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Abstract

Alpha helix and microtubules and are two majors biological molecules involved in the
majority of biological processes within insect and animals. The present thesis aims to
understand some critical issues related to the dynamics of these bio-molecules and insect pest

damages.

More specifically, an improvement of the Davydov’s model for energy transfer in o-

helix protein is proposed. Using hyperbolic cosine potential type to model hydrogen bond

‘potential, we have obtained from the adiabatic approximation, a discrete nonlinear

Schrédinger equation with inverse hyperbolic sine nonlinearity. Using the two-dimensional
discrete map approach, we have found a linearly stable intrinsic localized mode of the
corresponding developed equation. The mobility of the intrinsic localized mode was achieved
by moving the local impurity hypothesized as the anomalous band energy. The reactivity of
the discrete breather under thermal noise was studied numerically with the Langevin’s
approach. It was shown that the intrinsic localized mode in the developed model keeps its

shape longer under the thermal bath.

Inspired by standard electrophysiological models of microtubules, a discrete nonlinear
equation for ionic wave propagation that incorporates a negative nonlinear resistance is
presented. The conditions for wave propagation in forbidden band gap are analyzed without
and with nonlinear dissipation. The nonlinear response manifold method is used to determine
the supratransmission threshold of the case of study without nonlinear dissipation. This
threshold is found to be similar to the value obtained by analytical methods. With the
dissipation, the monitoring of the accumulated energy is used to estimate the infratransmission
threshold. It appears that the value of the supratransmission threshold can be lower than the
value of the infratransmission threshold. The system is found to amplify significantly the

amplitude of the input signal, thus confirming known experimental results.

The two previously mentioned biopolymers and involves in the survival and the
behavior of insect and animals; they can adjust the neurological transmission in the brain
while the organisms propagate for searching a place to host them and, they allow the energy

transport through muscular contraction. Concerning the particular case of insect pest,
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understand and predict the spatial propagation of their damage in the agricultural crop has
always been a difficult task. An accurate knowledge on the formation of spatial and temporal
patterns during the damage spread; as well as the modeling of damages is particularly relevant
for small-scale farmers in order to apply adequately control measures. Thus, one of the main
purpose of this study was to understand the spatio-temporal spread of the maize stem borer
Busseola fusca (Fuller) (Lepidoptera: Noctuidae) in smallholder maize farms as well as to
investigate injuriousness and yield losses due to this insect, which is one of the most important

insect pests of maize in sub-Saharan Africa.

More explicitly, the analysis carried out allowed the establishment of complementary
sampling scheme and analysis that can be applied to investigate the propagation of stem borer
damages and extended to other insect pests. This approach requires consideration of all plants
point locations, the knowledge on the level of damage and its characterization. Results showed
that there was a two-week interval between the occurrence of the peaks of leaf damage and
male adult moth abundance. The prior role of leaf damages in the farm infestation by B. fusca
is revealed, and an estimate of the mean transition time between different damage types is
provided. Furthermore, damaged plants exhibited a local spatial autocorrelation within a range
of dependence of 0-10 meters; and the spatio-temporal pattern of B. fusca damage spread
evolves as a spiral around an initial patch of damaged plants. By assuming a neighbor
configuration of distribution of damaged plants nearby non-damaged, we showed that the
inner plants are likely to become damaged within a time period of a week; thus, B. fusca
infests farms in a systematic fashion. Overall, these results have useful implications for
improving and optimizing existing field sampling methods for insect pest damages. The
approaches used in carrying out the analysis further provided a deep understanding helpful to
improve integrated pest management (IPM) strategies against stem borers and offer 1IPM
practitioners’ the opportunity to design, develop, and implement optimum control methods

against B. fusca.

Secondly, a precise sampling scheme was applied to study the damage incidence in
maize caused by this insect pest in selected small-scale farms in which pest control measures
and fertilizer were not been applied. During the crop grow stages and harvest; plant and cob

geometrical features were recorded as well as the length of tunnels bored by the insect. It is
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demonstrated that cob mass is an adequate variable for understanding yield losses caused by
this pest. The ensemble of maize plants with a combination of leaf damages and dead heart
was the group with the lowest number of cob at harvest. Although the number of plants
damaged characterized by stem tunnel was greater than those with cob tunnel, damages
inflicted in ear have the most considerable impact on yield losses. The recorded yield losses
ranged from 35.96% to 48.19% for corresponding quantities of 56.85 Kg/ha to 133.48 Kg/ha
in term of average cob mass reduction. In general, the cob tunnel and the time of infestation
were linearly correlated while cob tunnel length and cob biomass were linked by a cubic
nonlinear function. The length of the stem tunnel and the cob mass seems to not follow a
precise functional curve. The observed yield losses at harvest of the maize crop suggest that

controls measures should be applied continuously throughout the whole growing season.

Thirdly, the spatial and temporal infestations dynamics were simulated using an
integrated conceptual framework governed by cellular automata (CA) paradigm. The selection
of cells sizes was based on the percolation theory, the creation of CA neighborhood applied
fuzzy inference that reposed on the male adult abundance of B. fusca whereas, multi-fractal
concept and correlation probes were used to compare the model output and collected field
data. The study suggested that; instead of conducting systematic sampling within the entire
field/farm, it may be adequate to conduct sampling at defined unit capable of easily capturing
the spread of infestations. Owing to the fact that the developed model predicted with an
accepted level of accuracy the geographical coordinates of the maize plant sequence of
contagion week after week; integrated pest management (IPM) specialists could use the
outcomes to design and develop efficient and more effective timing strategies to control stem
borers in maize farms. For example, targeted and well specify pheromone traps can be placed
at specific locations using this study outputs to optimize the reduction of maize pests in the

fields.

Finally, we developed a generic method to couple crop growth simulation model and
pest population dynamic. The method is designed to incorporate insect pest damages into crop
system model (CSM). The widely used CSM called Decision Support System for
Agrotechnology Transfer (DSSAT) simulates synergic and systemic interactions between the

soil, plant crop, and atmosphere well, but do not generally consider the biotic constraints that
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take places within the system. The software DSSAT is moved towards being an agroecological
framework via an explicit integration of pest dynamic and damages. The maize and the insect
pest lepidopteran stem borer are used as a case of study. In order to model plant-pest
interaction, the fuzzy logic approach was used to take into account the effect of the plant
maturation in the larvae biomass accumulation. The pest module developed in DSSAT is used
to demonstrate how the developing lepidopteran population reduces the above ground biomass
and green leaf area index. The simulation results show a gradual increase of yield losses due to
stem borer damages and suggest that injury levels are generally underestimated. Furthermore,
the model suggested that the plant compensates relatively well the leaf area index lost at the
beginning of the growing season. Although the linkage of population models and CSMs
increases the complexity of the simulation, a tool to explore biotic constraints within farming

systems is provided.

Keywords : discrete Davydov’s soliton, hydrogen bond potential, moving impurity, thermal
stability, microtubule, electrical amplification, supratransmission, infratransmission, Busseola
fusca, insect-plant interactions, Smallholder maize farms, Damage dynamic, yields losses,

cellular automata, percolation theory, fuzzy sets theory, multifractals, crop dynamics, DSSAT
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Résumé

L'hélice alpha et les microtubules et sont deux molécules majeures impliquées dans la
majorité des processus biologiques chez les insectes et les animaux. La présente thése a pour
but de comprendre certains aspects critiques liés a la dynamique de ces biomolécules et

dommages induits par les insectes dans les champs agricoles.

Plus précisément, une amélioration du modele de Davydov pour le transfert d'énergie
dans la protéine a-hélice est proposée. En utilisant un potentiel te type cosinus hyperbolique
pour modéliser I'énergie potentielle de liaison hydrogéne, nous avons obtenu & partir de 1
'approximation adiabatique une équation de Schrodinger non linéaire discréte avec non
linéarité sinus hyperbolique inverse. En utilisant I'approche de carte discréte bidimensionnelle,
nous avons trouvé un mode intrinséque localisé qui est linéairement stable. La mobilité du
mode localisé intrinséque a été obtenue par le déplacement de I'impureté locale considérée
comme la bande d'énergie anormale détectée dans les protéines. La réactivité du mode localisé
discret subissant I'influence d'un bruit thermique a été étudiée numériquement avec I'approche
de Langevin. Il a été montré que le mode localis¢ intrinséque dans le modéle propose dans
cette étude conserve sa cohérence plus longtemps dans le bain thermique comparativement au

model classique de Davydov.

Inspiré par les modéles électrophysiologiques standard des microtubules, une équation
non linéaire discréte pour la propagation des ondes ioniques qui intégre une résistance non
linéaire négative est présentée. Les conditions de propagation des ondes avec des fréquences
dans la bande interdite sont analysées sans et avec dissipation non linéaire. La méthode de la
variété de réponse non linéaire est utilisée pour déterminer le seuil de supratransmission du cas
d'étude sans dissipation non linéaire. Ce seuil se révéle étre similaire a la valeur obtenue par
les méthodes analytiques. En considérant la dissipation non linéaire, le suivi de I'énergie
accumulée est utilisée pour estimer le seuil d'infratransmission. 11 vient que la valeur du seuil
de supratransmission peut étre inférieure & la valeur du seuil d'infratransmission. Dans le cadre
du modele développé dans cette thése, le systeme amplifie significativement I'amplitude du

signal d'entrée, confirmant ainsi les résultats expérimentaux connus.



