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ABSTRACT
Stem-borers are among the most damaging pests of cereal crops worldwide
(Nye, 1960 Reddy, 1991). In Africa, Chilo partellus (Swinhoe) and Chilo
orichalcociliellus (Strand) species are among the most injurious noctuids and
pyralids (Seshu, 1991 Overhalt et al, 1994a). With the exception of C. Partellus,

which is an Asian Species, the rest are thought to be indigenous to Africa.

Population dynamics of C. Partellus and C. orichalcociliellus have been
investigated in some African countries including South Africa (Kfir, 1994),
Madagascar (Delebol, 1975a) and Kenya (Warui and Kuria, 1983, Overhalt et
al, 1994). Investigations by Overhalt et al (1994a) on the distribution and
sampling of C.Partellus on maize and sorghum on the Kenyan Coast from 1990
to 1993 indicated that it was the most abundant stem-borer species in all field,
accounting for more than 80% of the total. C. orichalcociliellus and S. calamists
accounted for less than 10%. A decrease in the absolute numbers of C.
orichalcociliellus on the Kenyan coast has been observed since the invasion of

C. Partellus in the early 1960s.

In this dissertation, we have developed a competition model for the two species;
C. orichalcociliellus and C. Partellus on maize, sorghum, wild sorghum and

Napier grass at the Kenyan Coast. We have done this by modifying the model of
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inter-specific competition, established by Sun et a7 (1991). Finally we used data
from Ofomata 1998 to estimate the varioys parameters and incorporated them
in our model. Computer simulations were then carried out to obtain the average

population density for each Species in a period of 4,000 days. We have been

able to show that at N0 one point does the population density of either of the
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OVERVIEW

An ecosystem is a functional system or unit, which is able to sustain life, and includes all
biological and non-biological variables in that unit. Spatial and temporal scales are not
specified apriori, but are entirely based upon the objectives of the ecosystem study
(Jorgensen, 1994).
Currently, there are several approaches (Likens, 1998) to the study of ecosystems:
< Empirical studies where bits of information are collected, and attempt is made to
integrate and assemble them into a complete picture.
% Comparative studies where a few structural and a few functional components are
compared for a range of ecosystem types.
*% Experimental studies where manipulation of a whole ecosystem is used to identify and
elucidate mechanisms.
“ Modeling or computer simulation studies.
An ecological model must contain the features, of interest to the management or scientific
problem that we wish to solve by using the model. The model might be a physical or a
mathematical model, describing the main characteristics of the ecosystem and the related

problem in mathematical terms.

The displacement of one species by another on economically important crops is of major
economic and ecological concern. However, direct evidence of competitive displacement is
difficult to obtain. This is partly due to the difficulty of measuring numbers and mortality in

most natural populations and also because the population being eliminated may persist for a
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relatively long period of time. The ecologist is therefore, compelled to seek for evidence of
competitive displacement through the use of a mathematical model.
Reports of Over halt ef al (1994a), Marthez (1972) and Warui and Kuria (1998) indicate a
decrease in the absolute numbers of C.orichalcociliellus on the Kenyan Coast since the
invasion by C.partellus in the early 1960’s. This shift in species abundance over a period of
30 years suggests that the introduced C.partellus may be gradually displacing the indigenous
C. orichalcolciliellus in Kenya.
Interspecific competition is an important aspect of interaction between species. It plays a
major role in the distribution, abundance and community structure of species (Schoener,
1974, Hutchinson, 1978). Competition is a factor in species extinction after the introduction

of new species (Simberloff, 1981).

Our objective was to construct an appropriate competition model for the two species,
C.partellus and C. orichalcociliellus, on four food resources found in the Kenyan coast. This
model could be used to seek for the evidence of competition and to investigate the outcome
of the competition between the two species.

We assumed that the wild grasses were in the field at the coast throughout the year while
maize and sorghum were in the field during long and short rainy seasons in the year. The two
Chilo species were therefore expected on the wild sorghum and Napier grass in the field
throughout the year. Some of them, however, migrated to the maize and sorghum during the
rainy seasons.

Chapter one introduces the fundamental concepts needed to understand the rest of the work in
this dissertation. It briefly explains the bio-ecology of the two species and introduces the

concept of competitive displacement, pointing out its outcome.
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In Chapter two we outline two simple models for describing patterns of growth and decline or
decay in biological populations and individual organisms.
In chapter three we present the Lotka-Volterra model, a simple descriptive model, from
which many other competition models have been developed. We also, examine briefly
various numerical methods available for solving differential equations. The fourth order,
Runge Kutta method is discussed at length.
In chapter four we develop our competition model, for the two species on the four resources.
In chapter five we carry out an empirical study based on chapters three and four. It is in this
chapter that we estimate the various parameters, fit them in the model, and carry out
simulations to obtain the population density of the two species on the grasses for a period of
4000 days.
In chapter six we give an overview of what we have accomplished and suggest areas for

further research.



CHAPTER ONE
FUNDAMENTAL CONCEPTS AND DEFINITIONS

1.1: General Introduction

Cereal crops, in particular, rice, Oryza sativa L., Maize, Zea mays L., sorghum,
bicolor L., Pennisetum species, are vital sources of human nutrition (Seshu Reddy and
Walker, 1990). These crops are of low cash value, and are grown by a large
proportion of the world’s poorest people’s (Ibid.). Maize and sorghum are staple
foods for the majority people in the sub-Saharan Africa (Hill, 1983). They are also
grown as feeds for poultry and livestock in the form of grain, forage, and fodder
(Ofomata, 1998). Nearly 1,500,000 hectares are under maize in Kenya alone (FAO,

1991).

In the tropics, the yield of maize and sorghum is low. Damage by phytophagous
insects is cited as one major constraint to increasing the production of maize and

sorghum, (Ibid).

Stem borers are among the most damaging pests of cereal crops worldwide (Nye,
1960 Reddy, 1991). Chilo partellus (Swinhoe) and Chilo orichalcociliellus strand are
among the most injurious noctuids and pyralids found in Africa (Seshu, 1991;
Overholt ef al, 1994a). With the exception of C. partellus, which is an Asian species,

the rest are thought to be indigenous to Africa.

Larval feeding on the plant whorl, and later stem tunneling, causes plant damage.
Infested plants have poor growth, low yields, and are susceptible to secondary

infection and wind damage (Ofomata, 1991). Heavy infestations at the early stages of



plant growth cause ‘dead heart’ and, sometimes, total crop failure. Youdeowi (1989),
and Reddy and Walker (1990) gave estimates of yield losses due to stem borers in the

range of 20-40 percent of the potential yield (Ofomata, 1991).

