ~(j)(l _ Qj)t(j+l)+t(j+2)+ ••• +t(n)], 

j=l 
(t(j) ~ 0) . 

Write T(i) = t(i) + t(i+l)+ ••• +t(n), i = 1,2, ••• ,n and T(n + 1) = O. 

Using the independence of Q1 , Q2, Q
3

, ••• _, the joint Mellin transform 

simplifies to 

E [ ~ . Vt (j)] = 

j=l j (2.8) 

n 
= 'IT [a.r(t(j) + l)r(a. + T(j + l))/r(a. + T(j) + l)] 

j=l 

n n 
= 'IT [a.r(t(j} + l)/(a. + T(j))J· 'IT [r(a. + T(j+l))/r(a.+T(j))l 

j=l j=l 

n 
= 'IT [a.f(t(j) + l)/(a. + T(j))]•r(a.)/f(a. +T(l)). (2.9) 

j=l 

On the other hand, the joint Mellin transform of 'IT1, 'IT2, ••• ,'ITn is 

But 'IT is !dependent of l so that the expectation of the quotient is the 

quotient of the expectations, giving 

By part a), T - Beta1 (pa., (1 - p)a.) so that 

E[TT(l)] = [r(a.)/f(a. + T(l))J[ f (pa. + T(l))/f(pa.)J. (2.10) 

Next let X(l), X(2), X(3), ••• be geometric random variables as in the 

discussion preceding the statement of the theorem. With the aid of 
n t (.) 

(2.5), it is not hard to see that 7T T. J can be written as 
j=l J 
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n X(j)-1 
[ 'IT 'IT 

j=l i=l 

T(j) n t(j) 
(l - QX(l)+ •• • +X(j-l)+i) ] j:l [QX(l)+ ••• +X(j) x 

. . T(j+l) 
(l - QX(l)+ •• • +X(j)) ] (2.11) 

Given X(l), X(2), ••• ,X(n), the conditional expectation of (2 .11) is 

(use (2.8) and (2.9) for the last factor) 

n · n 
'IT [a/(a + T(j))"X(j)-l. 'IT [ar(t(j) + 1)/(a + T(j))]•r(a)/r(a + T(l)). 

j=l j=l 

(2.12) . 

Now take the expectation of (2.12) with respect to X(l), X(2), ••• ,X(n) 

to find that 

n n 
'IT [p/(1 - (1 - p)a/(a + T(j))]· 'IT [ar(t(j) + l)/(a + T(j))] x 

j=l j=l 

r(a)/r(a + T(l)) 

n 
= 'IT [paf(t(j) + 1)/(a + T(j) - (1 - p)a)] •f(a)/f(a + T(l)) 

j=l . 

n 
= 'IT [paf(t(j) + 1)/(pa + T(j))]·f(a)/r(a + T(l)). 

j=l 
(2.13) 

Dividing (2.13) by (2.10) gives the Mellin transform (2.9) of Eugen's 

model with parameter pa. This completes the proof. 

Remark 2.3: If the zero components of 'IT are not omitted, then it 

is false that T is independent of TI. In fact the sequence of selection 

variables E1 , E2, ••• is uniquely determined when one knows which 
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components of ~ are zero. But knowledge of the Ei provides information 

about T = rv
1

E
1 

since the distribution of (v
1

, v
2

, v
3

, ••• ) is not 

exchangeable. 

Remark 2.4: It has been pointed out previously that the parameter 

a = sk is proportional to the number of species for the Dirichlet model. 

Theorem 2.ll(b) implies that this interpretation remains viable even 

after taking Fisher's limit. 

Remark 2.5: Theorem 2.11 is also true when Engen's model is 

replaced with Kingman's limit. 

The Mellin transform (2.9) can also be used to prove the invariance 

of Engen's model under sized-biased permutation and, in the process, 

to establish the well-known negative Polya identity. Write 1T = v11 

where ~ is Engen's model with parameter a. Given v, the first component .... 

1Tl takes the value v
1 

with probability vi and the Mellin transform of 

1Tl becomes 

By the monotone convergence theorem, the expectation can be computed 

termwise. Using (2.9) this gives 

00 

r [a/(a + t + l)]i r(t + 2)r(a)/f(a + t + 1) 
i=l 

[a/(t + l)]f(t + 2)f(a)/f(a + t + 1) 

= f(t + l)f(a + 1)/f(a + t + 1). (2.14) 

Since (2.14) is the Mellin transform of v1 , the equality in distribution 

of 1Tl = v~ and v1 has been established. 
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Next consider the first two components ('1T1 , TI2) of~· Conditiona'.l 

on ~' these take the value (vi, vj) with probability vivj/(l - vi) 

when i 7' j and with probability zero when i = j. The joint Mellin 

transform is then 

t u t+l u+l 
E[TI1 rr2] = E[ E vi v. /(1 - v.)] 

But by (2.9), 

i;'j J ]. 

= E[ E 
i:f j 

00 

00 

E t+x u+l] 
V. V. 

x=l ]. J 

= E ( E + E )E[Vt+x v~+l] (t, u > O) . 
x=l i<j j<i i J 

i . i 
= E [a/(a + t + x + u + 1)] [a/(a + u + l)}J- r(t + x + 1) x 

i<j 

r(u + 2) r(a)/r(a + u + t + x + 1) 

= [a/(t+x+u+l)][a/(u+l)]r(t+x+l)r(u+2)r(a)/r(a+u+ 

t + x + 1). 

Interchanging t + x and u + 1 in (2.15) gives 

E E[v7+xvu+l] = [a/(t + x + u + l)][a/(t + x)]x 
j<i ]. j 

(2.15) 

r(t + x + l)r(u + 2)r(a)/r(a + u + t + x + 1). (2.16) 

Adding (2.15) and (2.16), the Mellin transform of ('1T
1

, TI
2

) is 

00 

= E a2r(t + x)r(u + l)r(a)/r(a + u + t + x + 1). 
x=l 

(2.17) 

On the other hand, the Mellin transform of (v
1

, v2) is, by (2.9), 
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E[v~v~] = a2
r(t + l)r(u + l)r(a)/[(a + u)r(a + u + t + l)]. (2.18) 

After some cancellations, the equality 

(2.19) 

is equivalent to 

00 

r r(t + x)/r(a + u + t + x + 1) = r(t + l)/[(a + u)r(a + u + t + l)]. 
~l 

(2.20) 

Now here is the trick. The equality in distribution of ~l and v1 has 

already been established so that (2.19) is true when u = O. Thus 

(2.20) is true when u = 0 and for all a > O. But since (2.20) involves 

only the sum a + u, it must be true for all a > 0 and all u > O. 

It may be remarked that (2 . 20) is equivalent to 

which is the negative Polya identity. 

The above procedure can be iterated (the next step, for example, 

leads to the bivariate negative Polya identity) but the calculations 

become very complicated. A simple and general proof of the equality 

in distribution of TI and v will be given in Chapter 4. 

As an illustration of the usefulness of the preceding result, 

consider the problem of calculating E[~(v)] where v is now an arbitrary 

random community and where 

6(v) = r v. R(v.) 
1 1 

(2.21) 
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is a dichotomous index with rarity measure R. Given v, the right hand .., 

side of (2.21) is the conditional expectation of R(v~) so that 

E[~(v)] (2.22) 

provided the expectation on the right exists, possibly with value + 00 • 

The existence of this expectation is guaranteed in the usual case that 

R is nonnegative. 

When v is Engen's model with parameter a, we have shown that .., 

II v
1 

- v
1

.., Beta1 (1, a), so that (2 . 22) becomes 

1 
E[~(v)] = a J R(x)(l - x)a-ldx. 

0 
(2.23) 

Equation (2.23) may be compared with equation (20) of Kingman [79]. 

Given the index, the right hand side of (2.23) depends only on a. 

The next theorem provides further justification for the use of ~ as a 

diversity measure. 

Theorem 2.12: Assume that R is decreasing on the interval (O,l] 

(Criterion Cl). Then E[~(v)] is an increasing function of a where .., 

v is Engen's model with parameter a. 

Proof: This is immediate from (2.23) since the distribution 

Beta
1

(1, a) is stochastically decreasing in a. 

Remark 2.6: Theorem 2.12 is true for any index, dichotomous or not, 

which satisfies Criterion C3. This is proved in Section 2.4. 

Computation of some of the standard E~ diversity measures for 

Engen's model is reduced to the evaluation of the integral in (2.23). 

Notice the power of this result; Shannon's index -rv. log(v.), for 
1 1 

example, is an infinite series and it is not at all apparent that the 

series converges with probability one, let alone has a finite expectation. 



130 

Theorem·2.13: Let v be Engen's model with parameter a.. Then -
a) E[v1], E[v2], E[v3] forms a geometric series with ratio 6 = a./(l +a.) 

and odds ratio 8/(1 - 6) = a., 

b) E[A8 <~>l = s-1 r1 - res + l)r(a. + 1)/rca. + a+ l)l if a > -1, a ; o, 

c) E[A0 (~)] = ~(a.+ 1) - ~(1) 

00 

= r a./ (n (n + a.) ] ' 
n=l 

d) when w > O, 

e) 

f) 

E[6H-$(v)] = a.[~(a. + w + 1) - ~(a.+ l)] 
w -

00 

= !: (cxw)/[n + a.)(n +a.+ w)], 
n=l 

E[!:(i - l)v.] =a., 
l. 

* E[!:(i - l)vi] = a. log 2 - .69 a.. 

(2.24) 

(2.25) 

Proof: Part a) is obvious and has been previously pointed out. 

Parts b), c) and d) follow from (2.23). Part e) follows from the 

monotone convergence theorem and a). 

rewritten as 

or, by (2.5), as 

Notice that !:(i - l)V. can be 
l. 

(1 - Ql) + (1 - Ql)(l - Q2) + (1 ~ Ql(l - Q2)(1 - Q3)+ ••• , 

(2.26) 

where the 1 - Qi are iid with common distribution Beta1 (a., 1). It 

follows that the series (2.26) converges will probability one and has 

finite expectation equal to a.. This series with reappear in Chapter 4. 

The proof of f) is deferred until Chapter 4. 
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R.emark ·2.7: When a is a positive integer, (2 . 24) simplifies to 

1+1/2+1/3+ ••• +l/a. When w is a positive integer, (2.25) simplifies 

-1 -1 -1 to a[ (1 + a) - + (2 + a) + •• • +(w + a) ] • In particular, we have 

H-S 
E(,\ (~)] = E[i\ (~)] = a/(a + 1). 

Remark 2.8: The expressions in b), c) and d) result when Fisher's 

limit is formally applied to the formulae given in Theorem 2.2 . In 

fact, for any dichotomous index, E[Li(~)] may be obtained by first 

calculating this expectation for t he Dirichlet model and then applying 

Fisher's limit. This follows from a comparison of Equation (2.23) with 

(16) and (20) of Kingman (79]. 

Remark 2.9: For the rank type index 6~rank), one obtains 

-- { ooa/(l +a - pa) if 0..::. p < (a+ l)/a 
E[E v.(l - pi-l)/(1 - p)] 

1 

if (a + 1)/a .::_ p. 

On the other hand, closed form expressions for the expected value 

E[ 6 (rank)(V)] = 
p -

* i-1 E[Evi(l - p )/(1 - p)) are not known. 

2.3 Fixing the Limiting Dirichlet Model 

A numbe.r of authors, most notably Engen [84, 88], have suggested 

that it may be preferable to draw· inferences about the physically 

realized community instead of underlying generating mechanisms. To this 

end, several attempts have been made to identify fixed communities that 

closely resemble realizations of the limiting Dirichlet. Most of these 

attempts fall into two general classes which may be termd the method of 

expectations and the method of quantiles. 
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The first approach (method of expectations) replaces the random 

connnunity ~ with the expected value of some canonical, stochastically 

* decreasing permutation of ~· For instance, either v = E[~ ] or 

II v = E[~ J might be adopted as the fixed model. The ranked permutation ..., ..., 

of the limiting Dirichlet is intractable and will not be discussed here. 

The size-biased permutation of the limiting Dirichlet leads to the 

geometric series model with ratio 8, 

i-1 
vi= 8 (1 - 8) , i = 1,2,3, ••• , o < 8 < 1, (2.27) 

and has been recommended by Engen [84]. The ratio is a complete 

diversity parameter for this model, but in practice, it may be preferable 

to use the odds ratio a' = 8/(1 - 8) = E(i - l)vi since it (apparently) 

corresppnds to Fisher's a by Theorem 2.13 (a,e). Estimation of a' for 

multinomial sampling has been discussed by Engen [84] , but his justifi

cation of jackknifing appears to be invalid. See Appendix A.6. 

The second appraoch (method of quantiles) begins with the assumption 

that the species abundances are independent realizations of the standard 

Gamma distribution with index k. These random abundances are then 

approximated by the quantiles of the Gamma distribution. Assuming there 

are s species, the quantiles v. are defined implicitly by 
l. 

r 
\). 

l. 

k-1 -x . . x e /f(k) dx = i/(s+l), i = 1,2, ••• ,s. (2.28) 

Dividing both sides of (2.28) by k and applying Fisher's limit gives 

00 

I -1 -x 
x e dx = i/a, i 1,2,3, •••• (2.29) 

The solution of (2.29) is obtained as 
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-1 . 
vi= E1 (i/a), i = 1,2,3, ••• , (2.30) 

-1 
where E

1 
is the inverse function of the exponential integral function. 

Tables and properties of E
1

(x) can be found in Abramowitz and Stegun [89]. 

It may be shown that Evi < 00 ; in what follows there is no need to normalize 

the v. to unity. The preceding derivation of (2.30) is due to Watterson 
l. 

[90]; variants have been considered by Engen [88] and Holgate [91]. 

Both (2.27) and (2.30) are candidates for "fixations" of the 

limiting Dirichlet and we wish to judge how closely they resemble 

realizations of this random model. A first standard of comparison is 

provided by the next theorem. 

Theorem 2.14: Let TI be the limiting Dirichlet as represented by 

Engen's random model with parameter a. Then, with probability one, 

lim log(rri)/i = -1/a. (2.31) 
i-+- 00 

Thus the tail of ~ is approximately geometric with ratio e = exp(-1/a) 

and odds ratio a' = l/[exp(l/a) - l]. 

Proof: Use (2.5) to write the components of TI as 

(2.32) 

where the Qi are independent realizations of the Beta1 (1, a) distribution. 

Take logarithms, divide by i~and apply the strong law of large numbers 

and the Borel-Cantelli lennna to conclude that, with probability one, 

log(rri)/i converges to E[log(l - Q1)J. After the change of variable 

V = -a log(l - Q1), the expectation is easily seen to be -1/a. 

Remark 2.10: Kingman [79] has shown that (2.31) also holds when 

TI is the ranked permutation of Eugen's model. 
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The result (2.31) is satisfying in that it holds with probability 

one, but a word of caution is in order since the asymptotic behavior 

of TI can be very nongeometric. From (2.32), ratio rr.+1/rr. equals 
1 1 . 

(1 - Qi)Qi+l/Qi so that rr2/rr1 , n4/rr3 , rr6/rr5 , ••• are independent and 

identically distributed unbounded random variables. It follows that the 

ratios form a dense subset of the positive real axis and have no limit 

as i -+ oo. 

At least three levels of asymptotic geometricity can be identified. 

Let 0 < e < 1. A sequence a
1

,a2,a3 , ••• of positive real numbers is 

said to be asymptotically geometric (AG) in the strong, intermediate, 

o~ weak sense when: 

i) 

ii) 

i 
(strong AG) 0 < lim a/9 < oo, 

i-+ 00 

(intermediate AG) 

iii) (weak AG) lim log(ai)/i = log(9). 
i-+oo 

In all three cases, call e the asymptotic ratio. As the terminology 

suggests, strong AG implies intermediate AG implies weak AG and each 

implies that the series ra. is convergent . Notice that intermediate AG 
1 

is equivalent to the requirement that the differences log (ai+l) - log(ai) 

converge to log 8. On the other hand, by telescoping, weak AG requires 

only that the Caesaro means of these differences converge to log 8. 

Weak AG is thus seen to be weak indeed and is about all that can be 

expected if the a. are random or, for that matter, are any physically 
1 

realized quantities. See Appendix A. 4 for further discussion of 

asymptotic geometricity. 

How compatible with Theorem 2.14 are the two fixed models (2.27) 

and (2.30)? The geometric series model is evidently strong AG except 
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that the odds ratio should be taken as a' = l/[exp(l/a) - l] and not a 

as might be suggested by Theorem 2.13. However the correction is small 

since a - 1/2 ~a' ~ a, with the lower bound being the better approxi

mation for reasonable values of a. A numerical comparison is given in 

Table 2.2. The correction has the effect of reducing the ratio and h.ence 

the diversity. Even so, the geometric series model is intrinsically 

more diverse than Watterson's exponential integral model for a given 

value of a (see Appendix A.7). The relative frequencies of the two 

models are plotted in Figure 2.1 when a = 5. As the plot shows, the 

exponential integral model assigns greater abundance to the common 

species and less abundance to the rare species than does the geometric 

series model. 

