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the various components. We consider two types of decompositions: two-
way classifications and mixtures. As measured by the Shannon index, the
total diversity of a two-way classification decomposes into the sum of
two terms: the diversity of the row marginals and the average diversity
of the normalized rows. We replace this last average by a "deflated"
average and extend the decomposition to a wider class of indices through
what we call a deflated ANOVA formula. The indices AB are then charac-
terized as the only indices to satisfy this formula., Section 1.8 also
develops a mixture decomposition for indices satisfying Criterion C3.°
The between—community component of this decomposition is identified
as the average rarity gain analogous to the information gain. Section
1.8 concludes with an application to genetics. A law of increasing
lentropy is established for the approach to Hardy-Weinberg equilibrium.
Modifications of the argument lead to a general proof of the Hardy-
Weinberg law.

In recent years, there has been considerable interest in the use
of diversity indices as indicators of environmental quality. A problem
associated with such an application is the time and level of professional
‘expertise required for a complete taxonomic classification of the sample.
A sequential comparison method has sometimes been employed to alleviate
this difficulty. After a bias correction, the method is shown to
provide an unbiased estimator of Simpson's index. Section 1.9 also
establishes the asymptotic normality of this estimator via an extension
of the Noether central limit theorem.

Estimation of the number of species in the community is one of the

more interesting and intriguing problems facing the ecologist. Section
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sense, 1s retained under a particular transformation introduced by
MacArthur [4].

1.3.1 1Interspecific Encounters. As Simpson [3] has observed, A

1
is the probability that two randomly selected members of the community

belong to different species. When rewritten in the form

A1 = Zﬂi(l - ﬂi) = ZﬂiR(ﬂi), the Simpson index may also be interpreted
as average community rarity, with the understanding that species rarity
is measured by R(mT) = 1 - m. Now contemplate Wallace's traveler Who
first comes upon a member of, say, the ith species. As his journey
continues, fhe traveler encounters other organisms, sometimes of this
species and sometimes not. The rarer the ith species, the more likely

are the interspecific encounters; but R(ﬂi) =1 - w, is precisely the

i
probability that a given encounter is interspecific. In what follows,
this concept of inter- versus intraspecific encounters is explored

further., Three different schemes are considered.

Waiting time for an intraspecific encounter. Again consider the

traveler in search of the ith species as, for example, in Figure 1.1.
With Y + 1 equal to the number of encounters up to and including

the first intraspecific one, we have,

E[Y[Tri] =(1-mn)/m, E[Y + 1lni] = 1/m,

E[1/(Y + 1)|m ] = -m Jog(m)/(1 - ),

i

when
POY = ym) = m (- m)Y, ¥ =0,1,2,... .

Since large Y are associated with rare species, both Y and Y/(Y +1)

are reasonable measures of rarity. But these are random variables
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1,3.2 The Proportionality Equation. Consider a species with

abundance m™ and a subspecies whose abundance is a fraction q of
m(0 < q < 1). The difference R(qm) - R(T) will be compared with the
corresponding change in rarity that occurs upon taking a fraction q of

an entire community. For the Shannon index the two changes are equal,
R(qem) - R(m) = R(q°1) - R(1),
while for the Species Count and the Simpson index we have, respectively,

7 LR(q) - R(D)]

R(qm) - R(m)

and

R(qm) - R(m) = w[R(q) - R(1)].

These suggest consideration of the functional equation

R(gm) = R(m) = W(m)[R(q) - R(1)], (1.3)

which will be called the proportionality equation with W(m) as the

deflation factor. Notice that (1.3) is invariant under affine trans—

formations of R. A degenerate solution is given by

0 if 0<mwr<1
W(m) =
1 1f m=1

and, up to an affine transformation,

1 if 0<mM<1
R(T) =
0 fif v

1.

The next theorem gives essentially all other solutions.
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Here, AB is the index associated with the standardized type I measure.
The raw form of the type II measure will be used to generate counter-
examples in Section l.4.

_ Next, let X be a discrete uniform random variable with support
{1, 2, 3,...,w}. Since the generating function in this case is

GlE) = w TEEL ~ £O5/1 ~ ), we ebEaing

R(m)

Type Raw Form Standard Form (1.1)

I 1-ola-m/a-m 2w+ DI - ol - ™y7a - ™

I wl@-ml-a-0%7 a-m0-a-mns

In this case, the Hurlbert-Smith index is associated with the standardized
type II rarity measure. Also, letting w > 0 in the twa raw forms gives
the unfamiliar indices of Section 1.3.1. Conceptually w is an integer
but real values make mathematical sense.

Finally, let X have a log series distribution with parameter 0
and generéting function G(t) = log (1 - 6t)/log (1 - 6). The standard-
ized type II rarity measure is then R(m) = -log (1 - 6 + 67)/6 which
converges to the rarity measure of the Shannon index when 6 + 1. Note
that the number X of additional encounters converges to infinity under
this limit. |

Other types of rarity measures could be defined as the probability
of particular events associated with the random variable X. Usually such
a probability turns out to be a function of the entire vector m and

not merely Wi where i is the initially encountered species. The
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For a given community, the indices SB have the interesting property
of being a monotone decreasing function of B. The reason for this
effect is clear from (1.5): with B large, the rare species make only
a negligible contribution to SB. In the limit as B approaches <,

% .
SB.converges to 1/m, -- the reciprocal of the abundance of the single

1
most dominant species. Hill [12] has plotted SB versus distance along
a line transect and has found that, to a remarkable degree, the plots
have the same shape irrespective of f.

In general, it is not possible to obtain simple closed form
expressions for the numbers equivalent of the Hurlbert-Smith index.

The logarithmic numbers equivalent log(SA) is sometimes useful.

For the index AB’

Log(sg) = ~log(1 - BAL)/B = -1og(2n§+1)/s

is Renyi's [11] entropy of order B + 1. Within the family of dichoto-
mous indices, the Shannon index is characterized as being its own

logarithmic numbers equivalent.

1.4 Two Criteria for Diversity Indices

Recalling the definition of dichotomous indices, A(C) = ZﬂiR(ﬂi),
observe that R(0) is inherently undefined while the value R(1l) is
germane only to a single-species community, and, in fact, eqﬁals the
diversity of such a community. R(1l) = 0 is a natural normalizing
requirement.

What else might be required of R? On intuitive grounds, R(T)
should be a decreasing function of T since rarer species correspond

to smaller values of .
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Criterion Cl: R is a decreasing function defined on the interval

(0,1]. If the normalizing condition R(1) = 0 is also imposed, R will,
as a consequence, be nonnegative.

This monotonicity requirement, simple and intuitive though it is,
has a striking implication. Consider two communities C = (s, E) and

C' = (s', ). We say that C leads to C' by introducing a species

(see Figure 1.3) if s' = s + 1 and if there are two distinct positive

integers i and j such that

| M if k # 1,3
m o= < T, -h if k=4
'n if k =

where 0 < h < Tye Note that ﬂj = 0. A possible biological interpre-

tation is that species i shares its resources with a newly arrived
competing species.

Theorem l.4: Assume R(m) is decreasing in m. Then introducing a
species increases the diversity measure of a community.

Proof: By assumption m, > M h > 0 and Ty > h > 0 so that

i
R(r, - h) > R(m,) and R(h) > R(T,). But

A(C') - A(C) = (ﬂi - h)R(‘ni - h) + hR(h) - ﬂiR(ﬂi)
= h [R(h) - R(vri - h)] + wi[R(Wi - h) - R(wi)]
> h [R(h) - R(7ri - h)] + h[R(Tri - h) - R(ﬂi)]
= h[R(h) - R(m)]
¥ 0

Any community with finitely many species can be constructed from

a single-species community by successively introducing new species
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(see Figure 1.4). Theorem 1.4 asserts that the diversity increases at
each steﬁ. None the less, indices satisfying Criterion Cl may havel
undesirable properties, as illustrated by the next example.

Example i.l: Let R(mw) = 1/7r2 -1 and A = Zi(l/ﬂ:) - 1.
This index satisfies Criterion Cl and assigns diversity zero to a single-
species community. Figure 1.5 includes a plot of the values of A for
communities with ranked abundance vector (1 - m, M), 0 < m < 1/2.
The point A represents a single-species community, while B, C and D
represent successively more even two-species communities. 1In accord
with Theorem 1.4, each of B, C and D is more diverse than A. But among
the two-species communities, the diversity, as measured by A, decreases
as the evenness increases.

In going from B to C to D in Example 1.1, the change in community
_composition may be described as a transfer of abundance from one species
to another strictly less abundant species., The next definition formal-

izes this operation for many species communities,

Definition 1.2: Let C = (s, m) and C' (s', ™) be two communities.

C leads to C' by a transfer of abundance if s = s' and if there are

positive integers i and j such that w, > m, > 0 and

i k|
T 1£ k # 1,j
| - - i =
ﬂk ﬂi h if k i
'rrj+h if k=3

where 0 < h <7, - T,.
1 J
For mathematical purposes, it is sometimes convenient to consider
the operation of introducing a species as a special case of transferring

abundance: in Definition 1.2, delete the requirement that s = s' and
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and permit ﬂj to be zero. The two operations are conceptually quite
different, however; introducing a species increases the "species richness"
component of diversity while transferring abundance increases the
"evenness" component.

Criterion C2: A(C) < A(C') whenever C leads to C' either by

introducing a species or by transferring abundance.

Remark 1.3: The requirement that transferring abundance should
increase the index is known in the economics literature as Dalton's
[13] "principle of transfers" and was originall& proposed in connection
with the measurement of income inequality. We discuss income inequality
in Section 1.12,

While Criterion Cl is meaningful only for dichotomous indices,
Criterion C2 makes sense for any proposed index irrespective of its
functional form. But Criterion C2 should then be supplemented by
the requirement that A(E) be invariant to permutations of m. Nofe
that permutation invariance is automatic for dichotomous as well as
rank type indices.

It is an obvious (but useful) fact that Criterion C2 is preserved
under monotone transfbrmations of the index. In particular, when an
index satisfies Criterion C2 so does its numbers equivalent.

To state conditions under which the two criteria will be satisfied,

it is convenient to define an auxiliary function V by

(wR(w) if 0<m<1

v(m) = 1
0 if ™ = 0.
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V" () = =26'(L - 7w) + WG" (1 - ™)
- DU DE Dy, -y, P mi. @
1=

Clearly V" (m) < O when 1 Z.Pz 2_p3 >eee + On the other hand, if
pl = 0 the first nonzero term in the expansion (1.7) has a positive
coefficient and V" () will be positive for 7 sufficiently close to one.
Example 1.3: Good [14] has proposed the family of indices
5 % *n
C(m,n) = X (ﬂi) (-log ﬂi) (my n =0,1,2,...) .

i=1 ,
Criterion C2 is satisfied by only three members of this family: C(1,1)
is the Shannon index; C(0,0) is the number of species; C(1,0) is
identically one. The special case C(2,0) is the 1's complement of the
Simpson index. Thus -C(2,0) satisfies Criterion C2. More generally,
the only members of Good's family whose negatives satisfy Criterion C2
are C(m,0) (m =1, 2, 3,...). Note that the affine transformation

[1 -C(m, 0)]/(m - 1) converts C(m, 0) into Am_ and also gives the

1

Shannon index as the limiting case when m = 1.

1.5 Diversity Ordering

A numerical-valued diversity index imposes a linear ordering on the
diversity of ecological communities. "But, as emphasized by Hurlbert [5],
different indices may give inconsistent orderings. For example, the

Species Count and the Simpson index order the two communities

c= (2, (.5,0,.5)) and ¢* = (3, (.1, .8, .1)) in the opposite sense:

A () =1<2=4_(C"

Al(C) = ,5> .34 = Al(c').












Figure 1.8 Geometric Representation of the Intrinsic Diversity
Ordering, Together with Some Contours of AB
and AL ° (C = (3, (.49, .36, .15)) and

c" = (3, (.62, .21, .17)))
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The contours of the Hurlbert-Smith index are also shown in Figure
1.8, As w~ 0 there is a limiting contouf with, in thié case,
(1 - ﬂi)log(l - ﬂi) = constant as the defining equation. The limiting
contour is not shown in Figure 1.8 since it is graphically indistinguish-
able from the contour labeled w = 1,

In view of Theorem 1.7(b), Criterion C2 may be restated as the
requirement that A(B) Z-A(I) whenever V is a convex linear combination
of permutations of m. Functions which satisfy this property are sometimes

. called Schur Concave [16, 18]. Lewontin [21] has suggested the following

somewhat stronger requirement.

Criterion C3: A(E) is a permutatioﬁ invariant concave function of
the abundance vectér T.

While we know of no intuitive motivation for this criterion, it.
will be essential to the mixture decomposition of Section 1.8.3.
Criterion C3, unlike Criterion C2, is not preserved under increasing
transformations of the index. For example, the numbers equivalent of
the Simpson index, l/Zﬂi, satisfies Criterion C2 but not Criteriomn C3.
We also note that the conclusion of Theorem 1.6 can be strengthened
as follows:

Theorem 1.8: Criterion C3 is satisfied if the auxiliary
function V is concave on the closed unit interval [0,1]. In particular,
AB satisfies Criterion C3 <=> R 2_—1. Also Ag_s satisfies this
criterion when w > 0.

Proof: Straightforward.

By Corollary 1.3, Criterion C3 is met by any index based on a type

I rarity measure, but, for a type II measure, it is necessary that

P(X = 1) > 0, which is also necessary to standardize the index.
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Figure 1.11 Illustration of the Crossing Point Theorem for qus
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Remark 1.7: Multiplying f by A > 0 and E by 4 > 0 multiplies the
sensitivity by A/U. A standardized sensitivity unit can be established
by requiring that the positive components of E and of £ sum to unity,

Then h(k) is the net abundance transferred forward (backward) and a large
value of the sénsitivity means that a small transfer forward to the rare
species requires a large offsetting transfer back to the abundant species.

Explicit expressions for the sensitivity are obtained by implicit
differentiation with respect to h of the relation A(C") = A(C) = constant.

*
Theorem 1.10: The sensitivity of the rank type index A = ZﬂiR(i)

*
does not depend on T and is given by
o(A; C; b, £f) = ZfiR(i)/ijR(j).

In particular,

Zfipi'l/zbij‘l 1f p>0,p #1
o(A;ra“k); C; b, ) =

~ ~

Zfi(i - 1)/ij(j -1) if p = 1.

x %
Theorem 1.11: The dichotomous index A = ZwiR(ﬂi) with auxiliary

function V(w) = TR(W) has sensitivity
G(A; C3 b, £) = ZEV' (T )/Ib.V (1)
9 ’~’~ i i j j'

o (AW

B! C; P" ;E') =

5f log(m ) /Zh log(n') 1 = i
i Og Tri) j og('n-j) 1f B - b

and

H-S * w *_ W
. . = - - - ) >
c(Am 3 C3 b, g) Zfi(l ﬂi) /ij(l wj) if w > o.
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The next example illustrates the behavior of the sensitivity of

A(rank)
P

example, we show that the features illustrated hold, in fact, for multi-

and of AB when C is a three-species community. Following the

species communities.

* *x % %
Example 1.6: (Three-species community). Take m = (ﬂl, Tos W3),
(rank) ,

b=(1, 1, 0) and £ = (0, -1, 1). By Theorem 1.10, o(A s C; b, £f) =p

p
which is a strictly increasing function of p and approaches infinity as

p > «, The sensitivity of A, depends on the community C which may vary

B
over the region XYZ of the abundance simplex (see Figure 1.6). Letting

* * 4 * *
¢ = (ﬂ2 - ﬂ3)/(ﬂ1 - ﬂz), reparametrize C with the pair (¢,_ﬂ3),
*
3

passing through the centroid of the simplex as shown in Figure 1.6. In

0<¢<e» 0<m, <1/3, When ¢ is fixed, C varies along a straight line

Figure 1.14, the sensitivity of AB is plotted against B for several

values of ﬂ;'when ¢ = 1. The following features should be noted:
(i) The sensitivity of the Simpson index is

identically 1 (= ¢) independent of W;.

(ii) When n; # 0, the sensitivify of AB is a

strictly decreasing function of B which

approaches zero as B + ® and which has a

finite positive limit as B approaches -1

from above.

(iii) The sensitivity to the introduction of a

%
species is covered by the case T 0. The

3
sensitivity is infinite for -1 < 8 < 03 over
the interval 0 < B < », the sensitivity is

is a strictly decreasing function of B which

approaches infinity as B -~ 0 and zero as B + =,
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For other finite, nonzero values of ¢, these qualitative features of
Figure 1.14 are unchanged except that the horizontal line L is at a
height ¢ above the B-axis. The value ¢ = 0 is excluded by the requirement
that fz.i f3 when n; = ﬂ;. When ¢ = «, the sensiFivity is infinite for
all B. Note that in this case there is a tie between the first and
second ranked species (W; = W;) and that the sum of the corresponding
components of B vanishes.

For multispecies communities, a preliminary lemma is needed. The

proof is given in Appendix A.l.

Definition 1.5: Let {ai}:=1 be a sequence of extended real numbers.