Population dynamics of C. partellus and C. orichalcociliellus have been investigated
in some African countries, including South Africa (Kfir, 1994), Madagascar (Delobel,
1975a) and Kenya (Warui and Kuria, 1983; Overholt et al, 1994). Evidence has
shown that the introduced stem borer, C. partellus, is an efficient colonizer in many of
the areas it has invaded. It often becomes the predominant and most economically
important stem borer in maize and sorghum (Delobel, 1975a, Overholt ef al, 1994) at

elevations below 1500 metres (Reddy, 1983a,b).

In Kenya, studies have been conducted on the species composition of stem borers.
Investigations by Overholt et al (1994a) on the distribution and sampling of C.
partellus on maize and sorghum on the Kenyan coast from 1990-1993, indicated that
it was the most abundant stem borer species in all the fields. It accounted for more
than 80 percent of the total while C. orichalcociliellus and S. calamists accounted for

less than 10 percent.

The reports of Overholt et al (1994a), Marthez (1972), and Warui and Kuria (1983),
indicate a decrease in the absolute numbers of C. orichalcociliellus on the Kenyan
coast since the invasion by C. partellus in the early 1960s. This shift in species
abundance over a period of 30 years suggests that the introduced C. partellus may be

gradually displacing the indigenous C. orichalcociliellus in Kenya.



The distributional shifts and changes can be explained by non-interactive and
interactive processes. Non-interactive processes refer to situations in which ecological
factors affect the population of the previously established species independently of the
invading one. An example is the change of habitat availability in favour of the
invading species (Black et al, 1989). Interactive processes refer to situations in which

the invaders depress the population of the established species.

Interspecific competition is an important aspect of interaction between species. It
plays a major role in the distribution, abundance and community structure of species
(Schoener, 1974 Hutchinson, 1978). Like predation and habitat change, competition is

a factor in species extinction after the introduction of new species (Simberloff, 1981).

Competition may be by interference, exploitation, or both. Exploitative competition
occurs when individuals, using resources, deprive others of benefits gained from those

resources (Schoener, 1983,1988).

Interference competition results when individuals harm one another directly by
fighting or killing, or indirectly by aggressive maintenance of territory or production
of chemicals to deter other individuals (Ibid). In all cases, the deprivation or harm

decreases the victim’s population size by limiting their survival, reproduction, or both.

Local displacements in 13 interactions involving stem borers were attributed to
interference competition. Exploitative and interference competition in phytophagous
insect species can be mediated through host plants, natural enemies, physical factors

and interspecific competition (Ofomata, 1998). Ecological differences between



species which may influence the outcome of competitive interactions include, climatic

factors, rate of development, food preferences, differences in courtship patterns, and

equal insemination of female in both light and dark (Sturterant, 1929, Patterson,

1943).

Life history traits including fecundity, body size, voltinism and dispersal ability may

contribute to the competitive success of a species (Denna et al, 1995).

Several attempts have been made to explain the competitive advantage of C. partellus

over indigenous stem borers. Ofomata (1998), studied the biology of C. partellus and

C. orichalcociliellus in Kenya and made the following conclusions;

Since the invasion of C. partellus, crop damage has become greater due to the
higher consumption by C. partellus as compared to C. orichalcociliellus.

C. partellus and C. orichalcociliellus are ecological homologues, with close
overlap in their niches.

No evidence implicates direct interference or organism in the displacement of

C. orichalcociliellus by C. partellus.

Indigenous parasitoids are not important factors in the displacement of

C. orichalcociliellus.

Competitive displacement of C. orichalcociliellus appears to be due to superior
characteristics of C. partellus, which give it a competitive advantage over

C. orichalcociliellus.

C. partellus is reproductively superior to C. orichalcociliellus in total fecundity
and egg survival.

C. partellus is a more efficient dispersant with a higher host-plant establishing

success than C. orichalcociliellus.



o,
L4

The relatively faster development of C. partellus compared fo C.
orichalcociliellus in cultivated and wild grasses may be an important factor in the
competitive displacement of C. orichalcociliellus.

The survival of C. orichalcociliellus in native wild grasses may have allowed the
co-existence of C. partellus and C. orichalcociliellus at the coastal area of Kenya.
Native wild grasses serve as refuges for re-infestation of other crops by these stem
borers.

Since the development and survival of these stem borers in wild grasses is slower
and low, respectively, compared to the cultivated hosts, wild grasses may have
value as trap crops for stem borers.

Earlier termination of diapause in C. partellus compared to C. orichalcociliellus
may allow C. partellus to complete more generations in a year, giving it more
individuals to colonize crops after the onset of rains and thus, displace C.

orichalcociliellus from their habitats.

The displacement of one species by another on economically important crops is of

major concern both economically and ecologically. It is noteworthy, however, that

direct evidence of competitive displacement is difficult to obtain. This is partly

because of the difficulty of measuring numbers and mortality in most natural

populations and also because the population being eliminated may persist on for a

relatively long period of time. The ecologist is therefore compelled to seek for

evidence of competitive displacement through the use of a mathematical model.

The most important use of mathematics in ecology is the adoption of mathematical

models as the conceptual models underlying ecological research and management.



Mathematical models are also important in the formulation of new theories about
ecosystems and ecology. Manipulating relationships expressed in mathematical
models enables the relationships to be explored, and various hypotheses about the

ways in which the relationships behave to be formulated.

Much time can be saved in the early stages of hypothesis formulation by exploring
this hypothesis through mathematical models. Similarly, Mathematical models can be
used readily to investigate phenomena from the viewpoint of existing theories, by
integrating disparate theories into a single working hypothesis. Such models may
quickly reveal inadequacies in the current theory and indicate gaps where new theory

is required.

Modeling is always implicit in pest control. Faced with a pest situation, the pest
control worker invariably creates a model of it either in his mind or in the form of a
laboratory population or by taking a sample plot of a field. He then simulates control
of this model producing a new state, which he compares with the actual pest situation
that he desires. The advantage of mathematical models in this context is that they are

more ordered, and more easily lend themselves to manipulation and simulation.

It is against this background that we seek to formulate a competition model for

C. orichalcociliellus and C. partellus. Through its manipulation we shall be able to
investigate the phenomena of competitive displacement between them and predicting
the rate and implications in terms of crop yield in an area. A model of this kind can

also form the basis of effective control of the two pests.



1.2: THE CONCEPT OF COMPETITIVE DISPLACEMENT, PRINCIPLE
AND OTHER DEFINATIONS.

Competitive displacement involving ecological homologués is a unique and
special type of interaction between species where one species brings about
the extirpation or displacement of another ecologically homologous species,
or prevents a second such species from successfully colonizing all or a part of

its habitat (Ofomata-1998).

1.2.1: Principle

The competitive displacement principle may be hypothesized thus; different
species having identical ecological niches cannot co-exist for long in the same
habitat (Debach and Sunby, 1963). The principle is premised on the implicit
understanding that all species differ biologically, no matter how closely
related or similar they may be, in habitats (Hardin 1960). Although they may
be ecological homologues, their inherent bio physiological differences will

favor one species over another in a particular situation (Ofomata, 1998).