Table 2.2: Lower and Upper Bounds for the 

Corrected Odds Ratio 

a - 1/2 l/[exp(l/a) - l] a 

0.500 0.582 1 

1.500 1.541 2 

2.500 2.528 3 

4.500 4.517 5 

7.500 7.510 8 

9.500 9.508 10 

19.500 19.504 20 

49 .500 49.502 50 

99.500 99.501 100 
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It is possible to show that the sequence defined by (2.30) is also 

strong AG with ratio 8 given by -log e = l/a. This establishes that 

Evi < 00 as pointed out earlier. Both models thus satisfy (2.31) albeit 

in a much smoother sense than would be observed in any realization of 

the limiting Dirichlet . But asymptotic geometricity is only part of 

the story. Chapter 4 develops a wide class of random communities which 

satisfy this condition with probability one, so that, while asymptotic 

geometricity is a helpful guide in identifying possible fi~ations of 

the limiting Dirichlet, it alone does not suffice. 

A second, and more powerful, standard of comparison was initiated 

by Watterson [90] in connection with the exponential integral model. 

It consists of comparing the sampling distribution of the fixed model 

with Fisher's log series distribution. 

Several version's and/or interpretations of the log series exist 

and have been surveyed by Watterson [90]. The version of interest here 

(Watterson's Version 2) is due to Anscombe [92], who obtained it by 

supposing that the species abundances A1 , J.2 , ••• ,As were independent 

realizations of the standard Gamma distribution with index k. The 

observed number of representatives of species i was further assumed 

to be a Poisson variate with mean AAi where A is the sampling intensity. 

Letting n x = 1,2,3, ••• , be the number of species having x represenx' 

tatives in the sample, the vector of observations (n
1

, n 2, n
3

, ••• ) is a 

sufficient statistic whose likelihood may be written down. The number 

of species in the community enters this likelihood as an unknown 

parameter. After applying Fisher's limit to the likelihood, the n 
x . 

become independent Poisson variates whose means are given by 

E[n ] = a[A/(l + A)]x/x. 
x 

(2.33) 
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The observed number of species rn is, as a consequence, also Poisson 
x 

with mean a log (1 +A). 

Notice that the preceding derivation does not involve truncation . 

Some authors, Pielou [33, p. 44], for instance, prefer to truncate the 

negative binomial before letting k + O. The population parameter a 

is then introduced in an obscure way that makes i t appear to be at 

once a random variable and a function of the sampling parameter A. 

Now consider Poisson sampling from a fixed model v: assume the 

observed number of representatives from the different species are 

independent Poisson variates whose means Avi are proportional to the 

respective species abundances . Because of the confounding between A 

and v, there is no need to normalize v to unity. The subsequent algebra .... 

is somewhat simplified if the geometric series model is specified by 

in place of (2.27) . 

v = ei 
i 

The joint probability generating function of n1, n2, 

00 

(2.34) 

n , ••• is 
3 

[l - r (1 - t )(Av.)xexp(-Av.)Acl] 
1 x=l x 1 i 

(2.35) 

and, in particular, 

00 

IT [l - (1 - t
1

)Av. exp(-AV .)]. 
i = 1 1 1 

(2. 36) . 

From (2.35), it follows that then are not independent and their marginal 
x 

distributions are not Poisson. At least to this extent, the sampling 

distribution of a fixed model can never be Fisher's log series. This 

is not surprising: a central purpose of fixation is the elimination 
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of the variance component due to community variabili ty and this elimination, 

to be effective, must change the sampling distribution. 

One is still free to demand that the n have expectations given 
x 

by (2.33), at least approximately, and this is t he second requir ement to 

be satisfied by any proposed fixa t ion of the limiting Dirichlet model. 

Either directly or from (2.35), one finds that 

E[n ] = 
x 

00 

E (Avi)xexp(-Avi)/x!. 
i=l 

(2.37) 

Often vi is formally defined for all positive. real i and is a continuous 

decreasing function of i. This is the case f or both (2.30) and (2.34). 

The sum in (2.37) can then be approximated by an integral to give 

00 

E[n ] : I = f (Avi)xexp(-Av)Ac! di. 
x x 0 .L 

(2.38) 

Watterson [90] has established the bounds 

I - 1 < E[n ] < I + 2, x x x (2.39) 

although the approximation is usually much better than might be 

suggested by (2.39), especially if A is large. The integral I can be 
x 

evaluated by a change of variable to produce the following two results, 

the first of which was found by Watterson [90]: 

i) 

ii) 

When v. 
1 

-1 
= E

1 
(i/a), 

E[n ] - I = a[A/(l + A)]x/x , x x 

When v. = ei 
1 ' 

E[n ] - I = (-1/log 0)I'(x;A)/x, x x 

(2.40) 

(2.41) 

where I'(x;A) is the incomplete Gamma function defined by 
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A 
f(x;A) = f ux-le-udu/I'(x) 

0 

= 1 - e-A[l +A+ A2/2!+ ••• +Ax-l/(x - 1)1] . 

The coefficient -1/log e in (2.41) may be identified with 

Fisher's a by Theorem 2.14. 

These results show that Watterson's exponential integral model is an 

acceptable fixation of the limiting Dirichlet but that Engen's geometric 

series model is not. The random community corresponding to the geometric 

series model is identified in Chapter 4; the limiting Dirichlet is a 

randomization of this community. 

The earliest plots of n versus x are apparently due to J . c. x 

Willis [93] who observed a consistent pattern which he called the 

"hollow curve." Subsequently, Chamberlin [94] described the ideal 

hollow curve as the rectangular hyperbola a/x. Both (2.40) and (2.41) 

are weighted rectangular hyperbolas of form aw(x;A)/x. The unweighted 

rectangular hyperbola is impossible in the present context since the 

number of species in thes:imple is a Poisson random variable with mean 

EE[n ] < 00 • Fisher [85] introduced t he exponential convergence factor x 

of (2.40). The Gamma convergence factor of (2.41) seems to be new and 

has the effect of smoothly truncating the rectangular hyperbola at 

about x =A. Figure 2.2 provides a comparison of the two convergence 

factors when A = 50 and A = 100. 

The geometric series model will rarely be useful for graduating 

species frequency data since the latter is often found to have an even 

longer tail than the log series (Kempton & Taylor [86], Anscombe [92], 

and Kempton [95]). It may possibly find application in word frequency 

studies where the truncated rectangular hyperbola has been used. 
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In principle, the sampling distribution corresponding to a fixed 

model~ is determined by the generating function (2.35). However, the 

distribution is extremely complicated and, for realistic sized samples, 

it will be impossible to explicitly write down the likelihood. Some 

information can still be extracted from the generating function. For 

simplicity, consider (2.36). Since EAviexp(-Avi)!l - t 1 1 < 00 , the 

infinite product in (2.36) is absolutely convergent for all t
1 

and 

defines an analytic function of the complex variable t
1

• Moreover, this 

function has zeros at the values t
1 

= 1 - l/[Av.exp(-A(v.)J, 
l. l. 

i = 1,2,3, •••• When the sequence V. is strong AG with ratio 8, these 
l. 

zeros do not stabilize as A ~ 00 but vary approximately as a periodic 

function of -log
6
A. It follows that the likelihood is multimodal for 

large A, making maximum likelihood estimation difficult even if the 

likelihood could be written down. 

The limiting periodicity can be seen quite clearly for the geometric 

series model. Putting v. = Si in (2.37) gives 
l. 

00 

i i E[n
1

] = E Ae exp(-Ae ). 
i=l 

(2.42) 

-n When A goes to 00 through the successive values a6 , n = 1,2,3, ••• , 

this expression converges to 

00 

i=- 00 

i i ae exp(ae ), 

which is clearly a periodic function of -log8a. 

When 6 = 1/2, E[n
1

] has been plotted against log2A in Figure 2.3 

and Figure 2. 4. These figures display the graphs of both (2.42) and 

the approximation (2.41). Notice that the oscillation does not damp out 

as A+ 00 although the amplitude (about . 000015) of the oscillation is 

very small. 
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In the following we provide a brief summary of the material in this 

section: 

1. Two requirements are imposed on any fixation v of the 

limiting Dirichlet: (i) v should be asympt otically geometric and (ii) ... 
the mean sampling frequencies E[n ] should be approximately proportional x 

to the terms of the log series dis t ribution. 

2. Watterson's [90] exponenti al integral model meets both 

requirements although the asymptotic geometricity is smoother than would 

be observed in prac tice. 

3 . For given a , Engen's [84] geometric series model is 

intrinsically more diverse than the exponential integral model. The 

geometric series model satisfies the first requirement but not the 

second; the mean sampling frequencies are a smooth truncation of the 

rectangular hyperbola. The geometric series model will seldom provide 

an adequate fit to species frequency data . 

4. Any fixed model which is asymptotically geometric in the 

strong sense has a multimodal likelihood function. 

2.4 Stochastic Diversity 

This section extends the intrinsic diversity or dering to random 

conununities. As was the case for fixed cormnunities, the ordering is 

only partial and two random communities need not be comparable. In 

fact, comparability i s t he excep tion rather than the rule. However , 

some comparability relat ions are established fo r Dirichle t communities 

and these relations shed further light on the role of Fisher's "alpha" 

as a diver sity parameter. 
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There are several stochastic analogues of the intrinsic 

diversity ordering. Four such analogues are considered here. Let 'TT 

and v be two random communities and define v to be stochas tically 

more diverse than 'TT in the sense (SD2, SD3, SD4, SDS) if: 

SD2: E[~(v)].?: E[~('TT)] whenever~ satisfies Criterion C2. 

SD3: E[~(v)] > E[~('TT)] whenever~ satisfies Criterion C3. - ... 
SD4: For every positive integer m, the random variable 

* L V. is stochastically greater than the random 
i>m 1 

* variable E 1Ti. 
i>m 

* SDS: The fixed community E[v ] is intrinsically more diverse 

* than the fixed community E['TT ] • ... 
As a technical point, the above diversity indices should be required 

to be Borel measurable. It will be seen below that these four defini-

tions are equivalent for fixed, but not for random, communities. Notice 

also that each definition is invariant to permutations of ~ and of v. 

Stochastic diversity in the sense SD2 is the dual of stochastic 

majorization as defined by Nevius, Proschan & Sethuraman [96]. In the 

same paper, these authors have shown (Theorem 2.2) that the following 

statements are equivalent: 

i) v is stochastically more diverse than 'TT in the sense SD2. ... ... 

ii) The random variable ~(v) is stochastically greater than ... 
~('TT) whenever ~ satisfies Criterion C2 • ... 

iii) P(v £ A) > P('TT £ A) whenever A is a Schur convex set. ... - ... 
Statement (iii) is a direct requirement on the probability distributions 

of 'TT and V and is similar to the definition of stochastic ordering of 

random variables. For this · reason SD2 is the most elegant and, perhaps, 
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the most appropriate formulation of stochastic diversity. However, SD2 . 

is a very stringent requirement. A few of the results established 

below make use of Jensen's inequality and apply to the definition SD3; 

some of these results are definitely false for SD2 while others are 

unknown. 

First the logical relations that exist among the alternative 

formulations of stochastic diversity will be given. 

Theorem 2.15: Each of the following implications is true: 

SD3 

SD2 ~ ~ SD5. 

~sn4 ,:9J 
In general, none of these implications can be reversed; however, for 

fixed communities the four definitions are equivalent. 

Proof: Clearly SD2 implies SD3 since any index satisfying 

Criterion C3 also satisfies Criterion C2. The proof of the remaining 

three implications uses the rank type index 6 = T (TI) defined by 
m.., 

* * T (TI) = T (TI ) = ~ Tii (m = 
m .., m .., i>m 

1,2 ,3, ••• ), which satisfies both Criterion 

C2 and C3 by Theorem 1.9. Applying statement (ii) to the index T shows 
m 

that SD2 implies SD4. Next, if v is stochastically more diverse than 
. ... 

TI in either of the senses SD3 or SD4, 

Since T is linear, this implies that 
m 

* * then E[T (v )] > E[T (TI )] . m... - m.., 

* T (E[v]) > T (E[TI ]) and, m ... · - m ... 

* . * consequently, that E[v ] is intrinsically more diverse that E[!: ]. To 

prove that none of the implications can be reversed, it will suffice 

to show that neither of the two definitions SD3 and SD4 implies the 

other . For a counterexampl e to SD4 => SD3, let TI and v be defined as 

in Example 2.3 and Example 2.4, respectively. A counterexample to 

SD3 => SD4 is given below in Example 2.15. The last assertion 
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of the theorem is clear since SD5 implies SD2 for fixed conununities. 

Example 2.14: This is the first application of Jensen's inequality. 

Let TI be a random community and ~ an index satisfying Criterion C3. 

* * Then E[~(TI)] = E[~(TI )] < ~(E[TI ]) which shows that: - - -
* (a) E[TI ] is stochastically more diverse than TI in the 

sense SD3. 

Now l et v be any rand.om permutation of TI for which E[v] is ranked, i.e., 

E[v1 ] ~ E[v2] ~ E[v3] ~· •• ; for example, ~ might be the size-biased per-

# . * * * mutation~ • Clearly rr1 + rr2 + •• • +Tim~ v1 + v2 + ••• + vm for any 

positive integer m. Taking expectations shows that: 

(b) 

(c) 

* E[v] is intrinsically more diverse than E[~ ], and . 

E[TI#] is intrinsically more diverse than E[rr*]. -
Taken together, these relations indicate that fixing a random community 

by the method of expectations will exaggerate the community's diversity. 

Also, (a) and (c) help explain the earlier result that Eugen's fixation 

of the limiting Dirichlet is intrinsically more diverse than Watterson's 

fixation. 

Example 2.15: Let ~ take the two values (1/2, 1/2, 0) and (1/3, 

1/3, 1/3) each with probability 1/2 and let v take the value (5/12, -
5/12, 2/12) with probability 1. It is easy to see that TI and v are 

not comparable in either of the senses SD2 or SD4. On the other hand, 

* v = E[~] = E[~ ] and, by Example 2.14(a), ~ is stochastically more 

diverse than ~ in the sense SD3. Finally, in the sense SDS, each of 

V and TI is stochastically greater than the other. This example 

indicates tha t weakening the definition of stochastic diversity enriches 

the class of communities that are comparable with one another. 
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Example 2.16: Draw a random sample of size N from the fixed 

community v and let Yi (i = 1,2,3, ••• ) be the number of times the ith 

* ranked species is represented in the sample. Since E[Y/N] = v is 
~ 

already ranked5 Example 2.14(a,b) may be applied to show that E[!/N] 

is stochastically more diverse than !IN in the sense SD3. Using the 

permutation invariance, ~ is then stochastically more diverse than the 

sample Y/N. In practice, only the order statistics 
~ 

xl 2'... x2 2'... x3 2'...··· of! can be observed; but, again by permutation 

invariance v is stochastically more diverse than X/N in the sense SD3. 

Thus 6(v) > E[6(X/N)] whenever 6 satisfies Criterion C3. In other 

words, 6(X/N) is always a negatively biased estimator of 6(v). Simple 

counterexamples can be cons tructed to show that this is not generally 

true for indices satisfying Criterion C2. 

The assumption that ~ is a fixed community is not essential in 

the last example. In fact, the next theorem states that stochastic 

diversity in any of the four senses is preserved under mixing. The 

straightforward proof using conditional expectations is omitted. The 

case SD2 has been previously noted by Nevius, Proschan & Sethuraman 

[96, Theorem 3.1]. 

Theorem 2.16: Let ~ and v be random communities and let U be a 

random variable. Assume the conditional distribution of v given U = u 

is stochastically more diverse in any one of the four senses than 

the conditional distribution of ~ given U = u for each u. Then v 

is stochastically more diverse than ~ in the same sense. 

Most of the results in Nevius, Proschan & Sethuraman [96] and 

in Proschan & Sethuraman [97] are stated under an assumption that 

certain parameters A and A. are positive. In the present terminology, 
1 
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this requires that both communities have the same number of species which 

is too restrictive for applications to diversity. Fortunately, this 

assumption can be relaxed to the requirement that A and A, be nonnegative. 
1 

Simply note that the proof of the preservation theorem as given by 

Proschan & Sethuraman [97 ] remains valid for A = 0 provided ¢(0, x) is 

interpreted as the Dirac delta function with unit mass at x = O. With 

this extension, Application 4.2(a) of Nevius, Proschan&Sethuraman [96) 

implies that random samples reflect the intrinsic diversity ordering in 

the following sense: 

Theorem 2.17: Let Y and Y' be random samples of size N from the 

fixed communities TI and TI' as in Example 2.16. Then Y'/N is stochas-

tically more diverse than Y/N in the sense SD2 when TI' is intrinsically 

more diverse than TI. 

The rest of this section is devoted to diversity comparisons of 

Dirichlet communities. The Dirichlet model has the two parameters s 

and k as well as the derived parameter a = sk and any diversity relations 

will have to involve two of these parameters. Necessary and sufficient 

conditions for the comparability of two Dirichlet communities have not 

been obtained but the next theorem is a close approximation. 