A tied set of'{ai} is a maximal set I of subscripts such that a, = aj

whenever i, j € I. A transfer vector b vanishes over tied sets of

{a,} if I b, = 0 for each tied set I of {a,}.
L fe1 I - L

Lemma 1.2: Let (b, f) be a pair of nonzero transfer vectors which
are separated at m and © # Ay 2 X, 2...> =® a monotonic sequence of

extended real numbers. Assume that A 1is finite and that fj > fj+1
- bt

whenever Aj = Aj+l' For —» < x < o, define
Zfiexp(kix)/ijexp(ij) if x#0
o(x) =
Zfiki/ijAj if x = 0,
Then

a) o0(x) = « when b vanishes over tied sets of {ki}.
b) Suppose b does not vanish over tied sets of'{ki} and that fi =0
whenever Ai = —o, Then 0(x) is a strictly decreasing function of x

with 1im o(x) = ® and 1lim o(x) = 0.
X> - X >
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* o *
Theorem 1.15: Let C = (s, ™ ) and C"= (5", 7" ) be two communities

¥

with C" more diverse in the tail than C.
*

a) Let g(p) = Aérank) c" - Aér‘“‘k) (C), p > 0. Then g(0) = 'rr: - <o,
On the interval 0 < p < o, g(p) is negative for small p, positive
for large p an& has exactly one zero.

b) Let g(B) = Ag(C") - Ag(C), B > -1. Then g(-1) =" -5 > 0. On
the interval -1 < B < o, either (i) g(B) is negative for all B or
(ii) g(R) is positive for small B8, negative for large B and“has
exactly one zero. Case (il) must apply if s" > s.

c) Let g(w) = Aﬁ—S(C") - Ag—s(c), w > 0. Then g(0) = 0 and
g(®) = s" -~ s > 0. On the interval 0 < w < «, either (i) g(w) is
positive for all w or (ii) g(w) is negativevfor smali w, positive
for large w and has exactly one zero.

Proof: (a) It is easy to see that g(p) is positive for large

p and negative for small p (see Remark 1.8, below). Thus g(p) has at

least one positive zero and we need only show that this zero is unique.

In fact, if o is any positive zero, we show that g(p) > 0 for p > Pge

Referring to Figure 1.13, let I' and T', be the intersections with the

0
hk-plane of the contours through C of Aérank) and of Aérank). Since

Po >0, I' and PO can be shown to be one dimensional. Ag C, I has a
strictly greater slope than FO so that, if g(p) were nonpositive, T
would have to cross FO at some point between C and C". But at the
crossing point the slope of I' will be less than or equal to that of FO
and this contradicts the strict monotonicity of the sensitivity.

(b) Let the first nonzero component of the backward transfer vector

E occur in the nth position so that wg* = ﬂ: for 1 < n and

Then B:g(B) equals

¥ > * 5 * > * >
TT Tr Tr 'rr o e 8 L ]
n n— n+l — n+2 —
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than C among the abundant and also among the rare species but is more

diverse among the intermediate species, For small p, A(rank) is

sensitive to the abundant species and g(p) is negative. As p increases,

Aérank) becomes more sensitive to the intermediate species and g(p)

A(rank)'is sensitive to the

increases. Finally, for large values of p,
rare species and g(p) begins to decrease.

1.7.2 Response to Perturbations. Consider a community C and a

subcollection of species from this community. Label the members of
the subcollection as i = 1,2,...,n, denote their abundances by

Ty ﬂz,...,wn and let T = wl + ﬂz +,.0F nn be their combined abundance.
The subcollection forms a community C' with abundance vector

(ﬂllw, ﬂZ/ﬂ,,..,ﬂn/ﬂ). Keeping m fixed, let the subcollection be

subjected to an infinitesmal perturbation of form

1’?1 =m, +hb, i=1,...,n,h >0, Ib, = 0.

The perturbation induces a change SA(C) in the diversity measure of C
and also a change SA(C') in that of C'. We wish to compare the

magnitudes of these two changes and we define the response function

of A to be the ratio 8A(C)/SA(C'). The dependence of the response function
oﬁ thé combined abundance 7 will be of particular interest. The most
natural dependence occurs when the response function equals 7 (i.e.,

SA(C) = m.8A(C')). More generally write the response function as m-W and

call W the deflation factor. (Values of W greater than one act as an

inflation factor.) 1In general, W depends on the direction vector b as
well as the parameters of C and of C'. We also remark that W is invariant
to affine transformations of the index but not to monotone transformations

in general.
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An easy calculation shows that the dichotomous index with auxiliary

function V has deflation factor W = ZbiV'(ﬁi)/ZbiV'(ﬂi/W). For the index
B

AB, this expression reduces to W = m which depends only on m. The

deflation factor of the rank type index is found to be W = ijR(ij)/ijR(j)

1 2

in the subcollection. In particular,
(1,-1) "
W= ijp J /ijp ; in general, this expression depends on b but

where i, < i, <...< in are the ranks (within C) of the various species

A;rank) has deflation factor

when the species are consecutively ranked within the community C

= 1

(11‘= i, i, =1 + 1,...,in =3+ n - 1),1it reduces to pi which

2

depends only on the rank of the most abundant species. In fact, the

indices

Aérank) are characterized by this last property.

Theorem 1.16: Let A be a rank type index whose deflation factor

depends only on the rank of the most abundant species when the species
are consecutively ranked. Then there is a reél number p such that A is
“an affine transformation of Aérank).

Proof: Let i be the rank of the most abundant species and let k

be a positive integer. Taking b, = -1, b, = b, =...=b, = 0, b

2~ °3 k Ly we

1 k+l

find that

W=W({H) = (RA + k) - R(1))/(R(k.+ 1) - R(1)).

Thus R satisfies the proportionality equation of Section 1.6 and the
theorem follows from (1.13).

With suitable differentiabiiity assumptions on V, one may similarly
characterize AS as the only index whose deflation factor depends only on

the combined abundance T, But in Section 1.8, we give a characterization

of AB which requires only very mild regularity assumptions.
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1.8 Diversity Decomposition

The calculated value of a diversity index provides only limited
information concerning the overall structure of a community. Often it
is possible to decompose the community in some natural way, and as in
the analysis of variance, apportion the total diversity among and
between the various components. We consider two types of decompositions:
two-way classifications and mixtures. Allan [26] has discussed both
types in the case of the Shannon index.

As measured by Shannon index, the total diversity of a two-way
classification decomposes into the sum of two terms: the diversity of
the row marginals and the average diversity of the normalized rows. in
Section 1.8.2 we replace this last average by a "deflated" average and
extend the decomposition to a wider class of indices. 1In the important
special case of hierarchial classification, the total diversity equals
the diversity of the column marginals and the decomposition becomes
a decomposition of marginal diversity. Pielou [27], Lloyd et al. [28]
and Wilson [29] have used this hierarchial decomposition to apportion
taxonomic diversity., Theil [30, 31] has discussed numerous applications
in the social and administrative sciences,

Lewontin [21] has pointed out a general method of decomposing
marginal diversity even for nonhierarchial classifications. In a two-way
classification, the vector of column marginals is a mixture of the
normalized rows and, when the index is concave, the diversity T of the
column marginals will be greater than or equal to the average diversity
W of the normalized rows. Lewontin proposes that the "within" and the

"between" components of diversity be defined as W and T-W, respectively.
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spread, wﬁen applied to this distribution, become identified with
previously considered diversity indices. The half range, for example,
is the Species Count while the mean absolute deviation is the reduced
Average Rank.

1.8.2. Diversity of a Two-Way Classification. Pielou [33, p. 7]

has listed three desirable properties of a diversity index:
Pl. For a given number of species, the index should assign
maximum diversity to the completely even community.
P2, Given two completely even communities, the one. with
more species shoula be assigned the greater diversity.
P3. An ANOVA formula (1.16) with W(w) = 1 should hold for
two-way classifications.

‘Theorem 1.17: Any diversity index A which satisfies Criterion C2

also satisfies properties Pl and P2.

Proof: Let C' = (s', 2) and C = (s, E) be two communities with C'
completely even. Clearly v is a convex linear combination of permutations
of T when s < s'. Applying Theorem 1.7, it follows that A(C') > A(C).

As has been shown by Khinchin (see [34, p..67]), the three properties
Pl1, P2 and P3 together with some regularity assumptions characterize the
Shannon index up to a constant multiple. However, deflated ANOVA
formulas can be associated with certain other indices., Consider a two-

way classification AxB with cell proportions T = 152,sen3585

130 1
j=1,2,...,b. Without loss of generality, we may assume that the

marginals 7 i=12,...,a, and ﬂ.j, ji=1,2,...,b, are all nonzero.

1.’

For now we restrict attention to dichotomous indices with rarity

" measure R. Putting
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A similar trend toward disorder occurs when a biological population
approaches Hardy-Weinberg equilibrium. The Hardy-Weinberg law states
that, under certain restrictive assumptions, the marginal gene frequencies
.remain constant from generation to generation while the gamete frequencies
converge to a product probability measure. The restrictive assumptions
[42, p. 60] include random mating, infinite population and no mutation,
migration or selection. These assumptions are not likely'to be met in
practice; evolutionary dynamics resists the trend toward disorder by
organizing the gene combinations into clusters that are best adapted to
particular environmental conditions (Lewontin [21], Dobzhansky [43, p. 21]).
It is shown below that the Shannon measure (but not the Simpson measure)
of the gamete frequencies increases during the approach to Hardy-Weinberg
equilibrium. Presumably, this law of increasing entropy is well-known
to geneticists, but there seems to be no ready reference.

The simple case of two loci each having two alleles is considered
first. Suppose the alleles at these two locl are represented by a;» a,
and bl’ bz, respectively. The possible gametes are then albl, a1b2’ aZbl’
and azb2 and the gamete frequencies in the initial generation may be

displayed in a 2x2 contingency table:

1 2
a ™ ™
1 11 12 o
2y To1 Ta2

Let Yo = n11ﬂ22 = TioMo1 = Tqq = ﬂl.ﬂ.l'be the covariance of this table

when the value zero is assigned to a; and bl and the value one to a, and

b2. Also suppose that 0 < A < 1 is the recombination fraction. 1In the
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next generation, the covariance is
Yl = (1 - )\)Yo’ (1023)

and the gamete frequencies are:

L b
gy T3 =AY Ta * A
a, ﬂ21 + XYO Moy = AYO . (1.24)

(For details of the derivation, see Elandt-Johnson [42, Section 4.51] or
Kempthorne [44, Section 2.8].) Notice that (1.22) and (1.24) have the
same marginals. Iterating (1.23), the covariance in the nth genefation
is (1 - k)nyo which converges to zero. Thus, in the limit, the gamete
frequencies become independent, which is the state of maximum disorder
given the requirement of fixed marginals.

The transition from (1.22) to (1.24) will be called a Hardy-Weinberg

transfer. Hoeffding [45] and Tchen [46] have considered a similar trans—
fer of probability in attempting to formalize the concept of correlation.

Theorem 1.21: The Shannon index increases under a Hardy-Weinberg

transfer. The Simpson index does not, in general.
Proof: Let ﬂij(i, j = 1,2) be fixed and write ﬂij(k) =

i+j
“ij -1 AYO where 0 < A < 1. Now,

d[—Zﬂij( A)log ﬂij(k)]/dl = ¥y log w, (1.25)

where w = wll(l)wzz(k)/(WZl(A)ﬁlz(A)) is the odds ratio. But the odds
ratio is greater than, less than, or equal to one exactly when the
covariance Yo is positive, negative,or zero. Thus, the right hand side

of (1.25) is always nonnegative. A counterexample for the Simpson index






Table 1.2 Numerical Example of the Approach to

Hardy-Weinberg Equilibrium (A = 1/2)

(a) Gamete Frequencies

Initial Equilibrium
bl b2 b1 b2
a, [ .26 .22 |.48 a | -2544 .2256 .48
a; v27 25 |52 a, <2756  .2444 |,52
.53 .47 «53 W47
(b) Parameter Changes
Generation Covariance Shannon Index Simpson Index
0 0.0056 0000 1.3834 4084 .7486 0000
1 0.0028 0000 1.3836 3002 .7486 8b64
2 0.0014 0000 1.3836 7730 .7486 9744
3 0.0007 0000 1.3836 8913 .7486 9996
4 0.0003 5000 1.3836 9208 .7486 9975
5 0.0001 7500 1.3836 9282 .7486 9928
6 0.0000 8750 1.3836 9301 .7486 9895
7 0.0000 4375 1.3836 9305 .7486 9876
© zero 1.3836 9307 .7486 9856

78
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We must have dA/dhlh=0 > 0 where A = A(h) is the index evaluated on the
second table. But this derivative is V'(y) = V'(x) + V'(z) ~ V'(2) =
V'(y) = V'(x). Thus V'(y) > V'(x). Taking limits, this inequality
also holds when x + y = 1. Theorem 1.5 now gives the result.

The notion of a Hardy-Weiberg transfer can be extended to the case
of multiple alleles and/or multiple loci. However, the notation becomes
very complicated and a different approach will be taken. The idea is
to write each generation's gamete frequencies as a convex linear
combination of marginal products for the preceding generation and then
apply Criterion C3. We first illustrate the method in the previous case
of two loci each having two alleles. Let T - (ﬂij) be the initial

(1,2)

generation's frequencies, T

A

= (ﬂi.ﬂ_j) the equilibrium frequencies,
and m the next generation's frequencies. Now (1.24) may be rewritten
in the form i = (1 - X)E + AE(I’Z). Since the Shannon index AO satisfies
Criterion C3, this implies that AO(E)_z 1 - A) AO(E) + AAO(H(I’Z)). But
it is shown in the next lemma that AO(E(I’Z)) Z_AO(E) so that
AO(E) Z-AO(E)’ i.e., the Shannon index increases from generation to
generation,

Lemma 1.3: Let AxXB be a two-way classification and A*B be the

independent classification with the same marginals. Let AO be the

Shannon index. Then

*
a) AO(A B) AO(A) + AO(B),
b) AO(A*B) z_AO(AxB).
Proof: The first assertion follows from the ANOVA decomposition
(1.16) since W(7) = 1 for the Shannon index. But by Criterion C3,

AO(B) z_EA[AO(BIAi)]. Comparing part (a) with (1.16) gives the second

assertion.
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The general proof that the Shannon index increases from generation
to generation is now easy, Label the different loci as 1, 2, 3,...,m

and let m = (m,

~

4 q m——i ) be the initial gamete frequencies. For each
122

partition of {1, 2, 3,...,m} into two nonempty disjoint subsets U and V

(u,v)

define a marginal product T as follows:

NGRS

1.4, ——1
m

LR —
172 m

b b Vo ™ m

Y172

where the symbol uj stands for ij if § is in U and for . (dot) if j is

in V and where vj stands for ij if j is in V and for . (dot) 1f j is in

U. For example, if m = 4 and if the partition consists of the two sets

{1, 3} and {2, 4}, then

u,v) _
Thijk = "heje "efek °

Finally, let ™ be the gamete frequencies in the next generation. It is

not hard to see that T is a convex linear combination of m and the mar-

(U’V). Since AO(W(U’V)) Z_AO(W), it follows as above

ginal products m
that Ao(i) > Ay(m.

Remark 1.9: The above ideas can be modified to produce a simple
general proof of the Hardy-Weinberg law (provided, of course, that no
two loci are rigidly linked). Just as before, a marginal product can
be defined for a partition consisting of any number of sets. Thus
each partition may be thought of as an operator acting on the class of
possible gamete frequencies. The recombination laws induce a Markov

chain whose states are the partitions. Transitions from one partition

to another are possible only if the second partition is the same as the
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first or is finer than the first. Moreover, the probability of a self-
transition is strictly less than one if no two loci are rigidly linked.
Thus the finest partition is the unique absorbing state; but this parti-

tion induces the product probability measure.

1.9 Estimation of Simpson's Index

A problem associated with the use of diversity indices as indicators
of environmental quality is the time and level of professional expertise
required for a taxonomic classification of the sample., Cairns et al.
[47, 48] have developed an ingenious technique to overcome this diffi-
culty., Their approach is a nice illustration of the concept of inter-
and intraspecific encounters discussed in Section 1.3.1l. Given a random

sample A A2""’AN’ AN+1 of specimens, define a run to be a maximal

1°
sequence of consecutive specimens of the same species, Cairns

suggests the ratio, (# runs)/(N + 1), as a measure of the diversity of
the sample. In implementing the technique, the investigator need only

make the successive comparisons A, vs. A2, A2 vs. A3, A vs, AA’ ete.,

1 3
so that the method is rapid and does not call for sophisticated taxonomic
skill.

In what follows, it is shown that, with a minor bias correction,
Cairns diversity measure becomes an unbaised estimator of Simpson's
index Al. Asymptotic normality is also established. The unbiased

version is obtained as CL = (# runs = 1)/N and will be called Cairns

linked estimator. The statistical analysis is facilitated by introducing

indicator random variables 'I‘i with the property that each occurrence of
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Remark 1.10: The bounds Q < p §_1/2 can be improved if the value
-of Al is known. For given Al, we have obtained sharp upper and lower
bounds on p. The upper bound confirms the intuition that p tends to be

small for highly diverse communities.
N
Theorem 1.24: a) CL = I Ti/N, b) E[CL] = A

»
1 1

‘¢) Var[cL] [1+ 2 - 2p/N]A1(l - Al)/N

~ [1+ 2p]Al(1 - Al)/N for large N

A

2A1(1 - Al)/N,

d) CL is asymbtotically normal as N = «,

Proof: a) and b) are obvious and c) is a routine calculation once
it is noted that nonadjacent Ti are independent. The asymptotic
normality follows from Noether's central limit theorem which is stated
next.

Theorem 1.25: (Noether [49]). Let Zl’ Z,s 23,... be independent

random variables., a) Let T T2, TB"" be uniformly bounded random
N
only. Then SN = J Ti is

i=1
asymptotically normal provided Var[SN] is of exact order N. b) Let

1’

variables with T, a function of Z, and Z,
i i i+l

Tij’ i, j = 1,2,.;. be uniformly bounded random variables with Tij a
N
function of Z, and Z, only, Then S_= I T,, is asymptotically normal
i h| N 1,1=1 ij

provided Var[SN] is of exact order N, ‘
Remark 1.11:. Noether presents a proof of b). The proof of a)
requires only slight modifications in his argument.,
Remark 1,12: Theorem 1.24 is related to a result of Mood [50] who
examined the distribution of the number of runs when a fixed sample is
subjected to random permutations.

Use of the exact formula for Var[CL] requires estimation of the
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and that they divide this fraction among themselves into n, equal parts.

1

In particular, estimate the number of unobserved species as n, and the

1
total number of species as t + nye To correct for any bias of this
estimator, note that

s
E[t] = s[1 - p(®)], E[n;] = %

py (1) = sp(1),
i=1

Elt + n,] = s[1 - p(0) + p(D)].