Les deux biopolymeres mentionnés précédemment sont impliqués dans la survie et le
comportement des insectes et des animaux; ils peuvent ajuster la transmission neurologique
dans le cerveau tandis que les organismes se propagent pour chercher un héte et, ils permettent
le transport d'énergie par contraction musculaire. En ce qui concerne le cas particulier de
I'insecte nuisible, comprendre et prédire la propagation spatiale de leurs dommages dans la
culture agricole a toujours été une tache difficile. Une connaissance précise de la formation de
motifs spatiaux et temporels pendant la propagation des dommages; ainsi que la modélisation
de ces dommages, est particulierement pertinente pour les petits exploitants agricoles afin
d'appliquer des mesures de contrdle adéquates. Ainsi, I'un des principaux objectifs de cette
étude était de comprendre la propagation spatio-temporelle des dégats de l'insecte Busseola
fusca (Fuller) (Lepidoptera: Noctuidae) dans les champs de mais de petits exploitants, ainsi
que I'étude des dommages causés par cet insecte. Cet insecte nuisible est I'un des plus

menagant du mais en Afrique subsaharienne.

De fagon plus explicite, l'analyse réalisée a permis d'établir un schéma
d'échantillonnage et une analyse complémentaires qui peuvent étre appliqués pour étudier la
propagation des dommages causés par le foreur de tige et étendus a d'autres insectes nuisibles.
Cette approche nécessite la prise en compte de tous les emplacements des plantes, la
connaissance du niveau des dommages et de leur caractérisation. Les résultats ont montré qu'il
y avait un intervalle de deux semaines entre l'apparition des pics de lésions foliaires et
I'abondance des adultes males. Le role antérieur des dommages foliaires dans I'infestation de
la ferme par B. fusca est révélé et une estimation du temps moyen de transition entre différents
types de dommages est fournie. De plus, les plantes endommagées présentaient une
autocorrélation spatiale locale dans une plage de 0 & 10 métres; I'évolution spatio-temporel de
la propagation des dommages de B. fusca évolue comme une spirale autour d'un ensemble
initial de plantes endommagées. Nous avons démontré qu'en moyenne, si un ensemble de
quatre plantes voisines endommagées repartie autour d'une plante non-endommagées alors les
plantes internes sont susceptibles d'étre endommagées dans une période de temps d'une
semaine. Ainsi, B. fusca infeste les fermes de maniére systématique. Dans l'ensemble, ces
résultats ont des implications utiles pour l'amélioration et l'optimisation des méthodes

existantes d'échantillonnage sur le terrain pour les dommages causés par les insectes nuisibles.
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Les approches utilisées dans la réalisation de l'analyse ont également permis une
compréhension approfondie utile pour améliorer les stratégies de lutte intégrée contre les
foreurs de tiges et offrir aux praticiens de ce type the lutte la possibilité de concevoir, de

développer et de mettre en ceuvre des méthodes de control optimales contre B. fusca.

Un schéma d'échantillonnage précis a été appliqué pour étudier l'incidence des
dommages causés sur le mais par ce ravageur dans certaines exploitations de petite taille dans
lesquelles des mesures de lutte contre les ravageurs et des engrais n'étaient pas appliquées.
Pendant les phases de culture et de récolte; les caractéristiques géométriques de la plante et de
I'épi ont été enregistrées ainsi que la longueur des tunnels creusés par l'insecte. 11 est démontré
que la masse de I'épi est une variable adéquate pour comprendre les pertes de rendement
causées par ce parasite. L'ensemble des plants de mais avec une combinaison
d'endommagement des feuilles et de coeur mort était le groupe ayant le plus faible nombre
d'épi au moment de la récolte. Bien que le nombre de plantes endommagées par la creusée de
tunnel dans la tige ait ét€¢ plus important que celui de la creusée de tunnel dans I'épi, les
dommages infligés a 1'épi ont le plus d'impact sur les pertes de rendement. Les pertes de
rendement enregistrées varient de 35,96% a 48,19% pour les quantités correspondantes de
56,85 Kg/ha a 133,48 Kg/ha en terme de réduction moyenne de la masse de I'épi. En général,
la creusée de tunnel dans I'épi et le temps d'infestation sont été linéairement corrélés tandis que
la longueur du tunnel dans I'épi et la biomasse cob sont liées par une fonction non linéaire
cubique. La longueur du tunnel dans la tige et la masse de I'épi ne semble pas suivre une
courbe fonctionnelle précise. Les pertes de rendement observées a la récolte de la culture de
mais suggerent que les mesures de controle devraient €tre appliquées en continu tout au long

de la saison de croissance.

La dynamique des infestations spatiales et temporelles a été simulée a 1'aide d'un cadre
conceptuel intégré régi par des automates cellulaires (AC). La sélection de la taille des cellules
a été faite sur la base de la théorie de la percolation, l'usage d'inférence floue reposant sur
I'abondance adulte male de B. fusca a été appliquée pour modifier le voisinage de I'AC dans le
temps, tandis que le concept de multi-fractale et de corrélation ont été utilisés pour comparer
les résultats du modele et les données collectées dans les champs. L'étude suggére qu'au lieu

de procéder a un échantillonnage systématique dans I'ensemble du champ ou de I'exploitation,
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il peut étre appropri¢ de procéder a un échantillonnage a une unité définie capable de
representer facilement la propagation des infestations. En raison du fait que le modele
développé a prédit avec un niveau de précision acceptable les coordonnées de la
contamination séquentielle des plantes de mais semaine aprés semaine, les spécialistes de la
lutte intégrée contre les ravageurs pourraient utiliser les résultats pour concevoir et mettre au
point des stratégies efficaces de lutte contre les foreurs de tige dans les exploitations de mais.
Par exemple, des piéges a phéromones peuvent étre placés a des endroits spécifiques en
utilisant les résultats de cette étude pour optimiser la réduction de ce ravageur du mais dans les

champs.

Enfin, nous avons développé une méthode générique pour coupler le modele de
simulation de la croissance des cultures et la dynamique des populations d'insectes nuisibles.
La méthode est congue pour intégrer les dommages causés par les insectes nuisibles dans le
modele de systéme de culture (MSC). Le Systeme de Soutien a la Décision pour le Transfert
d'Agrotechnologie (SSDTA) largement utilis¢é simule les interactions synergiques et
systémiques entre le sol, les plantes cultivées et I'atmosphére, mais ne considére généralement
pas les contraintes biotiques qui se produisent dans le systéme. Dans cette thése, le logiciel
SSDTA est orienté vers un cadre agro-écologique via une intégration explicite de la
dynamique et des dommages des ravageurs. Le mais et les Iépidoptére foreurs de tige de mais
sont utilisés comme cas d'étude. Afin de modéliser l'interaction plante-parasite, la logique
floue a été utilisée pour prendre en compte l'effet de la maturation des plantes dans
I'accumulation de la biomasse dans des larves de cet insecte. Le module FORTRAN développé
dans SSDTA est utilisé pour démontrer comment la population de Iépidoptéres en
développement réduit la de biomasse du mais et I'indice de surface des feuilles vertes. Les
résultats de la simulation montrent une augmentation progressive des pertes de rendement
dues aux dommages causés par les foreurs de tiges et suggérent que les niveaux de dégits
sont généralement sous-estimés. En outre, le modele suggére que la plante compense
relativement bien l'indice de surface foliaire perdu au début de la saison de croissance. Bien
que le couplage des modeles de population et des MSC augmente la complexité de la
simulation, un outil pour explorer les contraintes biotiques dans les systémes d'exploitation est

fourni.

Xiii



Mots-clés : Soliton discrét de Davydov, potentiel de liaison hydrogéne anharmonique,
impureté mobile, stabilité¢ thermique, microtubule, amplification électrique, supratransmission,
infratransmission, Busseola fusca, interaction - insectes-plante, fermes de mais de petits
exploitants, dommages dynamiques, pertes de rendement, automates cellulaires, théorie de la

percolation, théorie des ensembles flous , multifractales, dynamique des cultures, DSSAT

Xiv



List of tables

""Table 1z Principal vibratory modes Of a proteill. « s sismis s nsasnmeassmmamssmsnss 31
Table 2: Description of plots used for the first experiment. The dimensions are the maximal
repartition range of plants inside the plot. The SiX plotS........cocovverieiiniiriireieeeeeee 69
Table 3: Description of the plots. Each dimension is given in meter. The plots were located
within an area having a radius of 0.708 Kilometers. ........c..ccccooiriniiininiinnieeeceeeee 71
Table 4: Model identifiers use three letters encoding the geometric characteristics: Volume-
Shape-Orientation. E means equal, V means varying across clusters and I refers to identical
OTIENEALION [361 o iueiiiiiiieieee ettt ettt et e e e e e ae e s e enseeaesasassaenrnees 75
Table 5: Conditional probability for a plant to die following different cases. P(D]i) is a
probability that a plant died, given that it has an infestation i. LD =leaf damage, EH= exit hole,
DH=dead heart and D =dead. The symbol (-) means null probability and the symbol (U)
StANAS OF “OF; sossammmmasssssses o s ssss sasssvenans suus o sames sssss v es susvas s use soas sA5 438 5 aa3Ns SRV TRRIRS DRSO 112
Table 6: Mean time in weeks for transition between infestation types. It is given in the format:
mean time +standard error of the mean (SEM). The symbol (-) means that such transition was
not observed. For the plot 4 and 5 see the appendiX. .......cccceeveeieiieiieiciiecciee e 112
Table 7:Results obtained after estimations of the neighbourhood configuration of the cellular
automata (CA).‘ Step (ii), (iii) and (iv) are briefly describe in the text, in the methodo]o‘gy 3.7.

The number represents the number of plants in the neighbourhood (including the central cell).