1.2.2: Definitions

The definitions of the following terms are as given in Ofomata (1998).

Habitat is the environment of a species’ natural population unit. The essential
physical and biotic factors in a locality where individuals of that population

normally live and reproduce.



Ecological niche the role-played by an animal based on its precise food,

spatial and habitual requirements in a particular habitat. This means

habitation of identical ranges.

Competition (‘together-seek’) is the attempted or actual utilization of common

resources or requisites by two organisms. Competition exists even if one does
not directly harm the other in the process. Cole (1960) defined competition as

that which eliminates one of two sympatric species occupying the same niche.

Competitive displacement; the elimination, in a given habitat, of one species

by another species where one has the identical ecological niche of the other.

Effective progeny production(R); the number of female progeny per parental

female, which are themselves capable of producing progeny, thus excluding

males and sterile females.

1.3: THE IMPORTANCE OF COMPETITIVE DISPLACEMENT.

The occurrence of competitive displacement between ecological homologues,

although not common, is thought to be more rare in nature and of less

significance than it actually is.

Ofomata, (1998) gives the importance of competitive displacement as follows:
e Competitive displacement is important in explaining the failure of a

species to establish in areas where the climate should be ideal for it,



and where it has colonized in large numbers, many sites with abundant
food (hosts) present.

e Competitive displacement is an important part in evolutionary
processes of adaptation and speciation. Just as there are expressed
differences in the environmentally modified values (effective progeny
production) between ecological homologues, there is expressed genetic
variability within specific populations.

e The hypothesis of competitive displacement is of considerable
importance in biological control where by species of natural enemies
are frequently introduced in attempts to obtain efficient regulation of

insect-pest populations.

We must note at this stage, however, that competition between two species
does not always result in the displacement of one of the species. The
consequences of competition between two species depend mainly on the per
capita rate of population increase, r, of each species.

In competition, it is not the r of unimpeded growth, which is of interest, but
rather the r, which occurs when the environment is saturated with individuals.
Take a case of two species A and B.

Suppose, now, that a few of both A and B were introduced into an
environment. Initially both will be scarce and their growth unimpeded.
However, as their combined population increases, and the r of each

decreases, there comes a point when the rof one of the species, say A, drops
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to zero for the first time. B retains a positive rand increases further, reducing
A’s r to make it negative. B, thus, increases as A decreases.

This is the mechanism of competition, in which "B has a competitive
advantage over A”, and thus increases at the expense of A. If B maintains its
competitive advantage, even when A is rare, it will completely eliminate A. On
the other hand, neither eliminates the other if A gains competitive advantage,

when rare, and maintains it. In that case, both will coexist indefinitely.

ensuring co-existence, pointing out that all such mechanisms so far imagined

seem to rely on heterogeneity of the environment;

» If the environment is not completely uniform in space, one species may
not be eliminated and both may co-exist indefinitely.

» If the environment changes in time, a somewhat prolonged co-existence
of competitors is also possible. Suppose conditions were changed in the
course of the above illustration, so that the r of A becomes greater than
that of B. The direction of change of the proportions of the two species
would be reversed. If the period between such fluctuations is shorter than
the time required to eliminate any of the species, the two species will co-
exist, at least, for some time. However, it will be more difficult for them to
persist indefinitely.

» If there is enough variation in the resources to allow each population to

specialize in one variety of the resource (Brown and Wilson, 1956).
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> A species might specialize by utilizing an abundant resource, before
another more efficient competitor arrives, and gain a temporary respite
from extermination, If there is variation in time. Many “weedy” plants

show this “opportunistic” specialization.

> In spatially homogeneous and temporally invariant environment the stable
coexistence of two predators on a single resource is possible, although this
coexistence is not at fixed densities (McGhee and Armstrong, 1976).
Co-existence may also occur in uniform conditions. For example, when each
of the species in competition is favored when rare, and is placed at a
disadvantage when common, neither would be eliminated. Thus, when a
species was losing in competition, getting gradually more rare, it would be
progressively favored over the winning species, which, in becoming

commoner, was losing its advantage.
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CHAPTER TWO
MODELS OF GROWTH AND DECLINE
2.1: INTRODUCTION
In this chapter, we describe two simple models for describing patterns of growth and
decline or decay in biological populations and individual organisms. Later in chapter
four we shall refer to this model to build more realistic model and in chapter five fit

data to the models.

2.2: EXPONENTIAL GROWTH.

Exponential growth and decline are basic models for describing the change in size of
biological populations. Essentially, this is because all organisms have an innate
capacity to increase or decrease, at a rate directly proportional to their numbers. In
many situations growth, or decline, appears as a continuos process. The mathematical
tools for describing the dynamics of continuos growth through infinitesimal changes
are differential equations. We begin by developing a differential equation for
exponential growth, which we will then solve to find the mathematical equation for

the size of the population at some specified time.

Take the case of a bacterial colony. The successive population sizes over a small
increment of time dt are related by,
Colony size at time t+dt= colony size at time t + growth increment in time (t, t+dt)

ie, N (t+dy) =N () +dN.

The essential property of exponential growth is that the growth increment is directly

proportional to the size of the population i.e., dN =r Ndt.
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where the parameter r is referred to as the rate constant of growth. It is implicit that
the population size N is a function of time. Rearranging this expression gives
r=dN/Ndt as the fractional change in size per unit time. This is measured in units of
reciprocal time for example 0.6 per hour or equivalently, 0.06 per minute. For this
reason, » is sometimes referred to as the fractional growth rate, the relative growth
rate or the specific growth rate. Dividing both sides of the above expression by dt

gives the rate of change in size per unit time over the small time interval as

dN/dt = rN letting delta ¢ tend to zero the rate of change of population size is
seen to satisfy the differential equation dN/dt = rN.
We solve this differential equation to obtain,

N(t) = N(0)e" (2.2.1)

The population growth is called exponential from the function, which describes its
form. An important property of exponential growth is that the logarithm of population
size increases as a straight line with slope equal to the rate constant, » (using
logarithm to base €). Note that for those populations with the same rate constant the
increase in the logarithim of population size is a series of parallel lines separated by
an amount depending only on their initial sizes.
For exponential growth the time taken to produce a doubling of population size is
called doubling time. A characteristic property of exponential growth is that the
doubling time does not depend on the initial population size but is determined solely
by the rate constant of growth.
2.3: EXPONENTIAL DECAY.
In the model of exponential growth the rate constant is positive but the model can also

have a negative rate constant. This case corresponds to a rate of loss or decay in direct
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proportion to size or amount of material present. When the quantity of material
present at time t can be described by a continuos variable O(?) the rate of change of
the quantity at time t is given by the differential equation dQ/dt= - kQ.