Under the assumptions of either Method 1 or Method 2, both p(0) and
p(l) may be estimated by, say, p(0) and p(l). Take § = (t + nl)/(l - p(0) +
p(1)) as a modified estimate of s.

Example 1.9: Both Method 1 and Method 2 and their modified versions
were applied to the Rothamsted light trap data reported by Bliss [53].
The underlying distribution for these methods was assumed to be Poisson.
The results are presented in Table 1.3; for comparison the last column
gives the estimate of s which Bliss obtained by fitting the lognormal

distribution (Method 2). For the year 1934 Bulmer [54] has also

obtained the estimate S = 226 by fitting the Poisson-lognormal distribu-

tion.
Table 1.3 Estimates of Species Richness
Method
Year t ny (1) Modified (1) (2) Modified(2) Lognormal
1933 183 32 232 250 183 215 208
1934 176 34 226 252 176 210 199
1935 202 39 260 289 202 241 239

1936 157 51 243 296 157 208 222
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Remark 1.14: 1In a different context and with a different viewpoint,
Robbins [55] has suggested an estimator similar to nlln for estimating

the proportion of unobserved outcomes. Also see Good [14].

1.11 The Diversity Concept in Other Fields

The previous sections have emphasized ecological diversity. Here
we survey several additional areas in which the diversity concept has
been found to be of some value,

1.11.1 Genetic Diversity. What proportion of human genetical

variation is accounted for by a system of racial classification which is
largely based on morphological characteristics? The question has
generated a good deal of controversy. To cobtain some quantitative
answers, Lewontin [21] subdivides the human species into races and the
races into populations and develops the mixture decomposition (1.21) for
the Shannon index. Examining the gene frequencies at 17 loci, he finds
that, on the average, 6.3% of the genetic diversity is accounted for
by racial classification, 8.3% by population differences within a race,
and 85.4%Z by variation among individuals. His final conclusion:

It is clear that our perception of relatively large

differences between human races and subgroups, as compared

to the variation within these groups, is indeed a biased

perception and that, based on randomly chosen genetic

differences, human races are remarkably similar to each

other, with the largest part by far of human variation

being accounted for by the differences between

individuals [21, p. 397].

1.11.2. Linguistic Diversity. In a quite interesting paper,

Greenberg [56] describes eight diversity indices which might be applied
to the measurement of the communication potential among the inhabitants

of a geographical region. The languages spoken within the region
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if 'rri/\)i = wj/vj, this operation replaces the two

components T, and Wj by the single component T +_ﬂj

i

and also replaces vi and vj by vi + v Conversely,

5
splitting a subpopulation into two subpopulations with

the same per capita income does not change inequality.

I3. (Principle of transfers). Inequality is increased by

a transfer of income from one subpopulation to another

provided the second has a larger per capita income.

This operation changes m but not Ve
 Operations Il and I2 are symmetrical in m and v but I3 is not; comnsequently,
measures of inequality need not be symmetrical in m and Ve Operation I2
permits the comparison of populations with different numbers of indivi-
duals and was suggested to us by axiom A5 of Dasgupta, Sen and Starrett
[17].

The intrinsic diversity ordering admitted a simple geometric
fepresentation on a simplex. The inequality ordering can also be
represented on the cartesian product of two simplices but this requires
too many dimensions to be useful. Easier to visualize is the Lorenz
curve which is discussed by Theil [30, p. 121] for discrete distributions,
by Kendall and Stuart [70, p. 48] for continuous distributions, and by |
Thompson [71] in general. Thompson [71] also suggests some interesting
biological applications. Arranging the subpopulations in order of

decreasing per capita income

> o P >
Moy 2 My 2eenzm /v,

the Lorenz curve is the polygonal path joining the successive points

B P

where Ps+l = (0, 0) and

¥ Ponsens® g
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P =(ZvVv,, Zm), k=1,2,00045.
Eopel ot |
Refer to Figure 1.15. The slope of the segment PkPk +1 is the

standardized per capita income nk/vk of the kth subpopulation. Operation
I2 has the effect of inserting or removing "extra" vertices (e.g., P3
~ of Figure 1.15) on any straight line segment. Transferring income
lowers the Lorenz curve as shown in Figure 1,15. A simple induction
argument shows that (E', B') is intrinsically more unequal than

(E’ B) <=> the Lorenz curve of (H', B') is uniformly below that of

(Ty V). This generalizes a previous result of Kolm [72].

1.12,3. Measures of Inequality. An obvious measure of income

inequality is twice the area between the Lorenz curve and the 45° 1line.
This number is kﬁown as the Gini coefficient G(E; 2) and varies between
zero and one. Still supposing that the subpopulations are arranged in
order of decreasing per capita iﬁcome, Theil [30, p. 121] and others

have shown that G(m; V) is symmetrical in m and V and that

G(m; V) = (1/2)>3\)1.L\)J.I1Ti/\)i - Trj/\)jl (1.26)
and
G(E; 1)) =1 - ZZiﬂi(jEi\),) + Ziﬂi\)i. (1.27)

From (1.26), the Gini coefficient is one half the mean absolute
difference between the standardized per capita incomes of two randomly
selected subpopulations. When v is completely even (i.e., when each

vy = 1/s), (1.27) simplifies to

G(E; y) =1 - [ZZ(iwi) - 11/s, (1.28)
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R Before transfer:
1T=(5,2,.1,.175,.025)

— —— Atter transfer:
17 =(.6,.2,.1,075,.025)

POPULATTION SHARES

Figure 1.15 Effect on the Lorenz Curve of an Income Transfer

(v=1(2, .2, .1, .3, .2))

~
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where wl 2-”2 >eae> e Sen [73] gives an axiomatic characterization
of G(E; 2) when v is completely even.

The Gini coefficient and several other standard measures of
inequality can be constructed by adapting a method which has been employed
by ecologists to measure the evenness of a distribution. They use the
ratio of the actual value of a diversity index to the maximum value that
the index could assume for a community with the same number of species
(Pielou [33, p. 15}). This ratio, however, is not invariant to ﬁénotone
transformations of the index and it is preferable to first convert to
the numbers equivalent and use the ratio SA/S as a measure of (absolute)
evenness. To convert this ratio to a measure of inequality several
decreasing transformations are possible: 1 - (SA/S), log(s/SA), or

(S/SA) - 1. All three are instances of the transformation
sy/s + [(s/5)® - 11/8,8 real. (1.29)

Applying (1.29) with B = -1 to the Average Rank index gives Gini's

coefficient in the form (1.28). Applying (1.29) to the index A, gives

B

[Zvri(vri/s'1>B - 11/8 (1.30)

as a measure of absolute inequality. To obtain a measure of relative

=1
inequality, we replace s by v, in (1.30) yielding

. _ B
GB(E, V) = [Zwi(ﬂi/vi) - 11/8. (1.31)

The measure 66 is propurtional to the directed divergence of type

B+ 1 [34, p. 208; 74] and log (1 + BS,.)/B is Renyi's information gain

B
of order B + 1 [11, 40].
Remark 1,15: Hill [12] has proposed the ratio SB/SQ’ a, B > -1,

as a measure of evenness. (SB is the numbers equivalent of A .)
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Peet [25, p. 301] remarks that "These ratios do not measure equitability
(evenness) as it is normally defined... ." While it is unclear what
Peet means by this statement, it may be verified that Hill's ratios
violate the principle of transfers unless o = -1 or, trivially, unless
B = o Thus only the ratio SB/S is a suitable measure of evenness.b
When B = -1, GB(E; B) reduces to the proportion of the population
which has no income. Here we have used the convention that Qe«» = 0.
Some other special cases should be mentioned:

Pearson's Xz: Putting B = 1 in (1.31) gives

2
61(3; V) Z(wi - vi) /\)i

)
Zvi(wi/vi -1°,

which is the variance of the standardized per capita incomes or,
equivalently, the squared coefficient of variation of the unstandardized
per capita incomes,

Theil index: With B8 = 0, (1.31) becomes
GO(E; B) = Zwi 1og(ﬂi/vi),

which has been used by Theil as a measure of income inequality.

Bhattacharyya's divergence: Putting B = -.5 in (1.31) gives

/2

]
b ein (8/2) = B°,

1
5,515 V) = 201 - Eenv,)

where 6 is the angle between the two unit vectors (JFI’ JE?,...,JES)
and (Vvl, VVZ,...,VvS). Bhattacharyya [75] uses 62 as a measure of the
distance between two multinomial populations. Note that R = -,5 is the

only instance in which §_(m; V) is symmetrical in 7 and V.
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The principal results and conclusions of this section on income
inequality may be summarized as follows:

1. Inequality is the opposite of evenness not of diversity.
Inequality is best regarded as a relative concept: the inequality of
the income shares relative to the population shares.

2. An intrinsic inequality ordering similar to the intrinsic
diversity ordering, has been defined and shown to be equivalent to
the torenz ordering.

3. In general, the measures of equitability proposed by Hill
- [12] do not preserve the intrinsic inequality ordering (in the opposite
‘'sense).,

4, A technique has been given for associating inequalify
measures with diversity indices. The association pairs the Gini
coefficient with the Average Rank index, the Theil index with the
Shannon index, and the coefficient of variation with the Simpson
index., More generally, the directed divergence of type B8 + 1,

denoted 68, is paired with the diversity index A

g*
5. A decomposition, applicable to two-way classificationmns,
lhas been given for 68. The decomposition reveals that:,GB inflates
the contribution to inequality dﬁe to high per capita income groups
and defiates that due to low per capita income groups. A modified
form of 68 inflates the contribution of low per capita income groups.
The modified index is a transformation of the incomes equivalent
corresponding to a certain family of social welfare functions.

6. There has been established a diversity analogue of the

familiar decomposition






CHAPTER 2

DIVERSITY OF RANDOM COMMUNITIES

2.1 Introduction

Throughout Chapter 1, the community abundance vector was assumed
- to be fixéd. Often it will be realistic to regard the abundance vector
‘as a realization of some stochastic generating mechanism. In this case,
our interest will focus on the "diversity producing capacity" of the
mechanism and not on the diversity of particular realizations.

As in Chapter 1, two separate problems can be distinguished. First
of all, we may wish only to rank random communities: to be able to
say that one random community is more diverse than another. This is
the ordinal problem and is dealt with in Section 2.4. The problem of
quantification, on the other hand, calls for a numerical measure of
the diversity of random communities. Two possibilities immediately
suggest themselves: E[A(E)] and A(E[E*])‘ These will be called the
EA and AE measures corfesponding to the diversity index A. However, if
the abundance vector is a member of some parametric family, it may be
more natural and, from the inferential standpoint, more appropriate to
adopt some function of the parameters as the diversity measure,
Usually this function will pertain specifically to the underlying model
and will not fall into the framework considered in Chapter 1. Of course,
some justification must be given for the function that is chosen. A
central theme of Section 2.2 and Section 2.4 is the justification of
Fisher's "alpha" as a diversity measure associated with the (symmetric)

Dirichlet model.
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_Example 2,4: Let V assume the two values (.5, .4, .l) and
(.2, .2, .6), each with probability 1/2. Then E[v] = (.35, .3, .35)
and E[B*] = (.55, .3, .15). Notice that E[B] is intrinsically mofe
diverse than any realization of v and is not at all representative of
Ve On the other hand, E[B*] gives a better overall description of the
community structure without regard to species identity. Here,

E[Al(g)] = .,570 and Al(E[B*]) = ,585., Note that the EAl and AlE measures
inconsisteﬁtly rank v in comparison with the community m of the previous
example. In each case, though, the EA1 measure 1s less than the AlE
me&sure. It is a simple consequence of Jensen's inequality that tﬁis
will always be so when the index satisfies Criterion C3.

Example 2.5: (Random sample.) Let X = (Yl, Y2, Y3,...) be a
random sample from a fixed community m where Yi is the number of times
the ith ranked species is represented in the sample. Then X/N is a
random community whose abundance vector has a rescaled multinomial
distribution. Note that E[Y/N) = g*.

Example 2.6: (Random permutation.)- Let B be obtained from the
random community T by subjecting the components of m to a permutation.
In general, the permutation may be random and its distribution may
depend on the realized value of m. Species identity may be lost after

a random permutation since, for example, V., may reference different

1
species in different realizations. But species identity is unimportant
for questioﬁs of diversity so that m and v may be regarded as equivalent.
Two types of random permutations are quite useful. The ranked
permutation v = I* arranged the components of m in descending order and

* %
is canonical in the sense that ™ and m' are equal in distribution when-

ever m' is a random permutation of .
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#

The size-biased permutation v = T is obtained as follows: Randomly

select an individual from the community and put nﬁ =T, where'i1 is the
1

label of the species to which the selected individual belongs. Now

remove species i, from the community and randomly select a second

1
individual. Put wg =T, where 12 is the label of the species to which
2

the second individual belongs. Remove species il and 12 and randomly

select a third individual, etc. Alternatively, the partial sums “1’
ﬁl + ﬂz, ﬂl + ﬂz + W3,... partition the unit interval into the sub-_

intervals Ii = (ﬂl+...+wi_l, ™ +...+ﬂi], i=1,2,3,... . Now let

1

U'='(U1, Uz, U3,...) be a random sample from the Uniform (0,1) distri-
bution where U is independent of mw. Let Iﬁ be the subinterval containing
U, and, by induction, let Iﬁ+ be the subinterval which contains the

1 1
#_# #

first component of g that is not contained in the union of Il’ IZ,...,Im.
Put ﬂf equal to the length of If.

It should be clear that the size-biased permutation is cononical
in the sense defined above. 1In particular, E#, E## and E*# are equal
in distribution.

The size-biased permutation arises naturally in the problem of
"heaps" which has been considered by Kingman [79]. A number of items
labeled i =>1,2,...,N are stored in a heap and are demanded from time
to time. After being used, the item is replaced on the top of the heap.
The successive arrangements of items in the heap form an irreducible
aperiodic Markov chain with N! states. The equilibrium distribution

is easily seen to be the distribution of ﬂ# where 7, is the proportional

i
demand for item i.

As a numerical example of size~biased permutation, take m to be

the fixed community (.6, .3, .1). The probability distribution of
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the random community ﬂ# is given in Table 2.1. Notice that ﬂ# arranges
the components of T so that large abundances are likely, but not
certain, to appear early in the list. The next theorem makes this

precise,

Table 2.1: Probability Distribution of W#

x P(T =)
(.6, 3, .1) ;450
(65 o1y 53) 150
(.3, .6, .1) «257
(<3, +1, «6) .043
{1y »65 %3) 067
(.1, .3, .6) .033

Theorem 2.1: Let ﬂ# be the size-biased permutation of the random

community m. Then wf is stochastically greater than ﬂf+l,

Consequently, E[wﬁ] z_E[ﬂg] >eee and the components of the fixed

i = l’2’3’." Ld

community E[E#] are already arranged in descending order.

Proof: By conditioning on the value of Ts it will suffice to
prove the theorem when m is a fixed community. Also, it is only
necessary to prove that ﬂf is stochastically greater than ﬂ#lsince the

2

general case than follows by conditioning on ﬂﬁ, Wz,...,ﬂﬁ_l.

Let
X) Z_xz Z_x3 >.+. be the components of T listed in descending order
and, for the moment, assume that there are no ties among the nonzero X,

. - ;
Now, P('rrl z_xm) = x, + x2+...+xm = y, while

1.
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# '
P(m, >x )= L x,(y-x)/QA-x.)+ I x,vy/(1~-x,). (2.1)
2—"m i<m i i i i>m i i

Let 0 <y <1 be fixed. The function x(y - x)/(1 ~ x) is concave on
the unit interval. Applying the principle of forward transfers, the
first term of (2.1) is maximized when Xy T Xy TeeeF X < y/m and has
maximum possible value y(y - y/m)/(1 - y/m). On the other hand, the
function x/(1 - x) is convex on the unit interval so that backward
transfers increase the second sum in (2.1). Holding X fixed and

bearing in mind the constraint xm.Z X

> >
] > xm+2'—f"’ the second sum is

maximized when xm = X = xm+2=...= X, and x i1 = § where

l=-y= nxm'+ § with 0 < § < X - Therefore,

I oxy/(1=x) <ylox /(1 =-x)+6/(1=~8)]
i>m

f_y[nxm/(l - xm) + 68/(1 - xm)]
<y@d-y/Q1 - Xm)
<y@-yv)/A - y/m).

Putting these two upper bounds together gives P(“ﬁ.i xm).i y = P(ﬂf z_xm)

which proves that ﬂf is stochastically greater than ﬂg.

of ties among the nonzero X first break these ties by a slight defor-

In the event

mation, then apply the above result and take the limit as the deformation

goes to zero. For example, if X =X, > x3 >+4sy we have
P(Tr# > x In* = x) = lim P('rr# > x, - h|1r*'= (x, +h, x, ~ h, x ))
2 —"1'~ ~ 2 - "2 ~ 1 ' 72 i L
h>0 :
h>0
> 1im P(ﬂ# > x. - h|ﬂ* = (x, +h, x, - h, X.56ee))
— 1-"1 ~ 1 > =2 -

h>0
h>0

p(r > l* )
Ty Z %20 = 3
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The expression for E[Airank)(z)] has been obtained by Kingman [79,
equation (14)] in a different context.

Remark 2.1: 1In general, there are no simple closed form expressions
for E[Aérank)(ﬁ)]. If there were, using (1.14), one could obtain closed
form expressions for the expected order statistics from a Gamma distri-
bution.

Sometimes one wishes to replace a random communify with a "typical"
fixed community. As has been pointed out, E[E] is not an appropriate
interpretation of "typical.”" 1In fact, E[E] is a completely even
community when the nonzero components of T are identically distributed.
as in the Dirichlet model. Better choices are E[E#] or E[E*]. (See
Section 1.3 and Section 1.4, however,) The size-biased permutation
of the Dirichlet community is quite manageable and a number of its
properties are established below. On the other hand, E* is usually
intractable; the Dirichlet community with k = 1 is an exception and is
considered next.