Table 8: A summary of the purpose of applying each spatial analysis symbols «.................. 120
Table 9: Number of larvae found in the plants during sampling on the field. Bf/S, Cp/S, and
Sc/C are the average number of B. fusca (Bf), C. partellus (Cp) and S. calamistis (Sc) per
maize stem (S). Bf/C, Cp/C, and Sc/C are the average number of B. fusca, C. partellus and
SiCalamistis Per MAIZE COU (C)assusmusoms ssmomssvsssummssamscsssissvsvsisssinscammsssnses a5 s voainsssanssizens 121
Table 10:Results obtained after searching for the percolation scale. Each decimal dimension is

GIVEIL TN INELETS. 1.uveieiieiteeeeeitetei ettt s et s b et et et s b et esbesb e s bt st e saeentenaesseeneenbestebesseeneenees 136

XV



List of figures

Figure 1: (a) General structure of an amino acid, amino group (in blue), a carboxyl group (red)
and R the lateral group linked to the alpha-carbon. (b) The chemical reaction of two amino
acids, the peptide linkage is highlighted in red. (c) Rotation angle (¢ -y ) around the peptide
group. (d) The structure of alpha-helix; on the left , evidence of the helicoidal shape, on the
right, real shape with carbon (in black), oxygen (in red), nitrogen (in blue) and the lateral
group (in pUrple) [7.8].cossenammnnnmm ooty o 30
Figure 2: Representation of the structure of a Microtubules (MT). (a) illustration of the hollow
and cylindrical shape of a MT, (b) the size of a MT (c) illustration of a cellular organelles
rANSPOIT  [7,8] e 37
Figure 3: The life cycle of B. fusca [187]. Photo of different type of damages inflicted by the
insect: (b) leaf damages, (c) dead heart, (d) exit hole, (¢) cob tunnelling and (f) stem

tunnelling (Photo (b)-(f) have been taken by Frank T. Ndjomatchoua in the field)................. 43
Figure 4: Representation of the components of DSSAT [57].....cccocovivninninnininieiiice 53
Figure 5: Description of the electrical analogy of the MT model............ccccvvmnriiininnnnnnnnnne. 63

Figure 6: Neighbourhood plant configurations (black colour) around the central plant (white
colour). (a) Representation of the extended Moore nelghbomhood types the centlal plant
possessing the label number 1 the 1est are labelled randomly from 2 to 25. (b) Replesentatlon
of the Moore neighbourhood type. We consider the central plant possessing the label number
1, the rest are labelled randomly from 2 10 9. ...c.coiiiiiiiiiiiiceceeece e 75
Figure 7: (a) Process for the spatial percolation threshold estimate before starting the CA
simulations. (b) Graphical illustration of the overall process for varying the scale and
detecting percolation threshold value. The lattice grid in sub-figures depicts a typical spatial
and temporal data at a fixed week. The red cells in (a) are the infested maize plants. In sub-
figures (b) and (c) the initial scale of observation for infestation dynamic (represented in sub-
figure (a)) is reduced to 1/2 (2 cells X 2 cells) and 1/3 (3 cells X 3 cells) respectively. If at
least one cell of the spatial lattice in (a) are present in the unit cell of the re-scaled map in (b)
or (c), then that new unit cell is also assumed to be infested. The spatial resolution threshold is

obtained when the temporal pattern depicted bellow the lattice grid in (c) is obtained. The

XVi



temporal trend in (c) allows to distinguish two phases: in the left portion colored in gray (1) the
isolation phase which correspond to the increase of the total number of infested clusters and
in the right portion colored in pink-(I1) the connection phase which is the reduction- of the total
number of infested clusters (subsequent connection of isolated and infested clusters) with
time. The maximum number of the curve represent the creation of the first connection among
isolated and infested clusters of the 1attice. ..........ccooiiiiiiiiiiini e 79
Figure 8: Representation of the fuzzy processing of data. In the upper panels, membership
functions of the input variable number of adults (Na) and the output variable propagation
index (p). In the lower left panel, the solution given by the fuzzy inference system. In the
lower right panel, the collected data from the field are represented. ..........cccccoevvivieeriecieninnnnnnns 81
Figure 9: (a) Diagram summarizing the approach for modelling in field condition the leaf
damages spread caused by B. fusca larvae. The grid cells are abstractive representations of the
maize field quadrates. The approach is based on the combined application of cellular automata
(CA), fuzzy logic systems and percolation. The three type of Moore neighbourhood selected
after fuzzy calculus are represented: (a) Moore-1: the central cell surrounded by 8 cells, (b)
Moore-2: the central cell surrounded by 24 cells and (c) Moore-3: the central cell surrounded
by 48 cells. Where FIS = fuzzy inference system, S=state, (i,/) = coordinates, p = propagation
index and t=time. (b) Overview of the model and the sub-models. The model is made of three
sub-components: the part 1 estimating the cell size during all the simulations, the part Il
inferring the adults B. fusca abundance via the fuzzy sets theory and the part 111 determining
the state of a cell at a week n+1/ based on its current state and those of all its neighbours at
week n. Part | is not involved in the change of states and rules of the CA, reason why it is
drawn aside. In contrast, the fuzzy logic is applied during the whole simulation. We recall that

the cell has only two states: infested (1) or non-infested (0). ......ccceeeieeieeieiieciieieeeeee 85
Figure 10: (a) Eigenvalues as a function of @, A, (red), A_(blue). For @>0 we obtain

unstable and stable manifold around the origin. (b) Homoclinic tangles formed by stable and
unstable manifolds (W* and W"). Unstable manifold in black, and stable manifold in gray. The

Saddle point Py is in red, and the fixed points P, , are black cross. @ =2. (c)Localized modes

centered in one site for the exciton amplitude 77, deduced from the 2D map. (d) The stationary

Xvii



amplitude of phonons /3, derived from the discrete equation. ﬂ”H—,B,,:—arsinh(|¢”|2)

(e)Eigenvalue spectrum for the linear stability analysis of the perturbed stationary exciton
obtained ﬂ'lom the homoclinic tangles of the 2D map. The lcomplex eigenvalues aré plotted in
the complex plane under the form of dots (Im stands for imaginary parts and Re for the real
part). (f) Numerical simulation of the nonlinear Schrodinger equation with the pulse 1(c) as an
F1901¥:1 o o100 LT )1 D e PR 94
Figure 11: (c) Spatial and temporal propagation of the ABE vibratory energy. ABE collides

Amide-1 excitation at n=0 at 7 =100. (b) Numerical simulation of the DNLSE with the cubic

nonlinearity with the normalized pulse initial condition \/H—Ssech(n/4) [11] with null fixed
boundary conditions. The black arrow indicates the portion of the wave moving toward the
same direction than the impurity. (c) Plotting of the evolution of the soliton center in figure
11(b). (d) Numerical simulation of the DNLSE with the inverse hyperbolic nonlinearity. The
initial condition is provided by the 2D map. Null fixed boundary conditions are used. The
black arrow indicates the portion of the wave moving toward the same direction than the
impurity. The lattice length has been taken larger than the case in (b) with the aim to assess
possible collision between the middle hump and the upper one during a longer time period.. 95
Figure 12: On the left side, the temporal snapshots of the exciton amplitude are represented '

(4,(r=0)| (bottom) to |¢,(r=50)| (top)), on the right side, the density plot are
depicted. In (a) and (b), simulation of the coupled Davydov's equations with the initial
conditions ¢,(z =0)=+/1/8sech(n/4), B,(r=0), T=310K and I'=2.406 10'*s" [336]. In

graphs (c) and (d), the same conditions are used with the exception of the pulse which is
estimated 1o Thie 2D IUAP. ....cxnmsneresssconmarssssmmonse susiss 455 446555555858 53 AT RTS8 4504 A 4HABIATTUSES BN S F 664 96
Figure 13: (a) Representation of the supratransmission threshold. The gray line is obtained
using the analytical expression of the nonlinear supratransmission. The black cross is the
numerical values of the threshold obtained by the NLRM projection. The values of the
parameters are 1=0.01, B,=0.01, o=o c(1+0.1/ 100). (b) Display of the NLRM projection for

the same set of the parameter used in (a) and B;=100, o=wc(l+0.1/100). The small gray

arrow is pointing the turning point (T.P.) of the curve which represents the numerical value of

XViil



the threshold driving amplitude (U). (c¢) Different values for the threshold according to
different driving freQUENCIES. ....coueeieieirierierieriiecescetect e 102
Figure 14: : Spatio-temporal evolution of the voltage through the lattice with the boundary
condition VO(T)=Uexp(1—r/'c])cos((o'c) with  =0.01, B,=0.01, B,=100, 71=10
w=0(1+0.1/100) and U,,=0.1461. The color bar at the right represents |V, (0)/U. (a)
U=U,;,(1-10/100), (b) U=U,(1+10/100), (c) U=U;(1+30/100), and (d) U=10U,. ........... 103
Figure 15: Variation of the estimated supratransmission threshold with the master equation
containing the first order derivative of the voltage in respect to several values of rand B,.
The values assigned to B,and v are 100 and 0.1 respectively. When the values of B, and B,

are changed, only the threshold amplitude varies, and the obtained patterns remain unchanged.