The parameter k is called the rate constant of decay. It is measured in units of
reciprocal time. By convention K is taken to be positive so that a negative sign
appears on the right -hand side of the differential equation to represent a rate of loss.
The differential equation is solved in the same way as for the exponential growth to
give the quantity of material present at time ¢ as O(t) =Q(0)e-kt.

Where Q(0) is the quantity present at time ¢ =0. The decline in the quantity is
described by an exponential curve and its logarithm decreases as a straight line with
slope equal to -k (using logarithms to base €).

In exponential decay, the time taken to decay to half of the initial amount present is
called THE HALF-LIFE. The quantity is analogous to the doubling time for
exponential growth. It does not depend on the initial amount present and is

determined solely by the rate constant of decay.

Although populations can increase exponentially, their food supplies usually increase
arithmetically, so that the population growth will eventually be limited (1\2}&9@
191§). For plants and animals there are many ways in which population growth might
be limited. Shortage of food, lack of space or the accumulation of toxic substances in
the environment may lead to increased mortality rates or reduced rates of reproduction
and thereby prevent further population increase. These changes may involve increased
competition for resources, either directly through overt interactions between

individuals, or indirectly via a more passive depletion of the environment. Whatever
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the underlying processes, the result is limited population growth in which the relative
growth rate decreases with increasing population size.

Many mathematical models for limited population growth, which apply to a wide
range of biological processes and mechanisms, have been developed. However, we
shall concentrate on the logistic model because of its relation with the competition

models that we shall later discuss.

2.4: LOGISTIC MODEL FOR LIMITED POPULATION GROWTH IN
CONTINOUS TIME.

A basic pattern of limited population growth is sigmoidal or s- shaped curve. A
particular case is the logistic model, which has been widely used, in theoretical work
and in empirical studies to describe the growth of populations both in the field and in
laboratory conditions. To develop the logistic model we begin by setting a differential
equation for the growth rate and then solving the equation for the equation to find the
pattern of growth in time.

We recall that the rate of growth of a population (for exponential growth) of size

N(t)at time ¢ is given by dN/dt =rN where ris the rate constant of growth. The

characteristic feature of limited population growth is that the relative growth is not
constant but decreases as the population size increases.

In the logistic model, the relative growth rate declines linearly with population size so
that the rate of change of population size is then given by the differential equation;

dN N

N _ ,N(l __) (2.4.1)

dt K
The parameter rin this case, is the relative growth rate when the effects of limiting
factors are negligible. X is called the carrying capacity or equilibrium level. When the

population size equals X the growth rate is zero, and the population remains at that
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level. As the population size increases, the relative growth rate is reduced in
proportion to the fraction of the carrying capacity remaining. Note that the assumed
linear decrease of relative growth rate with population size is a purely descriptive
model for the effects of the factors, which limit growth. A more mechanistic model
would involve postulates about the underlying processes and mechanisms associated
with these factors. The differential equation for logistic growth can be solved using

analytical methods to obtain;

K
1+ [L - 1}6”
N(0)

This is the logistic equation for population growth. This equation is sometimes written

N@) = (2.4.2)

in the form

NG =- E (2.4.3)

+ e—r(t—h)
by substituting K /(N(0))—1=e". The parameter # is the time at which the population
reaches half the carrying capacity, i.e., N(h) = K /2 .This forms assumes that the initial

population size is less than the carrying capacity X since the exponential function is

always positive.

2.5 PROPERTIES OF THE LOGISTIC GROWTH CURVE
@) The increase of population size with time follows a sigmoidal or s-

shaped curve.
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(i)  The growth rate increase with size to a peak rate of rK /4 when the
population reaches half the carrying capacity. This occurs at a point of
inflexion on the growth curve where the slope is greatest.

(iii)  The logarithm of population size increases at a decreasing rate.

(iv)  The relative growth rate decrease linearly with population size with

slope -r/K .

For logistic population growth, the carrying capacity X is reached when

N@=Kor 1+e"“™M =1, where % is the time to reach K/2
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CHAPTER THREE

COMPETITION MODELS

3.1 INTRODUCTION

In this chapter, we present some simple descriptive models for competition between
two species. There are a number of competition models that have been developed so
far but we shall restrict ourselves to the Lotka —Volterra (L-V) model since it was the
first competition model to be developed and all the other models are improvement of

it.

3.2 THE LOTKA-VOLTERRA MODEL FOR TWO SPECIES

COMPETITION

A basic model for the interaction of two competing species was proposed by Lotka
(1925) and, independently, by Volterra (1926). The approach extends the logistic
model for limited population growth of a single species in which the growth rate is

given by

= rN(l ___) 3.2.1)

where N denotes population density at time ¢, r is the intrinsic relative growth rate and
K is the carrying capacity. The logistic model does not incorporate a specific
mechanism for limited population growth but merely describes its effect as a relative

growth rate, which decreases linearly with population density, i.e.
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1av_ N .
N dt K
or
Relative growth rate
=Intrinsic relative growth rate-Reduction in relative growth rate due to effect of

species on itself.

This reduction in the relative growth rate with increased density is a simple model for
the effect of competition between individuals of the same species. Lotka-Volterra
extended the approach to measure the effects of competition between species. He
added a further reduction in the relative growth rate of one species, which is
proportional to the density of other species and postulated the existence of two species
competing for the same resource, R. Based on the assumptions that the specific
growth rate of each of competing species increases linearly with the amount of
resource present, and that the amount of resource available at time t, is diminished in
proportion to the densities of the competitors so that for the interaction of species 1

and 2, Lotka-Volterra came up with the equation,

N, N
LN = — e, == (3.2.3)
N, dt K, K,
When a,, exceeds one, species 1 suffers a greater competitive effect from species 2

than it does from itself. A similar coefficient «,, measures the competitive effect of

species 1 on species 2.
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This is the basis of the Lotka-Volterra model for two species competition.

Thus the Lotka- Volterra models for two species competition are

% =N, (1 - Mﬁj (3.2.42)

‘ K,

d{% =N, (1 - M) (3.2.4)
2

where N and N, are the population density of species 1 and 2, 7 and 7, are the
intrinsic relative growth rates, K, and K, are the carrying capacities in single

population growth, and ¢, and «,, are competition coefficients.

In the absence of competition from species 2, species 1 exhibits logistic population
growth, increasing to its carrying capacity. Similarly with no competition from

species 1, the density of species 2 will increase and stabilize at its carrying capacity.
For specified values of the parameters and the initial population densities, the
behavior of the model can be studied by solving the differential equations of
population change using numerical methods.

For along time especially since the 1970’s, more and more ecologists have pointed out
that there exist many deficiencies in L-V equations. The authors’ points are

summarized as follows (Cui Qiwu et.al, 1991),
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% L-V equations lack sufficient and reasonable theoretical foundation. Except
for the direct extension of Logistic equation, they do not have any other
theoretical backgrounds.

% The only theoretical basis of L-V equations, Logistic equation, has many
deficiencies too (Pielo, 1969, Odum, 1983). It has been preliminarily proved
that it is not a general theoretical model of single population growth (Cui and
Lawson, 1982, Song, 1986).