Example 2.8: (MacArthur's model.) MacArthur [80] supposed that s
species were competing among themselves for a fixed resource. The
total available resource was represented by the unit interval and was
apportioned among the species by selecting s ~ 1 points at random from
the unit interval and arranging these points in increasing order:
0=Vy<V, <V
amount of resource equal to ﬂi = Vi - Vi—l'

n3,...,ﬂs) is called MacArthur's random model

ST R <V =1, Species i then received an
2 —="""— "g-1 — s

Defined in this way, the

community m o= (ﬂl, Tys

*
with s species while E[m ] is MacArthur's fixed model. The next theorem

was proved by Cohen [81].
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Theorem 2.3: MacArthur's random model with s species is equal in
distribution to the symmetric Dirichlet model with s species and with
index k = 1.

Proof: Let V ~ D(s, k) and obtain V as (Xl, Az,...,ls)/l where
the Ai are iid exponential random variables and where XA = Al + X2+...+XS.
Conditional on A, the variables W, = A

1 1’

W2 = Al + Xz,...,W = Al + A2+...+X are joihtly distributed as the

s-1 s~-1
~ order statistics of a random sample of size s — 1 from a Uniform (0,A)
distribution. It follows that, conditional on A, the variables

Vi = Wi/l are jointly distributed as the order statistics from a Uniform
(0,1) distribution. Moreover the qualifying phrase "conditional on A"
can be dropped from the previous sentence since (Vl, V2,...,Vs_l) is
independent of A. With Vo = 0 and VS =1, vi is obtained as V

just as in MacArthur's model.

—Vi

i -1’

Corollary 2.1: For MacArthur's random model with s species,

E[AB(W)], E[Ag_s(w)],and E[A{rank)<w)] are obtained by putting k = 1 in

Theorem 2.ll.

*
Corollary 2.2: Let v = E[m ] be MacArthur's fixed model with s

species and define H 0 and Hm =1+1/2+ 1/3 +...+1/m. Then

0
\)i = (Hs - Hi—l)/s, 1= 1,2,000’80
Proof: Let T be obtained as (Al, Az,...,ks)/l as in the proof of

Theorem 2.3. Without loss of generality suppose E[Ai] = 1 and E[)A] = s.
I * * * * *

Then T, = A,/\ where A, > A, > A, >.,..> A are the descending order
i i 1-"2—-"3-"""=-"5g

statistics from the standard exponential distribution. Since the

fractions are independent of the total, it follows that

E[ﬂ:] = E[k:/A] =.E[l:]/E[A] = E[A:]/s. But E[A:] =H -H_,.
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Open Problem: Characterize the class of residual allocation models

whose size-biased permutation is also a residual allocation model.

Example 2.10: (Infinite residual allocation model.) Let Ql’
Q2, Q3,... be an infinite sequence of independent random variables with
P(0 < Qi < 1) =1, Let Tys Tys Taseee be defined as in (2.5). Then

= (wl, ﬂz, ﬂ3,...) is called an infinite residual allocation model

~

provided
?(:1120 (1 - ™o ﬁz-...—vn) =0) = 1, _ (2.7)

Theorem 2.8: Equation (2.7) holds when Ql’ Qé, Q3,... are indepen-
dent and identically'diStributed.

Proof: Take the negative logarithm of both sides of (2.4) to find
that -log(1l - "= wz-...-ﬂn) = iEl-log(l - Qi)' Since the ~log(l - Qi)
are iid positive random variables, this last sum diverges to +» with
probability one. Now (2.7) is immediate.

Remark 2.1l: This is the first time we have considered communities
with infinitely many species. A measure theoretic framework adequate
for our purposes is sketchedtin Appendix.A.3. Measurability questions

will be ingnored in the body of the text.

Example 2.11: (Engen's model.) This is the infinite residual

éllocation model m whose residual fractions are iid with common distri-
bution Betal(l, o) where o > 0, From (2.5), E[ﬂll, E[ﬂz], E[ﬂ3],...
forms a geometric progression with ratio 6 = a/(a + 1) and odds ratio
8/(1 - 0) = a. By matching moments of first moment distributions, Engen
[84] has associated his model with Fisher's limiting Dirichlet. The

next example makes this association a bit more precise.
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Example 2,12: (Fisher's limiting Dirichlet.) For the Dirichlet

model of Example 2,7, Fisher [85] introduced the produét o =gk as a
diversity'measufe. For fixed k, o is proportional to the number of
species and may be regarded as a species richness parameter. As justi-
fication for the use of o, Kempton & Taylor [86] point out that, for
most data sets, it is not possible to efficiently estimate s and k
separately although the product 0 = sk can be efficiently estimated.
Fisher found that s was usually very large and k very small which led
him to idealize the model by taking the formal limit as s >~ ® and k > 0
with the product o = sk held fixed. The sampling distribution considered
by Fisher did converge (to the log series distribution) perﬁitting the
development of inferential techniques. But the underlying population
model does not converge. More precisely, by Theorem 2.2, each component
of the Dirichlet model converges to zero. The existence of a sampling
distribution with, apparently,no valid underlying population model
has caused some difficulty of interpretation éspecially concerning the
parameter o,

The reason the Dirichlet fails to converge becomes clear once we
note that there ié no community m with infinitely many species and whose
components T, are identically distributed. As Kingman [79] points out,

such a community would have to satisfy the imcompatible requirements

E[ﬂl] = E[wz] = E[ﬂ3] Zeeey

h) E[ﬂi] =1,

This difficulty can be avoided by subjecting the Dirichlet community to
an appropriate canonical random permutation before taking the limit.

For example, results of Kingman [79] imply that the ranked permutation
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assumptions of the theorem. Note that it was only necessary to use the

#
1 and vl. We

conjecture that the assumption that the residual fractions are identically

équality in distribution of the first components v

distributed can be dropped when the full force of invariance is used.

Example 2.13: (Random deletion of species.) Let 0 < p < 1 and

suppose V is a random community with P(0 < v, <1) = 1 for i = 1,2,3,... .

i

Further suppose sl, 62, 83,... are independent Bernoulli random variables.

with P(t—:i =0) =1-p and P(ei = 1) = p. Put ™= viei/Zv € Then

i3
T = (ﬂl, wz, n3,...) is a random community obtained by screening V.

Call 61,62,83,... the selection variables. Defined in this way, T has

infinitely many components equal to zero. If desired, the zero components
can be omitted by the following device: Let X(1), X(2), X(3),... be
independent geometric random variables with P(X(1) = x) = p(1 - p)x-l,

x=1,2,3,... « Put T, = and T, = Tilr where

VR(1)+X(2)+. o AX(1) i

T = Tl + Tz + T3+... . Part (a) of the next theorem is proved in

Chapter 4; a direct verification appears to be difficult.

Theorem 2.11: Let v be Engen's model with parameter a. Then

a) T = ZTi has a Betal(pa, (1 - p)a) distribution and is independent

of T = (Tl, Ty T3,...)/T,
b) m is équal in distribution to Engen's model with parameter pa.

gzég{; b) For reference, note that E[Qt(l - Q)T] = |
o I'(t + DI'(a+T)/T(a+t+ T+ 1) when Q ~ Betal(l, 0). The joint
distribution of a uniformly bounded collection of positive random
variables is known to be uniquely determined by the joint Mellin transform

of the finite dimensional marginals. Now, for Engen's model with

parameter o, the joint Mellin transform of Vl, vz,...,vn is
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n S n
El mvE@ ) g of W

)t(j+1)+t(j+2)+...+t(n)]
h| 1 J ’
j=1 j=1

a-q (t(3) > 0).

3

Write T(i) = t(i) + t({+L)+...+t(n), i = 1,2,...,n and T(n + 1) = 0.
Using the independence of Ql’ Q2, Q3,..., the joint Mellin transform

simplifies to

B - ¢ P t(3) ;7 _ o \T(+D)
E[j:1 vy ') jzl E[Q;7( - Q) ] (2.8)

n ;

= 7 [al'(t(§) + L)T(a + TG + 1))/T(a + T() + 1)1
J=i
n n .

= 7 [al(t(§) + 1)/ + TGN 1 7 [T(a + T(G+1))/T(a+T(3))]
i=1 j=1
n

= m [al'(t(3) + 1)/(a + T(3))]1°T(@)/T(a +T(1)). (2.9)
j=1

On the other hand, the joint Mellin transform of ﬂl’ ﬂz,...,ﬂn is
n . n .
E[ m wg(J)] =E[(m TF(J))/TT(I)].
i=1 | j=1
But m is idependent of T so that the expectation of the quotient is the
quotient of the expectations, giving
n

R S C DRTA TG DRI, J6 b Iy
j=1 =17 -

By part a), T ~ Betal(pa, (1 - p)a) so that

ElrT V] = [[(@)/T(@ + T (pa + T(1))/T(pa)]. (2.10)

Next let X(1), X(2), X(3),... be geometric random variables as in the

discussion preceding the statement of the theorem. With the aid of

8} .
(2.5), it is not hard to see that T TF(J) can be written as

=17
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components of T are zero. But knowledge of the Ei provides information

about T = v e, since the distribution of (vl, vz, Y] ) is not

1. 1

exchangeable.

3,...

Remark 2.4: It has been pointed out previously that the parameter
o = sk is proportional to the number of species for the Dirichlet model.
Theorem 2.11(b) implies that this interpretation remains viable even
after taking Fisher's limit.

Remark 2.5: Theorem 2.11 is also true when Engen's model is
replaced with Kingman's limit.

The Mellin transform (2.9) can also be used to prove the invariance
of Engen's model under.sized-biased permutation and, in the process,
to establish the well-known negative Polya identity. Write = B#
where v is Engen's model with parameter 0. Given v, the first component
Wl takes the value vi with probability vi and the Mellin transform of
T, becomes

1

1

t t t+
E[m,] = E[Zv,v;] = E[Z v, 7] (£ > 0).

By the monotone convergence theorem, the expectation can be computed

termwise. Using (2.9) this gives

[0}

% [of/(a+t+ 1)]F T(t + 2)T(a)/T(a + t + 1)
i=1

E[w‘l:]

[a/(t + DIT(t + 2)T@)/T(a + t + 1)

't + DI(o + 1)/T(a + t + 1). (2.14)

Since (2.14) is the Mellin transform of Vv

of ﬂ1==vﬁ and vl has been established.

1° the equality in distribution
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Next consider the first two components ('rrl, Tr2) of . Conditional
on v, these take the value (\)i, \)J.) with probability'\)i\)j/(l - \)i)
when i # j and with probability zero when i = j. The joint Mellin

transform is then

t+1 u+1

Elvt 1] =E[ Z v /@ = v)]
1 2 i
i#]
= E[ I Z v§+x u+1]
i#j x=1 J
[¢+]
t+x u+1

Z (I + I)E[v
x=1 i<j j<i

it B CRTE RO

But by (2.9),

zmqﬂuﬂ] Sla/a+t+x+u+DIio/@+u+ DI It +x+1x

i<j J 1<j

T(w+ 2) T(@)/T(a+u+t+x+1)

[/ (t+x+u+D)][a/Cu+D)IT(t+x+D(u+2)T()/T(a+u+

t+x+1). (2.15)

Interchanging t+xand u+ 1 in (2.15) gives

% E[v 1i+x u+1l

J<i

] =[a/(t+x+u+ D]a/(t +x)]x

T(t+x+ Dl'(u+ DI'()/To+u+t+x+1). (2.16)

Adding (2.15) and (2.16), the Mellin transform of ('nl, 'nz) is

[ee]

L aT(t + )T+ 1)T()/T(a + o + t + x + 1), (2.17)

E [1711: ™
x=1

21 =

On the other hand, the Mellin transform of (\)1, \)2) is, by (2.9),
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E[vzv;] = aZP(t + DI'(u + DI@)/[(a + u)T(a+u+t +1)]. (2.18)
After some cancellations, the equality
t u t u )
E[Tr1 ﬂz] = E[vl vzj, (2.19)

is equivalent to

o0

IT(t+x)/T@+u+t+x+1)=TC+D/[c+u)T(a+u+t+1)].
x=1 ;

(2.20)

Now here is the trick. The equality in distribution of m, and vl has

1
already been established so that (2.19) is true when u = 0, Thus
(2.20) is true when u = 0 and for all o > O, But since (2.20) involves

only the sum o + u, it must be true for all o > 0 and all u > 0.

It may be remarked that (2.20) is equivalent to

o
5 X-l t+1+x-1)fa+u o+u+t+x+1

]
p—
M

x=1 x -1 1 X

whiéh is the negative Polya didentity.

The above procedure can be iterated (the next step, for example,
leads to the bivariafe negative Polya identity) but the calculations
become very complicated. A simple and general proof of the equality
in distribution of m and Vv will be given in Chapter 4.
| As an illustration of the usefulness of the preceding result,
consider the problem of calculating E[A(g)] where v is now an arbitrary

random community and where

A(y) =7 vy R(vi) (2.21)
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Theorem 2.13: Let Vv be Engen's model with parameter o, Then

a) E[vl], E[vz], E[v3] forms a geometric series with ratio 6 = a/(lA+ o)
and odds ratio 8/(1 - 8) = q,

b) E[A,M] = 8711 = T(B + D@+ /T + B+ 1] 1f 8> -1, 8 4 0,

) E[AyM] = Y@ + 1) - ¥(@)

= Zo/(n(n+a)], _ (2.24)
n=1
d) when w > 0,
ElAL S = al¥@ + v + 1) = b + D]
= L (aw)/[n+a)(m+oa+wl, (2.25)
n=1
e) E[I{ - 1)v,] =a,

* e d
f) E[Z{d - l)vi] o log 2 ~ .69 0.

Proof: Part a) is obvious and has been previously pointed out.
Parts b), ¢) and d) follow from (2.23). Part e) follows from the
monotone convergence theorem and a). Notice that I(i - 1)\)i can be

rewritten as

(1 - vl) + (1 =-v, - vz) +(lL-v, -V

1 2 - v3)+...,

1

or, by (2.5), as

(2.26)
where the 1 - Qi are iid with common distribution Betal(u, 1). It
follows that the series (2,26) converges will probability one and has
finite expectation equal to o, This series with reappear in Chapter 4,

The proof of f) is deferred until Chapter 4.
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Remark 2.7: When o is a positive integer, (2.24) simplifies to
1+1/2+1/3+...+1/a. When w is a positive integer, (2.25) simplifies
to af (1 + a)—l + (2 + a)—1+...+(w + a)_l]. In pérticular, we have

E[A, (V)] = E[AT (W] = o/ + 1).

Remark 2.8: The expressions in b), c) and d) result when Fisher's
1imit is formally applied to the formulae given in Theorem 2.2. In‘
fact, for any dichotomous index, E[A(V)] may be obtained by first
calculating this expectation for the Dirichlet model and then appl&ing
Fisher's limit. This follows from a comparison of Equation (2.23) wifh
(16) and (20) of Kingman [79].

Remark 2,9: For the rank ﬁype index Aérank)’ one obtains

a/(L+ o0 -pa) if 0 < p < (o + 1)/
E[Z v, (1 - oIy - o1 =
© if (@ + 1)/a < p.

On the other hand, closed form expressions for the expected value

E[Aérank)(y)] = E[Zv:(l - pi'l)/(l - p)] are not known.

2.3 Fixing the Limiting Dirichlet Model

A number of éuthors, most notably Engen [84, 88], have suggested
that it may be preferable to draw inferences about the physically
realized community instead of underlying generating mechanisms. To this
end, several attempts have been made to identify fixed communities that
closely resemble realizations of the limiting Dirichlet; Most of these
attempts fall into two general classes which may be termd the method of

expectations and the method of quantiles.
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The first approach (method of expectations) replaces the random
communi;y m with the expected value of some canonical, stochastically‘
decreasing permutation of LE For instance, either v = E[H*] or
¥ = E[E#] might be adopted as the fixed model. The ranked permutation
of the limiting Dirichlet is intractable and will not be discussed here.
The size-biased permutation of the limiting Dirichlet leads to the

geometrié series model with ratio 6,

oy = ei—l

i (1-9), i=1,2,3,ooc, 0<e<l, (2.27)

and has been recommended by Engen [84]., The ratio is a complete
diversity parameter for this model, but in practice, it may be preferable
to use the odds ratio af =0/(1 -0) =L - 1)\)i since it (apparently)
corresponds to Fisher's a by Theorem 2.13 (a,e). Estimation of o' for
multinomial sampling has been discussed by Engen [84], but his justifi-
cation of jackknifing appears to be invalid. See Appendix A.6.

The second appraoch (method of quantiles) begins with the assumption
that the species abundances are independent realizations of the standard
Gamma distribution with index k. These random abundances are then
approximated by the quantiles of the Gamma distribution. Assuming there
are s species, the quantiles vi are defined implicitly by

[° LT (k) dx = 1/(st1), 1 = 1,2,...,5. (2.28)
M,

i
Dividing both sides of (2.28) by k and applying Fisher's limit gives
[o o]
~1 -x . ;
[ x e fdx = i/a, i =1,2,3,... . (2.29)
Vi

The solution of (2.29) is obtained as
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v, = E'l'l(i/d), i=1,2,3,..., (2.30)

where E;l is the inverse function of the exponential integral function.
Tables and properties of El(x) can be found in Abramowitz and Stegun [89].
It may be shown that Zvi < o3 in what follows there is no need to normalize
the vi to unity. The.preceding derivation of (2.30) is due to Watterson
[90]; variants have been considered by Engen [88] and Holgate [91].

Both (2.27) and (2.30) are candidates for "fixations" of the
limiting Dirichlet and we wish to judge how closely they resemble
realizations of this random model. A first standard of comparison is
provided by the next theorem.