Figure 16: Spatio-temporal evolution of the lattice with the boundary condition
VO(T)ZUeXp(I—’E/’C])COS(Q‘C) with 7=0.01, B,=0.005, B,=10, v=0.1, T]=lO , 0.2, Q=2.1 and
U,,,=0.0210. The color bar at the right represents|V, (0)l/U. (a)U=0.001, (b)U=0.02, (c)U=0.03,
(AYE0I04....... e siesnsm sovasi oumstsn dosasinssimssmsssan s 55573834 4EH5 6 VA BN 5 5 SN 9 T NI ANS S YRS ST 104

Figure 17: Total energy of the lattice without nonlinear dissipation. The lattice has 100
electrical cell, Q=2.1, »=0.01, B2=O.005, B]=\IO, v=0.1, 11310, 12=100. The accumulated .

energy is extracted at 1=1 000w mimnsaisammmsmmmms s o avm o s 105
Figure 18: Results of numerical simulations of the developed model (with the nonlinear
resistance and the nonlinear capacitance) with 900 units cells. The pulse was applied on the
first lattice cell. Firstly the absence of calcium ions was considered which is mathematically

translated by B,=B,=0 (a). Secondly, in (b) the presence of calcium ion was considered with
B1=10_3, B,=0.1, 1/4=0.1, r=0.01. The temporal snapshot of pulse propagation is depicted at
=100 (black), t=200 (Gray). The boundary driving amplitude is ¥, =0.50, this value

decreases progressively from 0.3167 at =100 to 0.2288 at 1=200 (a). In the graph (b) it
increases from 1.084 at =100 to 2.157 at ©=200. t is the dimensionless time obtained by the

relation T=wt. In figure (c) we displayed the ability of the nonlinear resistance to amplify the

XiX



input signal. The black doted region represents a couple of parameters (B,B,) which allow

voltage amplifiCAtION. ...cccoiiiiiiiiiiiiii et 105
Figure 19: Differences in infested plants densities between two consecutive weeks. The
computation has been done for the four infestation types, leaf damages (LD), death hearth
(DH), exit hole (EH) and death (D) ...oioccisiimimsissisisssissosais susons ssinossosssasssssassasssissnssssissinsasis 110
Figure 20: (a) Mean values of number of adult B. fusca caught weekly with pheromone traps
at. (b) Mean values of plants with the leaf damage (LD) infestation recorded weekly. (1a) and
(2a) represent the peaks observed before the apparition of the infestation peaks (1b) and (2b)
respectively. The bars represent the standard deviation error of the mean...........cc.cocceeveeee 111
Figure 21: Spatial and temporal autocorrelation for leaf damage (LD) on plants. The
computation has been done for a radius of proximity (r) from 1 meter to 20 meters. The colour
bar on the right side of each figure represents the spatial autocorrelation level..................... 114
Figure 22: Temporal evolution of the isobarycentre (IB) for leaf damaged infested plants. The
integer values represent the corresponding week. The position of the number is the spatial
position of the IB. The IB from the first and second cycle are colored in blue and red
(S o] eI TR | AU ————————— 115
Figure 23: Spatial clustering of plants with LD infestation for plot 3 at week 4 (a), week 5 (b),
week 8 (c) and week 12 (d). Each colour represents a cluster. The ellipsoids/circles represent
the bottom of two dimensional probability densify functions (PDF). The shapes are chosen
accordingly to the Bayesian information criteria. The centers represent the centroid of the
cluster distributions. The dot outside the circular represents plants positions with weak
probabilities compared to the center of the PDF. ......cccociiiiiiiiiiiiinccccecceeceee 116
Figure 24: Spatial clustering of plants with LD infestation for plot 5 at week 5 (a), week 7 (b),
week 9 (c) and week 12 (d). Each colour represents a cluster. The ellipsoids/circles represent
the bottom of two dimensional probability density functions (PDF). The shapes are chosen
accordingly to the Bayesian information criteria. The centers represent the centroid of the
cluster distributions. The dot outside the circular represents plants positions with weak
probabilities compared to the center of the PDF. ......c.ccccooiiiiiiininiecceeccienee 117
Figure 25: Spatial clustering of plants with LD infestation for plot 6 at week 4 (a), 9 (b), 11 (c)

and 13 (d). Each color represents a spatial cluster. The ellipsoids/circles represent the bottom

XX



of two-dimensional probability density functions (PDF). The shapes are chosen according to
the Bayesian information criteria. The centers represent the centroid of the cluster
distributions. The dot outside the circular represents plants positions with weak probabilities -
compared to the center of the PDF. ......cociiiiie e 118
Figure 26: The black and white bar represent infested and non-infested sets of plants. The star
is the significance level between means. The symbols N.S. (Not Significant) for P-value>0.05,
*for P-value <0.05, **for P-value <0.01, ***for P-value<0.001, ****for P-value<0.0001. Bars
with the same colored letter are not significantly different (P-value> 0.05). .........cccovvneneee. 122
Figure 27: (a) Effect of the first infestation on the mean cob biomass reduction. The letter A
stands for LD+DH+EH. (b) The proportion of plants infested (P.1.), plant with stem tunnelling
(ST) and cob tunnelling (CT) according to the type of infestation such as leaf damage (LLD),
dead heart (DH), eXit hole (EH)....ccccuiiriiieiieieieceeeceeee et e 123
Figure 28: In subfigures (a), (b), (c) the temporal patterns of yield losses for plant with leaf
damage, exit hole and dead heart respectively are depicted. The abbreviations N.L. and N.C
stands for no losses and no cob respectively. (d) linear regression between the week of
infestation and the yield 10SSES .......coooiiiiiieiieieeee e 124
Figure 29: (a) Relationship between length of cob tunnel and cob mass. The blue dots are the
data and the red curve is the estimated function. (b) cob mass as a function of cob tunnel. .. 125
Figure 30: Estimation of the percolation' scale in plot 1,2,3 and 4. The cluster density
represents the number of infested cells week after week. This number was normalized between
0 and 1. The fraction above each sub-figure represents the scale of observation. The
denominator of each fraction represents the square root of a number of maize plants inside
each unit square. In clear, //p means that the maize plot was observed by taking a unit of pXp
plants. If at least one plant in the pXp matrix was infested then the resulting cell was
considered as infested. The sub-figure with the gray curve represents the critical resolution
whereby the reduction of the number of infested patches start decreasing after a certain
NUMDBET O WEEKS. ...ttt ettt ettt s e e snanen 138
Figure 31:Position of the infested cells during the first week whereby infested plants were
noticed during the data collection on the field. The blue dots represents the infested cells and

the white cells are the NON-INTESEd CEIIS. ...t e e e e eeeaeeeeeeenans 139

XXi



Figure 32: (a) Estimated parameters aland a2 after multi-linear regression with the integer
parameters 0 < 61 <7 and 0 < 82 < 23. The mean correlation coefficient p between the
predicted and observed data was estimated for all the possible combinations between 81 and
62 before the regression. The stars on the top of each bars stand for the level of significance:
* p-value < 10 — 15, ** p-value <10 — 30 and *** p-value <10 — 40. In Figure 6(b), we
computed the running time (R.T.) of the program simulating the damage spread at different
spatial scale. The unit of this time is in SECONAS. ....coueruieiiiririiiiiineceeeeeeee 140
Figure 33: Representation of the spatial and temporal evolution of infested cells in plot 1. On
the left are the collected data and at the right the simulated infestations. The blue dots
represents the infested cells and the white cells are the non-infested cells. .......c..cccccoeenenee. 141
Figure 34: Comparison between observed and simulated infestations at each iteration. The
black bar represents the correlation coefficient (p) between the observed and the simulated
results. The gray bar represents the fractal average error (FAE) between the spatial distribution
of infested cells in the observed and predicted results. The coefficient of determination 12
was greater than 0.95 for each plot during the estimate of the multifractal dimension.......... 142
Figure 35: Simulations of the potential effect of B. fusca on maize plants .........c..ccccevennennee. 148
Figure 36:Population dynamics of the insect at each life stage (a) eggs, (b) larvae, (c) pupae

AN (A) AAUIES. ...ttt sttt b et et e b b ettt anesae 149

xxii



General introduction



The Understanding of transport and propagation mechanisms has always been a
paramount of science in general and physics in particular. Many technologic and scientific
progress have been made by mastering the transport of energy in various systems such as
semi-conductors [1], magnetic recording [2], or optical fibers [3]. The understanding of
propagation process is also of a particular interest for nano-biological and ecological systems.
Numerous biological phenomena require energy propagation; for instance, nervous influx
transport [4], sodium-calcium pump [5], DNA replication [6], muscular contraction [7,8],
and protein folding [9]. One of the focuses of the present study is on wave’s propagation in
alpha-helical protein and microtubules. The energy transport and transformation in bio-
molecular systems is vital for living organism moving in their ecosystem; this is the reason
why the damage spread propagation of insect pest in maize farm and forecast their induced

crop yield losses will be one of the main focuses of this study.

In alpha-helical proteins, the transport of energy is principally initiated by the
Adenosine Triphosphate (ATP) hydrolysis, which energy generated is carried along the
protein chain. In the 70's, Aleksandr Sergeevich Davydov suggested a model for energy
transport in biological in this biological molecule [10]. The mechanism has been applied in
alpha-helical protein molecules which is ubiquitous in cells of living organisms of insects and
animals [11]. In spite of the simplicity of this model compared to the real structure of a
protein, it is able to provide a good qualitative description of the dynamic of this biopolymer.
One of the main challenges of prediction of this model is the shorter lifetime of the excitation
during energy transfer along the protein at the biological temperature [12]. This thesis aims to

address this problem.

The microtubule (MT) is an interesting biopolymer involved in the electrical activities
of cells [13]. Its potential implication in neurodegenerative disease makes them more
interesting [14,15]. This biological complex system interacts with surrounding mediums and
organizes depending on a supply of energy and its transformation. Various roles of MT in
cellular and sub-cellular electrical signals have been demonstrated in development,
physiology, regeneration, and pathology [16]. Therefore, the interest is growing in performing
well-designed measurements and explaining the limited amount of reliable experimental

results. Since the pioneering study work of Priel and Tuszynski [17], numerous nonlinear and
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dynamical models have been suggested to mimic the electrical behaviour of MT [17-22].
Among the existing studies, none have been able to imitate electrical signal amplification and
modulation due to calcium ions observed in experiments involving MT [23]. In this thesis, we

attempted to develop a model to fill this knowledge gap.