Theorem 2.18: Let TI and TI' be Dirichlet communities with parameters 

(s, k) and (s', k'), respectively. In order that TI' be stochastically 

more diverse than TI in the sense SD2: 

a) the pair of conditions s' > s and (s' - 1) k' > (s - l)k 

are necessary, and 

b) the pair of conditions s' > s and s'k' > sk are sufficient 

but not necessary. 

Proof: a) Necessary conditions are obtained by requiring that 
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that E[6(TI')] > E[6(TI)] for appropriate choices of the index A. The 
. ,,,.,, - ,,,.,, 

choices should include indices sensitive to rare species as well as 

indices sensitive to abundant species. The choice of 6_1 = s - 1 

establishes the necessity of s' ..::_ s. Next consider A
8 

for large S. 

Using Theorem 2.l(a), this choice requires that 

A[f(k' + 8 + l)/f(k + 8 + l)][f(sk + 8 + l)/f(s'k' + 8 + l)] ~ 1, (2.43) 

where A= [f(k + l)/f(k' + l)][f(s'k' + l)/f(sk + l)]. But as S ~ oo, 

the left hand side of (2.43) is asymptotic to A S(s-l)k-(s'-l)k' so 

that (s - l)k - (s' - l)k' must be less than or equal to zero. Note: 

if (s - l)k = (s' - l)k', one must also have A < 1. However, Lemma 

2.1 , below, shows that this is automatically satisfied when s' > s. 

b) Consider separately the two cases: (i) s' > s but s'k' = sk, and 

(ii) s' = s but s'k' > sk. Case (i) follows from Application 4.2(d) 

of Nevius, Proschan & Sethuraman [96]. Recall that the Ai need only be 

nonnegative. For case (ii), the s-component symmetric Dirichlet 

family has monotone likelihood ratio in the index in the sense that the 

likelihood ratio is a Schur concave function of TI. Now proceed just 

as in the usual proof that a monotone likelihood ratio family is 

stochastically increasing . That b) is not necessary is demonstrated 

in Theorem 2.19, below. 

It seems likely that the conditions given in Theorem 2.18(a) are 

both necessary and sufficient . This will be proved when s = 2 and 

s' = 3. We need a preliminary lemma whose proof is given in Appendix 

A.8 . 

Lemma 2.1: Let 0 < Al < B1 < B2 < A2 with A1 + A2 = B1 + B2• 

Then f(B1 + l)f(B2 + 1) < f(A1 + l)f(A2 + 1). 
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Theorem 2.19: Let TI - D(2, k) and TI' - D(3, k'). Then TI' - .... 
is stochastically more diverse than TI in the sense SD2 <=> 2k ' > k. 

Proof: Necessity has already been proved. Since the stochastic 

diversity of TI is increasing in k, we may suppose that k = 2k' and show 

that P(TI' e T) - P(TI e T) ~ 0 for T any Schur convex subset of the - .... 
two-dimensional simplex. It may also be assumed that T has a nonempty 

intersection with the one-dimensional faces. Referring to Figure 2.5, 

the intersection of T with any one of these faces is an interval 

symmetric about the midpoint and of length 2t - 1 where 1/2 < t < 1. 

But 

P(~' e T) > 1 - 3f(3k')/[f(2k')f(k')]f
1 

xk'-l(l 
t 

) 2k'-ld - x x, 

1 
P(TI e T) = 1 - 2f(2k)/[f(k)I'(k)]f xk-l(l - x)k-ldxo 

t 

Thus P(TI ' E T) - P(TI e T) ~ F(t) where F(t) is given by 

1 
2f(2k)/[I'(k)f(k)] J xk-l(l - x)k-ldx -

t 

3f(2k')/[f(2k')f(k')] /
1 

xk'-l(l - x) 2k'-ldx. 
t 

The strategy is to show that (i) F(l/2) > O, (ii) F(l) = O, 

(iii) F'(t) has at most one zero for 1/2 < t < 1, and (iv) F'(t) < 0 

for t close to 1. It then follows that F(t) ~ 0 for 1/2 2 t < 1. 

Now (i) and (ii) are obvious. Since k = 2k', we have 

F'(t) = 3I'(3k')/[f(2k')f(k')) tk'-l(l - t) 2k'-l -

2f(2k)/[f(k)f(k)]tk-l(l - t)k-l 

tk'-1 c1 - t) 2k'-1;r(2k')[3f(3k')/r(k') - 2tk'r(4k')/f(2k')J. 

The expression in brackets has at most one zero so that {iii) has been 
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T 

0 1/2 t 1 

Figure 2.5 A Schur Convex Subset T .of the Two-Dimensional Simplex 
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established. For (iv), it will suffice to show that 

3r(3k')/r(k') - 2r(4k')/r(2k') < O or, equivalently, that 

3r(2k')r(3k') < 2r(k')r(2k'). Multiplying both sides by 2k'k', this 

is the same as r(2k' + l)r(3k' + 1) < f (k' + l)r(4k' + 1) whic~ is .true 

by Lemma 2.1. 

Remark 2.11: If the conditions given in Theorem 2.18(a) are 

always sufficient, then SD2, SD3, and SD4 are equivalent for the Dirichlet 

model. This is so because the proof of necessity used only the index 

~S which satisfies Criterion C3 and so these conditions are necessary 

for SD3. By arguments similar to the proof of Theorem 2.19, it may be 

shown that they are also necessary for SD4. On the other hand, SDS is 

not equivalent to any of SD2, SD3, or SD4 for the Dirichlet model. In 

any event,. the two sets of conditions given in Theorem 2.18 are 

numerically indistinguishable for realistic parameter values (s large 

and k small). 

Corollary 2.3: Fisher's a is a complete diversity parameter for 

the Dirichlet model when either s or k is held fixed. 

Proof: The two sets of conditions of Theorem 2.18 coincide in 

either of these cases. 

If x
1

, x2, x3, ••• ,Xn is a random sample from a nonnegative 

distribution, it is easy to show that E[Max(X, x2, ••• ,X )]/n is a 
1 n 

decreasing function of the sample size. The next corollary generalizes 

this for the Gamma distribution. 

* * * * * * Corollary 2.4: Let x1 ~ x2 ~ ••• >Xn and Y1 ~ Y2 ~ ••• >Yn' be 

the order statistics from standard Gamma distributions with index k and 

k', respectively. Assume that n' > n and n'k' > nk. Then one has 

* * * * * * ' ' E[X1 + X2 + ••• + XmJ/(nk) ~ E[Y1 + Y2 + ••• + YmJ/(n k ), m = 1,2, ••• ,n. 
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Proof: This follows from Theorem 2.18 since SD2 => SD5. 

We conclude this section by showing that Fisher's a is a comple t e 

diversity parameter for the limiting Dirichlet, at least in the sense 

SD3. The proof uses the notion of random deletion of species as 

discussed in Example 2.13. The following theorem, which contains no 

new information, is included to clarify the proof. 

Theorem 2.20: Let v .... D(3, k) and 'IT .... D(2, k) (same k). Then v 
.... - .... 

is stochastically more diverse than 'IT in the sense SD3 • .... 

Proof: Obtain~ as (A
1

, A2, A3)/A where A = Al+ A2 + A
3 

and the 

Ai are independent realizations of the standard Gamma distribution with 

index k. Consider the following collection of communities and their 

associated weights: 

weight community 

wl = (A
2 

+ A
3

) I (2A) 'V(l) = (O, A2, A3)/(A2 + A3) 

w2 = (Al + A3)/(2A) 'V(2) = (Al' o, A3)/(Al + A3) 

w3 = (A
1 

+ A
2

) I (2A) 'V(3) = (Al' A2, O)/(A
1 

+ A2) 

Now, it is easy to check that (i) w1 + w
2 

+ w
3 

= 1, (ii) the mean ~(i) is 

w v(l) + w v(Z) + w v(J) = v, (iii) w. is independent of v (i), and 
1 .... 2 - 3 - - 1 .... 

(i) 
(iv) after omitting the zero components, each ~ equals ~ in distri-

bution. Let 6 satisfy Criterion C3. By (i) and (ii), we find that 

6(v) > E w.6(v(i)) and taking expectations of both sides gives 
1 "" 

E[~(V)] > EE[w.6(v(i))]. 
- - 1 -

(2.44) , 

But, by (iii) and (iv), E[w. 6(v(i))] = E[w.] E[~(v(i))] = E[w.)E[6('IT)]. 
1 .... 1 - 1 .... 

Inserting this into (2.44) shows that E[~(v)] > E[6(TI)]s as desired. - - .... 
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Theorem 2.21: Let v and TI be limiting Dirichlet models with para-

meters a and a
0

, respectively. Then v is stochastically more diverse 

than TI in the sense SD3 <=> a ~ a0• 

Proof: (=>). We must have E[61 (~)] ~ E[61 (~)] or, by Rem.ark 2.7, 

a/(a + 1) ~ a0/(a0 + 1). This implies that a~ a 0 • (<=) . Without loss 

of generality, assume that a > a0 and write a0 = pa where 0 < p < 1. 

Now TI may be obtained from v by random deletion of species with zeros ... 
omitted, as in Theorem 2.11. Let~ - = (E1 , E2, £3 , ••• ) be the selection 

variables (see Example 2.13). The sample space.f1of E consists of all ... 
infinite strings of zeros and ones. Let dµ(E) be the probability ... 
measure on this space which specifies the distribution of ~· For a 

given realization of v, let v x £ be the vector whose ith component is 

ViEi and put S(~, £) = E ViEi. Then v x £/S(v, £)is the same as TI 

but without the zeros omitted. Since J £.dµ(E) = p, one easily checks n 1 ... 

that, for a given realization of ~, S(v , E)dµ(E)/p is a probability 

measure on )land 

(2.45) 

Now let 6 satisfy Criterion C3. By Jensen's ineq_uality, (2.45) gives 

6(~) ~ f)l_6(~ x :ts(~, :>) S(~, :)dµ(~)/p 

E[6(v x £/S(v, £)) S(v, ~>l~J/p. 

Take expectations with respect to V to find that 

E[6(v)].:.. E[6 (v x E/S(v, E))S(~, E)]/p. 
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But ~(v x E/S (v, E)) = ~(TI) since omitting the zero components does - - - - -
not change the value of ~. By Theorem 2.11, ~ is independent of 

S(v, E) so that E[~(v)] > E[~(TI)] E[S(v, E)]/p = E[~(TI)]. - - - - - - - -
Open Problem: Is Theorem 2.21 true in the sense SD2? 



CHAPTER 3 

SIZE-BIASED SAMPLING AND 

THE EXPONENTIAL INTEGRAL 

3.1 Introduction 

In developing species abundance models, it is often assumed that 

the unnormalized abundances x1 , x2, ••• ,Xs of the various species are 

independent realizations of some nonnegative random variable X with 

density f(x), say. In Chapter 2, for example, X was taken to have a 

Gannna distribution. 

Now X is the abundance of a randomly chosen species. But in 

practice s~mpling is by individuals and we will be interested in the 

1 individuals abundance distribution, i.e., the distribution of the 

abundance of the species to which a randomly chosen individual belongs. 

Sampling by individuals has the effect of shifting the probability 

density f(x) to the right since the more abundant species now have a 

greater propensity to be observed. In fact, the probability of choosing 

a given species is proportional to the abundance of that species, which 

has led several authors [11, 98, 99, 100] to adopt the first moment 

distribution x f(x)/E[X] as the individuals abundance distribution. 

This choice cannot be strictly correct since the first moment distri-

bution does not involve the parameter s. The exact distribution is 

derived in Section 3.2 and is shown to converge to the first moment 

distribution when s + 00 • The techniques used in the proof are then 

extended in Section 3.3 to cover Rao's [101] weighted distributions. 

1 
Preston [98, 99] uses the term "individuals curve." 
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. The exact individuals distribution is quite complicated although , 

in Section 3.4, we are able to express it in terms of the exponential 

integral function when X has a Gannna distribution. Even so, one will 

usually have to adopt the first moment distribution as an approximation 

and the rate of convergence becomes of interest. This question is 

considered in Section 3.5 where it is shown that the rate of convergence 

· is of order l/s, at least for sampling from the exponential distribution. 

3.2 Convergence to the First Moment Distribution 

Let X be a nonnegative random variable having (right continuous) 

distribution function F. It is not necessarily assumed that F(O) = O. 

fls In this section, we define a sequence X , s = 1,2,3, ••• , of size- biased 

versions of X, derive a general expression for the distribution function 

F#s of X#s, and obtain the first moment distribution of Fas the limit 

when s + 00 • 

Take a random sample x
1

, x
2

, x
3

, ••• from the distribution F and 

regard these variates as the successive gaps in a renewal process . For 

a fixed positive integer s, randomly select a point from the union of 

the first s gaps and record the length of the gap that covers this 

. xfls poi:nt as • 
#s 

Note that X assumes the value zero when and (with 

probability one) only when the first s gaps are all of zero length. The 

distribution function of X#s will be written as Flis. Clearly F#s = F 

when s = 1 . 

Theorem 3 . 1: The distribution of X#s is given by 

= i~F(O) ]s 

[F(O)]s + s Ix uE[l/(u + ss-l)]dF(u) 
o+ 

if x < 0 

if x = 0 

if x > o, 
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where Ss = Xl + X2+ ••• +Xs and SQ= 0. 

Proof: Let x > 0 and define h(u) to be u for u < x and zero other-

wise. Conditional on the realized values of x1 , x2, ••• ,Xs' the probabil

ity of the event X#s <xis [~h(Xj)]/S where the sum r anges from j = 1 - s 

to j = s and where 0/0 is taken to be one. Consistent with the 0/0 

convention, this conditional probability may be written as 

[sh(X1)/S + sh(X2)/S + ••• +sh(X )/S ]/s. s s s s 

Since the terms sh(X . )/S are identically distributed, we obtain 
J s 

. P(X#s ~ x) = E[sh(X )/S ] s s 

= J E[sh(u)/(u + S 1)jx = u] dF(u). 
0 s- s 

By the independence of S 1 and X , the condition X = u may be dropped 
s- s s 

from the expectation. The proof is completed by decomposing the integral 

as 

f = 
0-

f + f 
{O} o+ 

and noting that the integral over {O} is [F(O)]s. 

Corollary 3.1: Assume that X is absolutely continuous with density 

f(x). Then X#s is absolutely continuous with density xf(x)E~/~ + Ss_
1
)J. 

When s is large, F(O)s = F#s(O) is approximately zero unless 

F(O) = 1. In effect, any probability at the origin disappears in the 

limit. Also for largP 

law of large numbers. 

s, s/(x + S 
1

) is approximately l/E [X] by the 
s-

#s 
Corollary 2.1 thus suggests that F converges 

to the first moment dis t ribution of F . The next theorem makes this 

rigorous . 
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Theorem 3.2: Assume that u = E[X] is finite and nonzero. Then 

Flis converges in distribution to Ftl where dFtt (x) = u-1xdF(x) is the 

first moment distribution of F. 

Proof: Conditional on the realized values of x1 , x
2

, ••• ,Xs, the 
Ifs 

characteristic function of X is T = [EX.exp(i t Xj)]/S where the sum 
s J s 

ranges from j = 1 to j ~ s and where 0/0 = 1. Divide numerator and 

denominator of Ts by s and apply the strong law of large numbers to find 

that, with probabili ty Ts converges to ct> ( t) -1 one, = U E[X exp(itX)] 

which is the characteristic ti function of F • But IT I < 1 so that the s -

dominated convergence theorem gives E[Ts] ~ ct>(t). Since E[T ] is the s 
tis characteristic funct ion of X , the proof is complete. 

The above results assume that the renewal process is replicated 

/Is 
for each realization of X • In practice, it will be more realistic to 

consider repeated size-biased sampling from a single realization of the 

renewal process. Suppose that r ~ s such selections are made without 

replacement from among the first s gaps. Let Xrfls = (Xr/ls Xrfls Xrlls) 
r 1 ' 2 , ••• , r 

= s - r xrlls be the 
s-1 i=l i 

be the vector of selected gaps and let Y 

residual. 

Theorem 3.3: Assume that X is absolutely continuous with density 

f(x) and let f be the (s - r)-fold convolution of f. The joint s-r 

density of xrlls and y is 
.... 

r 
s(s - l) ••• (s - r + l)f (y) TI [x.f(xi)/(xi + x.+

1
+ ••• +x + y)] 

s-r i=l 1 1 r 

.and the marginal density of Xr#s is 

r r 
s(s - l) ••• (s - r + l)• TI [x.f(xi)]•E[l/ TI (x. + x.+1+ ••• +x + S )]. 

i=l 1 i=l 1 1 r s-r 
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Proof: Let H (u) be t he indicator function of the interval (-oo, x]. 
x 

For notational simplicity, take r = 2 and let 0 ..:_ x1 , x2, y. As in 

h f f Th 2 1 P(x2#s < x2#s < y < ) . i b t e proo o eorem • , 
1 

_ x
1

, 
2 

_ x
2

, _ y is g ven y 

r 
E( ~ (X./S )(X./(S - X.))H (X.)H (Xj)H (S - X - X.)J = 

i S J S i x1 i Xz y S i J i,j=l 
i;'j 

s(s - l)E[(Xl/S )(X2/(S - Xl))H (Xl)H (X2)H (S - sl - 82)] = 
S S x 1 Xz y S 

xl x2 

J J 
. Jy 

s(s - 1) [u1/(u1 + u2 + v)](u2/(u2 + v)] x 

u =O 
1 

u
2
=0 v=O 

Differentiating with respect to x1 , x~and y now gives the result. 