Theorem 2.14: Let T be the limiting Dirichlet as represented by

Engen's random model with parameter o. Then, with probability one,
lim log(ﬂi)/i = ~1/0., (2.31)
i->c0 "

Thus the tail of T is approximately geometric with ratio 6 = exp(-1/a)

and odds ratio a' = 1/[exp(3/a) - 1].

Proof: Use (2.5) to write the components of T as
Tri = (1 = Ql)(l - Qz)o'-(l - Qi—l)Qi, (2'32)

where the Qi are independent realizations of the Betal(l, o) distribution.
Take logarithms, divide by i, and apply the strong law of large numbers
and the Borel-Cantelli lemma to conclude that, with probability one,
1og(ﬂi)/i converges to E[log(l - Ql)]. After the change of variable
V = ~-a log(l - Ql), the expectation is easily seen to be -1/a.

Remark 2.10: Kingman [79] has shown that (2.31) also holds when

m is the ranked permutation of Engen's model.
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The result (2.31) is satisfying in that it holds with probability
one, but a word of caution is in order since the asymptotic behavior
of T can be'veryinongeometric. From (2.32), ratio ﬂi+l/ﬂi equals
a - Qi)Qi+l/Qi so that ﬂzlﬂl, ﬂ4/ﬂ3,.ﬂ6/ﬂ5,... are independent and
identically distributed unbounded random variables. It follows that the
ratios form a dense subset of the positive real axis and have no limit
as i > =,

At least three levels of asymptotic geometricity can be identified.

Let 0 < § < 1. A sequence 213355855000 of positive real numbers is

said to be asymptotically geometric (AG) in the strong, intermediate,

or weak sense when:

i) (strong AG) 0 < lim ai/61 < oo,
i>ox
ii) (intermediate AG) 1lim ai+1/ai = 0,

i

iii) (weak AG) 1lim log(ai)/i = log(B).

i->o00

In all three cases, call 6 the asymptotic ratio. As the terminology

suggests, strong AG implies intermediate AG implies weak AG and each
implies that the series Zai is convergent. Notice that intermediate AG

is equivalent to the requirement that the differences log (a.,,) = log(ai)

i+l
converge to log 6. On the other hand, by telescoping, weak AG requires
only that the Caesaro means of these differences converge to log 6.
Weak AG is thus seen to be weak indeed and is about all that can be
expected if the a, are random or, for that matter, are any physically
realized quantities. See Appendix A.4 for further discussion of
asymptotic ggometricity.

How compatible with Theorem 2,14 are the two fixed models (2.27)

and (2.30)? The geometric series model is evidently strong AG except
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that the odds ratio shoﬁld be taken as &' = 1/[exp(1/a) - 1] and not o
as might be suggested by Theorem 2.13. However the correction is smail
since a - 1/2 < o' < a, with the lower bound being the better approxi-
mation for reasonable values of o, A numerical comparison is given in
Table 2.2, The correction has the effect of reducing the ratio and hence
the diversity. Even so, the geometric series model is intrinsically
more diverse than Watterson's exponential iﬁtegral model for a given
value of o (see Appendix A.7). The relative frequencies of the two
models are plotted in Figure 2.1 when o = 5. As the plot shows, the
.exponential integral model assigns greater abundance to the common
species and less abundance to the rare species than does the geometric

series model,

Table 2,2: Lower and Upper Bounds for the

Corrected Odds Ratio

a=1/2 1/[exp(1/a) = 11 o
0.500 0.582 1
1.500 1.541 2
2.500 2.528 3
4.500 4,517 5
7.500 7.510 8
9.500 9.508 10
19.500 19.504 20
49,500 49.502 50

99.500 99.501 100
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It is possible to show that the sequence defined by (2.30) is also
strong AG with ratio © given by -log 6 = 1/a. This establishes that
Zvi < © as pointed out earlier. Both models thus satisfy (2.31) albeit
in a much smoother sense than would be observed in any realization of
the limiting Dirichlet. But asymptotic geometricity is only part of
the story. Chapter 4 develops a wide class of random communities which
satisfy this condition with probability one, so that, while asymptotic
geometricity is a helpful guide in identifying possible fixations of
the limiting Dirichlet, it alone does not suffice.

A second, and more powerful, standard of comparison was initiated
by Watterson [90] in connection with the exponential integral model.

It consists of comparing the sampling distribution of the fixed model
with Fisher's log series distribution.

Several version's and/or interpretations of the log series exist
and have been surveyed by Watterson [90]. The version of interest here
(Watterson's Version 2) is due to Anscombe [92], who obtained it by
supposing that the species abundances Al’ Xz,.,.,ls were independent
realizations of the standard Gamma distribution with index k. The
observed number of representatives of species i was further assumed
to be a Poisson variate with mean AAi where A is the sampling intensity.
Letting n, X = 1,2,3,..., be the number of species having x represen-

tatives in the sample, the vector of observations (nl, nz, n ) is a

3,...
sufficient statistic whose likelihood may be written down. The number
of species in the community enters this likelihood as an unknown

parameter. After applying Fisher's limit to the likelihood, the n_

become independent Poisson variates whose means are given by

E[n ] = a[a/(1 + NS (2.33)
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The observed number of species an is, as a consequence, also Poisson

with mean o log (1 + A).
Notice that the preceding derivation does not involve truncation.
Some authors, Pielou [33, p. 44], for instance, prefer to truncate the

negative binomial before letting k >~ 0. The population parameter o

is then introduced in an obscure way that makes it appear to be at
oﬁce a random variable and a function of the sampling parameter A.

Now consider Poisson sampling from a fixed model Yf assume tﬁe
observed number of representatives from the different species are
independent Poisson variates whose means Avy are proportional to the
respectivé species abundances. Because of the confounding between A
and Vs there is no need to normalize Vv to unity. vThe subsequent algebra

is somewhat simplified if the geometric series model is specified by

in place of (2.27).

The joint probability gemnerating function of Ny, My, n3,... is

0 By 1, > z X
1 "2 3 X q. i
i=1 x=1
and, in particular,
n L3
E[t,"] = E [1- (1=~ t)Av, exp(—Avi)]. (2.36)

1
From (2.35), it follows that the n are not independent and their marginal
distributions are not Poisson. At least to this extent, the sampling
distribution of a fixed model can never be Fisher's log series, This

is not surprising: a central purpose of fixation is the elimination
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of the variance component due to community variability and this elimination,
to be effective, must change the sampling distribution.
One is still free to demand that the n have expectations given
by (2.33), at least approximately, and this is the second requirement to
.be satisfied by any proposed fixation of the limiting Dirichlet model.

Either directly or from (2.35), one finds that

8

Eln ] = (Avi)xexp(-Avi)/x!. (2.37)

1

™

i
Often vi is formally defined for all positive real i and is a continuous
decreasing function of i. This is the case for both (2.30) and (2.34).

The sum in (2.37) can then be approximated by an integral to give

Eln] 21 = fo(Avi)xexp(—AvBAd di. (2.38)

Watterson [90] has established the bounds
I -1<E[n]<I_+2, (2.39)

although the approximation is usually much better than might be
suggested by (2.39), especially if A is large. The integral Ix can be
evaluated by a change of variable to produce the following two results,
the first of which was found by Watterson [90]:

T
i) When v, = El (i/0),

Eln ] 2 I_=ala/( + A1 /x, (2.40)
ii) When v; = Gi,
E[nx] e 1= (~1/1log 6)T(x3A)/x, (2.41)

where I'(x;A) is the incomplete Gamma function defined by
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x—

A 1 -
T(x;A) = [ e Vdu/T (x)

0

=1-e?+a+a%214. 085 x - 1T

The coefficient -1/log 6 in (2.41) may be identified with
Fisher's o by Theorem 2.14.
These results show that Watterson's exponential integral model is an
acceptable fixation of the limiting Dirichlet but that Engen's geometric
series model is not. The random community corresponding to the geometric
series model is identified in Chapter 4; the limiting Dirichlet is a
randomization of this community.

The earliest plots of n_ versus x are apparently due to J. C.
Willis [93] who observed a consistent pattern wﬁich he éalled the
"hollow curve." Subsequently, Chamberlin [94] described the ideal
hollow curve as the rectangular hyperbolé a/x. Both (2.40) and (2.41)
are weighted rectangular hyperbolas of form aw(x;A)/x. The unweighted
rectangular hyperbola is impossible in the present context since the
number of species in the sample is a Poisson random variable with mean
ZE[nx] < o, Fisher [85] introduced the exponential convergence factor
of (2.40). The Gamma convergence factor of (2.41) seems to be new and
has the effect of smoothly truncating the rectangular hyperbola at
about x = A, Figure 2.2 provides a comparison of the two convergence
factors when A = 50 and A = 100,

The geometric series model will rarely be useful for graduating
species frequency data since thé latter is often found to have an even
longer tail than the log series (Kempton & Taylor [86], Anscombe [92],
and Kempton [95]). It may possibly find application in word frequency

studies where the truncated rectangular hyperbola has been used.



X

wix;A) = [A/(1 +A)]

3 — = — w(xA)= [Mx;A)

Figure 2,2 Comparison of the Exponential Convergence Factor of (2.40)

with the Gamma Convergence Factor of (2.41) (A = 50, 100)

7t
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In principle, the sampling distribution corresponding to a fixed
model V is determined by the generating function (2.35). However, the
distribution is extremely complicated and, for realistic sized samples,
it will be impossible to explicitly write down the likelihood. Some
information can still be extracted from the generating function. For
simplicity, consider (2.36). Since ZAviexp(—Avi)fl - tll < o, the
infinite product in (2.36) is absolutely convergent for all t., and

1

defines an analytic function of the complex variable t Moreover, this

1°
function has zeros at the values t, = 1- l/[AViexp(—A(vi)],
i=1,2,3,... . When the sequence vi is strong AG with ratio 6, these
zeros do not stabilize as A + «© but vary approximately as a periodic
function of -logeA. It follows that the likelihood is multimodal for
large A, making maximum likelihood estimation difficult even if the
likelihood could be written down.

The limiting periodicity can be seen quite clearly for the geometric

series model. Putting Yy = 8" in (2.37) gives

o]

Eln.] = % a6lexp(-asdy. (2.42)
1 i=1

When A goes to « through the successive values ae'“, n= 12,3063

this expression converges to

o0 i .

I afb exp(ael),

{ ==
which is clearly a periodic function of —logea.
When 6 = 1/2, E[nl] has been plotted against long-in Figure 2.3

and Figure 2.,4. These figures display the graphs of both (2.42) and
the approximation (2.41). Notice that the oscillation does not damp out

as A + = although the amplitude (about .000015) of the oscillation is

very small,
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E[01]
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Figure.2.3 Exact and Approximate Values of E[nl] for the Geometric

Series Model (0 = 1/2 and o = 1)
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In the following we provide a brief summary of the material in this
sectiqn:

1. Two requirements are imposed on any fixation v of the
limiting Dirichlet: (i) v should be asymptotically geometric and (ii)
the mean sampling frequencies E[nx] should be approximately propqrtional
to the terms of the log series distribution.

2. Watterson's [90] exponential integral model meets both
reqﬁiremenfs although the asymptotic geometricity is smoother than would
be observed in practice.

3. For given a, Engen's [84] geometric series model is
intrinsically more diverse than the exponential integral model. The
géometric series model satisfies the first requirement but not the
second; the mean sampling frequencies are a smooth truncation of the
rectangular hyperbola. The geometric series model will seldom provide
an adequate fit to species frequency data.

4, Any fixed model which is asymptotically geometric in the

strong sense has a multimodal likelihood function.

2.4 Stochastic Diversity

This section extends the intrinsic diversity ordering to random
communities, As was the case for fixed communities, the ordering is
only partial and two random communities need not be comparable. 1In
fact, comparability is the exception rather than the rule, HoweVer,
some comparability relations are established for Dirichlet communities
and these relations shed further light on the role of Fisher's "alpha"

as a diversity parameter.
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of the theorem is clear since SD5 implies SD2 for fixed communities.

Example 2.14: This is the first application of Jensen's inequality.

Let m be a random community and A an index satisfying Criterion C3.
Then E[A(E)] = E[A(H*)] f_A(E[E*]) which shows that;

(a) E[E*] is stochastically more diverse than m in the

sense SD3.

Now let v be any random permutation of m for which E[B] is ranked, i.e.,
E[V1].3-E[V2] 3_E[v3] >.eo3 for example, v might be the size-biased per-
mptation H#. Clearly ﬂ; + w; +...+ﬂ; >V + V, teoot vmvfor any
positive integer m. Taking expectations shows that:

(b) E[y] is intrinsically more diverse than E[I*], and

(c) E[E#] is intrinsically more diverse than E[E*].
Taken together, these relations indicate that fixing a random community
by the method of expectations will exaggerate the community's diversity.
Also, (a) and (c) help explain the earlier result that Engen's fixation

of the limiting Dirichlet is intrinsically more diverse than Watterson's

fixation.

Example 2.15: Let il take the two values (1/2, 1/2, 0) and (1/3,
1/3, 1/3) each with probability 1/2 and let Vv take the value (5/12,
5/12, 2/12) with probability 1. It is easy to see that m and Vv are
not comparable in either of the senses SD2 or SD4. On the other hand,
V= E[E] = E[I*] and, by Example 2.14(a), v is stochastically more
diverse than m in the sense SD3. Finally, in the sense SD5, each of
v and m is stochastically greater than the other. This example
indicates that weakening the definition of stochastic diversity enriches

the class of communities that are comparable with one another.
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Example 2.16: Draw a random sample of size N from the fixed

community v and let Y, (1 = 1,2,3,...) be the number of times the ith

1
ranked species is represented in the sample. Since E[X/N] = Y* is
already ranked; Example 2.14(a,b) may be applied to show that E[X/N]
is.stochastically more diverse than X/N in the sense SD3. Using the
permutation invariance, v is then stochastically more diverse than the
sample X/N. In practice, only the order statistics

X 2% 2 X

invariance v is stochastically more diverse than X/N in the sense SD3.

> X, >.. of X can be observed; but, again by permutation

Thus A(Y) 3_E[A(§/N)] whenever A satisfies Criterion C3. 1In other
ﬁords, A(§/N) is always a negatively biased estimator of A(E). Simple
counterexamples can be constructed to show that this is not generally
true for indices satisfying Criterion C2.

The assumption that v is a fixed community is not essential in
the last examplg. In fact, the next theorem states that stochastic
diversity in any of the four senses is preserved under mixing. The
straightforward proof using conditional expectations is omitted. The
case SD2 has been previously noted by Nevius, Proschan & Sethuraman
[96, Theﬁrem 3.1])

Theorem 2,16: Let T and V be random communities and let U be a

random variable. Assume the conditional distribution of v given U = u
is stochastically more diverse in any one of the four senses than
the conditional distribution of m given U = u for each u. Then B
is stochastically more diverse than m in the same sense.
Most of the results in Nevius, Proschan & Sethuraman [96] and
in Proschan & Sethuraman [97] are stated under an assumption that

certain parameters A and Ai are positive. In the present terminology,
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that E[A(E')] z_E[A(H)] for appropriate choices of the index A. The
choices should include indices sensitive to rare specles as well as
indices sensitive to abundant species., The choice of A_l =5 =1
establishes the necessity of s' > s. Next consider A, for large B.

B
Using Theorem 2.1(a), this choice requires that

A[T(k" + B+ 1)/T(k + B+ 1)][I'(sk + B + 1)/T(s'k" + B + 1)] <1, (2.43)

where A = [Tk + 1)/T(k" + 1)][I'(s"'k* + 1)/T(sk + 1)]. But as B = o,

- - L ]
the left hand side of (2.43) is asymptotic to A B(S Dk-(s'-1)k

80
that (s = 1)k - (s' - 1)k' must be less than or equal to zero. Note:
if (s = 1)k = (s' - 1)k', one must also have A < 1. However; Lemma
2.1, below, shows that this is automatically satisfied when s' > s.
b) Consider separately the two cases: (i) s' > s but s'k' = sk, and
(ii) s' = s but s'k' > sk. Case (i) follows from Application 4.2(d)
of Nevius, Proschan & Sethuraman [96]. Recall that the ki need only be
nonnegatiQe. For case (ii), the s~component symmetric Dirichlet
family has monotone likelihood ratio in the index in the sense that the
likelihood ratio is a Schur concave function of e Now proceed just
as in the usual proof that a monotone likelihood ratio family is
stochastically increasing. That b) is not necessary is demonstrated
in Theorem 2.19, below.

It seems likely that the conditions given in Theorem 2.18(a) are
both necessary and sufficient. This will be proved when s = 2 and
s' = 3, We need a preliminary lemma whose proof is given in Appehdix
A.8.

Lemma 2,1: Let 0 <A, <B, <B, <A with A, +A, =B, +B,.

1 1 2 2 1 2 1 2
Then I"(Bl + 1)T(32 + 1) < I’(Al + l)F(A2 + 13,
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Proof: This follows from Theorem 2,18 since SD2 => SDS5.

We conclude this ‘section by showing that Fisher's o is a complete
diversity parameter for the limiting Dirichlet, at least in the sense
SD3. The proof uses the notion of random deletion of species as
discussed in Example 2.13. The following theorem, which contains no
new information, is included to clarify the proof.

- Theorem 2,20: Let Vo~ D(3, k) and T ~ D(2, k) (same k). Then V

is stochastically more diverse than T in the sense SD3.
Proof: Obtain Vv as (Al, AZ’ AS)/A where A\ = Al + Xz + A3 and the
Ai are independent realizations of the standard Gamma distribution with

index k. Consider the following collection of communities and their

associated weights:

weight community
w = O, +007@0 v =0, A, A/ + 0y
wy = (g + A )/(20) v® =, 0, 0070 + 1)
wy = O+ 0/ (20) v® =, 070y 2y
Now, it is easy to check that (i) vy + v, + W, = 1, (ii) the mean E(i) is
vy Y(l) + w, E(Z) + Wq 2(3) =, (iidi) W is indepeﬁdent of y(i), and

(iv) after omitting the zero components, each v(l) equals T in distri-
bution. Let A satisfy Criterion C3. By (i) and (ii), we find that

Afv) > Z WiA(B(l)) and taking expectations of both sides gives
(1)
E[A(V)] > ZE[w,A(VT7) ], (2.44),

But, by (iii) and (iv), Elw,; A(Y(i))] = E[Wi] E[A(B(i))] = E[wi]E[A(ﬁ)]-

Inserting this into (2.44) shows that E[A(V)] > E[A(T)]; as desired.
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Theorem 3.2: Assume that | = E[X] is finite and nonzero. Then
F#s converges in distribution to F# where dF#(x) = u‘lxdF(x) is the
'first moment distribution of F.