These two biopolymers and involves in the survival and the behaviour of insect and
animals [7,8]; they can adjust the neurological transmission to the brain while the insect
propagate in order to search for host and, they allow the energy transport through muscle
[24]. Concerning the particular case of insect pest, understand and predict the spatial
propagation of their damage in the agricultural crop has always been a difficult task [25,26].
An accurate knowledge on the formation of spatial and temporal patterns during the damage
spread is particularly relevant for small-scale farmers in order to apply adequately control
measures. During several decades, physicists have used interesting methods such as
percolation theory, cellular automata, fractals and fuzzy logic. To illustrate, percolation theory
have been used in various physical circumstances such as the turbulent regimes of lines of
electromagnetically forced vortices [27], high-mobility of electron system [28], the dynamic
of site-diluted Josephson-Junction arrays [29], metal-insulator transition in GaS systems [30],
charge transfer between superconductors [31], propagation of solitons in nonlinear optical
fiber with a randomly distributed refractive index [32] and wave train propagation in a spatial
predator-prey system [33]. Cellular automata has been suggested as a concept to study
soliton’s dynamics [34-37], to replicate the behaviour of reaction-diffusions systems [38,39],
to study the infectious diseases [40], to model seismic elastodynamic [41], to simulate
elastoplastic wave propagation [42], to model statistical mechanics of lattice gas, non
equilibrium process [43], to simulate complex system such as fluid flows, fracture processes,
road traffic models and pattern formation [44], and, to model networks of"interacting sub-
micrometer magnetic dots used to perform logic operations and to propagate information [45].
Fuzzy logic has been used to control chaotic systems [46,47] and to model noise in biological
systems [48]. Fractals have been used as a mean to characterize the geometric complexity of
chaotic attractors [49,50]. Although these concepts have been extensively used, they are yet to

be adapted in an agroecological framework. This study aims to bridge and apply these
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concepts in a practical case of insect named lepidopteran stem borer which is a major pest of

maize crop in Africa [51]. The damages propagation will be simulated using these methods.

The ability of simulate yield losses due to insect pest and diseases in general and stem
borer in particular is of a paramount importance. It can assist in mimicking in real-time the
yield losses due to the pest in contrary to the purely empirical approaches which are limited to
the specific conditions at which the data were collected [52]. Crop simulation models are
emergent powerful tools to forecast yield gaps, to foresee the agricultural production and to
analyze the effect of climate change [53]. Scientist are currently attempting to move toward
an integration of a new set of functions different from their primary tasks such as the estimate
yield losses due to pest and diseases [54]. One of the main challenges faced while coupling
pest and crop is a "two-way" approach whereby the pest variable drive the crop model and
vice versa [53]. The existing crop simulation models are still poorly efficient in this "two-
way" approach" [55-59]. We will focus on the software Decision Support System for
Agrotechnology Transfer (DSSAT) which is a broadly used modelling tool that comprises
CSMs for over forty-two crops [57] and, it integrates CERES-Maize which is a simulation
model for maize growth and development [60]. A conceptual approach based on fuzzy logic
in order to couple pest and crop with a particular case of study of the lepidopteran maize stem

borer, maize crop and the crop simulation model CERES-maize is proposed.

The choice of this thesis topic was deliberate and two-fold. First of all, models for the
dynamic of wave biopolymer in the insect and animal are developed studied. Secondly, spatial
and temporal model are developed and applied to comprehend and to predict spatial features
of the patterns generated by an insect in the agricultural crop. Finally, a pest-crop coupling

method is suggested.

The first part of this thesis is devoted to the Davydov's model. In this part, protein
structure and function are briefly presented as well as the generalities on the model of
Davydov and the problem related to this model. A modification of the original model is
suggested. In addition, the methods used to construct discrete soliton, to study their stability,

and to consider the effect of a biological temperature are presented.
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In second part, the main focus is on will be the study of the electrical wave
transmission and amplification in microtubule. First of all, the structure and the function of
this bio-molecule is described. The existing models are reviewed and, the improvement
intended in this study is presented. The electrical wave amplification by a microtubule excited
by periodic waves is studied and the potential biological implications of obtained results are

discussed.

In thirt part, the description of the spatial pattern generated by the insect pest called
Busseola fusca while propagating in the maize farm are analyzed in order to assess the
existence of simple law/rules of damage propagations with time. The potential yield losses due
this insect pest using empirical data are done. The obtained results are discussed and pest

managements actions are suggested.

In fourth part, a model that can mimic the spatial and temporal dispersion of the leaf
damage in smallholder maize fields caused by B. fusca is developed. The model is based on a
hybrid approach comprising of percolation, fuzzy logic, cellular automata, and multifractals.
The spatial threshold for assessing the spread pattern of B. fusca infestation is estimated and,
we tried to understand how rules governing the changes could lead to spatial patterns obtained

during the subsequent of infestation of plants by the pest.

In fifth part, a generic approach for coupling pest and crop with stem borers and maize
in order to simulate the potential yield losses due to insect pests is suggested. The process to
included the pest module in DSSAT is described and, some results of simulations are shown as

illustration.

Finally, a general conclusion summarizing the main finding and the futures directions are

provided.
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I-1 Introduction

This chapter present a brief overview on the physical systems and physical phenomena
studied in this thesis. It is organized as follows: section 1-2 deals with the overview on
Davydov's solitons, section I-3 is devoted to the overview of electrical waves in microtubules,
in section 1-4, the insect pest is briefly described, in section I-5 and insight on the modelling
approaches for the insect pest damages spread are presented, in section 1-6 generalities on
coupling the pest dynamics and the crop growth simulations are provided. Finally, the last

section conclude this chapter.
I-2  Overview on Davydov's soliton

I-2-1 Generalities on proteins

Proteins have been an intense objéct of study in the community of biologist. They are
functional agents of cells and represent a considerable part of biological molecules. proteins
are involved in a wide number of the fundamental process where they play a key role in
structural and dynamical aspects of cells [7]. Proteins play a role in the growth of cell,
muscular contraction; digestives enzymes, an antibody of the immunity system, hemoglobin
and majority of hormones are proteins [7]. Chromosomes which transmits all hereditary
characteristics under the form of genes are made of nucleic acids and proteins [7]. In other

words, proteins are involved in the functioning of all living organisms [8].

Proteins are linear polymers of an amino acid linked by covalent peptide bonds. Proteins
present in a living organism are formed by a set of twenty different amino acids. Each amino
acids (Figure 1 (a)) has a carboxylic group -COO™ and amine group NH**; both of them are
linked with an atom of carbon named « linked with a lateral chain R characterizing the amino
acid. For instance, Glycine (Gly), the lateral R is an atom of hydrogen, for Alanine (Ala), the
lateral chain is the group -CHj etc. The complete sequence of amino acid residuals formed
during the chemical reaction described in Figure 1(b) characterize each protein and determine
its function; this sequence is the primary structure of the protein. A rotation around the link C-

N (angle ¢) and C-C (angle v ) (Figure 1(c)) can generate a secondary structure called o -
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helix stabilized by hydrogen bond (Figure 1(d)). Although the protein is able to organize
spatially in more complex tri-dimensional structures, this chapter will focus on « -helix only.

In the vibratory point of view, the proteins are complex. These macromolecules have a high
number of degrees of freedom implying a dense vibratory spectrum which is not fully
understood nowadays because the interpretation of infrared measurements with the aims of
identification of eigenmodes is difficult. Although each of the modes is a potential canal for
energy storage, some appear to play a prominent role compared to others. In any proteins, it is
always found a group CO-NH centered around the peptide link. This group has a set of
noticeable vibratory characteristics called <<amid>> vibration which privileged modes
because of their present along the whole structure. Their name and values are reported in
Table 1. The transport of the vibrational energy is made via interactions with neighbours, for
instances the C=0O of the next neighbour. These couplings allow the delocalization of the
vibrations. By combining effect of dispersion due to the lateral coupling and the nonlinearity

Davydov predicted the emergence of soliton in proteins [10].
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Figure 1: (a) General structure of an amino acid, amino group (in blue), a carboxyl group (red)
and R the lateral group linked to the alpha-carbon. (b) The chemical reaction of two amino

acids, the peptide linkage is highlighted in red. (c) Rotation angle (¢ -y ) around the peptide

group. (d) The structure of alpha-helix; on the left , evidence of the helicoidal shape, on the
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right, real shape with carbon (in black), oxygen (in red), nitrogen (in blue) and the lateral

group (in purple) [7,8].

Mode Link Intensity in (eV)
amide-I C=0 stretching = 0.1984
amide-II N-H torsion + C-N stretching =0.1934
amide-III N-H torsion =0.1637

amide IV to VII Group CONH vibration outside =0.0992
the plan
amide-A and amide-B Resonapce betwee.n N Between 0.3719 and 0.4091
stretching and amide- 11

Table 1: Principal vibratory modes of a protein.

1-2-2 The mechanism of Davydov's

In 1973, a Soviet physicist Alexander Sergueievitch Davydov suggested a mechanism based
on the concept of soliton to model energy transfer in proteins [10]. He exploited the regularity
of the structure of the « -helix, and; showed that a simplified model of this molecule can
localize an energy under a form of a stable pulse soliton. This author illustrated that the amide-
| vibratory energy associated to C=O stretching is present in each peptide group H-N-C=0
along the alpha helix protein chain that carries the energy released by ATP hydrolysis under
the form of a solitary wave. The nonlinear coupling between exciton (amide-1 vibration) and
acoustic phonon due to deformation of amino acids chain allows self-‘trapping of energy as
soliton [11]. Experimental evidence of Davydov’s soliton in acetanilide polymer has been
done [61,62].

The mechanism suggested by Davydov start from adenosine triphosphate (ATP) hydrolysis.
This chemical reaction produces approximately two quanta 7@ of the mode C=O. Thus, this
vibration is a candidate for the storage of the energy hydrolysis of ATP. Moreover, the oxygen
of the C=O0 is engaged in hydrogen bond contributing to the stability of the helix. Then, it
seems realistic to think that the deformation of the helix (phonon modes) are coupled with
C=0 vibration which contributes to the distorting locally the helix. This distortion tends to
slightly modify the frequency of vibration of excited C=0O which stops to be resonant with the
other C=0 in the neighbourhood. This reduces the energy transfer rate toward C=0 links and,

maintain the ATP hydrolysis under a localized form. This progressive process of excitation
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produces a stable nonlinear excitation called «soliton», and solution of the nonlinear

Schrodinger equation derived from the usage of the Davydov's Hamiltonian [11].