#s #s 
When r = 1, X and Y = S - X have joint density 

s 

sx1f(x1)fs-l (y)/(x1 + y). Since the convolution of this joint density 

must give the density of S , we obtain the functional equation 
s 

zf (z) = 
s 

z 

J 
x=O 

sxf(x)f 1 (z-x)dx. s- (3.1) 

After normalizing, (3.1) states that the first moment distribution of the 

s-fold convolution of X is obtained by convolving the first moment 

distribution of X with the (s - 1)-fold convolution of X. 

Theorem 3.4: Let r be a fixed positive integer. In the limit as 

Xr#s . d" "b d d 1 f . f h f" is istri ute as a ran om samp e o size r rom t e irs t 

moment distribution of X provided 0 < E[X] < oo. 

Proof: Similar to the proof of Theorem 3. 2. 

In the same way, one can show that Theorem 3,4 holds for sampling 

with replacement. This has been stated without proof by Patil & Rao [102). 
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3.3 Weighted Distributions 

As a generalization of the first moment distribution, Rao [101] 

has introduced the concept of weighted distributions. These have 

density fw(x) = w(x)f(x)/fw(x)f(x)dx where f(x) is the original density 

and w(x) is a nonnegative weight function. Distributions of this form 

occur in many applications (see Patil & Rao [103] for a survey). Here 

we show how weighted distributions fall into the framework of Section 3.2. 

Suppose we have a pair (X, ~) where X is a nonnegative random 

variable called the concomitant variable and where Z is a random vector 

called the recorded variable. The components of Z do not have to be 

nonnegative and one of these components may be X. An important special 

case occurs when X = w(Z) is a nonnegative function of z. We assume that 

(X, ~) has some naturally occurring joint distribution, but the method 

of sampling is such that sampling units with larger values of X are 

more likely to be observed, in fact with probability proportional to X. 

As in Section 3.2, let (X1, ~1 ), (X2, ~2 ), (X3, ~3), ••• be indepen

dent realizations of (X, ~) and regard x1, x2, x3 , ••• as the successive 

gaps in a renewal process. Randomly select a point from the union of 

the first s gaps and let j be the index of the covering gap. Record 

Z. as Z#s. Let F(z) and F#s(z) be the distribution functions of Z 
-J -

d Z#s . 1 an _ , respective y. 

Theorem 3.5: Assume µ = E[X] is finite and nonzero. Then F#s 

converges in distribution to the weighted distribution Fw given by 

w -1 I dF (z) = µ w(~)dF(z) where w(~) = E[X ~ = zl• 

Proof: Conditional on (X
1

, z
1

) , (X
2

, z2), ••• ,(X , Z ), the 
~ - s ~s 

characteristic function of Z#s is T = [~X.exp(it Z.))/[~X.] where 
s J - -J J 
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both sums range from j = 1 to j = s and where 0/0 = 1. The rest of the 

proof is the same as that of Theorem 3.2. 

Theorem 3.5 can also be extended to repeated sampling, with or 

without replacement, as in Theorem 3.4. 

3.4 The Exponential Integral Distribution 

Closed form expressions for the factor E[s/(x + S 1)] in Corollary 
s-

3 n l will be difficult to obtain unless the distribution of X behaves 

well under convolutions. When X has a Gannna distribution, we are able 

to express this factor in terms of the exponential integral functions 

E (x), x > 0, which are defined by 
n 

00 

E (x) = J exp(-xt)/tn dt, rt > O. 
n 1 

Alternatively, 

E (x) = n 

exp(-x)/x 

Joo n-1 
(t-x) exp(-t)/t dt/f(n) 

x 

(3.2) 

if n = 0 

if n > O. (3.3) 

Properties of E (x) for integral values of n can be found in Abramowitz 
n 

& Stegun [89]. 

Let k, n > 0 with k + n > O. From (3.2) it follows that 

(k + n)xkE (x)/f(k + 1), x > O, 
n 

(3.4) 

is a probability density function. The corresponding distribution will 

be referred to as the exponential int egral distribution with index k 

and order n (EID(k, n)). This distribution results when the Gamma 

distribution with index k + 1 and mean (k + 1)/a is randomized by letting 
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parameter a have a standard Pareto distribution with index k + n. 

Theorem 3.6: a) EID(k, 0) is the same as the standard Gamma 

distribution with index k. b) As n + 00 , EID(k, n) converges to the 

standard Gamma distribution with index k + 1. c) EID(O, n) has 

density nE (x), x > 0, and converges to the standard exponential 
n 

distribution when n + 00 • 

Proof: Use the fact that exp(-x)/(x + n) < E (x) < exp(- x)/(x + n-1) 
- n -

for n ~ 1 (Abramowitz & Stegun [89 , equation 5. 1.19]). 

Theorem 3.7: Let X have a standard Gamma distribution with index 

. #s 
k > 0 and let X be the sth order size-biased version of X as defined 

in Section 3.2. Then X#s ~ EID(k, (s - l)k). Note: · there is no 

loss of generality in assuming that X has scale parameter equal to 

#s 
one since (aX) = a(X#s), a > O. 

Proof: Let f(x) = xk-lexp(-x)/r(k) be the Gamma density with index 

k. Since S 1 has a Gannna distribution with index (s - l)k, Corollary 
s-

3. l may be applied to show that X#s has density given by 

00 

J -1 (s-l)k-1 -u sxf(x)E[l/(x + ss_1)] = sxf(x) (x + u) u e du/f((s- l)k). 
0 

After making the change of variable t = x + u and using (3.3), this 

reduces to 

00 

sxf(x)exp(x)/ (t - x)(s-l)k-lexp(-t)/tdt/f((s - l)k) = 
x 

sxf(x)exp(x)E(s-l)k(x) 
k 

= SX E(s-l)k(x)/f(k). 

Multiplying and dividing by k gives 

k 
(sk)x E(s-l)k(x)/f(k + 1), (3.5) 
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which is the same as (3.4) with n = (s - l)k. 

If we apply Fisher's limit (s + 00 , k + O, sk =a) to (3.5), the 

Ifs limiting density of X becomes aE (x) . In Chapter 4 , it will be shown a 

that this limiting density can be interpreted in terms of size-biased 

sampling even though the Gamma densi t y f(x) 
- 1 = x exp(-x) cannot be 

normalized to unity when k = O. Instead of considering samples of size 

s as in Section 3.2, the "sample" size will be Poisson random variable 

with mean a. By Theorem 3.6(c), when et+ oo the density a.E (x) converges 
Ct . 

to exp(-x) which is the first moment distribution of f(x) . This is the 

formal analogue of Theorem 3.2. 

Theorem 3.3 can also be applied to obtain the joi nt density of 

Xr#s. This density is very complicat ed and will not be given. However, -
it should be noted that Xs#s/S is equal in distribution to ~he size-

- s 

biased permutation of the Dirichlet community with s components and 

with index k. 

3.5 Rate of Convergence 

In most cases, the sth order size-biased version of F is intractable 

and one will use the first moment distribution as an approximation. It 

Ifs · # 
then becomes important to determine the ra t e at which F converges to F • 

Under suitable regularity assumptions , the rate of convergence appears 

2 to be of order l/s. This may be compared with the centra l limit theorem 

where the rate of convergence is only of order l/./S (see Feller [82, p. 533]) . 

2
The author has "proved" this statement by formal manipulations but 

has not identified the regularity assumptions needed to justify the 
manipulations. 



For concreteness, only size-biased sampling from the exponential 

.distribution is considered here. 

Let X have a standard exponential distribution with density 

#s #s 
f(x) = exp(-x). By (3.5), X has density f (x) = sxE 1 (x) and 

s-
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• #oo # 
converges to the density f (x) = f (x) = x exp(-x) when s + oo. The 

#s 
density f is plotted in Figure 3.1 for s = 1,2,3,ll,00 • Examination 

/Is of these plots suggests that X is stochastically increasing in s. 

/!s+l . Theorem 3.8: The distribution F has monotone likelihood 

tis ffs+l . ratio with respect to F so that X is stochastically greater than 

Xl!s and F111
(x) ~ F

112 
(x) ~ F113

(x) ~···~ F11 (x). Also, F# has monotone 

likelihood ratio with respect to F#s. 

Proof: The ratio f#s+l(x)/f#s(x) equals (s + l)E (x)/[sE 1 (x)]. s s-

But the derivative of E (x)/E 1 (x) is positive by 5.1.21 of Abramowitz s s-
#s ff & Stegun [89] . The ratio r(x) = f (x)/f (x) equals sE 

1
(x)exp(x). 

s-

Since dE 1 (x)/dx = - E 2(x), we obtain r'(x) = s exp(x)[E 1 (x) -s- s- s-

E 2(x)] and this is negative by 5.1.17 of Abramowitz & Stegun [89]. 
s-

. #s # 
From Theorem 3.8, it follows that F (x) - F (x) ~ O. An 

explicit expression for this difference will now be derived. Since 

X#s has density sxEs-l (x), we obtain 

00 

J suEs_1 (u)du 
x 
00 00 

J J s-1 
SU exp(-tu)/t dt du 

u=x t=l 

00 00 

J f s-1 s-1 
dv du, = s u exp(-v)/v 

u=x v=u 

where the change of variable v = ut has been made in the last step. 



Figure 3.1 
#s 

Probability Density Function f (x) for Size-Biased Sampling 

of Order s from the Exponential Distri bution (s = 1, 2, 3, 11, 00) 
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Changing the order of integration gives 

1 - Flls(x) = 
00 v 

I f s-1 s-1 s u exp(-v)/v du dv 
v=x u=x 

00 

f s-1 s s = [exp ( -v) Iv ) [ v - x ) dv 
x 

00 00 

f exp(-v)dv - f s s-1 = v x exp(-v)/v dv 
x x 

1 - F11 (x) 
00 

- x2J s-1 dt, = exp(-xt)/t 
1 

where the change of variables v = xt has been made in the last step. 
00 

I . I s-k E 1 (x), we obtain Since exp(-xt) t dt = 
1 s-

Flis (x) _ Fii (x) = x2E s-l(x). (3.6) 

/Is It will now be proved that the rate of convergence of F to the 

first moment distribution has order l/s. 

Theorem 3.9: Let x0 = s 0(s) be the solution of the equation 

exp(- x0) = sE
8

_ 1 (x0• Then 1 ~ x0 ~ 2 and 

sup {F#8 (x) - F11 (x)} = 
s>O 

2 
x0 exp(-x0)/s ~ 4 exp(-2)/s = • 541/s. 

Proof: The bounds 1 ~ x0 ~ 2 are easily established using 5.1.19 

of Abramowitz & Stegun [89). Now F# has monotone likelihood ratio with 

/Is respect to F (x) so 

/Is II when f (x) = f (x), 

. lls # · 
that the maximum difference F (x) - F (x) occurs 

i.e., when sE 1 (x) = exp(-x). The maximum 
s-

difference itself is obtained by substituting Es_1 (x0 = exp(-x0)/s into 

(3.6). Finally x2exp(-x) is increasing for 1 ~ x ~ 2 so that 

2 
exp(-1)/s ~ x0exp(-x0)/s ~ 4 exp(- 2)/s which proves that the maximum 

difference is of order l/s. 
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Remark 3.1 : Using 5.1.22 of Abramowitz & Stegun [89], it can be 

shown that x0 is an increasing function of s and x0 + 2 as s + oo . 

Further 2 - 2/(s - 2) 2_ x0 2_ 2 - 2/(s + 1). Some values of 

. { #s # } sup F (x) - F (x) , 4 exp(-2)/s, and x
0 

are given in Table 3.1. 

Table 3.1: Rate of Convergence for Size-Biased 

Sampling from the Exponential Distribution 

/Is fl 4 exp(-2)/s s sup{F (x) - F (x)} XO 

1 .368 .541 1.00 

2 .229 .271 1.29 

3 .165 .180 1.45 

4 .128 .135 1.56 

5 .104 . 108 1.63 

8 .067 .068 1.76 

10 . 054 . 054 L80 

20 .027 .027 1.90 

50 .011 .011 1.96 

100 .005 .005 1.98 



CHAPTER 4 

ABUNDANCE MODELS AND SUBORDINATORS 

4.1 Introduction 

The classical approach to abundance models considers the unnormalized 

abundances A1 , A2, A3, • • • ,As to be iid random variables. In relation 

to the sample size , the number of species in the community is often so 

large that efficient and robust estimation of s becomes impossible and 

one is led to reduce t he number of parameters by letting s go to infinity. 

But can the abundances still be treated as iid? The answer is no 

because the number of individuals in the sample is Poisson with parameter 

proportional to the total abundance LAi. When the abundances are iid, 

this sum becomes infinite with probability one, thus implying that the 

sample contains infinitely many individuals. Since this is clearly 

impossible,models must be developed for which the infinite series LA. 
1 

converges. 

Fisher's limiting scheme provides a clue as to the nature of such 

models. Recall that the index k of the Gamma distribution goes to 

zero simultaneously as s goes to infinity and, ignoring normalizing 

constants, the Gamma density converges to f(u) = exp(-u)/u. Near the 

origin, this function becomes so large that it cannot be normalized to 

unity. Heuristically, an infinite random sample from f(u) contains such 

a preponderance of small values that the sample sum converges. 

Given an impr oper density such as f(u), there exists a stochastic 

process, known as a subordinator, whose sample paths are increasing 

and increase only in jumps. Moreover, a countable infinity of such 
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jumps occur in any time interval. The sample paths are difficult to 

visualize and impossible to draw, but a subordinator can be thought of 

intuitively as a compound Poisson process in which the intensity of 

jumps goes to infinity while at the same time the jump distribution 

converges to an improper density like f(u) . The various jumps Ai 

occurring during a fixed time interval 0 < t < a will be taken as the 

species abundances . 

Three particular subordinators, called the Hyperbolic process, 

Gamma process,and Beta process are introduced in Section 4.2. Each of 

the first two processes is a stochastic analogue of the determini.stic 

geometric series . It is not widely recognized that the geometric 

series can be generated by two different mechanisms. The preemption 

mechanism successively assigns to each species a fixed fraction of the 

remaining available abundance. Under the dominance mechanism, each species 

receives a fixed fraction of what has been assigned to the preceding 

species . Both mechanisms produce a geometric series when the fractions 

are constant numbers, but this is not so when the fractions are iid 

random variables. Stochastic dominance gives rise to the Hyperbolic 

process while stochastic preemption results in the Gamma process. 

It was a failure to recognize that the two mechanisms are distinct 

at the stochastic level which led Engen [84] to mistakenly propose the 

geometric series as a fixed version of the limiting Dirichlet. The 

limiting Dirichlet is associated with the Gatmna process but it is the 

Hyperbolic process that has the geometric series as a fixed version. 

Section 4 . 3 develops a random dispersal model in which the members 

of each species are initially clustered with some intrinsic abundance at 

focal points that are Poisson distributed in the plane. The individual 
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organisms then disperse about their focal points in accord with a circular 

2 Gaussian distribution having variance a • Depending on the intrinsic 

abundance distribution and the distribution of a2 , the effective 

abundances with which the different species are observed at a fixed 

sampling site can be realized as the jumps of either the Hyperbolic 

pr ocess , t he Gamma process, or the Beta process. Further, Fisher's ct 

has the interpretation of the mean number of focal points, i.e. species, 

to be found in a standardized unit of ar ea. This reinforces the claim 

made in Chapter 2 that ct is best regarded as a species richness parameter. 

Taken individually, the jumps A. of a subordinator are not valid 
l. 

random variables. However, both the ranked permutation A~ and the size-

biased permutation A~ of the jumps are random variables, whose joint 

densities are derived in Section 4.4. As ct ~ O, the first size-biased 

II component Al is shown to have a limiting distribution whose probability 

density function is the first moment distribution of f(u). * The Ai and 

h 
,# . t e Ai are permutati ons of one another and provide equivalent descrip-

tions of the same underlying connnunity structure. The choice of which 

to use can be made on the grounds of mathematical convenience. For the 

Hyperbolic process the ranked permutation is more manageable while the 

size-biased permutation is best for the Gamma process. 

Section 4.4 also describes a standardized method for replacing the 

random abundances generated by a subordinator with a typical set of 

fixed abundances . The fixed versions of the Hyperbolic process and the 

Gannna process are the geometr ic series model and the exponential integral 

model. Under a fairly broad set of conditions, the fixed version of a 

subordinator is asymptotically geometric in the strong sense. 
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Section 4.5 considers Poisson sampling from a subordinator. The 

jumps Ai are replaced with independent observations from the Poisson 

(A:\) distributions. The resulting sample process is compound Poisson 

and both the jump intensity and the jump distribution are derived. A 

general expression for the species-area curve is also obtained from 

the sample process . The sample can alternatively be described by the 

statistics n • These are shown to have independent Poisson distributions 
x 

and general expressions for their expectations are given. Both moment 

and maximum likelihood estimation are briefly discussed. 