Proof: Conditional on the realized values of X., X,,...,X , the

1° 72 s
characteristic function of X#S is Ts = [ZXjexp(ith)]/SS where the sum
ranges from j = 1 to j = s and where 0/0 = 1. Divide numerator and
denominator of Tg by s and apply the strong law of large numbers to find
that, with probability one, Ts converges to ¢(t) = u—lE[X exp(itX)]
which is the characteristic function of F#. But ITBI < 1 so that the
dominated convergence theorem gives E[Ts] +> ¢(t). Since E[Ts] is the
characteristic function of X#s, the proof is complete.

The above results assume that the renewal process is replicated
for each realization of X#S. In practice, it will be more realistic to

consider repeated size-biased sampling from a single realization of the

renewal process., Suppose that r < s such selections are made without

ris rits _ris ris

replacement from among the first s gaps. Let X = (X1 - X2 ,...,Xr )
r

be the vector of selected gaps and let Y = SS_1 - I Xi#s be the
i=1

residual.
Theorem 3.3: Assume that X is absolutely continuous with density
f(x) and let fs__r be the (s ~ r)~fold convolution of £. The joint

density of Xr#s and Y is

r
s(s = 1)esu(s = r + 1)fs_r(y)izl[xif(xi)/(xi o, g Feedtx o+ )1
.and the marginal density of Xr#S is

r r

s(s = Dees(s ~r + 1) 7 [xif(xi)]~E[1/ T (xi + x

Footx. + 5 ],
i=1 =1 o8k

i+l
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Proof: Let Hx(u) be the indicator function of the interval (-, x].

For notational simplicity, take r = 2 and let O f_xl, X5 Ve As in

the proof of Theorem 2.1, P(Xi#s <x Xz#S < Xy Y < y) is given by

1° %2 =
r
E[1,§=1 (Xi/ss)(xj/(ss - Xi))Hxl(Xi)sz(Xj)Hy(ss - X - Xj)] =
i#3

s(s - 1}E[(X1/SS)(X2/(SS - Xl))Hxl(xl)sz(XZ)Hy(Ss -85 - Sz)] =

X X

y
ss-1 [ [ [ug /ey + uy + V) 1uy/(u, + 9] x

u1=0 u2=0 v=0

f(ul)f(uz)fs_z(y)dulduzdv.

Differentiating with respect to Xy X and y now gives the result.

2
When r = 1, X#S and Y = SS - X#S have joint density
sxlf(xl)fs_l(y)/(xl + y). Since the convolution of this joint density

must give the density of SS, we obtain the functional equation
z
2f (2) = [ sxf(x)f__;(z-x)dx. (3.1)
x=0
After normalizing, (3.1) states that the first moment distribution of the
s=fold convolution of X is obtained by convolving the first moment
distribution of X with the (s - 1)-fold convolution of X.
Theorem 3.4: Let r be a fixed positive integer. In the limit as
8 =

s is distributed as a random sample of size r from the first

Xr#s

moment distribution of X provided 0 < E[X] < o,
Proof: Similar to the proof of Theorem 3.2.
In the same way, one can show that Theorem 3.4 holds for sampling

with replacement. This has been stated without proof by Patil & Rao [102].
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3.3 Weighted Distributions

As a generalization of the first moment distribution, Rao [101]
has introduced the concept of weighted distributions. These have
density £9(x) = W(x)f(x)/fw(x)f(x)dx where f(x) is the original density
and w(x) is a nonnegative weight function. Distributions of this form
occur in many applications (see Patil & Rao [103] for a survey). Here
we show how weighted distributions fall into the framework of Section 3.2.
Suppose we have a pair (X, g) where X is a nonnegative random
‘variable called the concomitant variable and where E is a random vector
called the recorded variable. The components of Z do not have to be
nonnegative and one of these components may be X. An important special
case occurs when X = w(g) is a nonnegative function of g. We assume that
(X, %) has some naturally occurring joint distribution, but the method
of sampling is such that sampling units with larger values of X are
more likely to be observed, in fact with probability proportional to X.
As in Section 3.2, let (Xl, Z

~1

dent realizations of (X, Z) and regard X

)s (XZ’ Z

~2), (X3, §3),... be indepen-

1° XZ’ X3,... as the successive

gaps in a renewal process. Randomly select a point from the union of

the first s gaps and let j be the index of the covering gap. Record

Zj as Z#S. Let F(z) and F#S(z) be the distribution functions of Z
and Z#S, respectively.

#s

Theorem 3.5: Assume U = E[X] is finite and nonzero. Then F
converges in distribution to the weighted distribution F given by

dFW(z) = u—lw(g)dF(f) where W(f) = E[X’E = z].

~

Proof: Conditional on (Xl, Z1

characteristic function of Z#S 1s T, = [ZXjexp(it Zj)]/[ZXj] where

), (Xz, _Zv ),uo-,(xss ES)’ the
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parameter a have a standard Pareto distribution with index k + n.

Theorem 3.6: a) EID(k, 0) is the same as the standard Gamma
distribution with index k. b) As n - «, EID(k, n) converges to the
standard Gamma distriﬁution with index k + 1. ¢) EID(0, n) has
density nEn(x), x > 0, and converges to the standard exponential
distribution when n »+ =,

Proof: Use the fact that exp(-x)/(x + n) < En(x) < exp(-x)/(x + n-1)
for n > 1 (Abramowitz & Stegun [89, equation 5.1.19]).

Theorem 3.7: Let X have a standard Gamma distribution with index

k > 0 and let X#S be the sth order size-biased version of X as defined

in Section 3.2, Then X#S ~ EID(k, (s - 1)k). Note: there is no

loss of generality in assuming that X has scale parameter equal to

one since (aX)#s = a(X#S), a > 0,

k_lexp(-x)/I'(k) be the Gamma density with index

Proof: Let f(x) = x
k. Since Ss-l has a Gamma distribution with index (s - 1)k, Corollary

3.1 may be applied to show that X#S has density given by

-lu(s-l)k-le—u

sxf(X)E[1/(x + Ss_l)] = sxf(x)f (x + u) du/I(fs~- 1)k).
0

After making the change of variable t = x + u and using (3.3), this
reduces to

oo

sxf (x)exp(x)[ (t -
x

x) k=L o (—6) /tdt/T((s - 1)k) =

' _ .k
sxf(x)exp(x)E(s_l)k(x) = sx E(S_l)k(x)/r(k).
Multiplying and dividing by k gives

(IO (1, (/T + 1), (3.5)
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For concreteness, only size-biased sampling from the exponential
distribution is considered here.

Let X have a standard exponential distribution with density

#s

f(x) = exp(~x). By (3.5), X~ has demsity f#s(x) = stS_l(x) and

#

converges to the density f#w(x) = f (x) = x exp(~x) when s > ©, The

density f#S is plotted in Figure 3.1 for s = 1,2,3,11,, Examination

of these plots suggests that X#S is stochastically increasing in s.

fs+1

Theorem 3.8: The distribution F has monotone likelihocod
ratio with respect to F#s so that X#S+1 is stochastically greater than

X#S and F#l(x)_z F#2 (x) z_F#B(x) 2,..2_F#(x). Also, F# has monotone

likelihood ratio with respect to F#s.

fs+1 #s

Proof: The ratio f (x)/f ~(x) equals (s + 1)Es(x)/[sES_1(x)].

But the derivative of Es(x)/Es—l(x) is positive by 5.1.21 of Abramowitz

f#s

& Stegun [89]. The ratio r(x) = (x)/f#(x) equals sEs_l(x)exp(x).

Since dES_l(x)/dx = - ES_Z(X), we obtain r'(x) = s exp(x)[Es_l(x) -

Es_z(x)] and this is negative by 5.1.17 of Abramowitz & Stegun [89].

From Theorem 3.8, it follows that F#s(x) - F#(x) > 0. An

explicit expression for this difference will now be derived. Since

X#S has density stS_l(x), we obtain

1-F5) = Jou g @au
= f su f exp(—tu)/ts“1 dt du
u=x  t=1

[ [ s o exp(-v)/v "l av du,

u=x v=u

where the change of variable v = ut has been made in the last step.
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organisms then disperse about their focal points in accord with a circular
Gaussian distribution having variance 02. Depending on the intrinsic
abundance distribution and the distribution of 02, the effective
abundances with which the different species are observed at a fixed
sampling site can be realized as the jumps of either the Hyperbolic
process, the Gamma process, or the Beta process. Further, Fisher's o
has the interpretation of the mean number of focal points, i.e. species,
to be found in a standardized unit of area. This reinforces the claim
made in Chapter 2 that o is best regarded as a species richness parameter.

Taken individually, the jumps Ai of a subordinator are not valid
random variables. However, both the ranked permutation Xf and the size~-
biased permutation Af of the jumps are random variables, Qhose joint
densities are derived in Section 4.4, As o > 0, the first size-biased
component Af is shown to have a limiting distribution whose probability
density function is the first moment distribution of f(u). The A: and
the Aﬁ are permutations of one another and provide equivalent descrip-
tions of the same underlying community structure. The choice of which
to use can be made on the grounds of mathematical convenience. For the
Hyperbolic process the ranked permutation is more manageable while the
size-biased permutation is best for the Gamma process.

Section 4.4 also describes a standardized method for replacing the
random abundances generated by a subordinator with a typical set of
fixed abundances. The fixed versions of the Hyperbolic process and the
Gamma process are the geometric series model and the exponential integral
model, Under a fairly broad set of conditions, the fixed version of a

subordinator is asymptotically geometric in the strong sense.
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Section 4.5 considers Poisson sampling from a subordinator. The
jumps Ai are replaced with independent observations from the Poisson
(Aki) distributions. The resulting sample process is compound Poisson
and both the jump intensity and the jump distribution are derived. A
general expression for the species—area curve is also obtained from
the sample process. The sample can alternatively be described by the
statistics n_. These are shown to have independent Polsson distributions
and general expressions for their expectations are given. Both moment
and méximum likelihood estimation are briefly discussed.

Treating the species abundances as random introduces an additional
component of variability into the sampling distribution. A method is
given for calculating the pure sampling variability of a statistic
(the mean conditional variance of the statistic given the realized
abundances). The results of this method are compared with the approximate
expressions obtained by replacing the random abundances with their
fixed versions. An explanation is also given of why Watterson's [90]
formal generating function fails to be a valid probability generating
function.

When samples are taken at different points in time or in space, it
has been observed that the pooled sample may fail to fit the log series
distribution eveﬁ though the individual samples do fit. The random
dispersal model is used to explain this effect. It is found that the
pooled sample tends to have an excess of singletons when the various

sampling sites are widely separated.
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4,2 Subordinators

This section is a reference compendium of basic facts about subor-
dinators. The most readable source of information is Kingman [79, 104].
More detailed treatments may be found in Feller [82], Breiman [105],
Kallenberg [106], and Grandell [107]. Application of the Gamma process
to species abundance models has previously been considered by McCloskey
[108] and Shorrock [109].

Let du(u) be a measure concentrated on the positive real axis such

© oo

that f du(u) is infinite but M(A) = f [1 - exp(-Au) ]du(u) is finite
0 0
for all nonnegative A. We call u a Levy measure and M(A) the Levy

transform of U. Necessary and sufficient conditions for M(A), A > O,

oo
to be finite are (i) [ du(u) < « for all € > 0 and (simultaneously)
€ €
(i1) [ udu(u) < = for some € > 0. A sufficient condition is

o 0
f udp(u) < o, It will always be supposed that U is absolutely continuous
wgth density f(u), i.e., du(u) = f£(u)du.

Associated with each Levy measure is a stochastic process

{Et s t 2_0} having stationary independent increments and whose sample
paths are increasing. Moreover, Et increases only in jumps and the

times t at which these jumps occur form a random countable dense subset
of the positive real axis. The process is often called a subordinator.

With A as the generating symbol, Et has Laplace transform and expecta-

tion given by:

E[exp(-AE )] = exp[-tM(A)], (4.1)
E[E] =t [ udu(u) = t [ uf(u)du. (4.2)
0 0

The right hand side of (4.2) may possibly be infinite.



177

For a > 0, let the jumps occurring during the time interval
0 < t < 0 be enumerated in some arbitrary manner.as Al’ AZ’ X3,... .
The number o will correspond to Fisher's "alpha'" and the Xi will be
the abundances of the various species. Note that €a = Eki is the total
abundance. Properly speaking, the Ai should be embellished with an a,
but a fixed value for o will always be understood. While it is permissible
to regard the entire collection'{ki} of abundances as a random entity,

the individual members of this collection (Xl, say) are not random

variables. This is because there is no way to establish a correspondence

from one realization of the process to a second of the jumps labeled Al.l
For the same reason, species identity cannot be compared across real-
izations.

For a given realization of'{Et :0<t f_a}, let A: be the jumps
arranged in descending order and let Af be the size-~biased permutation
of the jumps (defined essentially as in Section 2.2 but with proper
account being taken of the fact that ZAi = Ea # 1), It will be seen
later that the X: as well as the Aﬁ are legitimate random variables,
although they are neither independent nor identically distributed.
Associated with {gtlo <t f_a} are the two random relative abundance
vectors 1" = (A}, Ay, Ayye.o)/Ey and 1 = F, A%, xﬁ,...)/aa. These
are permutations of one another and are simply different ways of
describing the same underlying community structure. Depending on the

process, one or the other of these descriptions may be mathematically

more convenient.

1In a compound Poisson process one can take A} to be the first
jump. A subordinator has no first jump, however.
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The probability density function of Eu will be written as fa(u).
In principle, fu(u) can be obtained by inverting the Laplace transform
(4.1) but, in practice, this is seldom feasible. Also define the right
o
tail integral to be H(u) = [ f(u)du. This is a decreasing function whose
inverse function is denoted ;_l. Let 0 < uy < u,. The number of species

whose abundances lie between uy and uz'is then a Poisson random variable

with mean

’ u
alH(u,) - H@u)] = a [ ? £(x)ax. (4.3)
u
1

Further, the Poisson variates corresponding to disjoint intervals are
independent.

Three additional facts about subordinators will be needed. The
first two are trivial; the third is no doubt well-known but, lacking
a reference, a proof is given.

1. Effect of a scale change. Let the Levy density f(u) be

replaced with c-lf(u/c), ¢ > 0. Then o and t are unchanged
but Xi becomes cli and Et becomes cEt.

2. Effect of renormalization. Let f(u) be replaced with cf(u).

Then the jumps are unchanged but t becomes ct and Et becomes gct'

3. Strong law of large numbers for subordinators. When t - o,

Et/t converges to fuf(u)du with probability one.

Proof: For simplicity, suppose that t goes to infinity through
integral values n. Since the process has stationary independent
increments, En is the n-fold sum of copies of El. The result now
follows from (4.2) and the strong law of large numbers.

The first two facts permit any convenient scaling and normalization of

the Levy density without altering the essential features of the process.
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For example, one can either take the Levy density to be af(u) and
observe the process for 0 <t 5_1 or take the Levy density to be f(u)
and observe the process for 0 < t < a. The second approach is more
convenient for our purposes.

The rest of this chapter focuses on three particular processes
which we call the Hyperbolic process, the Gamma process, and the Beta
process. Their main features are summarized in Table 4.1.

Example 4.1: The Levy density for the Hyperbolic process is

f(u) = u-l, 0 < u < 1. By direct integration, the tail integral is

H(u) = -log(u), 0 < u < 1. Using (5.1.39) of Abramowitz & Stegun
| [89], the Levy transform becomes M(A) = El(A) + log(A) + v, where
Y = .5772... is Euler's constant. Explicit expressions for the

probability density function of Ea are not known but some partial
results are obtained in Appendix A.9. It will be seen later that
Engen's geometric series model is an appropriate fixed version of

this model.

Example 4.2: The well-known Gamma process has f(u) = u-lexp(-u),

0 <u < ® as the Levy density and H(u) = El(u), 0 < u < o, as the tail
integral. Using (5.1.32) of Abramowitz & Stegun [89], the Levy transform
is M(A) = log(1l + A). The Gamma process has the pieasant feature that
the Laplace transform (4.1) can be inverted to find that Ea has density
fa(u) = uct"1 exp(~u)/T(a), i.e., Ea is a standard Gamma random variable
with index o. It will be seen later that the Gamma process leads to
the limiting Dirichlet after normalizing the jumps to unity.

Both the Hyperbolic process and the Gamma process are stochastic
analogues of the deterministic geometric series. Ecologists (e.g.,

Pielou [33] and May [100]) do not seem to realize that the geometric



Table 4,1:

a
Summary of the Processes

General
Levy density: f (u)
tail integral: H(u)
Levy transform: M(A)
density of Ea: fa(u)

*

density of Xl: of (u) exp (=aH (u))
density of Aﬁ: uf(u)E[a/(u+£d)]
mean sampling 00 (Au)xe-Au e—Au
frequencies E[nx]: o fo = ) f(u) du
fixed version: H—l(i/a)

intrinsic
abundances: not applicable
dispersion

parameter (27107 ) ¢ not applicable

Hzgerbolicb
-1
u
-log(u)

E, (A)+log (A)+y

o-1
ou

(a/x)T (x;A)
geometric

series model
Degenerate

Degenerate

Gammac
=1
u “exp(-u)
El(u)
log(1+A)
¥ Lexp (-u) /T (@)
au_lexp[-u-uEl(u)]

aEa(u)

(a/x) [A/ (1+A) 1¥
exponential

integral model
Exponential

Degenerate

c
Beta

u-1(1+a-1u)-q

Exponential

Gamma

a5 missing entry indicates that no simplification of the general expression is known.

bThe range of u is 0 < u < 1, In the Levy transform, Y is Euler's constant.