% L-V equations oversimplify the process of interspecific competition (Neill,

1974; May, 1976). Lotka himself has always said that a correct interspecific

competition model should be non-linear (Gilpin and Ayala, 1973).

>

7/
¢

L-V model contains two restrictions on the mathematical form of the
equations used: (a) the resource available at time ¢ is a function of the
population densities of the competitors at time t, and (b) the specific growth

rate is a linear function of the resource (Mcgehee and Armstrong, 1975).

Meanwhile, as stated above, many theoretical models of interspecific competition
have been constructed (MacArthur, 1968, 1972, May, 1971, Schoener, 1974
Armstrong and Mcgehee, 1975, Schoener, 1973. 1974a, 1976 Jensen, 1987). Since the
1980s Chinese Scholar Cui Qiwu together with his domestic and foreign colleagues,
have constructed and studied a set of new ecological explanatory models based on the
theory of Nutrition Kinetics (Cui and Lawson, 1982; Cui and Lu, 1985, 1988). In the
following chapter we shall develop our model by modifying the explanatory model of
interspecific competition based on the theory of Nutrition Kinetics established by Sun

etal, 1991.
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Looking at the various population models so far pointed out we note the importance
of differential equations in them. It is imperative therefore that we discuss one method
of solving differential equations. Numerical methods are usually employed in solving
differential equations. Some of the numerical methods available for solving
differential equations include Euler method, backward Euler method, Mid-point
method, Taylor series method and the Runge Kutta methods. For the sake of the
differential equations that we shall later need to solve, we briefly look at one of the
Runge Kutta methods; the fourth order Runge-Kutta method for the system of
equations which is often referred to as the standard method for solving differential

equation because of its power of balance, precision and easy to compute.

3.3 THE FOURTH ORDER RUN GE-KUTTA METHOD FOR THE SYSTEM

OF EQUATIONS

The fourth order classical Runge-Kutta method for the system of equations
du
—=f(t,u
=)

u(t,)=r

may be written as
Uy =U, +é(1<l +2K, +2K, +K,) (3.3.1)

where



’—KH | !-KIZ | FKB ] ’7K14 ]

KZ] K22 K23 K24
K1= y K2= ,...K3: y K4=

_Knl J _KIIZJ _KnB _I _Kn4_1

and
Ky =l1f,.(rj,u,_j, uzyj,...,un,,)

h 1 1 1
Klz = hf; tj +5, u,,; +5K1’l9 U, ; +5K42(1>,...,un‘, +T2—K"l

h 1 1 1
Ki3 =hf;'(tj +E’ul,j +§K12, uz,j +EK22,...,L{",1 +5Kn2)

K, =hf(t, +h, Kooty + Koo, + K5 )i = 1(1)n
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In an explicit form (3.3.1) becomes

"

1 e
Uiu =Uy += (K} +2K), + 2K, +K,,) (3.3.2)

for eachi=12...n
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CHAPTER FOUR

METHODOLOGY
4.1 INTRODUCTION

Sun et al, (1991) constructed a mathematical model of interspecific competition based
on the theory of nutrition kinetics. Although the new model has the same qualitative
behaviors, to some extent, as Lotka-Volterra competition equations, it gives the
outcomes of interspecific competition a better explanation of nutrition kinetics, which
conforms to the basic principles of ecology or biology (Sun et al, 1991). Their model,
however, was for two species competing for one resource. We modify this to a model
of two species competing for more than one resource.

For each resource let H be the food biomass available for the two species at time ¢,
and M, the population density of the species i, /=1,2 at time ¢. We employ the basic

modeling formula of nutrition Kinetics,

a; =(UmeJ+H 4.1.1)
Md | K,

I

where, U, is the maximum specific rate of growth of species i, when food is
unlimited, K, is the efficiency of food utilization. We now extend this model to

include four distinct food sources; maize, sorghum, wild sorghum and Napier grass.
We assume that the two wild grasses, Napier and wild sorghum are in the field
throughout the year. Maize and sorghum are assumed to be in the field during long
and short rainy seasons, that is, twice in a year. We assume, too, that the resources are

independent.
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The two species both have four stages in their life cycle. But our model is based
specifically on the larval stage since it is at this stage that they are most injurious to
the stated grasses. We therefore assume that the larval stage strongly influences each

of these species population dynamics. Equation (4.1.1) may then be re-written as,

dM, d mi
M dt IZ::K :LH (412)

Where U,,; is the maximum specific rate of growth of species i on resource j and K i

is the corresponding efficiency of food utilization. For each of this grass let the initial

food resource be S, . Suppose each of this grass at any one time ¢, has the two species
competing. After some time the limiting resource j decreases to H ;» while the size of
competing population #, on j is M, which contains concentration S; of limiting
nutrient j. Let @ represent the contained amount of limiting nutrient j, j=1...4, by per
unit of population i, i =1,2.
Then;

H,=S, —(S;+5,,) (4.1.32)

S, =a,;M

g TeyH Sy =0y ;M,; (4.1.3b)

We consider a case where there is only one species, i, on the resource j. We then

define M, as the maximum size of population i when all the limiting nutrient , is

transformed into the biomass of population i. Then;
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Smj =alemlj = aZijZj (4130)
Putting this expression (4.1.3c) in (4.1.3a) we get,
Hy=ayM,, -(e,M, +a,M,,) (4.1.3d)
Substituting (4.1.3d) into (4.1.2) we get,
dM i mlj alj mlj (alelj+a2/M21))
Mt Z K+l M, —(a,M,; +ay,M,,)
4 Umleml_/( (M == j M2_/) Mmlj)
- Z %y (4.1.4)
= a, K,.
. —+M,,,U I-(M; +—L M)+ —L M,
a; Q; ay;
o [1 - (M, +2 Mz,-)—Mml,]
—t‘=ZUd!M1 Ll (4.1.52)
o, ,
! (1 (M]_/+ jMZj) Mmljj
1j
Likewise,
dM [1_(M21+ 4 Mlj) Mij]
Z 2 (4.1.5b)
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K. . .
where, M,; =—”+M,m.j IS @ new parameter related to the amount of available
@

nutrient j, and efficiency of nutrient utilization of population 7.

M.
mij . . .
U =[~,Jx U,; is the parameter of specific rate of growth of population I on

mij
resource j. We now consider the mortalities of the two species on each of the

resources. We denote the mortality by Djie. the mortality rate of species I on

resource j. j=1...4; I=1,2. Then equation (4.1.5a) becomes,

aMm - 1j
Tzl=ZIUC‘fM‘ - =I5 (4.1.6)
= B2 '
! [l‘(M1j+4M2j)+MmljJ
@y
we manipulate the above equation to obtain,
=, + 220y
at, g M) My
7’=ZU%1 M, L (4.1.7)
- o, . ,
g (1_(Mlj+iM2j)+Mm]jJ
alj
Likewise (4.1.5b) becomes
d i 1_'(M2]+ Ml./) M.mlj]
o 2
dtz =ZU M, c (4.1.8)
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where M, = 2 xM,,; is the carrying capacity of resource j of
Uﬂ'j Mmij
population i. UJ; =U,; — D;; is the parameter of specific growth rate of population ion

TEsSource j.