Treating the species abundances as random introduces an additional 

component of variability into the sampling distribution. A method is 

given for calculating the pure sampling variability of a statistic 

(the mean conditional variance of the statistic given the realized 

abundances). The results of this method are compared with the approximate 

expressions obtained by replacing the random abundances with their 

fixed versions . An explanation is also given of why Watterson's [90] 

formal generating function fails to be a valid probability generating 

function. 

When samples are taken at different points in time or in space, it 

has been observed that the pooled sample may fail to fit the log series 

distr ibution even though the individual samples do fit. The random 

dispersal model is used to explain this effect. It is found that the 

pooled sample tends to have an excess of singletons when the various 

sampling sites are widely separated. 
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4.2 Subordinators 

This section is a reference compendium of basic facts about subor-

dinators. The most readable source of information is Kingman [79, 104]. 

More detailed treatments may be found in Feller [82], Breiman [105], 

Kallenberg [106 ],and Grandell [107]. Application of the Ganuna process 

t o species abundance models has previously been considered by McCloskey 

[108] and Shorrock [109]. 

Let dµ(u) be a measure concentrated on the positive real axis such 
00 00 

that J 
0 

dµ(u) is infinite but M(A) = f [l - exp(- Au)]dµ(u) is finite 
0 

for all nonnegative A. We call µ a Levy measure and M(A) the ~ 

transform of µ. Necessary and sufficient conditions for M(A), A~ O, 
00 

to be finite 
E: 

are (i) J dµ(u) < oo for all E: > 0 and (simultaneously) 

(ii) J udµ(u) < 00 for some e: > O. A sufficient condition is 
00 

0 

J udµ(u) < oo. It will always be supposed that µ is absolutely continuous 
0 

with density f(u), i.e., dµ(u) = f(u)du. 

Associated with each Levy measure is a stochastic process 

· {st t ~ O} having stationary independent increments and whose sample 

paths are increasing. Moreover, st increases only in j umps and the 

times t at which these jumps occur form a random countable dense subset 

of the positive real axis. The process is often called a subor dinator. 

With A as the generating symbol, st has Laplace transform and expecta

tion given by : 

E[exp(- Ast)] = exp[-tM(A)], (4.1) 
00 00 

E[s J = t J udµ(u) = t J uf (u)du. 
t 0 0 

(4.2) 

The right hand side of (4.2) may possibly be infinite. 
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For a > O, let the jumps occurring during the time interval 

0 < t < a be enumerated in some arbitrary manner.as A
1

, A
2

, A
3

, •••• 

The number a will correspond to Fisher's "alpha" and the A. will be 
l. 

the abundances of the various species. Note that ~a = EAi is the total 

abundance . Properly speaking, the Ai should be embellished with an a, 

but a f ixed value for a will always be understood. While it is permissible 

to regard the entire collection. {Ai} of abundances as a random entity, 

the individual members of this collection (A1 , say) are not random 

var iables . This is because there is no way to establish a correspondence 

from one realization of the process to a second of the jumps labeled A
1

•1 

For the same reason, species identity cannot be compared across real-

izations . 

* For a given realization of {~ : 0 < t < a}, let A. be the jumps 
t - - l. 

arranged in descending order and let A~ be the size-biased permutation 

of the jumps (defined essentially as in Section 2.2 but with proper 

accoun t being taken of the fact that LAi = ~a 1 1). It will be seen 

later that the A~ as well as the A~ are legitimate random variables, 

although they are neither independent nor identically distributed. 

Associated with {~tlo .::_ t .::_a} are the two random relative abundance 

* * * * # # # # vectors~ = (A1 , A2, A3 , • • • )/~a and~ = (A1 , A2, A3, ••• )/~a· These 

are permutations of one another and are simply different ways of 

describing the same underlying community structure. Depending on the 

process , one or the other of these descriptions may be mathematically 

more convenient. 

1rn a compound Poisson process one can take Al to be the first 
jump . A subordinator has no first jump, however. 
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The probability density function of ;ex will be written as fex(u). 

In principle, f (u) can be obtained by inverting the Laplace transform ex 

(4.1) but, in practice, this is seldom feasible. Also define the right 
00 

tail integral to be H(u) = J f(u)du. This is a decreasing function whose 
u_l 

inverse function is denoted H • Let 0 < u1 < u2• The number of species 

whose abundances lie between u
1 

and u
2 

is then a Poisson random variable 

with mean 

u2 
ex[H(u1) - H(u2)J = ex J f(x)dx. (4.3) 

ul 

Further, the Poisson variates corresponding to disjoint intervals are 

independent. 

Three additional facts about subordinators will be needed. The 

first two are trivial; the third is no doubt well-known but, lacking 

a reference, a proof is given. 

1. Effect of a scale change. Let the Levy density f {u) be 

replaced with c-1f(u/c), c > O. Then ex and t are unchanged 

but Ai becomes cA. and ; becomes c; • 
1 t t 

2. Effect of renormalization. Let f(u) be replaced with cf(u). 

Then the jumps are unchanged but t becomes ct and ;t becomes ~ct" 

3. Strong law of large numbers for subordinators. When t ~ 00 , 

;t/t converges to fuf (u)du with probability one. 

Proof: For simplicity, suppose that t goes to infinity through 

integral values n. Since the process has stationary independent 

increments, ;n is then-fold sum of copies of ;
1

• The result now 

follows from (4.2) and the strong law of large numbers. 

The first two facts permit any convenient scaling and normalization of 

the Levy density without altering the essential features of the process. 
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For example, one can either take the Levy density to be af (u) and 

observe the process for 0 < t < 1 or take the Levy density to be f (u) 

and observe the process for 0 < t < a. The second approach is more 

convenient for our purposes. 

The rest of this chapter focuses on three particular processes 

which we call the Hyperbolic process, the Gamma process, and the Beta 

process. Their main features are summarized in Table 4.1. 

Example 4.1: The Levy density for the Hyperbolic process is 

f (u) 
-1 = u , 0 < u < 1. By direct integration, the tail integral is 

H(u) = -log(u), 0 < u < 1. Using (S.1.39) of Abramowitz & Stegun 

[89], the Levy transform becomes M(A) = E1 (A) + log(A) + y, where 

y = .5772 .••• is Euler's constant. Explicit expressions for the 

probability density function of sa are not known but some partial 

results are obtained in Appendix A.9. It will be seen later that 

Engen's geometric series model is an appropriate fixed version of 

this model. 

Example · 4. 2: -1 The well-known Gamma process has f(u) = u exp(-u), 

0 < u < 00 , as the Levy density and H(u) = E1 (u), 0 < u < oo, as the tail 

integral. Using (5.1.32) of Abramowitz & Stegun [89], the Levy transform 

is M(A) = log(l + A). The Gamma process has the pleasant feature that 

the Laplace transform (4.1) can be inverted to find that s has density a 

f (u) = ua-l exp(-u)/r(a), i.e., s is a standard Gamma random variable a · a 

with index a. It will be seen later that the Gannna process leads to 

the limiting Dirichlet after normalizing the jumps to unity. 

Both the Hyperbolic process and the Gamma process are stochastic 

analogues of the deterministic geometric series. Ecologists (e.g., 

Pielou [33] and May [100]) do not seem to realize that the geometric 



Table 4.1: Summary of the Processes a 

General H;n~erbolic b Gamma c 

Levy density: f (u) 
-1 -1 exp(-u) u u 

tail integral: H(u) -log(u) E
1

(u) 

Levy transform: M(A) E
1

(A)+log(A)+y log(l+A) 

density of .; : f (u) 
a.-1 exp(-u)/r(a.) -- u 

a. a. 
* a.-1 -1 exp[-u-a.E1 (u)] density of A.1 : a.f (u)exp(-a.H(u)) a.u a.u 

fl uf (u)E [a/ (u+.; .) ] aE (u) density of A.1 : ---ex Ct 

mean sampling /' (Au)xe-Au -Au e (a./x)[A/(l+A)]x frequencies E[n ]: Ct I M(A) f(u) du (a/x)r(x;A) 
x 0 x. 

H-l(i/a) 
geometric exponential 

fixed version: 
series model integral model 

intrinsic 
abundances: not applicable Degenerate Exponential 

dispersion 2 parameter(21TC1 ): not applicable . Degenerate Degenerate 

aA missing entry indicates that no simplification of the general expression is known. 

bThe range of u is 0 < u < 1. In the Levy transform, y is Euler's constant. 

c The range of u is 0 < u < oo. 

Beta c 

-1 -1 -q u (l+a u) 

-·-

Exponential 

Gamma 

..... 
00 
0 
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series may be generated by two essentially different mechanisms : 

preemption and dominance. Preemption supposes that the first species 

preempts a fraction Q1 of the available resource, the second a fraction 

Q2 of the remainder, etc. In dominance, the first species receives an 

amount of resource equal to P1 , the second species receives a fraction 

P2 as much as the first, the third species receives a fraction P3 as 

much as the second, etc. Both preemption and dominance result in a 

geometric series of species abundances when P. =l - Qi are all equal 
. l. 

to some fixed number. The stochastic analogues are obtained by letting 

Pi = 1 - Qi be iid random variables . Here preemption and dominance are 

quite different. Due to randomness, the successive abundances assigned 

by the preemption mechanism need not be decreasing. Hence, the expected 

ranked abundance vector may not be a geometric series. In dominance, 

however, the successive abundances are decreasing and have geometric 
. 2 

expectations . 

When Qi .. Beta
1

(1, Cl), the preemption mechanism leads to the size

biased version of the limiting Dirichlet. Hence, the successive 

absolute abundances may be realized as the size-biased jumps from the 

Gannna process. Similarly, when Pi= (1 - Qi) - Beta1 (cx, 1), the 

successive absolute abundances generated by the dominance mechanism can 

be realized as the ranked jumps from the Hyperbolic process. This is 

proved in Section 4.4 but can be seen heuristically via a Fisher-like 

limit. Consider the classical framework of s species having iid 

2rt is the absolute abundances that have geometric expectations. 
The expected relative abundances are difficult to calculate since the 
total abundance is not independent of the relative abundances. 
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abundances A1 , A2, ••• ,As. Motivated by the dominance mechanism, we 

would like the expected descending order statistics to form a geometric 

series, say, E[A~] = ei, i = 1,2, ••• ,s, 0 < e < 1. Kadane [110] has 

shown that, for each value of s, there exists a probability distribution 

having this property. He did not explicitly give the distribution, but, 

using his methods, the probability density function can be obtained as 

(4.4) 

Note that the functional form of this density as well as the range, 

depends explicitly on s. Letting s + oo and ignoring the normalizing 

constant, (4. 4) converges to the Levy density of the Hyperbolic process. 

Remark 4.1: By refining some arguments of May [100], Pielou 

[33, p. 21] has suggested that the expected descending order statistics 

* E[Ai] are approximately a geometric series when A1 , A2, ••• ,As have 

probability density function 

-1 (-log(c)) /u, 0 < c < u < 1. (4.5) 

Note that (4 . 5) compares favorably with (4.4) for large s provided the 

i . . 1 es+l truncat on parameter c is approximate y • The exact expected order 

statistics from (4.5) are 

* E[Ai] = cM(s + 1 - i, s + 1, -log(c)), i = 1,2, •• • ,s, 

where M(•, •, • ) is Kummer's confluent hypergeometric function. 

Numerical calculations using the tables in Abramowitz & Stegun [89] 

indicate that these expectations are very close to a geometric series 

when s is large and c is small. More precisely, using the recurrence 

(13.4.1) of Abramowitz & Stegun [89], one finds that 
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* * * iE[Ai+ll + (s + 1 - 2i - log{c))E[Ai] - (s + 1 - i)E[Ai-l] = o. 

From this, it follows that the expected order statistics converge to a 

geometric series with rati o a/(a + 1) when s + 00 and c + 0 such that 

log(c)/s + -1/a.. 

The preceding calculations are of limited practical interest since, 

as Pielou [33, p. 23] points out, the dominance model does not often fit 

empirical data and then only when the number of species is small. 

Thi s is consistent with t he observations made in Chapter 2 concerning 

Engen's geometric series model. The hyperbolic process is nonetheless 

of some theoretical interest; it will be seen in the next section that 

the Gamma process is a randomized version of the Hyperbolic process. 

Example 4.3: Let 0 < a, q < oo. The Beta process (of the second 

kind) has Levy density f(u) = u-1 (1 + u/a)-q, 0 < u < 00 • The Gamma 

process can be ob t ained as a limiti ng case by letting a, q + oo with 

q/a + 1 . Closed form expressions for M(A) and H(u) are not known. 

A Levy density and its associated subordinator process are said 

1-k to have index k provided 0 < lim u f (u) < 00 as u + O. Necessarily 

k > -1. The three processes considered above have index zero and their 

Levy densities have been normalized so that uf (u) + 1 as u + O. As 

we shall see, this normalization implies that the ranked abundances are 

asymptotically geometric in the weak sense with asymptotic ratio 6 

given by log(6) = -1/a. In addition, it is convenient to scale the 
CXl 

Levy density so that J uf(u)du = 1 whenever the integral is finite. 
0 

With this scaling, E[ C ] = a by (4.2), so that Fisher's a may be regarded 
a 

as the mean total abundance . The Levy densities for the Hyperbolic 

process and the Ganuna process have been scaled in this wayo For the Beta 

process, one should take a = q - 1 but this is possible only when q > 1. 
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4.3 A Random Dispersal Model 

Neyman [111] has described an insect dispersal model in which egg 

clusters. are Poisson distributed throughout the plane. The number of 

insects to emerge from any cluster is a Poisson random variable with 

mean A'. After emergence, the insects are assumed to distribute them-

selves across the plane according to some dispersal distribution centered 

at the original egg cluster. Given A1 and given the location of the 

original cluster, the number of insects (per unit area) to arrive at a 

small fixed sampling site is also Poisson but whose intensity A differs 

from A'. Clearly A depends on the distance between the sampling site 

and the egg cluster and is small when this distance is large. Since 

each cluster contributes a value for A, the model contains all the 

ingredients of a subordinator: a countable collection of positive 

numbers A (the jumps), most of which are small, and, if the model is to 

work, whose sum is finite. Neyman (111] assumed that the dispersal 

distribution had compact support so that the issue of subordinators 

did not arise in his treatment. 

A species abundance model may be constructed along the same lines 

by regarding the cluster locations as the focal points of the various 

species. Call A1 and A the intrinsic and the effective species abundances, 

respectively. Note that the intrinsic abundances are dimensionless 

numbers while the effective abundances have units of l/area. The 

dispersal distribution for each species is assumed to be circular 

2 Gaussian with center at the species focal point and with variances a • 

It will be shown that this model results in the Hyperbolic process, the 

Gamma process, or the Beta process depending on the distributions given 

A' and cr2. 
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Let t he focal points be Poisson distributed in the plane with 

intensity a' where a' > 0 has the units of l/area. With the sampling 

site as the origin of coordinates, a given species has effective 

abundance 

2 - 1 2 2 2 A =A' (2Ticr ) exp[-TI(x + y )/(2Ticr )], (4. 6) 

where (x, y) are the coordinates of the focal point and where A' and 

2 
cr are t he intrinsic abundance and the variance, respectively. Let 

u > 0 and define Log(z) to be log(z) when 0 < z < 1 and zero otherwise. 

Then, the requirement A > u is equivalent to 

2 2 2 2 
TI(x + y ) < -2Ticr Log(2Ticr u/A.'). 

It follows that the number of species with effective abundance greater 

than u is a Poisson random variable with mean 

2 2 a' E[-2TIO Log (2Ticr u/A')], 

where the expectation is taken with respect to the distribution of A.' 

2 
and cr • By (4.3), this expression should be equated with aH(u) where 

H(u) is the tail integral of the Levy density. 

First we suppose that A' and cr2 have degenerate distributions so 

that 

2 2 -a'(2Ticr )log(2Ticr u/A') 

aH(u) = 

0 otherwise. 

Differentiating with respect to u, the Levy density becomes 
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2 
ex ' ( 2mJ ) I u 

af (u) = 
0 otherwise . (4.7) 

Up to a scale transformation, (4.7) is the same as the Levy density of 
2 . 2 

the hyperbolic process provided we take a= ex'(21TO' )~ Note that 27TO' is 

the mean dispersal area and the dimensionless number a is the mean number 

of species to be found in such a standardized area. This is consistent 

with our earlier contention that ex is best thought of as a species 

richness parameter. 

2 Next, let a continue to be degenerate but give .A' an exponential 

distribution. Since .A' enters only the range of (4.7), there is no loss 

of generality in taking the scale parameter of the exponential distribu-

tion as unity. Randomizing (4.7), the Levy density is 

exf (u) 2 -1 2 = a'(27TO' )u exp(-27TO' u), . 0 < u < oo. (4.8) 

2 Again taking a= cx'(27Tcr ), (4.8) is the same as the Levy density of the 

Gamma process, up to a scale transformation. 