I-2-3 Formulation of the Davydov's model
Let consider an infinite one-dimensional chain of hydrogen-bonded peptide group
sequence (-*H-N-C=0---H-N-C=0---H-N-C=0-++), (H-N-C=0) are peptide groups and

(-++) represents the hydrogen bond. Each peptide group has a mass m. The excitation energy of

each C=0 bond is characterized by an energy &,=1666 Cm™" [43]. Collective excitations are

modelled by the quantum state vector [64]: |w(1))= Za“(l)B; | 0), with the normalization

n

condition {w(?)|w(1))= Z|a”(t)|2 =1. The ket |0) stands for the ground state. The Function

|yw) satisfies the time-dependent Schrédinger equation:

fh%:ﬁm. (1)

The Davydov’s Hamiltonian of the system is [64]:

n=—n n+l=n

A=T+U+Y [ &B/B,~J (BiB, +BiB,) |+ > 1 (th —1,) BB, @

where B; (B,) is the creation (annihilation) operator for amide I vibration excitation at n'"

peptide group. The variable u, is the displacement at n™ amino acid from its equilibrium
position. J is the nearest neighbouring dipole-dipole interaction of amide I quanta. y is the

strength of the interaction between the exciton and the lattice distortion at site n. The

Hamiltonian of lattice vibration is given by the relation:

T+U= Z[%W(n)} 3)

where T is the kinetic and U the generalized hydrogen bond potential energies of the

displacement of peptide groups from their equilibrium positions. The variable p, is the
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impulsion of the n" group, 7, =Uu

.« — U, and m is the mass of a lattice unit. The Hamilton’s

equations are:
. da | '
]h7/” =(e+T+U)a,~J (a,, +a,.,)+x(u,,~u,)a, )

2

m e = V' (un—l — 1,{”) = V (U" —Uu,, ) +x (|an]2 | Ian—l |2)’ (5)

; h . . .
where, > =—1 and h :2—, h is the Planck’s constant. ¥ can be a linear or a nonlinear
/A

potential. The prime in the exponent of V denotes the differentiation of the function V

with respect to its argument. The gauge transform:

h

a,—>a, exp[—i(g0 —2J +T+U)i} (6)
modifies equation (4) into:

-2a, + a”_,), (7

n+l

3 d n
17‘1.7;7—" = X(unﬂ _un)an _J(a

The biological parameters of the model calculated in the reference [65] are: m= 5.7 107 Kg, J
= 1.55 10" pJ, and y = 34 pN. The potential ¥ in linear approximation gives the elastic

coupling constant K = (39 - 58.5) N/m. Upon defining the new dimensionless time variable

J . ; ‘s X 4 2
7 =—1 and the dimensionless quantities ¢, = —*==a,, B, = %-u,, the expressions (7) and (5
= q b=—F=a, B,=7 pressions (7) and (5)

respectively became:

I% = (IBIHI - an)¢n - (¢n+| - 2¢n s ¢'1—|)’ (8)

Ad_ﬂ" = V] (an—l - :Bn) - Vl (an - ﬂn+l ) + |¢n|2 - ¢"—l Iz 2 ©)

dr?

where A =J%m/ K takes numerical values between 0.021 and 0.032.
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1-2-4 Problem statement

Some challenges related to the Davydov’s model exist. For example, the bound states
(exciion—phonon) was proposed to travel with subsonic velocity [65]. In addition, the lifetime

of the soliton is very short at a biological temperature [12].

The issue related to the velocity has been substantially addressed by the correction of
the linear hydrogen bond potential which links peptides. For instance, the cubic nonlinear
potential was used to represent the energy of hydrogen bond that links peptide groups [66—
68]. The major contribution of such modification was the possibility of introducing supersonic

soliton velocity in continuum approximation for the soliton.

Pérez and Theodorakopoulos were among the first scientists to study the coupled
Davydov’s equations with nonlinear hydrogen bond potential under its fully discrete form
[69]. They applied the full Lennard-Jones potential for modeling the hydrogen bond potential
energy. After giving an arbitrary amplitude at specific sites for the waves, they assessed the
stability during a collision between exciton and lattice distortion propagation. Recently, an
intrinsic localized mode of nonlinear discrete saturable Schrédinger equation for modeling
exciton dynamic of the Davydov’s model was estimated [70]. The saturable nonlinearity arose
from a higher order of exciton-phonon coupling. The first question that motivated this study
is: what are the options to construct a discrete breather fitted for the Davydov’s model with

nonlinear hydrogen bond?

In proteins, amide-1 vibration energy is not unique [71]. The N-H stretch energy has
been found in a-helical molecules [72,73]. Furthermore, the anomalous band energy (ABE)
very close to the amide-1 energy was detected [63]. This energy was described as free exciton
that is not affected by the nonlinear interaction with the phonon system [63]. The original
Davydov’s model takes only amide-I into account. However, the energetic impurity mode
could modify the nonlinear dynamic of electronic excitations interacting with phonon in
molecular chains. Such inhomogeneity is capable of triggering reflection, trapping and
influencing the wave transmission [74,75]. This can also generate a dipole like excitation with

spatiotemporal influence on the lattice [76]. Considering ABE as an impurity in the
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Davydov’s model, the second question to investigate in this study is: what can be the impact

of free moving energy along the protein?

Numerical studies showed that Davydov’s solitons are inhibited at physiological
temperature [77-79]. Furthermore, it has been demonstrated that there is a critical velocity
whereby the soliton is thermally unstable [80]. A soliton of the classical Davydov’s model is
more stable for values of exciton-phonon coupling parameter higher than experimental
estimates [81]. A rigorous physical proof of the obtained results in this previously mentioned
study has been done using multi-quanta states for deriving the relationship between the
effective phonon-exciton coupling and temperature [82]. In reference [83], the authors
demonstrated that the disorder in the sequence of amino acid masses has an influence on the
thermal stability of Davydov’s soliton. It was further proved that taking into account multi-
quata amide-1 vibrational states, reconsidering the usual formulation of the coupling between
the acoustic amide-I and modifying the coherent states were possible ways for obtaining long
living Davydov’s solition at a biological temperature [84]. Using the Lindblad's formulation
for Davydov-Scott monomer [85], it was showed that the high anharmonicity of hydrogen
bond could regulate the specific heat of monomer in the biological thermal bath [86]. Discrete
breathers submitted to stochastic noise have been reported to be stabilized and localized by
hyperbolic cosine potential type in Hamiltonian lattices [87]. Therefore, the third
‘preoccupation of the p‘resent study was: can thermal instability probiem in the Davydov’s
model be tackled by a nonlinear hydrogen bond potential under the form of hyperbolic cosine

function?

I-3 Overview on electrical waves in microtubules

I-3-1 Generalities on microtubules

Microtubules, the largest of the cytoskeletal elements, are hollow tubes about 25 nm in
diameter, each composed of a ring of 13 protein proto-filaments (see Figure 2). Globular
proteins consisting of dimers of a- and B-fwbulin subunits polymerize to form the 13

protofilaments. The protofilaments are arrayed side by side around a central core, giving the

35



microtubule its characteristic tube shape [7]. In many cells, microtubules form from
nucleation centers near the center of the cell and radiate toward the periphery. They are in a
constant state of flux, continually polymerizing and depolymerizing [8]. The average half-life
of a microtubule ranges from as long as 10 minutes in a non-dividing animal cell to as short as
20 seconds in a dividing animal cell. The ends of the microtubule are designated as plus (+)
(away from the nucleation cénler) or minus (—) (toward the nucleation center) (see Figure 2)
[7,8]. Along with facilitating cellular movement, microtubules organize the cytoplasm and are

responsible for moving materials within the cell itself [88-90].

The endogenous electrical field can be generated in MTs; it plays a significant role in
directing the transport of molecules and electrons [91]. The biological importance of MTs for
electrical conduction and amplification in neurons include the following attributes:
intracellular information processing, regulation of synaptic inputs, modulation of neural firing,
regulation of developmental plasticity and mediation during transport of electrical signals
[16]. In addition, the temporary presence of calcium ions on MTs could play a significant role
in regulating the activity of dynein motors [20]. It is reported that the mechanical vibrations
of MTs can be affected by electrical fields [92] and electrical pulses are able to re-organize
the spatial disposition of MTs [93]. Disruption of cancer cell replication is possible by
applying alternatmg electric field which affects mitosis spindle [94] thus, electrical actlvmes

of MTs are very 1mp01“(ant in fighting some diseases.

Furthermore, MTs are involved in the facilitation of the electrical signal processing in
neurons [95,96]. Neurological disorder and neurodegenerative diseases have been reported to
be linked with serious cytoskeleton malfunctions [15]. Therefore, using MT-stabilizing-agents
and MT-protective-agents are promising candidates for the treatment of neurodegenerative
diseases, axonal transport failure and mitochondrial impairment [97—-101]. Also, stimulation
of neurons by the magnetic field is capable of attenuating motor signs of neurodegenerative
diseases [102]. This effect could be explained by the neuroinflammatory response affected by
the field [103], or the potentiation of neurite outgrowth in affected neurons [104].
Nevertheless, the exact physical mechanism underlying this effect is not completely

understood [15].
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I-3-2 Models mimicking the electrical properties of microtubules

MTs are also nanoscale biological systems, which play an important role in the
electrical activities of cells. They are often modeled using electrical transmission line [13].
Models of the propagation of ionic waves in MTs that incorporated a nonlinear capacitance
have been suggested [17,18,20]. The authors used anti-kink excitations to explain some of the
known properties of MTs [105]. It has been suggested that the nanopores (NPs) of MTs could
play a significant role in the transfer of ionic wave [19]. Inspired by this study [19], an
electrical MTs model with a negative nonlinear conductance was proposed [21]. Furthermore,
taking into account the oscillating tubulin tails (TTs) of MT dimmers and the linear
conductance, Sekulic et al [22] suggested another model for the propagation of the electrical
wave in MTs. In [21,22], the possibility of obtaining pulse solutions in MTs was investigated.
It thus appeared that TTs and NPs could play a relevant role on self-focusing of the
propagation of ionic wave in MTs [21,22]. The findings of [21,22] were corroborated by the

experimental results reporting MT as an electrical signal amplifier [105].