Thus equation (4.1.7) and (4.1.8) turn into the following more general forms

respectively:
M 4 (1—(M1 +a|21MZJ)*M°mu)
—L=>UeM (4.1.9)
dt j=1 (1_(M +a12_/M2/) Mmlj)
, ‘iU' 2 (1—(M2j+a21jM )+ M ;) 4.1.10)
- czj 2 1.
= (1_(M2j +a, ;M) + Mmz,l)

where «,, and a,, are competition coefficients of population 2 to 1 and population 1

to 2, respectively, and they are not reciprocal, for the two populations have different
feeding habits. When «,,>1 then population 2 wins the competition and when a,,>1

the population 1 wins the competition.
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CHAPTER FIVE

AN EMPIRICAL STUDY
5.1: INTRODUCTION
In this chapter we carry out an empirical study based on what we have discussed in
the previous chapters. Having noted that our study is based purely on the larval stages
of the two species, with the stated assumptions, we adopt equation (4.1.9) and
(4.1.10) as the models representing the change in population density of Chilo
Partellus and Chilo Oricho respectively with time. Before we can fit them, however,
we first estimate the various parameters mostly derived directly from existing
literature (Appendix Al), especially the work done by Ofomata (1998).
The parameter of maximum population density of each species on each resource M is
among the parameters obtained directly from Ofomata’s work and is given in table 2.1
(Appendix 2). To obtain the competition coefficients we refer to (Harper 1977) and

define for each resource:

ay, =((%M, at 0:1) /(%M at 0:1))+ (%M, at1:1) (%M, at1:1)) (5.2.1a)
Likewise,
ay =((%M, at 0:1) (%M, at 0:1)) = (%M, at1:1) (%M, at1:1)) (5.2.1b)

Table 2.2 (Appendix A2) gives the estimated competition coefficients on each of the

resources. To obtain the other parameters U, and M,,;, we assume a situation when

mij 2
there is no inter specific competition. Let us also assume a no death special case so
that our models are reduced to,

ﬂ_ UCM(MIH _M)+MIH
dt (M, -M)+M

(5.2.2a)

'
m
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We proceed to get the integral form of the above equation,

M M -M
Zm = |—m g,
UC Mm It J-M(Mm _M) m
M M 1
= b e b e 7 5.2.2b
S VAl vy v) Ll [ v L (224}

Taking the first part of the second portion of equation (5.2.2) we express it as a partial

fraction to obtain

n (5.2.3)

Substituting it back into equation (5.2.2) we get,

M

M, : M,
U, —2t+e=—"2= J‘Ldm+ - .f : dm—.[ . dm
Mm Mm M Mm Mm_M Mm—M
M,
=M - Mn g, (M,, —M)+In(M,, - M) (5.2.4)
At timez, equation (5.2.4) becomes
M, M,
U, —"t,+c=—"InM, - Mo b (M, —M,)+In(M, —M,) (5.2.5)
M”l M”l m
Subtracting (5.2.6) from (5.2.5) we obtain;
M -M M M, -M
t—ty = | n 2y M n__ M (5.2.6)
c 0 Mm—MO U XMm Mm_MO
M, -M M, -M M
let X,=In—7 0 —In—= s Ay = In—2 y=t—t, bl—i, ) = o
0 Mm_MO Mm_'MO Uc chMm
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Then equation (5.2.6) becomes a linear equation as follows:

y=bX,+b,X, (5.2.7)
We then generated population data for each species on each resource using the
logistic equation (2.4.2), for time having fixed population at time. These we used to

obtain the corresponding X, and X, which in regards to equation (5.2.7) we regressed

using the SAS REG procedure (SAS institute, 1987) to obtain the parameters,U,; and

M ' . The results are presented in Tables 2.3 and 2.4 (Appendix 2). The estimated

parameters are then substituted in the corresponding model equations (4.1.9) and
(4.1.10) and the numerical solution for each of the models got by computer simulation
of the fourth order Runge-Kutta method.

During our simulations we made the following assumptions;

» That Napier grass and wild sorghum are in the field throughout the year.

» That sorghum and maize are in the field during two rainy seasons in between
which there is a dry season (Overhalt et al, 1994).

> That the two species infest the two wild grasses throughout the year. Some
however, migrate to infest maize and sorghum during the rainy season.

» That since the larval of the two species preferred boring into young plants
(Ofomata 1998) we assumed that the larval population in maize and sorghum
grew constantly at the corresponding growth rates up to half the rainy season
after which it decreased at the same rate until the end of the subsequent dry

s€ason.

Simulations were then done to obtain the population density of each species per plant

in the four resources for a period of 4000 days.
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Note that we fixed an arbitrary initial population for the two species on Napier grass
and wild sorghum for the first year. The initial population on maize and sorghum at
the beginning of any of the planting season was always taken as the average
population density per plant of each species in the field at that time.

Figures 5.1...5.4 shows the time plot for the average population density on maize,
sorghum, wild sorghum and the four grasses combined.

From the time plots, the population density of each of the species of the resources
forever remain bounded away from the zero mark thus, neither of the species can ever
approach extinction; the species coexist for a long period of time, though at fixed

densities.
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Fig 5.1

Average population density of partellus and oricho on maize
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Fig 5.2

Population density of partellus and oricho on sorghum
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CHAPTER SIX

ACCOMPLISHMENTS AND CONCLUSIONS

6.1 INTRODUCTION

In this chapter we briefly describe the general achievements/conclusions we have
made in this project. We also suggest areas, which have showed up during this

project, for further research.

6.2 ACHIEVEMENTS/CONCLUSIONS

a) We noted earlier that one of the things that hamper field researchers ability to
make viable population projections for the two species is the difficulty to
continuously carry out their field observations for reasonable length of time. Our
model solves this problem because it enables one to make population projections
for as many days as required as long as one has the initial population and the
conditions remain constant. This saves time and resources.

b) From our time plots one is able to deduce that despite the numerous inferior
attributes of Chilo orichalcociliellus to those of Chilo partellus, it is able to persist
in existence, though at very lower density, contrary to the expectation of
extinction. This is deduced from the observation that at no time does the “oricho”
curve hit the zero mark no matter the length of time. This could be attributed to
the fact that the environment is spatially homogeneous and temporally invariant

(McGhee and Armstrong 1975).
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We have been able to confirm that the wild grasses play a major role in the
population dynamics of the two species and therefore any viable control of the

two pests must emphasize the management of the wild grasses.

d) We have been able to show from the competition coefficients that chilo partellus is

superior in competition in the sorghum grasses. On the other hand, Chilo oricho is

superior in competition in the Napier grass. The difference in competition, is,

however, minimal in maize. This result is consistent with the information in the

literature (Ofomata,1998).