Now, the MacArthur model assumed an exponential abundance distri-

bution and is often found to provide a reasonable fit when the sample 

contains only a few species. But the fit usually deteriorates with 

increasing sample size. This may possibly be explained by noticing that, 

when the sampling intensity is small , only those species with focal 

point close to the sampling site will be observed. But the effective 

abundances of these species are approximately proportional to their 

intrinsic abundances, by (4 .6). With increased sampling intensity, the 

intrinsic abundances become seriously distorted. 
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2 Finally, let A' have a standard exponential distribution and 2rrcr 

a Gamma distribution with index b and mean b/a. Randomizing (4.8) with 

respect to the Gannna distribution gives 

. 2 
Here, we take a = a'b/a = a'E[2rrcr ] and q = b + 1 to obtain the Levy 

density of the Beta process. Note that q > 1 in this model. 

4.4 Constructing the Process 

Three methods of constructing the subordinator process with Levy 

density f (u) will be described. 

Limit of compound Poisson processes. Suppose that 

0 < ••• < x
3 

< x
2 

< x
1 

< x
0 

= 00 is a partition of the positive real axis 

where xi+ 0 as i + 00 • For i = 1,2,3, • •• , let the probability d.f. 

f(i)(u) = f(u)/[H(xi) - H(xi_1)], xi 2_ u < xi-l' be the truncation of the 

Levy density to the interval [x., x . 1). Let ~(i) 0 < t < 00 , 
1 ~ t ' -

i = 1,2,3, ••• , be independent compound Poisson processes whose intensity 

is H(xi) ..... H(xi-l) and whose jump distribution is f(i)(u). 

may be realized as the superposition E ~(i) of the processes 
. t 

Alternatively, 

~ = 
t 

lim 
n+oo 

n 
E 

i=l 

~(i) 
t 

.l. 

Then ~t 

z:-(i) 
"t • 

is the limit of compound Poisson processes with intensity H(x ) and with 
n 

the truncation of f (u) to the interval [x , 00) as jump distribution. 
n 

For full details concerning this construction, see Breiman [105, p. 310££.]. 

As an application, we prove the following fundamental lemma: 
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Lenuna 4.1: Suppose the nonnegative function B(u1, u2, ••• ,u~; y) 

is defined for 0 < u1 , u2, ••• ,ur, 0 < y <co, u1 + u2 + . .• + ur ~ y. Let 

~t be a subordinator with Levy density f(u) and with jumps .>..
1

, .>..
2

, A.
3

, ••• 

over the time interval 0 ~ t ~ a, a > O. Then 

E[rB(Ai(l)' Ai(2)' 000 'Ai(r ); ~a)] = 

ar J B(u1 , u2, ••• ,ur; V + u1 + u2 + ••• +ur)f(u1)f(u2) ••• f(ur) x 
R 

(4 . 9) 

where the sum ranges over all r-tuples (i(l)' i( 2) , ••• ,i(r)) of distinct 

positive integers and where the range of integration is the region R 

defined by 0 < u1 , u2, ••• ,ur ' V <co. 

Proof: Obtain ~t as the limit of compound Poisson process with 

intensity H(x ) and jump distribut ion f(u)/H(x ), x < u <co. Let n n n-

g , m = 0,1 , 2, ••• , be them-fold convolution of this jump density. For 
m 

simplicity, take r = 3. Conditional on the number of jumps s, the 

expectation in (4.9) for the compound Poisson process is 

where the range of integration is the region R defined by 
n 

(4.10) 

xn ~ u1 , u2 , u3 < co, 0 < V < co. But s has a Poisson distribution with 

mean aH(x ) so that 
n 

00 

E[s(s - l)(s - 2)g 3 (V)] = [aH(x )) 3 
L [aH(x )Jjexp(-aH(x ))g.(V)/j!. 

s - n . 0 n n J 
J= 

Inserting this into (4.10) and letting n ~ co gives the result since 
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!: 
j=O 
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[aH(x )]jexp(-cxH(x ))g.(V}/j! + f (V). 
n n J a 

Uniform arrangement of ranked jumpso This construction yields the 

process ~t only for 0 < t 2_ a. The procedure is to first obtain realiza

* * * tions A1, A2, A3, • • • of the ranked jumps and then to distribute these 

ranked jumps uniformly across the interval 0 < t < a. Formally, let 

u
1

, u
2

, u
3

, ••• be a random sample from the Uniform (O, a) distribution 

* independent of the Ai. Then ~t' 0 2_ t 2_ a, is realized by placing a 

* * a jump of magnitude Ai at time t = Ui' i.e., ~t = ~{Ai : Ui 2. t}. 

According to Kingman [79], the ranked jumps can be obtained by putting 

-1 
H (Ti/a}, i = 1,2,3, ••• , (4.11) 

where 0 < T
1 

< T2 < T
3 

< ••• are the successive epochs of a Poisson 

process with unit intensity. 

This construction shows that the ranked jumps are random variables 

having a transformed Gamma distribution. In particular, the largest jump 

* A
1 

has cumulative distribution function exp(-aH(u)) and probability density 

function 

af(u}exp(-aH(u}}, 0 < u <co. (4.12) 

Notice that H(u), and hence the process, is uniquely determined by the 

* distribution of Al for even a single value of a. This is the analogue 

of the well-known theorem t hat a probability distribution i s uniquely 

determined by its largest expected orde~ statistic for all sample sizes. 

Next we show that the ranked abundances are asymptotically 

geometric in the weak sense whenever the Levy density has index zero. 
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Theorem 4.1: Assume the Levy density has index zero and is normal-

ized so that uf (u) ~ 1 as u + O. Then, with probability one, 

* * lim log(Ai) /i = lim log(A ./~ ) /i = -1/a. 
i+ 00 · i+co 1 CJ. 

Proof: Given 0 < E < 1, there is a u0 > 0 such that 

1 - E ~ uf (u) < 1 + E for 0 < u < u0• Dividing by u and integrating from 

u to u0 gives H(u0) + (1 - E)log(u0/u) ~ H(u) ~ H(u0) + (1 + E)log(u0/u) 

for 0 < u < u
0

• But this implies that 

-1 E)] ~ H (x) ~ u0exp[-(x - H(u0))/(l + E)] 

for x > H(u
0
). From (4.11), 

-1 * -1 constant•exp[-a T/(1 - E)] ~Ai~ constant•exp[-a T/(1 + E)]. 

By the strong law of large numbers, Ti/i + 1. Therefore, 

-1 * -1 -a /(1 - E) < lim log(Ai) /i ~-a /(1 + E), 

and the proof is completed by letting E + O. 

In view of the loss of memory property of the Poisson process, one 

can also obtain the ordered jumps via successive truncation: first 

* . obtain Al from the distribution (4 .12), then truncate this distribution 

* * to the interval (O, A1) and obtain A2 from the truncated distribution, 

* * then truncate (4.1 2) to the interval (O, A2) and obtain A3 from the 

newly trunca t ed distr i bu ::i.on, etc. This enables us to write down the 

* +. j oint density of A1, A2, * •• , A as 
r 

(4.13) 
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From (4.13), it follows that the ranked jumps from the Hyperbolic process 

can also be obtained from a stochastic dominance mechanism. 

Theorem 4.2: Let P
1

, 

(a, 1) distribution and put 

P2, P3, •• • be a random sample from the Beta
1 

* * * Al= Pl, A2 = plp2' A3 = plp2p3' 000 • 

* * * Then A
1

, A2, A
3

, ••• are equal in distribution to the ordered jumps 

from the Hyperbolic process. * i In particular, E[Ai] = [a/(a + l)] • 

Proof: For the Hyperbolic process, (4.13) simplifies to 

r a-1 a ur /[u
1

u2 ••• ur_1 J. But this is also the joint density of 

PlP2, •• • ,PlP2 ••• Pr. 

* It follows that Al * * is independent of A2/A
1

• It can be shown 

that this characterizes the Hyperbolic process, up to a scale transfor-

mation. 

Uniform arrangement of size-biased jumps. Generate the ranked 

* jumps Ai and the uniform random variables Ui as in the previous construc-

tion and let A~ be the size-biased permutation of the ranked jumps. Since 

* II the Ai are random variables, so are the Ai. Further, the uniform 

* variables are independent of the A. as well as the permutation so that 
l. 

l;t, 0 2_ t 2_ a, can be realized as l; = E 
t i 

Since 

P(U. < pa) = p, 0 < p < 1, it follows that the size-biased jumps over 
l. -

the time interval 0 < t 2_ pa are obtained by random deletion of the size-

biased jumps over the time interval 0 < t < a. The same applies to the 

ranked jumps . This together with Corollary 4.2, below, proves Theorem 

2.11. 

,II II II 
Theorem 4.3: The joint density of Al' A2, ••• ,Ar and the residual 

r 

All is 
r 

anfa(y) TI [uif(ui)/(ui + ui~l+ooo+ur + y)]. 
i=l 



192 

fl 
The density of Al is uf(u)E[a/(u + sa)]. 

Proof: Similar to the proof of Theorem 3.3 but using Lemma 4.1. 

Corollary 4.1: For the Gamma process, Af has density aEa(u), 

0 < u < 00 • 

Corollary 4. 2: For the Gamma process~ the normalized abundance 

7T# = (~~' A~, A~, ••• )/sa is independent of sa and is equal in distri

bution to Engen's model with parameter a. 

* 7T = 

Proof: Apply Theorem 4.3 with a change of variable. 

Since Kingman's version of the limiting Dirichlet is 

* * * (A1 , A2, A3,o •• )/sa' we obtain, 

Corollary 4.3: Engen's model is the same as the size-biased 

permutation of Kingman's limiting Dirichlet and Kingman's limiting 

Dirichlet is the same as the ranked permutation of Engen's model. 

Corollary 4.4: Engen's model is invariant under size-biased 

permutation. 

Proof: Immediate from Corollary 4.3 since ~# and ~## are equal 

in distribution. 

Corollary 4.5: For the Gamma process, the ranked abundance 

* * * * 7T = (A1 , A2, A3, ••• )/sa is independent of sa· 

Proof: This follows from Corollary 4.2 and Corollary 4o3. 

Finally, we give the promised proof of Theorem 2.13(f). 

* Corollary 406: For the Gamma process , E[L(i - l)A./s ] = a log (2). 
i a 

* Proof: By Corollary 4.5, E[L(i - l)A1/sa] = 

* * E[L(i - l)A1]/E[sa] = E[L(i - l)Ai]/a. Define B(u1 , u2) = u1 if 

0 < u1 < u2 and zero otherwise. Using an argument of Kingman [79], 

* the expression r(i - l)A. can now be recast in terms of the function 
1 

B(u1 , u2) in. the following manner: 
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* E (i - l)).i = E Ai• (number of J.j such that Aj > Ai) 
i i 

= E B(Ai, J.j). 
i~j 

By Lemma 4.1, 

* 2 f B(ul, u
2

) f (u
1

) f (u
2
)du

1 
du2 E[E (i - l)ft.i] = (). 

i 

2 f u
1
f(u1)f(u

2
)du

1
du

2 = a 

ul<u2 

(X) 

-1 -u2 
u2 -u 

a2 I I 1 = u2 e e du
1

du
2 

u =O 2 u =Q 
1 

2 oo -u2 -2u2 
= a. J (e - e )/u

2 
du

2
• 

0 

But this is a 2 log(2) by (S.1.32) of Abramowitz & Stegun (89]. 

Next, we prove an analogue of the first moment convergence result 

given in Theorem 3.2. 

Theorem 4.4: Consider a subordinator with Levy density f (u) for 
which J uf(u)du < 00 • As a+ 00 , A~ has a limiting distribution for which 

the probability density function is uf(u)//uf(u)du. 

Proof: Same as the proof of Theorem 3.2 but using Lemma 4.1 and 

the strong law of large numbers for subordinators. Complex numbers can 

be avoided by using the Lap l ace transform instead of the characteristic 

function. 

Applying this result to Corollary 4.1, it follows that the density 

aEa(u) converges to the standard exponential density, as pointed out in 
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Section 3.4. In terms of the random dispersal model, large a means 

that the species focal points are densely distributed throughout the 

plane. · A size-biased selection is then likely to produce a species 

with focal point close to the sampling site and an effective abundance 

roughly proportional to the intrinsic abundance. So it is intuitively 

clear for the Gamma process that A# converges to an exponential distri-
1 

butiori as a + oo. 

Corollary 4.7: 
fl The distribution of A1 for all Cl uniquely determines 

the process provided the Levy density has finite first moment. 

Proof: The Levy density is determined by its first moment 

distribution. 

Open Problem: Does the distribution of A~ for just a single a. 

determine the Process? 

Open Problem: Develop an extreme value theory for the limiting 

* distribution of A1• 

Open Problem: Is a a complete diversity parameter when the Levy 

density has no unknown parameters? A major obstacle in attacking this 

* * problem is the lack of independence of ~ex and (A1 , A2, ••• )/~a· Such 

independence is well-known to characterize the Gannna process. 

Consider a subordinator process which generates a random set 

. {Ai} of abundances. How might we replace· {A.} with a typical fixed 
1 

set of abundances? * fl The choices E[Ai] and E[A1] are perhaps natural, 

but, as pointed out in Section 2.4, these will exaggerate community 

diversity. Another possibility is suggested by (4.11): 

by its expectation E[T.] = i and adopt 
l. 

-1 
µ. = H (i/a), i = 1,2,3,.o. 

l. 

replace T. 
l. 

(4.14) 



195 

as the fixed abundances. Note that µ1 2:. µ2 2:. µ3 2:.••• • Applied to 

the Hyperbolic process, (4 . 14) gives the geometric series model 

µi = exp(-i/a) with ratio exp(-1/a). The Gannna process results in 

-1 Watterson's [90 ] exponential integral model µi = E1 (i/a). 

We wish t o show that the fixed abundances are asymptotically 

geometric wit h asymptotic ratio exp(-1/a) when the Levy density has 

index zero and is normalized as described in Section 4.2. This is 

true for weak asymptotic geometricity and can be proved just as in 

Theorem 4. 1. To obtain strong asymptotic geometricity, an additional 

regularity assumption will be imposed on the Levy density. Suppose that 

I lim [uf (u) - l]/ul < 00 • (4.15) 
u+O 

Equivalently, the func t ion uf(u) should take the value one at the origin 

and should hav.e a finite derivative at the origin. The three processes 

under consideration satisfy (4.15). 

Theorem 4.5: -1 The set of fixed abundances µi = H (i/a) is strong 

AG with asymptotic ratio exp(-1/a) when the Levy density satisfies (4.15). 

Proof: We have to prove that µi/exp(-i/a) = µiexp(i/a) has a 

finite nonzero limit as i + 00 • Since i/a = H(µi) and µi ~ O, it 

suffices to show that uexp(H(u)) has a finite nonzero limit as u + O. 

By (4 . 15), there are finite nuubers A, B such that A.::_ [uf(u) - l]/u .::_ B 

-1 -1 or u + A.::_ f(u) .::_ u + B f or all sufficiently small u, say 0 < u < £. 

Integrating from u to £ gi ves 

log(£/u) +A(£ - u~ .::_ H(u) - H(£) .::_ log(£/u) + B(£ - u). 

Transpose H(E) and exponentiate to find that 
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(E/u)exp(H(E))exp[A(E - u)] 2. exp(H(u)) < (E/u)exp(H(E))exp[B(E - u)]. 

After multiplying by u and letting u + O, this gives 

and 

lim sup uexp(H(u)) < E exp(H(E)) exp(BE) 
u-+-0 

E exp(H(E))exp(AE) < lim inf uexp(H(u)). 
u-+-0 

(4.16) 

These inequalities show that the upper and lower limits are both finite · 

and nonzero. To show that the limit actually exits, let E + 0 in 

(4.16) to find that the upper limit is less than or equal to the lower 

limit. 

The preceding proof only requires that 9uf (u) - l)/u be bounded as 

u + o • 

. 4.5 Poisson Sampling from a Subordinator 

Let the species abundances Ai be realized as the jumps of a sub

ordinator during the time interval 0 < t < a. It will be assumed that 

the number of individuals in the sample from species i is a Poisson 

random variable with mean AAi. In effect, the jump Ai is replaced 

with an observation on the Poisson (AAi) distribution, i.e., with the 

number of times species i appears in the sample. All but finitely 

many of these replacements are zero since most A. are small, and the 
1 

resulting jump process is compound Poisson with a positive integer 

valued jump distribution. Call this compound Poisson process the 

sample process. 
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Each jump of the sample process represents a species that is 

physically present in the sample. Moreover, it is proved in Appendix 

A.10 that (i) the sample process has jump intensity (number of jumps 

per unit time) equal to M(A) where M is the Levy transform and (ii) 

the jump distribution for the sample process is 

00 

p = J (Au)xexp(-Au)f(u)du/[x!M(A)], x = 1,2,3, •••• 
x 0 

(4.17) 

From (i) it follows that the number T of species in the sample is 

a Poissort random variable whose mean is the product of the jump intensity 

and the observation time. Thus 

E[T] = a M(A). (4.18) 

When A can be interpreted as area, (4.18) is the species-area curve. It 

is a concave function of A which uniquely determines the Levy transform 

and, hence, the process. Using Table 4.1, the species-area curves for 

the Hyperbolic process and the Gamma process are, respectively, 

E[T] = a[E
1

(A) + log(A) + y] 

and 

E[T] =a log(l +A). 