I-3-3 Problem statement

lonic current flow from cations through nano pores of MT was studied by Feedman et
al. [106], their results displayed in two dimensions a nonlinear current-voltage curve which
could be fitted by a cubic nonlinear function. The evidence of the existence of an electrical
amplification property in MTs was provided by Priel et al. [105]. Through an experiment MT
was isolated and electrical signals were infused to one end and received from the other end,
meaning that this biological pipe (MT) is capable of transmitting signals [105]. Within the
same experiment, it was observed that the output voltage pulse revealed a significant reduction
in amplitude compared to the input voltage [105]. Thus MTs act both as transmitter and
modulator of electrical signals; the later propriety offers them the name of biopolymer
transistor. Identical experience with the addition of calcium ion demonstrated a considerable
increase of energy transfer by MT [23]. It was also noted that an increase of ions
concentration stimulates the reduction of the dissipative property of MT [23]. The authors

concluded that the electrodynamical property of MTs could be modulated by the presence of

38



calcium ion. Unfortunately, majority of models found in the literature to mimic the electrical

properties of MTs did not capture these important biological features of the system [17-22].

Infratransmission and supratransmission are among the existing phenomena observed
during the propagation of the wave in nonlinear media [107—110]. In a linear system, it is well
known that periodical excitation with a frequency within the allowed band propagates through
a lattice [111]. In contrary, out of the allowed band, the wave is evanescent [111]. However,
Geniet and Leon [107] demonstrated that in the nonlinear system a lattice driven at one of its
extreme end by a periodical excitation could transport an energy event if its frequency lies
inside the forbidden band gap. This property is due to the fact that in a nonlinear system, there
is a certain value of the threshold for the driving amplitude, which can allow the propagation
of a plane wave along the lattice with a frequency inside the forbidden frequency band gap
[107]. The phenomenon is termed nonlinear supratransmission [107]. In opposition to
supratransmission, there is a nonlinear infratransmission, for representing a phenomenon that
usually takes place in nonlinear systems with linear dissipation [108—110]. In this context, the
lattice becomes non-transmitting above a certain value of the amplitude threshold for the
driving with a frequency inside the forbidden band gap [107-109]. The nonlinear
supratransmision is a generic phenomenon in nonlinear systems. It has been investigated in
different physic systems; coupled mechanical oscillators; optical wave guide arrays, Fermi-
Pésta—Ulam (FPU) and in‘discrete electrical line vs"ith nonlinear capacitors‘ [110,112—117]. The
transmission of gap soliton has been proven to be also possible in electrical line by adding a
noise in the driving source [118], by a frontal collision between waves [119] and via
modulational instability [120]. Furthermore, another concept called the nonlinear response
manifold (NLRM) [121] has revealed critical transmission amplitude in a nonlinear system
driven by a time-periodical excitation [122,123]. Below or above the amplitude threshold
predicted by the NLRM, the transmission can be strong or low [122]. Although these
phenomena could probably explain why an exited MT from one of its extremity can conduct
the electrical current and at which condition the electrical wave propagation is possible, they
are yet to be investigated in electrical models mimicking the electrical behaviour of MTs [17—

22].

39



I-4  Overview on stem borers and maize crop

- 1-4-1 Generalities

The relation between ecological processes (such as individual dispersal, habitat
selection, and spatial damage distribution pattern) is of primary importance in ecology and in
agro-ecological systems, to allow efficient control measures against insect pests [25,26].
Yield losses in crops are a consequence of the spatial and temporal dispersal of the insect pests
[124-128]. Therefore, for decades, spatial and temporal dispersion information about these
harmful organisms has gained great relevance for plant protection specialists and agricultural

entomologists [129-147].

Maize (Zea mays L.) is the most important staple food in sub-Saharan Africa,
particularly in East Africa [148,149]. However, biotic (stem borers, gray leaf spot, maize
streak virus) and abiotic (drought, low soil fertility) factors constrain maize production [150].
Lepidopteran stem borers are considered to be the most damaging insect pests of maize in
Africa [151]. In East Africa, the noctuid Busseola fusca (Fuller) is the most damaging in the
high potential yield areas, which include the highland tropics and moist transitional zones
[152,153]. Kenya is among the Sub-Saharan countries of Africa with a higher consumption
rate of maize per person [154]. Cropping of this staple food in Kenya is significantly
constrained by insect pests such as lepidopteran stem borers [152,155]. In high potential areas
of Kenya, yield losses of maize due to stem borer infestations are estimated at between 12% to
50% of the total production, as a result of leaf feeding, dead heart, stem tunnelling, direct

damage to grain, and secondary infection by stalk [51,155,156].

Assessment of yield losses in maize by stem borers is usually done by collecting data
such as the mass of plant stem, cob or grains [157,158]. The relevance of the knowledge
gained from the data depends on the resources available for sampling and, the accuracy
needed for the purposes of assessment [52,158]. After obtaining different degrees of reduction
of masses of maize grain, the yield losses can be assessed by comparing the features of un-

attacked and attacked plants [52,158].
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The injuriousness of B. fusca has been assessed by several authors since decades
[159-170]. These studies emphasized that the destruction of the growing part of the plant
(dead heart), the number of larvae per plant, stem tunnelling, ear damages -and positions of the

attack on the stem are major factors affecting yield losses.

Estimating the link between pest damages and yields losses at field scale by empirical
models can be useful to predict and manage the pest [158,171—173]. Most of the relationships
between the damage level caused by B. fusca and the yield are decreasing functions
[160,163,170,174]. In addition to regression analysis, the estimate of overall percentage of
yield losses can be useful to policy makers and farmers for a better perception of the incidence

of pest damages [52,152,161,173,175-180].

I-4-2  The insect Busseola fusca

Adults emerge from pupae in the late afternoon and early in the evening and are active
at night. During the day, they rest on plants and plant debris and are seldom seen unless
disturbed, they fly briefly. Usually, the night of emergence the females release a pheromone
to attract males and then mates [167,181—183]. The female lays several hundred of eggs in a
batch of 30-100 inserted between the sheath and the stem [184]. Larvae hatch after one
week and disperse over neighbouring plants by using silk strands [184]. After passing
through ﬁve larvae instars in 36—45 days, eating leavés and stems, they pupélte in tunnels
inside the plant, often after first excavating emergence windows to facilitate the exit of adult
moths [151]. Adults emerge 10-20 days after pupation. The life cycle is completed in 7-8
weeks. At the end of the rainy season, if the environmental conditions are unfavourable, larvae
of the last generation enter into a facultative diapause in maize stubble. They pupate a few

months later, just before the start of the following rainy season [151].

1-4-3  The damages

The severity of damages on maize plants varies greatly among ecological zones and
season but also depending on crop growth age, a number of larvae feeding on the plant,
environmental conditions , and agronomic practices. B. fusca at the early larval stage cause

foliar damage during plant whorl stage [184]. During this stage, larvae feed by scraping off
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the epidermal and parenchyma cells on one side of the leaf. Young larvae may also feed on the
leaves of the intact whorl, which gives an array of small holes when unfolded. This damage is
called leaf damage (LD): Stem tunnelling (ST) is caused by old larvae that bore into the stem.
The destruction of the meristematic tissues causes death heart (DH) damage, which may cause
the total death of maize. Stem tunnelling destroys the central pith and constructive tissues
causing a reduction in nutrient uptake with interruption of grain filling [185]. Furthermore,
stem borer may cause exit holes (EH) damage at the periphery of the stem. Those holes
facilitate exits of adult moths but may create avenues for pathogens [184]. Damages
caused by stem borers at the larval stage are ultimately stunting plant growth and plant death
(D) [186] (see illustrations in Figure 3). The severity level is precisely the span of attack area
on the leaves, the number of LD, the length of each tunnel, the number of DH, the number

of death plants and the number of EH.
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Chipasition

Busseola fusca
life

Figure 3: The life cycle of B. fusca [187]. Photo of different type of damages inflicted by the

insect: (b) leaf damages, (c) dead heart, (d) exit hole, (e) cob tunnelling and (f) stem
tunnelling (Photo (b)-(f) have been taken by Frank T. Ndjomatchoua in the field).
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I-4-4 Problem statement

Several methodologies are usually employed to describe spatial and temporal pattern
distribution of insect pést damages. The most Commonly used approabhes are the following: |
tracking evolution of the centroid of infestation distribution [133,134,188], analyzing the
spatial autocorrelation of infestation [135,136,189,190], carrying out the spatial analysis by
distance indices  [137-139,191-195], conducting Markovian chains analysis  [140],
deploying geostatistical tools [141,143,146,188,196],  usage of spatial  mapping
[144,147,197-199] and cluster analysis [145]. With these approaches, conclusions are only
made on the type of spatial and temporal pattern which plant pests could adopt while
colonizing/damaging cultivated areas. It has also be found that the spatial patterns generated
by insects are random with either aggregated or regular structures [26,200]. Although some
of the mentioned methodologies for spatial analysis were applied to various types of insect
pests and crops [129-147,189,190,192,194-198,201], no studies have investigated the spatio-
temporal damage patterns of lepidopteran stem borer using experimental data from

smallholder maize farms.