6.3 SUGGESTIONS

a)

b)

In our model we assumed that the birth rate and the death rate of each of the two
species on each of the resources was constant. However it has been observed that
the rate at which the larva establishes in the plant depends on the age of the plant
and the time of the season (Ofomata, 1998). For example, at the beginning of the
rainy season more adult species are expected to migrate to the maize and sorghum.
We thus expect the growth rate (establishment rate) to be higher in them than in
the wild grasses. The converse should also be expected. Similarly as the plants
grow, we expect the establishment rate to be consistently reduced at a gradual
rate. It is therefore necessary to investigate the concept of differential mortality
and growth rates and incorporate them in this model.

The two chilo species have a life cycle of four stages. We have concentrated our
study on the larval stage only. It is necessary that we study the population
dynamics of each of the stages separately before integrating them into a single
population model. This would result in a more precise model.

We need to carry out a sensitivity analysis of our model. In practice the sensitivity

analysis is carried out by changing the parameter, forcing function, initial values
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or sub models and observing the corresponding response on the important state

variable. The relative change in parameters is chosen on the basis of our

knowledge of the certainty of the parameters.

It is necessary that we calibrate our model i.e., we test several sets of parameters

by calibration and the various model outputs of state variables are compared with

the measured or observed values of the same state variables. The parameter set,

that gives the best agreement between model outputs and measured state variables,

is chosen.

The need for calibration can be explained by use of the following characteristics

of ecological models and their parameters ( Jorgensen, 1994):

i)

iii)

Most ecological parameters are rarely known as exact values.
Therefore all literature values for ecological parameters have some
uncertainty.

All ecological models are simplification of nature. The process
descriptions and the system do not account for all details. If the model
is selected carefully it will include all the important processes and
components for the problem in focus, but the omitted details might
still have an influence on the result. This influence can to a certain
extent be taken into account by the calibration.

An ecosystem is flexible system, which can meet changes in forcing
functions by new properties of the state variables. This is either an
adaptation of the present species or change in species composition. It
is important in many modeling contexts to include this characteristic

of ecosystems in our models.
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e) We need to examine the consequences of periodic variation in » and/or X in our
model. A small oscillation in the value of one parameter in a model equation usually
cause a similar small oscillation in the population, the amplitude and phase of this
oscillation being easily calculable from the transfer function . If, however, the
imposed oscillation is of large amplitude, or if the undriven system itself oscillates,
then the nonlinear effects may cause profound qualitative changes in the behavior of
the population. For example, a population originally in stable equilibrium, when
driven by a large oscillation in an environmental parameter, may oscillate at a
frequency equal to a subharmonic of the driving frequency, and is thus conceivable
that the annual climatic cycle could produce population cycles with a period of
several years (Nisbet and Gumey, 1975). The effects of a periodically varying
environment are also important for evolutionary theory, as the selective forces on a
system of fluctuating environment differ from those in a stable environment.
MacArthur and Wilson(1976) argued that, in a strongly varying environment, natural
selection favors a species which can maximize its intrinsic growth rate (r-selection),
while in a constant environment there is a selection for qualities which lead to the

most use of available resources (K-selection)

f) We were unable to include guinea grass in our model yet it exists in the field among
the other grasses (Ofomata,1998). This was due to lack of sufficient information on
the growth parameters of the two-chilo species on it. Since partellus is not able to
complete its life cycle on this grass, unlike oricho, it is vital to incorporate it in the

model and see how it boosts further the population density of Oricho in the field.



42

REFERENCES

Black, W.C., Rai, K.S., Turco, B.J. and Arroyo,D.C. (1989). Laboratory study of
competition between United States strains of Aedes albopictus (Diptera:

Culcidae).Journal Of Medical Entomology 26: 839-850.

Brown, W.L., Jr., and E.O. Wilson (1956). Character displacement. Sys. Zool. 5:49-

64

Cui, Q and Lawson, G.J. (1982). Study on models of single populations: An

expansion of the logistic and exponential equations. J. Theor. Biol., 98: 645-659

Cole, L.C. (1960). Competitive exclusion. Science 132 (3423): 348-349

Cui Qiwu, Sun Guowei and Song Bo. (1986). Preliminary estimation of Logistics

equation. J. Ecol (China). 5(3): 57-62

Debach, P. (1966) and Sunby, L.A. (1963). Competitive displacement between

ecological Homologues. Hilgardia 34(5) 105-166.

Food and Agricultural Organization (1991). Yearbook vol. 45.

Gilpin, M. E. and Ayala, F.J. (1973).  Competition between species. Theoretical

models and experimental tests. Theor. Population Biol., 4: 331-356.



43

Hardin, G . (1960). The competitive exclusion principle. Science 131 (3409): 1292-
1298

)/
i

Y
Hill, D.S(1983). Agricultural insect pests of the tropics and their control Cambridge

University press. p 281-381

Hutchinson, G.E (1978). An introduction to population ecology. Yale University

Press, New Haven, Connecticut, USA.

Kfir, R. (1994). Attempts at biological control of the stem borer Chilo partellus

(Swinhoe) (Lepidoptera: Pyralidae) in South Africa. African Entomology 2: 67-68.

Likens, G.E.,(ed), (1985). An Ecosystem Approach to Aquatic Ecology: Mirror Lake

and its Environment. Springer-Verlag, New York, 516 pp.

MacArthur, R. and Wilson, E.O. (1976). The theory of Island Biogeography.

Princeton: Princeton University Press.

McGehee and Armstrong (1976). Coexistence of Two Competitors on One
Resource.

J.theor. Biol.,56: 499-502.

Mathez, F.C. (1972). Chilo partellus Swinhoe, C.orichalcociliellus Strand

(Lepidoptera). Crambidae) and Sesamia calamistis Hmps. (Lep Noctuidae) on maize



44

in the Coast Province Kenya. Mitteilungen der Schwezerischen Entomologischen

Gesellschaft 45: 267-289.
May, R.M.,¢1976) Theoretical Ecology. Blackwell Scientific Publications, Oxford.

Neill, W.E.,(1974.\,The community matrix and interdependence of the competition

—

coefficients. Am. Nat., 108: 399-408.

Nisbet, R.M and Guiney, W.S.C, (1975). Population Dynamics in a periodically

varying Environment. J. theor. Biol. (1976) 56: 459-475.

Nye,L.W.B (1960). The insect pests of graminaceous crops in East Africa. Colonial

Research Study No. 31 London, Her Majesty’s Stationary Office p 48
Odum, E.P., k1983) Basic Ecology. Sanders College Publishing, Winston.