Both are asymptotic to a log(A) for large A. 

Conditional on the subordinator, the number N of individuals in 

tne sample has a Poisson distribution with mean ALAi = A~a· After 

randomizing with respect to ~ , the distribution of N is compound a 

Poisson with mean 
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E[N] = AE[~a] = a.A/uf (u)du. 
0 
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(4.19) 

For the Hyperbolic process and the Gannna process, (4.19) simplifies to 

E[N] = a.A. Moment estimates of a and A can be obtained for these two 

processes by equating the observed values of T and N to their expected 

values. Moment estimation is not generally possible for the Beta 

process since E[N] = 00 when 0 < q ~ 1. The maximum likelihood estimates 

of q often fall into this range (Kempton [95]). 

Consider the sample process and let n (t), x = 1,2,3, ••• , be the 
x 

number of jumps through time t of size exactly equal to x. The n (t) x 

are obtained by screening the sample process and are themselves inde-

pendent Poisson processes with intensities M(A) p , where p is given by x x 

(4.17). But n : n (a) is the number of species with x representatives x x 

in the sample. Thus the n are independent Poisson random variables 
x 

with means 

E[n ] = a.M(A) p x x 
00 

= (a/x!) J (Au)xexp(-Au)f(u)du . 
0 

(4.20) 

For the Hyperbolic, Gamma, and Beta process, these expected frequencies 

become, respectively, 

and 

E[n ] 
x 

E[n ] = (a/x) f(x; A), 
x 

E[n] = (a/x)[A/(1 + A)]x, 
x 

00 

= (a/x!) J ux-l[l + (Aa)-1uJ-qexp(-u)du. 
0 

(4 . 21) 
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No t e the confounding between a and A in this last equation. 

Because the n are independent Poisson variates, the likelihood x 

equations are easily shown to be 

co. 

i: n (o/38)(l og E[n]) = (3/38)(cxM(A)), 
. x=l x x 

where a represents any of the various parameters of the model. The first 

iikelihood equation ca = a.) coincides with the first moment equation: 

T = E[T] = aM(A). 

For the Hyperbolic model, the second likelihood equation (8 = A) is 

-A = T(l - e )/[E1 (A) + log(A) + y] . (4.22) 

Both sides. of (4.22) are decreasing functions of A. When A..., 0, the 

left hand side converges to Exn = N while the right side converges to 
x 

T < N. On the other hand, when A ..., 00 , the right hand side goes to zero 

much mor.e slowly than the left hand side . Thus the likelihood equations 

always have a solution when 0 < T < N. We have not investigated t he 

uniqueness of this solution. 

For the Gamma process, the two likelihood equations are the same 

as t he moment equations. Estimation for this model has been extensively 

studied by Fisher [85], Bli ss [53], Rao [112],and Watterson [90]. We 

have generally found t he fit of the Gamma process to be far superior to 

tha t of the Hyperbolic pr ocess . Since both models have the same number 

of parameters, the Gamma process is to be preferred. 

Kempton [95] has discussed likelihood estimation for the Beta 

pr ocess. He obtained the expected frequencies (4.21) by supposing that 
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the community contains s species whose abundances follow a Beta distri-

bution of the second kind with parameters k and q. After determining the 

expected sample frequencies for this model, he let k + 0 and s + oo with 

sk = ex. 

Remark 4~2: The jump distribution (4.17) of the sample process 

may be rewritten as 

J (Au) e . • (1 - e · )f(u) oo [ x -Au ] [ -Au ] 
0 x!(l - e-Au) M(A) 

du, x = 1,2,3, •••• 

The first term in brackets is a zero-truncated Poisson probability while 

the second term is a probability density function. The jumps of the 

sample process thus hav.e a compound zero-truncated Poisson distribution. 

Boswell & Patil (1131 have noticed that improper distributions like 

f (u) can be handled at the sampling level in the above manner. 

Remark 4.3: For the Gamma process, the jump distribution (4.17) 

is the log series distribution with parameter A/(l +A). Since ~ex has 

a Gamma distribution, the number of individuals in the sample is a 

negative binomial random variable (see the remarks preceding (4.19)). 

We have t hus obtained the well-known result that a Poisson sum from 

the log series distribution follows the negative binomial law. 

4.6 Conditional Sampling Variance 

The variance of a sample statistic T contains two components, 

Var [T] = E[Var(T!~)] + Var[E(TI~)]. (4.23) 

The first term--the conditional variance -- represents the pure sampling 
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effect while the second is the contribution due to the variability of 

species abundances. We wish to indicate how Lemma 4.1 can be used to 

calculate the conditional variance. 

For simplicity, take T to be the number of species in the sample 

so that Var (Tj~) is 

E exp(-AA )(1 - exp(-AA )) = E[exp(-AA) - exp(-2A.Ai)]o 
i i i i i 

(4.24) 

Taking expectations and using Lemma 4.1, the conditional variance becomes 

E[Var(T!~)] =a f[exp(-Au) - exp(-2Au)]f(u)du 

= cx[M(2A) - M(A)). 

For the Gannna process, this simplifies to ex log[(l + 2A)/(l +A)] 

which is the same as (2.42) of Watterson [90). Watterson obtains this 

expression by replacing the abundances Ai in (4.24) with their fixed 

-1 versions E
1 

(i/cx) and then approximating the infinite sum by an integral. 

This method will yield the correct conditional variance of any sample 

statistic provided the fixed abundances are taken to be H-1 (i/cx) as 

in (4.14)-. 

Watterson [90, equation (2.34)] has also attempted to derive the 

joint probability generating function of the n by formally applying x 

Fisher's limit . As he notes, the result is not a valid probability 

generating function, but it does yield the correct expectations as well 

as the correct conditional variances. In taking the limit s ~ 00 , 

Watterson treated s as though it were a constant. But in obtaining a 

subordinator as the limit of compound Poisson processes , s has a Poisson 

distribution. Watterson thus overlooked a component of variability. 
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It is unclear to the present author why Watterson's generating function 

gives precisely the correct conditional variances. 

Since the n are independent Poisson random variables, their joint 
x 

probability generating function is easily written down and results from 

(2.32) of Watterson by letting s have a Poisson distribution with mean 

a/k, then randomizing with respect to the Gamma distribution, and, 

finally, letting k ~ O. 

4.7 Multiple Sampling Sites 

When sampies are taken at different points in time or in space, 

it has been observed that the pooled sample may fail to fit the log 

series distribution although the individual samples do fit (Bliss 

[53]). The random dispersal model of Section 4.3 provides a framework 

for explaining this effect. 

Consider two sites with Poisson sampling intensities A1 and A2• 

It is reasonable to assume that the two samples are conditionally 

independent given the intrinsic abundances A' and the dispersal parameters 

2 cr • However independence is lost after randomizing with respect to A' 

and cr2• 

Let n , x, y = 0,1,2, ••• ,(x,y) ~ (O,O), be the number of species xy 

with x representatives at the first site and y representatives at the 

second site. The n are independent Poisson random variables, but . xy 

their expected values are very complicated integrals which will not be 

given here. Clearly the distance d between the two sites enters these 

integrals as a parameter . 

Two limiting cases are of interest. First, when d ~ O, so that the 
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samples are taken at the same site, the expected values become 

00 

E[nxy] = [a/(x!y!] b (A1u)x(A2u)Yexp(-A1u - A2u)f(u)du. 

The expected frequencies E[n'] for the pooled sample are obtained by z 

sununing over x + y = z. Using the binomial theorem, this gives 

00 

E[n~] = (a/z!) b [(A1 + A2)u]zexp[-(A1 + A2)u]f(u)du, ( 4. 25) 

which are the same as the expected frequencies for a single sample of 

intensity ~ + A2• Thus, pooling two samples from the same site does 

not alter the model. 

When d + oo, the expected joint frequencies are zero unless x = 0 

or y = O, i.e., the two samples have no species in common. Pooling the 

two samples in this case gives 

00 

E[n;] = (a/z!)b[(A1u)zexp(-A1u) + (A2u)zexp(-A2u)]f(u)du. (4.26) 

Now (4.26) exceeds (4.25) for small z and vice versa for large z. Thus 

the pooled sample will have more singletons than are predicted by the 

fitted model. An excess of singletons is frequently observed even for a 

single sample which, in reality, is a composite of many adjacent samples. 
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A.l Proof of Lemma 1.2 

Repeated use is made of the following consequence of Abel's 

partial summation formula: 

Abel's inequalities. Let f be a nonzero transfer vector and 

. {ai : 1 < i < 00 } a monotone sequence. Then 

(i) Lf iai ~ 0 if. {ail is decreasing, 

(ii) Lf iai .::_ 0 if. {ail is increasing, 

(iii) Ef 1a1 = 0 <=> f vanishes over tied sets of {ail, 

(iv) Lf iai ~ 0 if fi ~ f i+l whenever ai = ai+l• 

For the proof of Lemma 1.2, let f be the last nonzero component of n 

f and let As be the last finite term of {Ai}. Using Abel's inequalities, 

the signs of the numerator and the denominator of cr(x) are determined 

as in the following tabulation: 

Range 
of x 

x<O 

X=O 

x>O 

Numerator 
n<s s<n 

+ + 00 

- 00 

Denominator 
a) b) or c) 

+ 0 + 

- 0 

- 0 

All assertions of the lemma , other t han the monotonicity of cr(x), are 

clear from the tabulation. For the proof that cr(x) is strictly 

decreasing, take x I 0 in case b) and x > 0 in case c). Now cr'(x) 
m 

has the same sign as the expression r b.A(A.) where 
j=l J J 



n 
A(A) = E fi(Ai - A)exp[(Ai + A)x]. 

i=m 
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We show that A(A) is strictly increasing for A > A ; it then follows by 
m 
n 

Abel's inequalities that cr'(x) < O. But A'(A) = E f.B(Ai) where 
• l. 
i=m 

B(µ) = (µx - Ax - 1) exp[(µ+ A)x]. 

Again by Abel's inequalities, it suffices to show that B(µ) is 

2 2 strictly decreasing for A > µ. But B'(µ) = (µx - Ax )exp[(µ+ A) x] < 0 
m 

since A > A > µ and x # O. 
m 

A.2 The MacArthur Frequencies 

MacArthur's fixed model is the expected ranked abundance vector 

TI that results when the unit interval is randomly (uniformly) apportioned 

among the s different species. As shown in Chapter 2, ~ is given by 

(l/i + l/(i + 1) + ••• + l/s)/s if 1 < i < s 
TI = 

i 
0 if s < i. 

These frequencies can be arrived at directly by supposing that the total 

available resource is represented by the unit square which is divided 

into s vertical slices of equal width. Refer to Figure A.l when s = 4. 

The first slice is apportioned equally among the s different species 

after which one species is removed from competition and the second slice 

apportioned equally among the remaining s - 1 species. The procedure 

is now iterated with an additional species being removed after the 

apportionment of each slice. The procedure is deterministic and is 

intended to yield only MacArthur's fixed model, not the random model. 
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4 
3 

3 2 

2 1 
2 

1 

1 1 

1/4 1/4 1/4 1/4 

Figure A.l Apportionment of the Unit 

Square (s = 4) 

The equiprobable model and MacArthur's model have been employed 

by Joanes & Gill [114] as two series of communities of increasing species 

richness upon which the bias reducing effectiveness of flattening can be 

assessed. They further remark that it would be desirable to have 

available additional series of test communities. A simple generalization 

of the preceding apportionment scheme will yield such additional series. 

Let q
1

, q
2

, ••• ,qs be a given sequence of real numbers with q1 = 1 

and 0 < q. < 1. Take the width of the ith slice to be (1 - q )x 
- l. - s 

(1 - q
8

_ 1) ••• (l - qi+l)qi, i.~., the width of the first slice is qs' the 

width of the second slice is a fraction q 1 of the remaining width, etc. 
s-

Le t ~(q1 , q
2

, ••• ,qs) be the community generated when the individual slices 

are equally apportioned as in the MacArthur model. 

Theorem A.l: TI(l, 1/2, 1/3, • • • ,1/s) is the MacArthur model and 

~(1, 1, ••• ,1) is the completely even community. Finally, the single

species community is obtained as ~(1, O, 0, ••• ,0). 
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Theorem A.2: The conununity TI(q1 , • •• ,q) can be generated iteratively ... s 

as follows: 

~(q1) = ~(l) = c1, o, o, o, ••• ) 

TI(ql' q2, ••• , q ) = (1 - q )TI(ql' q2, ••• ,q 1) + q E(s) ... s s - s- s ... 

where ~(s) = (1/s, 1/s,. , l/s, O, O, 0, •• • ) is the completely even 

conmrunity with s species. 

Theorem A.3: The connnunity ~(q1 , q2, ••• ,qs+l) is intrinsically 

more diverse than ~(q1 , q2, ••• ,qs). 

Theorem A.4: ~(qi, q2, ••• ,q;) is intrinsically more diverse 

than ~(q1 , q2, ••• ,qs) when qi_:: qi, i = 1,2, ••• ,s. 

A.3 Measure Theoretic Framework for Infinitely Many Species 

Let I(oo) = {(x
1

, x
2

, x
3

, ••• ): 0 .5_ x1 ~ l} be the Hilbert cube 

equipped with the product Borel structure and SP(oo) = {x E I(
00

) : Exi = 1} 

the infinite dimensional simplex. 

Theorem A.5: SP(oo) is a Borel subset of I(oo). 

00 

Proof: Define f : I + [O, 00 ] by f (x) = Exi. Now f is measurable 

(by the monotone convergence theorem since the partial sums are measurable) 

and SP(oo) = £-1 (1). 

Equip SP(oo) with the subspace Borel structure. The inclusion map 

SP(oo) + I(oo) and the coordinate maps SP(oo) + [0,1): : +xi are then 

measurableo 

Theorem A.6: Suppose ~ = LTiiR(Tii) a dichotomous index with a 

Borel measurable rarity measure R. Then ~ : SP(oo) + [-oo, 00 ) is measurable 

whenever it is defined, in particular, whenever R is nonnegative. 
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00 ()() * Theorem A.7: The mapping SP ~SP x ~ x which rearranges the 

is measurable. components of x in descending order 

* Proof: For example, {x
1 
~ t

1
, * * x2 ~ t 2 , x3 ~ t 3} is the intersection 

of the following events: 
00 

(i) n {xi~ tl}, . 
i=l 

00 

(iii) u 
i,j=l 

i;'j k:Fi,j 

* Theorem A.8: Let~= E~.R(i) be a rank type index. Then 
l. 

~ : SP(oo) ~ [-00 , 00 ] is measurable whenever it is defined, in particular, 

whenever R is nonnegative. 

The size-biased permutation requires the auxiliary uniform random 

variables as described in Example 2.6. The sample space of these 

uniform random variables is the Hilbert cube equipped with the product 

of uniform measures. The sample space of the size-biased permutation 

is thus the product SP(oo) x 1<00>. It can be shown that the size-biased 

permutation is measurable but we do not give the details. Similarly, 

random deletion of species is a measurable operation. 

A.4 Asymptotic Geometricity 

Write 

Let o < e < 1 and a1 , a
2

, a3, ••• a sequence 

i 
a

1 
= bi0 where the bi are positive. 

Theorem A.9: The sequence ai is 

of positive numbers. 
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(i) strong AG with asymptotic ratio 8 <=> lim bi exists and 
i+<io 

0 < limb. < 00 , 
1 

(ii) intermediate AG with asymptotic ratio 8 <=> lim b/bi+l = 1, 
i+oo 

( i ii) weak AG with asymptotic ratio e <=i> lim log(bi) /i = O. 
i+oo 

Theorem A.10: Strong AG => intermediate AG => weak AG. 

Proof: The first implication is clear from Theorem A.9. For the 

second implication, take logarithms of Theorem A. 9 (ii) to find that 

log(bi) - log(bi+l ) converges to zero which implies that the Caesaro 

means of these differences also converge to zero. Telescoping then shows 

that log(bi)/i goes to zero. 

Theorem A. 11: The series ra1 converges whenever ai is weak AG. 

Proof: Write log(ai)/i = log(8) + £1 where £i converges to zero. 

Then a i = e1exp(i•£i) and ilai = e exp(£i). Thus lim ilai = e < 1 and 

ra1 converges by the root test . 

Example A.l: The negative binomial series 

is int ermediate AG for all k but is strong AG <=> k = 1. Use Theorem 

A.9 . 

Example A.2: The log series 8i/i is intermediate AG but not 

strong AG . 

Example A.3: The Poisson series ei/i! is not AG i n any sense. 

Use Theorem A.9 (iii) and Stirling's formula. 

Theorem A.12: The sequence ai = bi6i is weak AG whenever the bi 

are bounded or, more generally, whenever b. < ip where p is a constant. 
1-



Proof: Use Theorem A. 9 (iii). 