“The range of u is 0 < u < o,

081
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4.3 A Random Dispersal Model

Neyman [111] has described an insect dispersal model iﬁ which egg
clusters are Poisson distributed throughout the plane. The number of
insects to emerge from any cluster is a Poisson random variable with
mean A', After emergénce, the insects are assumed to distribute them-
selves across the plane according to some dispersal distribution centered
at the original egg cluster. Given A' and given the location of the
original cluster, the number of insects (per unit area) to arrive ét a
small fixed sampling site is also Poisson but whose intensity A differs
from A'., Clearly A depends on the distance between the sampling sité
and the egg cluster and is small when this distance is large. Since
each cluster contributes a value for A, the model contains all the
ingredients of a subordinator: a countable collection of positive
numbers A (the jumps), most of which are small, and, if the model is to
work, whose sum is finite. Neyman [111] assumed that the dispersal
distribution had compact support so that the issue of_subordinators
did not arise in his treatment.

A species abundance model may be constructed along the same lines
by regarding the cluster locations as the focal points of the various
species. Call A' and X the intrinsic and the effective species abundances,
respectively. Note that the intrinsic abundances are dimensionless
numbers while the effective abundances have units of 1/area. The
dispersal distribution for each species is assumed to be circular
Gaussian with center at the species focal point and with variances 02.
It will be shown that this model results in the Hyperbolic process, the
Gamma process, or the Beta process depending on the distributions given

A' and 02.
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Let the focal points be Poisson distributed in the plane with
intensity o' where o' > 0 has the units of 1/area. With the sampling
site as the origin of coordinates, a given species has effective

abundance
A=A (2w02)-1exp[—ﬂ(x2 + yz)/(Zﬁdz)], (4.6)

where (x, y) are the coordinates of the focal point and where A' and
02 are the intrinsic abundance and the variance, respectively. Let
u > 0 and define Log(z) to be log(z) when 0 < z < 1 and zero otherwise.

Then, the requirement A > u is equivalent to
'n'(x2 + y2) < —ZHGZLog(Zﬂozu/A').

It follows that the number of species with effective abundance greater

than u is a Poisson random variable with mean
LAY 2 2 '
o' E[-2m0"Log(2m0"u/A") 1,

where the expectation is taken with respect to the distribution of Al
and 02. By (4.3), this expression should be equated with oaH(u) where
H(u) is the tail integral of the Levy density.
First we suppose that A' and 02 have degenerate distributions so
that
—a'(2w02)1og(2nczulk') if 0 < u < A'/(chz)

oH(u) =

0 otherwise.

Differentiating with respect to u, the Levy density becomes
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a' (210%) Ju 1f 0 < u < A'/(210%)
af (u) =
0 otherwise. (4.7)

Up to a scale transformation, (4.7) is the same as the Levy density of
the hyperbolic process provided we take a = a'(Zﬂoz); Note that-21TG2 is
the mean dispersal area and the dimensionless number o is the mean number
of species to be found in such a standardized area. This is consistent
with our earlier contention that a is best thought of as a speciés
richness parameter.

Next, let 02 continue to be degenerate but give A' an exponential
distribution. Since A' enters only the range of (4.7), there is no loss
of generality in taking the scale parameter of the exponential distribu-

tion as unity. Randomizing (4.7), the Levy density is
v 2, -1 2
of (u) = a' (20" )u “exp(-2mM0°u), 0 < u < o, (4.8)

Again taking o = u'(Zwoz), (4.8) is the same as the Levy density of the
Gamma process, up to a scale transformation,

Now, the MacArthur model assumed an exponential abundance distri-
bution and is often found to provide a reasonable fit when the sample
contains only a few speqies. But the fit usually deteriorates with
increasing sample size. This may possibly be explained by noticing that,
when the sampling intensity is small, only those species with focal
point close to the sampling site will be observed. But the effective
abundances of these species are approximately proportional to their
intrinsic abundances, by (4.6). With increased sampling intensity, the

intrinsic abundances become seriously distorted.
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Finally, let A' have a standard exponential distribution and 2ﬂ02
a Gamma distribution with index b and mean b/a. Randomizing (4.8) with

respect to the Gamma distribution gives

af(u) = (a'bla)u~te1 + a tu) P,

Here, we take o = o'b/a = u'E[ZﬂGZ] and q = b + 1 to obtain the Levy
density of the Beta process. ‘Note that q > 1 in this model.
4,4 Constructing the Process

Three methods of constructing the subordinator process with Levy
density f(u) will be described.

Limit of compound Poisson processes. Suppose that

0 <owe< X, < x2 < xl < x0 = ®© jg a partition of the positive real axis

where s 0as 1 »», For i=1,2,3,..., let the probability d.f.

f(i)(u) = f(u)/[H(ki) - H( ¥s x, Su<x be the truncation of the

*1-1 -1°
Levy density to the interval [xi, xi_l). Let Eii), O_i t < oo
i=1,2,3,..., be independent compound Poisson processes whose intensity
is H(xi) - H(xi_l) and whose jump distribution is f(i)(u). Then Et
may be realized as the superposition ; Eéi) of the processes Eéi).
Alternatively, ’

£, = lim 2 g

n>eo i=]

is the limit of compound Poisson processes with intensity H(xn) and with
the truncation of f(u) to the interval [xn, ©) as jump distribution.

For full details concerning this construction, see Breiman {105, p. 310ff.].

As an application, we prove the following fundamental lemma:
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Lemma 4.1: Suppose the nonnegative function B(ul, Upseeest 3 ¥)
is defined for 0 < ul, uz,...,ur, 0 <y< o, ul + u2 +eeet ur <y. Let

Et be a subordinator with Levy density f(u) and with jumps Al’ 12, AB,...

over the time interval 0 < t < a, o > 0. Then

E[ZB(Xi(l)s Ai(Z)""’Ai(r); EOL)] =

. .
o £ B(ul, Upseessl 3 VvV + ug + u, +...+ur)f(u1)f(u2)...f(ur) X

fa(V)dulduz...durdV, (4.9

where the sum ranges over all r-tuples (i(l)’ i(2)”"’i(r)) of distinct
positive integers and where the range of integration is the region R
defined by 0 < uss Upseensl V < o,

Proof: Obtain Et as the limit of compound Poisson process with
intensity H(xn) and’ jump distribution f(u)/H(xn), xn_i u < o, Let
Bp? m= 0,1,2,..., be the m~fold convolution of this jump density. For
simplicity, take r = 3. Conditional on the number of jumps s, the
expectation in (4.9) for the compound Poisson process is

s(s = 1)(s - 2) [ B(ups Uy, g3 V4 up + u, + ugdf(u)E(uy)f(u)x

R
n

[H(xn)]-335_3(V)du1du2du3dv, (4.10)

where the range of integration is the region Rn defined by
xn'i Ups Uy, Ug <o, 0 < V< x But s has a Poisson distribution with
mean aH(xn) so that

o0

E[s(s - 1)(s = 2)g__,(M] = [OtH(xn)]3 z [aH(xn)]jexp(—ocH(xn))gj(V)/jl-
j=0

Inserting this into (4.10) and letting n + © gives the result since
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]

X fom(x) P exp(-om(x ))e, (N/31 > £,0).
3=0

Uniform arrangement of ranked jumps. This construction yields the

process Et only for 0 < t < 0. The procedure is to first obtain realiza-

X %k %
tions Al’ A A3,... of the ranked jumps and then to distribute these

2’
ranked jumps ﬁnifbrmly across the interval 0 < t < o. Formally, let
Ul’ UZ’ U3,... be a random sample from the Uniform (0, a) distribution
&
independent of the Ai' Then Et’ 0 < t<o, is realized by placing a
. % . _ *
a jump of magnitude Ai at time t = Ui’ -, Et = Z{li : Ui-i £},

i
According to Kingman [79], the ranked jumps can be obtained by putting

* -
A, = B 1(Ti/a), 1=1,2,3,..., (4.11)

where 0 < T1 < T2 < T3 <... are the successive epochs of a Poisson
process with unit intensity.

This construction shows that the ranked jumps are random variables
having a transformed Gamma distribution. In particular, the largest jump
A: has cumulative distribution function exp(-0H(u)) and probability density

function
af (u)exp(-0H(u)), 0 < u < o, (4.12)

Notice that H(u), and hence the process, is uniquely determined by the

*
distribution of A, for even a single value of o. This is the analogue

1
of the well-known theorem that a probability distribution is uniquely
determined by its largest expected order statistic for all sample sizes.

Next we show that the ranked abundances are asymptotically

geometric in the weak sense whenever the Levy density has index zero.
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Theorem 4.1: Assume the Levy density has index zero and is normal-

ized so that uf(u) > 1 as u + 0. Then, with probability one,

1im 1og(xz)/1 lim 1og(x:/ga)/1 - =1/t

i >o0 : {f->o

Proof: Given 0 < € < 1, there is a Uy > 0 such that

1-e<uf(u) <l+e for 0<uc< uge Dividing by u and integrating from
u to uy gives H(uo) + (1 - e)log(uo/u)_i H(u) f_H(uo) + (1 + s)log(uolu)

for 0 < u < Uy But this implies that

uy expl-(x = H(uy))/(1 - €)] < B (x) < ugexp[=(x = H(uy))/(1 + €)]
for x > H(uo). From (4.11),
-1 * ' =
constant*exp[-a Ti/(l - )] f.ki < constante-exp[-a Ti/(l +e€)].
By the strong law of large numbers, Ti/i + 1, Therefore,
-1 * ],
-0 /(1 =€) < 1im log(A,)/1 < ~a 7/(1 + €),

and the proof is completed by letting € = 0,

In view of the loss of memory property of the Poisson process, one
can also obtain the ordered jumps via successive truncation: first
obtain XI from the distribution (4.12), then truncate this distribution
to the interval (O, AI) and obtain A; from the truncated distribution,
then truncate (4.12) to the interval (0, X;) and obtain X; from the
newly truncated distribution, ete. This enables us to write down the

e *
joiat density of Al’ X, 5

*
.,A_ as
r

-] o

arf(ul)f(uz)...f(ur)exp(-a H(u ), uy > uy »eu> u_ > 0, (4.13)
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From (4.13), it follows that the ranked jumps from the Hyperbolic process
can also be obtained from a stochastic dominance mechanism,
Theorem 4.,2: Let Pl’ PZ’ P3,... be a random sample from the Betal
(0, 1) distribution and put A: = Pl’ A; = P1P2, A; = P1P2P3,... .
Then AI, X;, A;,.., are equal in distribution to the ordered jumps
from the Hyperbolic process. In particular, E[A:] = [o/(o + 1)]i.
gzgggz For the Hyperbolic process, (4.13) simplifies to
arug—ll[uluz...ur_ll. But this is also the joint density of
Pl’ Ple,...,Ple...Pr.
| It follows that X; is independent of l;/k;. It can be shown
that this characterizes the Hyperbolic process, up to a scale transfor-

mation.

Uniform arrangement of size-biased jumps. Generate the ranked

*
jumps Ai and the uniform random variables U, as in the previous construc-

i

tion and let Af be the size-biased permutétion of the ranked jumps. Since
Sk
the Ai are random variables, so are the Aﬁ. Further, the uniform

*
variables are independent of the Xi as well as the permutation so that

€ s 0 <t <a, can be realized as Et = I '{Af : Ui_i t}. Since
i

P(Ui <po) =p, 0<p <1, it follows that the size-biased jumps over

t,

the time interval O < t < pa are obtained by random deletion of the size-
biased jumps over the time interval 0 < t < o. The same applies to the
ranked jumps. This together with Corollary 4.2, below, proves Theorem

2.11.

o # #

Theorem 4.3: The joint density of Al’ Az,...,lr and the residual

) bk #
n r
a fa(y) izl [uif(ui)/(ui +ouy Feeatu + v)l.
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The density of Af

Proof: Similar to the proof of Theorem 3.3 but using Lemma 4.1.

is uf (u)E[c/(u + Ea)]-

Corollary 4.1: For the Gamma process, Af has density aEa(u),

0<uc<e

Corollary 4.2: For the Gamma process, the normalized abundance

ﬂ# = (Xf, Ag, lﬁ,...)/&a is independent of Ea and is equal in distri-

bution to Engen's model with parameter a.
Proof: Apply Theorem 4.3 with a change of variable.
Since Kingman's version of the limiting Dirichlet is
* * % _%

To= (ll, AZ’ A3,o..)/€a, we obtain,

Corollary 4.3: Engen's model is the same as the size-biased

permutation of Kingman's limiting Dirichlet and Kingman's limiting
Dirichlet is the same as the ranked permutation of Engen's model.

Corollary 4.4: Engen's model is invariant under size-biased

permutation.
Proof: Immediate from Corollary 4.3 since w# and w## are equal
in distribution.

Corollary 4.5: For the Gamma process, the ranked abundance
% x k%
o= (Al, Az, A3,...

Proof: This follows from Corollary 4.2 and Corollary 4.3.

)/Ea is independent of Ea.

Finally, we give the promised proof of Theorem 2.13(f).

%
Corollary 4.6: For the Gamma process, E[Z(i - 1)Ai/£a] = o log (2).

*
Proof: By Corollary 4.5, E[Z(i - 1)Ai/Eu] =
% *
E[Z(L - 1)Xi]/E[£a] = E[Z(1i - l)Ai]/a. Define B(ul, u2) =u; 1f
0< uy < u, and zero otherwise. Using an argument of Kingman [79],

*
the expression I(i - 1)Ai can now be recast in terms of the function

B(ul, u2) in the following manner:
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* v ‘
r (- l)li z Xi (number of Aj such that A, > Xi)

i i J

I B(
i#j

REBE

By Lemma 4.1,

* ' :
E[i (1 = DAT = o [ B(uy, u,)E(u)E(u,)du, du,

= Q f ulf(ul_)f(_uz)duldu2

© -y -2u
=a" [ (e . 2_)/u2 du,.

75
0

N

But this is az log(2) by (5.1.32) of Abramowitz & Stegun (89].

Next, we prove an analogue of the first moment convergence result
given.in Theorem 3.2.

Theorem 4.4: Consider a subordinator with Levy density f(u) for
which [ uf(u)du < ®, As o > @, Af has a limiting distribution for which
the probability density function is uf(u)/fuf(u)du.

Proof: Same as the proof of Theorem 3.2 but using Lemma 4.1 and
the strong law of large numbers for subordinators. Complex numbers can
be avoided by using the Laplace transform instead of the characteristic
function.

Applying this result to Corollary 4.1, it follows that the density -

uEa(u) converges to the standard exponential density, as pointed out in
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Section 3.4. In terms of the random dispersal model, large O means
that the species focal points are densely distributed throughout the
plane., A size-biased selection is then likely to produce a species
with focal point close to the sampling site and an effective abundance
roughly proportional to the intrinsic abundance. So it is intuitively
f converges to an exponential distri-

clear for the Gamma process that A

bution as o + «,

Corollary 4.7: The distribution of Xf for all o uniquely determines
the process provided the Levy density has finite fi;st moment.

Proof: The Levy density is determined by its first moment
distribution.

Open Problem: Does the distribution of Xf for just a single o

determine the Process?

Open Problem: Develop an extreme value theory for the limiting

*
distribution of kl.

Open Problem: Is o a complete diversity parameter when the Levy

density has no unknown parameters? A major obstacle in attacking this
problem is the lack of independence of Ea and (X:, A;,...)/Sa. Such
independence is well-known to characterize the Gamma process.

Consider a subordinator process which generates a random set
'{Ai} of abundances. How might we replace'{ki} with a typical fixed
set of abundances? The choices E[A:] and E[Xﬁ] are perhaps natural,
but, as pointed out in Section 2.4, these will exaggerate community
diversity. Another possibility is suggested by (4.11): replace Ti

by its expectation E[Ti] = i and adopt

ui = H—l(i/u), i= 1,2,3,.0- (4014)
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as the fixed abundances. Note that vy 2-“2 2_U3 Zees o Applied to
the Hyperbolic prdcess, (4.14) gives the geometric series model

Wy = exp(-i/a) with ratio exp(-1/a). The Gamma process results in
Watterson's [90] exponential integral model P Ezl(i/a).

We Wish to show that the fixed abundances are asymptotically
geometric with asymptotic ratio exp(-1/a) when the Levy density has
index zero and is normalized as described in Section 4.2, This is
true for weak asymptotic geometricity and can be proved just as in
Theorem 4.1. To obtain strong asymptotic geometricity, an additional
regularity assumption will be imposed on the Levy density. Suppose that

|1im [uf(u) - 1]/u] < o, | (4.15)
u>0

Equivalently, the function uf(u) should take the value one at the origiﬁ
and should have a finite derivative at the origin. The three processes
under considerationvsatisfy (4.15).
Theorem 4.5: The set of fixed abundances My = H_l(i/a) is strong
'AG with asymptotic ratio exp(-1/0) when the Levy density satisfies (4.15).
Proof: We have to prove that ui/exp(-i/a) = uiexp(i/a) has a
finite nonzero limit as i > @. Since i/a = H(ui) and My 0, it
suffices to show that uexp(H(u)) has a finite nonzero limit as u - O.
By (4.15),'there are finite numbers A, B such that A < [uf(u) —‘l]/u <B
or u_l + A < f(u) fhu_l + B for all sufficiently small u, say 0 < u < €,

Integrating from u to € gives
log(e/u) + A(e - u} < H(u) - H(e) < log(e/u) + B(e - u).