Ofomata, V.C. (1998). Ecological Interactions Between Chilo partellus (Swinhoe)
and Chilo orichalcociliellus Strand on the Kenya Coast.

5
Overhalt, W.A; K.Ogedah and P.M Lammers (1994a). Distribution and sampling
of Chilo partellus (Swinhoe)(Lepidoptera: Pyralidae) in maize and sorghum at the

Kenya coast. Bull. Ent Res.84.: 367-378.

Overhalt, W.A; Ngi-Song, A.J.Kimani,S.W.; Mbapila, J.; Lammers,P.and

PA—

Kioko,E. (1994b). Ecological considerations of the introduction of Cofesia flavipes



45

Cameron (Hymenoptera: Braconidae) for biological control of Chilo
partellus(Swinhoe) (Lepidoptera: Pyralidae) in Africa. Biocontrol News and

information 15(2): 19N-24N.

Patterson, J.T(1943). Studies in the genetics of Drosophila.lll. the Drosophilidae of

the Southwest. Univ. of Texas pub, No.4313

Seshu Reddy, K.V(1983b). Studies on the stem borer complex of sorghum in Kenya.

Insect Science. Applic. 6:3-10

Seshu Reddy, K.V., Walker, P.T. (1990). A review of the yield losses in

graminaceous crops caused by Chilo spp. Insect Sci. Appli. 11 (4/5): 563-5609.

Seshu Reddy, K.V. (1991) Insects pests of sorghum in Africa. Insect Sci. Applic. 12:

563-657.

SAS Institute (1987) SAS/STAT guide for personal computers, version Ged. SAS

Institute, Cary, NC.

Schoener, T. W., (1974). Competition and the form of habitat shift. Theor.
Population

Biol., 6: 265-307.

Schoener, T.W. (1983). Field experiments on interspecific competition. Am. Nat.

122: 240-285



46

Schoener, T.W. (1988). Ecological interaction. In Analytical Biogeography. Ed.

A.A Myers, P.S. Giller. New York: Chapman and Hall pp. 255-97

Simberloff, D. (1981) Community effects of introduced species. In Biotic crises in
Ecological and Evolutionary Time (ed.M.H. Nirecki), Academic Press,

New York pp 53-81.

Song, B. (1986). Preliminary estimation of Logistic equation. J.Ecol (China). 5 (3):

57-62

Warui, C.M. Kuria, J.N. (1983). Population incidence and the control of maize stalk
borer Chilo partellus (Swinhoe), C.orichalcociliellus Strand (Pyralidae) and
Sesamie calamistis Hmps (Noctuidae) in Coast Province, Kenya. Insect Sci. Applic. 4:
11-18.

Youdeowi, A. (1989). Major arthropod pests of food and industrial crops of Africa
and their economic importance. In Yaninek, J.S. and Herren, H.R (eds.). Biological

control: a sustainable solution to crops pest problems in Africa. Ibadan, Nigeria, IITA

pp- 31-50.



47

APPENDICES

APPENDIX A1

Table 1.1a: Larval establishment (std) of C.partellus while alone in

different host plants.

Percentage of larvae recovered

Host plants Number of days after infestation

3 10 21
Maize 76.4122.5a 60.2+13.9a 50.4+16.7a
Sorghum 68.4+20.5a 42.4+12.7¢c 32.4+13.8b
Napier grass ~ 36.2+15.1b 25.6+13.0d 19.449.1c
Wild sorghum  71.3+28.0a 49.7+21.4b 36.3+14.7b
F-value 27.89 38.01 33.18
Pr>F 0.0001 0.0001 0.0001

Means in the same column with different letters are significantly different P< 0.05

Source (Ofomata 1998)
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Table 1.1b larval establishment (tstd) of C.partellus while with

C. Orichalcociliellus in different host plants

Percentage of larvae recovered

Host plants Number of days after infestation

3 10 21
Maize 66.7+31.2a 54.7+34.4a 36.7£15.8a
Sorghum 51.2+17.7b 41.2+11.0b 28.8+£11.5b
Napier grass  36.3+12.5¢ 19.3+3.6¢ 18.046.1c

Wild sorghum  41.3+21.6bc 36.7+16.7b 26.7£14.2b

F-value 18.82 17.23 11.62

Pr>F 0.0001 0.0001 0.0001

Means in the same column with different letters are significantly different P< 0.05

Source (Ofomatal998)
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Table 1.1c ; Larval establishment (std) of C. Orichalcociliellus while

alone in different host plants.

Percentage of larvae recovered

Host plants Number of days after infestation

3 10 21
Maize 71.3+£20.8a 53.0£22.9a 50.4£16.7a
Sorghum 66.0+21.2ab 43.4£10.6ab 32.4+13.8b
Napier grass 53.2i13.4b 32.5£17.7b 19.449.1¢c

Wild sorghum  62.0+11.1ab 47.0£10.0a 36.3£14.7b

F-value 5.13 4.99 8.60

Pr>F 0.0028 0.0033 0.0001

Means in the same column with different letters are significantly different P< 0.05

Source (Ofomata 1998)
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Table 1.1d: Larval establishment (£std) of C. Orichalcociliellus while with

C. partellus in different host plants.

Percentage of larvae recovered

Host plants Number of days after infestation

3 10 21
Maize 64.7£10.1a 54.7+34.4a 36.7£15.8a
Sorghum 48.8+16.2b 41.2+11.0b 28.8£11.5b
Napier grass  41.3+12.5¢c 19.3£3.6¢c 18.06.1¢c

Wild sorghum 41.3+14.8c 36.7£16.7b 26.7+14.2b

F-value 21.32 2.72 3.29

Pr>F 0.0001 0.0471 0.0226

Means in the same column with different letters are significantly different P< 0.05

Source (Ofomata 1998)
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APPENDIX A2

Table 2.1: Maximum population density of C. partellus and C.orichalcocillieus on

each host

species Maize Sorghum | Wild sorghum | Napier Grass
Chilo partellus 15 10 12 8

Chilo 15 8 12 14
orichalcocillieus

Source Ofomata (1998)

Table 2.2: Competition coefficients of C. partellus and C.orichalcocillieus on each

host
species Maize Sorghum Wild Napier
sorghum Grass
Chilo partellus 1.495 1.18 2.056 0.93
Chilo 0.669 0.846 0.486 1.065
orichalcocillieus
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Table 2.3: Specific Growth rate (larval) of C. partellus and C.orichalcocillieus on

each host

species Maize Sorghum Wild Napier
sorghum Grass

Chilo partellus 0.019 0.017 0.017

Chilo 0.018 0.013 0.019 0.015

orichalcocillieus

Source Ofomata (1998)

Table 2.4: Parameter M, .

species Maize | Sorghum | Wild sorghum | Napier Grass

Chilo partellus | 4.821 | 0.556 1.8 0.571

Chilo 50 |0572 0.6 0.571

orichalcocillieus