Example A.4: The sequence a. is 
l. 
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weak AG but not intermediate AG 

when al= e, a2 = 10 e
2

, a3 = e3
, a4 = lo 04 

a = e5 a - 10 e6 
' 5 ' 6 - , •••• 

Example A.S: Let u1 , u2, u
3

, ••• be a random sample from the 

i 
Uniform (O,l) distribution and put ai = uie • With probability one, 

ai is weak AG but also with probability one, at is not intermediate AG. 

Example A.6: The zeta series l / ip is not AG in any sense. 

A.S Screening the Geometric Series Model 

Let x
1

, x
2

, x
3

, ••• be independent geometric random variables with 

x-1 P(X
1 

= x) = p(l - p) , x = 1,2,3, •••• Suppose~ is a fixed community 

with infinitely many species and define Ti= vx
1
+x

2
+ ••• Xi' i = 1,2,3, • • • 

and T =Tl+ T2 + T3+ •••• Let~ be the fixed community with 

7Ti = E[Ti]/E[T] = E[Ti]/p . It might be more natural to take 7Ti as 

E[T./T] but this expectation is intractable since Tis not independent 
l. 

of the ratios Ti/T . To see this, suppose ~ is a geometric progression 

with ratio 1/2. The dyadic expansion of T is a sequence of zeros and 

ones and x
1 

+ x2+ ••• +Xi is the waiting time to the occurrence of the ith 

one in this sequence. Thus T uniquely determines the realized values 

of x
1

, x
2

, ••• and hence of T
1

/T, T2/T, •• • • The second part of 

Theorem 2.11 does have an analogue, however. Let G'IT(t) = E'ITiti-l and 

i - 1 = rvit be the generating functions of ~ and v. 

Theorem A.13: a) G'IT(t) = Gv ( l - p +pt), b) vis a geometric 

progression with ra t io 8 and odds ratio a' = 8/(1 - 8) if and only if 

'IT is a geometric progession with ratio p8/(l - 8 + p8) and odds ratio 

pa', and c) ~is strong AG with asymptotic odds ratio a' if and only 
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if rr is strong AG with asymptotic odds ratio pa'o 

Proof: a) The equation Grr(t) = Gv(l - p + pt) can be rewritten as 

(A.l) 

and this will be proved by the method of marks. 

the sequence of selection variables as described in Example 2.13 and 

·let 0 < t < 1. The statement "choose a component of~" will mean that 

component i is chosen with probability v.. Now generate a sequence of 
1 

observations on the selection variables and execute the following set 

of instructions: 

choose a component of v, component i, say; -
if Ei = O, make a mark and stop; otherwise; 

do for j = 1 to i - l; 

read the value of £.; if 
J 

£ = O, next j; otherwise; 
j 

make a mark with probability 

1 - t; next j; stop. 

Given the values of the selection variables, the conditional probability 

i-1 of no marks is ETit • Thus the left hand side of (A.l) is the prob-

ability of no marks for the compound experiment of first observing the 

selection variables and then executing the instructions . But the right 

hand side of (A.1) is also the probability of no marks when, in the 

above set of instructions, the phrase "read the value of" is changed to 

"generate an observation on." This proves a). Next suppose vis a 

geometric progression with ratio 8 so that GV(t) = (1 - 8)/(1 - 8t). 

Then a routine calculation shows that the generating function of the 

vector rr is 



Grr(t) = Gv(l - p +pt) = (1 - 8)/(1 - a + Sp ..; apt) 

= <1 - 8)/(1 - St), 
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where 8 = 8p/(l - 8 + 8p). Thus ~ is a geometric progression with ratio 

0. The converse of b) is proved in the same way. Finally, assume ~ is 

strong AG with ratio 8 so that v./ei converges to a finite positive 
1 

constant A. Given 0 < o < 1, there is an i 0 such that 

A(l - o)8i < Vi ~ A(l + o)8i whenever i > i 0 • It follows that 

whenever i > i
0

• But 

rr = G(i-l)(O)/(i - l)! = pi-lGV(i-l)(l - p)/(i - l)! 
i 1T 

which implies that 

i 
8t) ' 

whenever i > i 0• Thus ~ is strong AG with asymptotic ratio Ef. The 

converse of c) is proved in the same way. This completes the proof of 

the theorem. 

The above results assert that, on the average, randomly deleting a 

fraction i - p of the species from an asymptotically geometric series 

still leaves an asymptotically geometric series but whose asymptotic 

odds ratio is reduced to a fraction p of its former value. Thus the 

asymptotic odds ratio may be regarded as a species richness parameter 

for fixed models that are asymptotically geometric in the strong sense, 

just as Fisher's a is a species richness parameter for the limiting 

Dirichlet model. However, it is only for the rigidly geometric series 

that the odds ratio is a complete diversity parameter. 
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A. 6 Engen's Jackknife Procedure 

Consider an infinite multinomial population~= (TI
1 , TI

2, TI
3

, ••• ) 

h h f · · i h 8i-l c1 - 8), w ere t e Tii orm a geometric progression w t Tii = 

i = 1,2,3, • • • , 0 < 8 < 1. Put a' = LiTii - 1 = 8/(1 - 8). Let 

Y = (Y1, Y2, Y3, • • • ) be a random sample of size N drawn from TI . When 

the species ranking is known, the MLE of a' is&' = Ei(Y./N) - 1 and 
i 

is unbiased. Usually the ranking is unknown, in which case the MLE 

is~ ' = Ei(X(i) /N) - 1 , where X(l ) > X(2) > • •• are the descending 

order statistics of Y. Now a ' < &' so that a ' is negatively biased . 
A 

Let b(N) = b(N, 8) =a ' - E[a'] ~ 0 be the magnitude of the bias. 

Engen (84] has made two assertions: 

( i) the asymptotic bias is of order l/N in the sense that 

lim sup Nb(N) < 00 when N ~ oo, 

and t herefore , 

(ii) the first order term in the bias can be corrected for by 

jackknifing. 

The purpose of this appendix is to point out that (i) does not justify 

the jackknife procedure and that , in any case, Engen ' s proof of (i) is 

invalid. 

The usual justification for jackknifing assumes that the bias has 

a Taylor expansion in powers of 1/N, which is a stronger requirement 

than (i). For an example of the consequences of jackknifing in the 

presence of (i) , assum2 tLe bias has the form 

b(N) = N-
1

(1/11 - 1/12 + 1//3 - ••• + l//N). (A.2) 

Now Nb(N) is of order 1 since the alternating series converges . After 



jackknifing the bias becomes 

bJ{N) = Nb{N) - (N - l)b{N - 1) 

= + l/./N. 
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Thus jNbJ{N)j + 00 and jackknifing has increased the order of the bias. 

In fairness it has to be pointed out that the magnitude of the bias of 

"" a' is monotone decreasing in N and could never have the form given in 

(A.2). 

Next consider Engen's proof of (i). Letting C{N) = Nb{N), 

Engen makes a clever use of the loss of memory property of the geometric 

distribution to show that lim E[C{N) - C{N - Y1)] = 0 as N + oo; but he 

then concludes that "C{N) is at least a periodic function of log N in 

the limit which is sufficient to conclude that C(N) is of order l" 

(Engen [84, p. 699J). Apparently he has in mind replacing N - Y1 by 

its asymptotic value N(l - 7T1) = N6 and using the (fallacious) result 

that 

C{N) - C{N{l - 7T1)) + 0 => lim sup C(N) < oo. 

That this line of argument is incorrect can be seen by taking C(N) = 

log log {N + 2). Then, as N + 00 , one has 

a) E[C{N) - C(N - Y1)] + O, 

b) C{N) - C{N{l - 7Tl)) + O, 

but, 

c) C{N) + 00 0 

Part {b) can be established by a routine application of L'Hospital 's rule 

while (c) is obvious. For the proof of (a), first notice that 



0 .::_ C(N) - C(N - Y1) = log[log(N + 2)/log(N - Y
1 

+ 2)] 

.::_log [log(N + 2)/log(2)J 

< N. 

To find an upper bound for the expectation, let 0 < £ < 1 - rr
1 

and 

partition the sample space into the two regions {Y
1 

.::_ Nrr
1 

+ N£} and 
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· {Y
1 

> Nrr
1 

+ N£}. Over the first region, the integrand is bounded above. 

by log[log(N + 2)/log(N(l - rr
1 

- E) + 2)) which goes to zero as N + 00 • 

Over the second region the integrand is bounded by N P(Y1/N - rr1 > E). 

But this expression is well-known to go to zero as N + 00 • For 

completeness, a proof is sketched in Appendix A.11. 

Remark A.l: The estimator a' can be shown to take the form 

"' N a' = r xn n + (1/2) E xn (n - 1), 
x<y x y x x x 

where n , x = 1,2,3, ••• , is the number of species represented by x 
x 

"' 

(A.3) 

individuals in the sample. Similarly, the jackknifed version of et' is 

A 

Na' = r xn n + t xn (n - 1) . 
J < xy xx x y x 

A "' A 

Clearly, a' .::_ etj which implies the signed bias of etj exceeds the signed 

bias of a'. From this one easily proves a previous comment that b(N) 

is decreasing in N. 

Remark A.2 : In light of Section 2.3, especially Figure 2.4, it is 

not unreasonable to think that C(N) has the asymptotic form a + D(N) 

where a is a positive finite constant and D(N) is a periodic function of 

-log
8
N for large N. Presumably this is what Engen is attempting to show. 

In principle, it should be possible to determine the value of a, and 

prove that it is finite, by taking expectations of (A.3), expressing 



216 

E[n n ] and E[n (n - 1)] as infinite sums, replacing these infinite x y x x 

sums by integrals, and letting N + co. Unfortunately, attempts to carry 

out this program have proved unsuccessful. As an indication of the 

difficulties, consider the problem of approximating E[n ]. The exact x 

expression is 

E[n ] = x 

00 

r 
i=l 

(N) x ( )N-x 
x ni 1 - ni • 

Replacing the sum by an integral with respect to i and making a change 

of variable gives the approximation 

l/a' N x 
E[n ] :: a(N) J (1 - u) -xu du/u, 

x x 0 

where a = -1/log 8 is Fisher's a and a' = 8/(1 - 8) is the odds ratio. 

Now for any given x, the approximation gives the correct asymptotic 

value a/x as N + 00 • But the approximation is not uniformly accurate in 

x. To see this, notice that E x E[n ] must be exactly N while the x 

approximation gives Na/a' > N. This suggests using l/a as the upper 

limit of integration instead of l/a'. In carrying out the above program, 

the asymptotic behavior of C(N) is found to depend critically upon the 

choice of the upper limit of integration and it will be difficult to 

justify rigorously any particular choice. Most likely, the "correct" 

choice depends on both x and N. It may also be remarked that formally, 

if not realistically, both l/a and l/a' can exceed 1 and thus be outside 

the usual range of the Beta integral. 

At present it is unknown if jackknifing reduces the asymptotic 

bias. One must also be concerned with how large N should be before the 

asymptotic theory can be confidently applied. 
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A.7 The Geometric Series Model is More Diverse than the Exponential 

Integral Model 

Theorem ·. A.14 : 
-1 i 

Let V. =El (i/a) and TI . = 8 , i = 1,2,3, ••• , 
1 1 

where a > 0 and log (8) = -1/a. Then vi/Tii is decreasing in i which 

implies that (TI
1

, TI2, TI3, •• • )/ETii is intrinsically more diverse than 

(v1, v2, •• • )/Evi . 

-1 Proof: Since vi/TI1 = E1 (i/a)exp(i/a) , it will suffice to show 

~1 . -1 
that E

1 
(t)exp( t ) is decreasing int. Write y = E1 (t), E1 (y) = t and 

put f(y) = y exp(E1 (y)). But 

f'(y) = exp(E1 (y)) + y exp(E1 (y))dE1 (y)/dy 

= exp(E1(y))[l - exp(-y)] ~ O. 

Thus f is increasing in y . Since t is a decreasing func t ion of y, the 

proof is complete. 

A.8 Proof of Lemma 2.1 

We use a well known series expansion of the digannna function 

(Abramowitz & Stegun [89, equation 6. 3.16]) : 

00 

14J(z + 1) = f'(z + l)/f(z + 1) = -y + E z/[n(n + z)], 
n=l 

· where y = .5772 •• • is Euler's constant . Define 

logarithm derivatives to find that 
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After a lengthy calculation, this becomes 

co 
f'(t)/f(t) =-(Bl - A1)t r [n

2
(A2 + B2 - A1 - B1) + nt(A2B2 - A1Bt] . 

n=l 

Since this expression is strictly negative for t > O, f (t) is strictly 

decreasing and f (l) < f(O) = 1. 

A.9 The Distribution of Total Abundance for the Hyperbolic Process 

A method is given which can, in principle, be used to determine the 

probability density function f (z), 0 < z <co, of the total abundance 
a 

F; for the Hyperbolic process. This density function exhibits certain 
Cl 

pe·cularities. For example, f (z) may fail to be continuously diff erena 

tiable when z is a positive integer, although f(z) is analytic on each 

of the intervals (0, 1), (1, 2), (2, 3), •••• 

Using Theorem 4.3, the joint density of A# and F; is 
1 Cl 

{ 

a.uf(u)f (z - u)/z 

z) ~ 0 a 

if 0 < u < z 

otherwise. 

Integrating out u shows that fa(z) satisfies the functional equation 

z 
zf (z) = a J uf(u)f (z - u)du. a 0 a 

(A.4) 

But f (u) = l/u, 0 < u < 1. Thus, if 0 < z 2_ 1, 

z z 
= a J f (z - u)du = a J f (V)dV. 

o a o a 
(A.5) 
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Now (A.5) implies that f is continuous for 0 < z < 1 and hence that a 

fa is differentiable for 0 < z < 1. Taking the derivative of (A.5) 

with respect to z gives the differential equation zf'(z) + f (z) = af (z), a a a 

whose general solution is 

a-1 
fa(z) = c z ' 0 < z ~ 1, c > o~ 

When 1 < z < 2 (A.4) gives 

1 z 
zfa(z) = a f f (z - u)du = a J f (V)dVo 

O a z-1 a 
(A.6) 

Again f (z) is differentiable for 1 < z < 2 and comparison of (A.5) a . 

with (A. 6) shows that fa(z) is continuous at z = 1. Differentiating 

(A.6) gives the differential equation zf'(z) + f (z) = af(z) - af(z - 1) = a a 

af(z) - ac(z - l)a-l. Since f(l) = c, the solution of this differential 

equation is 

a-1 zf -a a - 1 fa(z) = cz [l - u (u - 1) du], 1 < z < 2. 
1 

Note that (A.6) holds for 1 ~ 2 < 00 , so that the method can be iterated 

to determine f (z) for all z. The required integrals become increasingly a 

complex, however. 

A.10 Proof that the Sample Process is Compound Poisson 

The compound Poisson process with intensity I and with positive 

integer valued jump distribution p , x = 1,2,3, ••• , has probability x 

generating function 

(A.7) 
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where t is the time and g is the generating symbol. 

Let Nt be a Poisson process with intensity A. The sample process 

may be obtained as N~ , 0 .::_ t .::_ a.. The interpretation is as follows: 
t 

the events of the process Nt represent the individuals entering t he 

sample; these individuals are then grouped into species by the subordin-

ator ~ , 0 < t < a.. 
t - -

The probability generating function of the sample process is 

N~ NT 
E[g t] = E[E(g l~t = T)] 

= E[exp(-TA(l - g))l~t = T] 

= E[exp(-A(l - g)~t]= exp[- tM(A(l - g))], 

where Mis the Levy transform (refer to (4.1)). But 

00 

M(A(l - g)) = f[l - exp(- Au + Agu)] f(u)du. 
0 

Adding and subtracting exp(-Au) under the integral gives 

00 

M(A(l - g)) = M(A) - J [exp(Agu) - l] exp(-Au)f (u)du 
0 00 00 

(A.8) 

= M(A)[l - L gxfAxuxexp(-Au)f(u)du/(xlM(A))]e (A.9) 
x=O 0 

Comparison of (A.8) and (A.9) wi t h (A.7) shows that the sample process 

is compound Poisson with intensity M(A) and with jump distribution 

given by (4 . 17). 

A.11 Asymptotic Nullity of the Binomial Tail 

Theorem A.15: Let Y - Binomail (N, p) and let £ > O. Then, for 

any real number r, 

lim NrP(Y/N - p > s) = O. 
N+oo 
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This theorem can be (and often is) proved by employing the asymptotic 

approximation to the normal integral. The following proof uses only 

Stirling's formula. Now P(Y/N - p > E) = P(Y > N(p + E)) is a sum of 

binomial probabilities and, since N(p + E) exceeds the mean, these 

probabilities are decreasing. Furthermore, there are no more than N 

such probabilities. Write q = p + E > p and put y equal to the integral · 

part of Nq. By Stirling's 

formula, this upper bound is asymptotic to a constant times 

· With q fixed, let f (p) be the expression in braces. Taking the logarithmic 

derivative, f(p) is found to be strictly increasing for p.::, q. Thus 

f (p) < f (q) = 1 and (A.10) is a polynomial infinity times an exponential 

zero, which goes to zero. 
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