Transpose H(g) and exponentiate to find that
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Each jump of the sample process represents a speciés that is
physically present in the sample. Moreover, it is proved in Appendix
A.10 that (i) the sample process has jump intensity (number of jumps
per unit time) equal to M(A) where M is the Levy transform and (ii’

the jump distribution for the sample process is

o]

p, = [ (Au)exp(-Au)f(u)du/[x!M(4)], x = 1,2,3,... . (4.17)
0

From (i) it follows that the number T of species in the sample is

a Poisson random variable whose mean is the product of the jump intensity

and the observation time., Thus
E[T] = a M(A). (4.18)

When A can be interpreted as area, (4.18) is the species-area curve. It
is a concave function of A which uniquely determines the Levy transform
and, hence, the process. Using Table 4.1, the species-area curves for

the Hyperbolic process and the Gamma process are, respectively,

E[T] a[El(A) + log(A) + v]

and

E[T] = o log(l + A).

Both are asymptotic to o log(A) for large A.

Conditional on the subordinator, the number N of individuals in
tne sample has a Poisson distribution with mean AZAi = AEQ. After
randomizing with respect to Ea, the distribution of N is compound

Poisson with mean
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E[N] = AE[E ] = oAfuf (u)du. (4.19)
0

For the Hyperbolic process and the Gamma process, (4.19) simplifies to
E[N] = oA. Moment estimates of o and A can be obtained for these two
processes by equating the observed values of T and N to their expected
values. Moment estimation is not generally possible for the Beta
process since E[N] = @ when 0 < q < 1. The maximum likelihood estimates
of q often fall into this range (Kempton [95]).

Consider the sample process and let nx(t), x=1,2,3,..., be the
number of jumps through time t of size exactly equal to x. The n#(t)
are obtained by scréening the sample process and are themselves inde-
pendent Poisson processes with intensities M(A) P> where P is given by
(4.17). But n_ = nx(a)iﬁsthe number of specles with x representatives
in the sample., Thus the n_are independent Poisson random variables

with means

E[nx] = aM(4) p_
= (o/x!) [ (Au)™exp(-Au)f(u)du. (4.20)
0

For the Hyperbolic, Gamma, and Beta process, these expected frequencies

become, respectively,

Eln_] = (a/x) T(x; 4),
Eln ] = (/x)[A/Q + &)]%,
and
Eln_] = (a/x!) Z v 1 + (Aa) Tu] Yexp (~u)du. (4.21)
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the community contains s species whose abundances follow a Beta distri-
bution of the second kind with parameters k and q. After determining the
expected sample frequencies for this model, he let k ~ Q and s > ® with
sk = a.

Remark.4;2: The jump distribution (4.17) of the sample process

may be rewritten as

o X =Au -Au
f[ (Au)”e . ] . [(1 "Me DEW | gy, x = 1,2,3,00. .
olxi@l - e *)

' The first term in brackets is a zero-truncated Poisson probability while
the second term is a probability density function. The jumps of the
sample process thus have a compound zero-truncated Poisson distribution.
Boswell & Patil [113] have noticed that improper distributions like

f(u) can be handled at the sampling level in the above manner.

Remark 4.3: For the Gamma process, the jump distribution (4.17)
is the log series distribution with parameter A/(1 + A). Since Ea has
a Gamma distribution, the number of individuals in the sample is a
negative binomial random variable (see the remarks preceding (4.19)).
We have thus obtained the well-known result that a Poisson sum from

- the log series distribution follows the negative binomial law.

4.6 Conditional Sampling Variance
The variance of a sample statistic T contains two components,
Var [T] = E[Var(T|\)] + Var[E(T|)\)]. (4.23)

The first term--the conditional variance -- represents the pure sampling
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effect while the second is the contribution due to the variability of
species abundances. We wish to indicate how Lemma 4.1 can be used to
calculate the conditional variance.

For simplicity, take T to be the number of species in the sample
so that Var (T]é) is

E exp(-Ad,) (1 ~ exp(=A\))) = i[exp(-A}\i) - exp(-2A0 ) ]. (4.24)

Taking expectations and using Lemma 4.1, the conditional variance becomes

E[Var(le)] o f[exp(—Au) - exp(-2Au) 1f (u)du

a[M(24) - M(A)].

For the Gamma process, this simplifies to o log[(1 + 2A)/(1 + A)]

which is the same as (2.42) of Watterson [90]. Watterson obtains this
expression by replacing the abundances Xi in (4.24) with their fixed
versions Ezl(i/u) and then approximating the infinite sum by an integral.
This method will yield the correct conditional variance of any sample
étatistic provided the fixed abundances are taken to be H.l(i/a) as

in (4.14).

Watterson [90, equation (2.34)] has also attempted to derive the
joint probability generating function of the n_ by formally applying
Fisher's limit. As he notes, the result is not a valid probability
generating function, but it does yield the correct expectations as well
as the correct conditional variances. In taking the limit s + o,
Watterson treated s as though it were a constant. But in obtaining a
.subordinator as the limit of compound Poisson processes, s has a Poisson

distribution. Watterson thus overlooked a component of variability.
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It is unclear to the present author why Watterson's generating function
gives precisely the correct conditional variances.

Since fhe n_ are independent Poisson random variablés, their joint
probability generating function is easily written down and results from
(2.32) of Watterson by letting s have a Poisson distribution with mean
o/k, then randomizing with respect to the Gamma distribution, and,

finally, letting k - O.

- 4,7 Multiple Sampling Sites

When samples are taken at different points in time or in space,
it has been observed that the pooled sample may fail to fit the log
series distribution although the individual samples do fit (Bliss
[53]). The random dispersal model of Section 4.3 provides a framework
for explaining this effect.
| Consider two sites with Poisson sampling intensities A1 and A2.
It is reasonable to assume that the two samples are conditionally
independent given the intrinsic abundances A' and the dispersal parameters
02. However independence is lost after randomizing with respect to A'
and'cz.

Let nxy’ X, vy=0,1,2,...,(x,y) # (0,0), be the number of species
with x repreéentatives at the first site and y representatives at the
second site. The nxy are independent Poisson random variables, but
theif expected values are very complicated integrals which will not be -
given here., Clearly the distance d between the two sites enters these

integrals as a parameter.

Two 1imiting cases are of interest. First, when d -+ 0, so that the
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n
AN = X fi(}\i - }\)exp[()\i + A)x]J.
i=m

We show that A(A) is strictly increasing for A > km; it then follows by
n

Abel's inequalities that o'(x) < 0. But A'(A) = I fiB(Ai) where
i=m

B(U) = (ux = Ax = 1) exp[(u + A)x].

Again by Abel's inequalities, it suffices to show that B(u) is
strictly decreasing for Xm > Y. But B'(u) = (ux2 - sz)exp[(u + A)x] <0

since A > Am >y and x # 0,

A.2 The MacArthur Frequencies

MacArthur's fixed model is the expected ranked abundance vector
T that results when the unit interval is randomly (uniformly) apportioned

among the s different species. As shown in Chapter 2, T is given by

(1/1 +1/(1 +1) +...+1/s)/s if 1 <i<s

0 if s < 4.

These frequencies can be arrived at directly by supposing that the total
available resource is represented by the unit square which is divided
into s vertical slices of equal width. Refer to Figure A.l when s = 4.
The first slice is apportioned equally among the s different species
after which one species is removed from competition and the second slice
apportioned équally among the remaining s -~ 1 species. The procedure

is now iterated with an additional species being removed after the
apportionment of each slice. The procedure is deterministic and is

intended to yileld only MacArthur's fixed model, not the random model.,
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(i) strong AG with asymptotic ratio & <=> 1lim bi exists and
i=>o

0 < 1lim bi < oo

(ii) intermediate AG with asymptotic ratio 6 <=> 1lim b,/b

i{>o i i+l ) 1’

(iii) weak AG with asymptotic ratio 6 <=> 1lim 1og(bi)/i = 0.

i~

Theorem A.10: Strong AG => intermediate AG => weak AG.

Proof: The first implication is clear from Theorem A.9. For the
second implication, take logarithms of Theorem A.9 (ii) to find that

) converges to zero which implies that the Caesaro

log(bi) - log(bi+1

means of these differences also converge to zero. Telescoping then shows
that log(bi)/i goes to zero.

Theorem A,11: The series Zai converges whenever ay is weak AG.

Proof: Write log(ai)/i = log(B) + €y where €, converges to zero.

i

i i
Then oy ™ elexp(i-ei) and ‘/ai =0 exp(ei). Thus 1lim i/hi = 0 < 1 and

Zai converges by the root test.

Example A.1l: The negative binomial series

k+1i-1
a, = ( s
1 ; 1

)

is intermediate AG for all k but is strong AG <=> k = 1, Use Theorem

A.93
Example A.2: The log series 6°/i is intermediate AG but not
strong AG.

Example A.3: The Poisson series el/i! is not AG in any sense.

Use Theorem A.9 (iii) and Stirling's formula.

Theorem A,12: The sequence a; = biel is weak AG whenever the bi

are bounded or, more generally, whenever bi < 1P where p is a constant.
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Proof: Use Theorem A.9 (iii).

Example A.4: The sequence a; is weak AG but not intermediate AG

2 3 4 5 6

when a, = 6, a, = 10 67, a; = e~, a, = 1067, ag = 6”, ac = 109 ;e s

Example A.5: Let Ul’ UZ’ U3,... be a random sample from the

i

i = UiB . With probability one,

a; is weak AG but also with probability one, a

Uniform (0,1) distribution and put a

N is not intermediate AG.

Example A.6: The zeta series l/ip is not AG in any sense.,

A.5 Screening the Geometric Series Model

Let Xl, X2, X3,...'be independent geometric random variables with
P(Xi =x) = p(l - p)x-l, x=1,2,3,.0. « Suppose vV is a fixed community

with infinitely many species and define T 1 =131,2,3550

= \) ’
i X1+X2+...Xi

and T = Ty + Ty + 13+... . Let m be the fixed community with

Ty = E[Ti]/E[T] = E[Ti]/p. It might be more natural to take ™, as

E[Ti/T] but this expectation is intractable since T is not independent
of the ratios Ti/T. To see this, suppose V is a geometric progression
with ratio 1/2. The dyadic expansion of T is a sequence of zeros and

ones and X1 + X2+...+Xi is the waiting time to the occurrence of the ith

one in this sequence. Thus T uniquely determines the realized values

of X,, X.,... and hence of T./T, T,/Tsee. « The second part of
1 2 1 2

Theorem 2.11 does have an analogue, however. Let Gﬂ(t) = Zwitl—l and
Gv(t) = Zvitl—l be the generating functions of T and V.

~

Theorem A.13: a) Gw(t) = Gv(l - p + pt), b) v is a geometric
progression with ratio ¢ and odds ratio o' = 6/(1 - 8) if and only if
T is a geometric progession with ratio p8/(1l - © + pB) and odds ratio

pa', and ¢) Vv is strong AG with asymptotic odds ratio a' if and only
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Gﬂ(t) Gv(l -p+pt) =(1~-6)/(1~-06+ 6p - 6pt)

~ -~

(1 -9)/1 - 8t),

where 6 = 6p/(1L - 6 + 6p). Thus m is a geometric progression with ratio
8. The converse of b) is proved in the same way. Finally, assume Vv is
strong AG with ratio 6 so that \)i/Oi converges to a finite positive
constant A, Given 0 < § < 1, there is an iO such that

Al - 6)61 <v, <A1+ 6)6i whenever i > 10' It follows that

i

Aa - 9)6%/a - o0 < Vs - 11 < aa + oo/ - o),

~

whenevef i> 10. But

™, = Géi-l)(O)/(i -1)1 = pi-lGéi-l)(l - )/ - 1)1

~ ~

which implies that
g_Ap'l(l + 8)6T,

whenever i > io. Thus m is strong AG with asymptotic ratio ®. The
converse of c) is proved in the same way. This completes the proof of
the theorem.

The above results assert that, on the average, randomly deleting a
fraction 1 - p of the species from an asymptotically geometric series
still leaves an asymptotically geometric series but whose asymptotic
odds ratio is reduced to a fraction p of its former value. Thus the
asymptotic odds ratio may be regarded as a species richness parameter
for fixed models that are asymptotically geometric in the strong sense,
just as Fisher's o is a species richness parameter for the limiting
Dirichlet model. However, it is only for the rigidly geometric series

that the odds ratio is a complete diversity parameter.
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A.6 Engen's Jackknife Procedure

Consider an infinite multinomial population m= (ﬂl, ﬂz, ﬂ3,...)

oil1 - 9,

where the Wi form a geometric progression with Wi

i

152,3,50050 <8 <1, Put o' = Zini - 1=208/(1L~-8). Let
Y= (Yl’ Y2, Y3,...) be a random sample of size N drawn from w. When
the species ranking is known, the MLE of a' is &' = Zi(Yi/N) - 1 and

is unbiased. Usually the ranking is unknown, in which case the MLE

is a' = Zi(X(l)/N) - 1, where X(l)_i X(z) >,.. are the descending

A ~

order statistics of Y. Now a' < &' so that o' is negatively biased.
Let b(N) = b(N, 8) = a' - E[&'] > 0 be the magnitude of the bias.
Engen [84] has made two assertions:
(i) the asymptotic bias is of order 1/N in the sense that
1lim sup Nb(N) < « when N =+ o,
and therefore,
(ii) the first order term in the bias can be corrected for by
jackknifing.
The purpose of this appendix is to point out that (i) does not justify
the jackknife procedure and that, in any case, Engen's proof of (i) is
invalid.
The usual justification for jackknifing assumes that the bias has
a Taylor expansion in powers of 1/N, which is a stronger requirement
than (i). For an example of the consequences of jackknifing in the

presence of (i), assumz tl.e bias has the form
BON) = N L(U/VL = 1/V2 + 1/Y3 =oout 1//A0). (A.2)

Now Nb(N) is of order 1 since the alternating series converges. After
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jackknifing the bias becomes

bJ(N)' Nb(N) = (N - 1)b(N - 1)

+ 1/

VThus INbJ(N)I + © and jackknifing has increased the order of the bias.
In fairness it has to be pointed out that the magnitude of the bias of
;' is monotone decreasing in N and could never_havé the form given in
(a.2).

. Next consider Engen's proof of (i). Letting C(N) = Nb(N),
Engen makes a clever use of the loss of memory property of the geometric
distribution to show that lim E[C(N) - C(N - Yl)] = 0 as N > ®; but he
then concludes that "C(N) is at least a periodic function of log N in
the 1limit which is sufficient to conclude that C(N) is of order 1"
(Engen [84, p. 699]). Apparently he has in mind replacing N - Yl by

its asymptotic value N(1 - wl) = N6 and using the (fallacious) result

that
c(N) - c(N(1 - ﬂl)) + 0 => 1im sup C(N) < «,

That this line of argument is incorrect can be seen by taking C(N) =
log log (N + 2). Then, as N + o, one has
a) E[c(N) - c(N - Yl)] »+ 0,
b) C(N) - C(N(1 - ﬁl)) + 0,
but,
c) C(N) » =,
Part (b) can be established by a routine application of L'Hospital's rule

‘while (c) is obvious. For the proof of (a), first notice that
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A.7 The Geometric Series Model is More Diverse than the Exponential

Integral Model

Theorem A.1l4: Let v, = Ezl(i/a) and M= 61, 1=1;2,3,5505

where 0 > 0 and log (0) = ~1/0. Then \)i/'rri is decreasing in i which
implies that (ﬂl, ﬂz, 1r3,...)/ZTTi is intrinsically more diverse than
p Vyseed) /20,

Proof: Since \)i/'rr:.L = EIl(i/a)exp(i/a), it will suffice to show .
that EIl(t)exp(t) is decreasing in t. Write y = Ezl(t), El(y) = t and

put f(y5 =y eXP(El(y))- But

£7(y) = exp(E{(¥)) + vy exp(El(y))dEl(y)/dY

= exp(E; (y))[1 - exp(-y)] > O.

Thus f is increasing in y. Since t is a decreasing function of y, the

proof is complete.

A.8 Proof of Lemma 2.1

We use a well known series expansion of the digamma function

(Abramowitz & Stegun [89, equation 6.3.16]):

[o+]

P(z+ 1) =T"(z+ 1)/T(z+ 1) ==~y + I z/[n(n+ 2)],
n=1

" where Y = .5772... is Euler's constant. Define
£(t) = T(B;t + DI (B,t + )/[T(Ajt + DT(At + 1)], £ > 0. Take

logarithm derivatives to find that

fr(t)/£f(t) = Blw(Blt + 1) + Bzw(th + 1) - Alw(Alt + 1) - Azw(Azt + 1)

= I (t/n) [Bi/(n +B,t) + B§/<n +B,t) - Ai/ (+At) - Ag/ (n+A,0)]1.
n=1
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After a lengthy calculation, this becomes

o
z

2 .
. 1[n (A2 + B, = A = Bl) + nt(AzB2 = AlBB] i

£r(t)/f(t) = -(B1 = Al)t 4 "

[(n + Alt)(n + Azt)(n + Blt)(n 4 th)].

Since this expression is strictly negative for t > 0, f(t) is strictly

decreasing and £(1) < £(0) = 1.

A.9 The Distribution of Total Abundance for the Hyperbolic Process

A method is given which can, in principle, be used to determine the
probability density function fa(z), 0 < z < =, of the total abundance
gu for the Hyperbolic process. This density function exhibits certain
pecularities. For example, fa(z) may fail to be continuocusly differen-
tiable when z is a positive integer, although f(z) is analytic‘on each
of the intervals (0, 1), (1, 2), (2, 3),ece &

Using Theorem 4.3, the joint density of Af and Ea is

auf(u)fa(z -u)/z if 0 <u<z
f)\# g (u, Z) =
1?70 0 otherwise.

Integrating out u shows that fa(z) satisfies the functional equation

z
2f (z) = o [ uf(u)f (z - u)du. (A.4)
o 0 o
But f(u) = 1/u, 0 <u <1, Thus, if 0<z <1,

z b4
zf (2) = o fo £,(z = v)du = o fofa(V)dV. (A.5)
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