Research on Lepidopteran stem borer pests, have been carried out in Sub-Saharan
Africa since decades [155,184,187]. Although the biology and ecology of lepidopteran stem
borers have. been extensively studied during decades . [155,184,187], available spatial
information is related only to the regional distribution, agro-climatic preference and
phylogeography over wide scales [151,153,184,202-207]. In particular, there are no
downscaled studies obtained from smallholder maize farms to assess spatiotemporal
infestation dynamic of B. fusca. Understanding the spatial and temporal dynamic of damages
spread constitutes the basic information necessary for future development of appropriate pest
management strategies. Most studies oriented towards smallholder farm scale focused on the
density and rate of infestation at field level by selecting at random few plants per field and
looking at the within-plant insect distribution, without any precise damage characterization
and insect distribution inside the field [208-211]. Such sampling approach presents a
considerable bias and cannot help to adequately understand/capture the spatial and temporal

dynamic of infestation of an insect pest.
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Whilst yield losses estimate are keys information used to manage stem borers, the
estimate of yield losses in existing studies is ambiguous; on one hand, it seems to be
overestimated in the other hand, the methods and techniques for the estimations are either not
clear or unknown [155,184,187,212]. Links between the pest damages and the yield were
established but their extrapolation is difficult because the studies are conducted by artificial
infestations, on insecticide-protected fields or the data collected focuses on few samples
randomly selected in the field [159-170]. Additionally, rigorous selection of plant physical
traits used to study damage incidence and, associating ear mass to different damage types have
not been done. Although African farmers perception of the impact of lepidopteran stem borers
is still high [213-215], it is noticed that the values of yield losses due to B. fusca currently

reported in literature are not updated [155,184,187,212].
I-5  Overview on modelling damage spread of insect pests

I-5-1 Generalities

Considerable research efforts have been made in studying insect pest population dynamics to
better understand, predict and manage these pests on agriculture crops [216]. Because
empirical approaches ignore the dynamics of crop—pest interactions and are limited to the
specific conditions at which the data were collected, it has become valuable and important to
employ advanced and robust predictive methods [54,217,218]. Therefore, ecological models
have gained great relevance as tools for assisting in managing agricultural insect pests in the
following areas: intercropping and trap cropping [219], resistance to pesticide [220] and Bt-
transgenic crops [221,222], spatial distribution of host plants [223], infestation outbreaks
[224,225], biological control strategies [226—228] and in integrated pest management
dissemination programs [229,230]. Thus, the open problem of prediction of stem borer in
maize farm gave us an excellent opportunities to develop new ecological modelling methods

based on theories already applied in other context in physics.

Leaf damage was considered as the main parameter in this study since neonates begin
to feed 7-8 days following the night when eggs were laid on the plant [167].0ther damage

types (exit hole, death heart, and plant death), which appear much later in a random fashion on
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the plant and could not be directly connected to oviposition and flight dynamics of the pest at
the adult stage were not considered during model development. In addition, it was reported
that the impacts ‘made by lepidopteran stem borers on young maize plants have the most
significant effect on yield losses [155,231] The current study focuses on the spatial and
temporal propagation of leaf damage infestation, which is simulated using a combination of
percolation theory, fuzzy logic, and multi-fractal methods integrated into a conceptual
framework governed by cellular automata. In the following section, a brief background of

each concept is described.

To survive, herbivore insect pest should spread to avoid unsuitable host conditions or
overcrowding; however, the temporal and spatial dispersal of damages of insect pests in the
agricultural landscape is complex and difficult to forecast [25,26]. In this context, a cellular
automata (CA) method can mimic the dynamic of spatial infestation via a set of contagion
rules coupled with an explicitly spatial approach. This technique has been applied to numerous
type of insect pests and agro-ecological systems [232-239]; this led us to choose CA as the
approach to simulate damages spread of B. fusca in maize farms. The percolation theory has
been used for predicting infestation threshold in a framework of spatial epidemiology [240—
244]; this theory has been adapted here for a proper estimate of the optimal cell size of CA for
an improvement of computing speed during simulations. The fuzzy set theory can be used in a
CA to iﬁcorporate a factor inﬂu‘encing the damaging pl:OCCSS in models; especiNal]y when the
exact link between the factor and the damages are imprecise or not well formulated
mathematically [245-249]. This method will be used here to change dynamically the size of
the CA neighbourhood and to integrate the effect of density of flying adult B. fuca. The
multifractal dimension is a method that has been applied to characterize spatial pattern
resulting from insect pest infestations in a landscape [250]; this method has been adapted here
to assess the CA precision during the spatial and temporal simulation of B. fusca damage

spread.
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I-5-2 A brief background of each concept used in this section

The word Percolation is used to describe a phenomenon that is characterized by the
formation of random and isolated patches of elements that can merge over time and space
to generate of a giant cluster [251-255]. Such phenomenon is usually linked to the sluggish
movement of liquid through a porous medium, with applications to the physical sciences
[251-255]. Percolation theory has been used to predict the threshold distance of separation
between different sites of contamination during propagation of fungi on substrates and soils
[241,243,244], and to forecast the critical threshold of plague density during spatial
infestation [242].

Cellular automata (CA) are spatially and temporally discrete systems characterized by
local interactions and synchronous dynamical evolution [256-259]. This method was
introduced in the 1950s by John von Neumann and Stanislaw Ulam to model self-replicating
systems [260,261]. Typical CA consists of five main elements: (i) a grid of cells, (ii) cell
states, (iii) neighbourhood, (iv) transition rules that determine how a cell change from one
state to another, and (v) time step. During simulations, an individual cell is viewed in a given

state.

This technique has been used particularly within an ecological framework for the
following purposes: on the study of plant spatial ecology [262-265], modelling the dispersal
of phytopathogenic fungi [232], mimicking the spatial propagation of insect pest infesting oak
trees [233], measuring the spatial heterogeneity of damages caused by insects [237,266],
estimating long-range dispersal of the insect pests and their damages in complex landscapes
[234,235], assessing ecological risk due to insect pest population density on genetically

modified crops [236] and natural disturbance of insects in forest ecosystems [237-239].

Although CA are alternative to partial differential equations [267], their basic features
have to be extended to gain more accuracy in the ecological modelling framework [268]. To
replicate natural phenomena propagation with a good precision, CA performance can be

improved by coupling with Fuzzy logic inference system [245-249,269,270].

Fuzzy logic was firstly developed by [271] to model uncertain and imprecise

knowledge [245]. It is a useful approach to model systems that cannot be very well
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formalized mathematically. Fuzzy logic is used to represent the degree of accuracy also called
truth level that is scaled between a probability threshold of 0 and 1. The fuzzy model works as
follows: (i) identification of the input and output variables, (ii) construction of an appropriate
membership function (iii) formulation of appropriate linguistic rules linking the output and the
input variables [245,272]. Fuzzy logic has been applied to improve the performance of several
ecological CA models. To illustrate, the impact of wind intensity on the spreading of insect
vector causing citrus death [245], the suitability level of spatial grid points for invasive
crayfish establishment [246], the susceptibility level of trees to insects attack [247], the
concentration level of the chemical substances favouring the algal blooms spread [248], and

the influence of habitat suitability on grasshopper occurrence and dispersal [249].

The term fractal is used for self-similarity that appears in an object under varying
degrees of magnification [273]. Unlike a natural object with a dimension 1, 2, 3, a fractal
object possesses a non-integer dimension [273]. However, fractal dimension only gives a
global geometrical description without any indication of how constituents of the object are
distributed spatially. This is why the application of multi-fractal is most often preferred than
fractal analysis. An object is said to be multi-fractal if it has more than one fractal dimension

[273].

Multi—frac‘tal— ﬁthodology is usually employed for measuring spatial repartition of
living organisms [274-277]; it can also be used to provide proper characterization of patterns
distribution resulting from disturbance of living organisms in complex landscapes [250,278].
Some of the most used multifractal dimensions are the following: information dimension (Dj),
which gives the degree of repartition of elements inside a surface and the correlation
dimension (D¢) that provides the degree of localization of elements by measuring the level of

clustering [279,280].

1-5-3 Problem statement

Although several integrated pest management strategies have been developed for
lepidopteran stem borers, the spatial and temporal spread of damages of these pests are yet to

be properly accounted for [281-286]. No studies have so far attempted to build a model for
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predicting the spatio-temporal damage patterns of lepidopteran stem borers applicable to

smallholders maize farms in Africa.

A major challenge encountered while simulating spatial and temporal process with-
cellular automata (CA) is the computing speed and memory allocation. A choice of a higher
spatial resolution is ideal but can be constrained by memory space available in a computer
while in contrast a larger cell size could not give a good result because of the non-
consideration of small-scale aspects thus, the proper selection of cell size of CA is a serious
dilemma [240,287-292]. Trial and error approach has been developed to select the size of CA
cell in a model simulating the spatial and temporal interaction of predators and preys [293].
Although spatial patterns generated by agricultural insect pest are scale-depended [294,295],
it is noticed that the choice of the spatial resolution or unit cell size used to implement CA
simulations of spread of insect pest infestation in agro-ecological systems is yet to be done
[232,233,235,237,239,245-248,263-266,268,269]. In this study, a procedure to select a
threshold scale is suggested. Since it is possible to predict invasive spread and infestation from
a percolation threshold [241-244], this theory is adapted here to estimate the optimal cell size

(not too small and not too large) of the CA to simulate B. fusca infestations.

The choice of the neighbourhood type is crucial for a CA model because the spatial
pattern obtained is sensitive to its configuration [288-290]. The challenge is the choice of the
appropriate configuration or how to make it dynamic. Solutions to this problem have been
suggested in CA models developed for land use modelling by considering a dynamic
neighbourhood configuration representing variable interactions among spatially distributed
localities [296,297], and in computer science in order to increase computational speed via
dynamical change of links between cells [298]. It is noticed that the neighbourhood used in
CA ecological model for insect pest infestation in agro-ecological CA models is considered as
fixed [232,233,235,237,239,245-248,263-266,268,269]. Although fuzzy set theory has been
used to represent a parameter influencing the pest infestation spread in fuzzy-CA with fixed
neighbourhood configuration and cell sizes [245-249,269,270], this theory is adapted here to
make the neighbourhood configuration dynamic during infestation spread. It is done by

inferring number of adults of B. fusca males to obtain fuzzy propagation index which
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determining the type of neighbourhood of the CA with time. The spatial distribution estimate

of the infested plants was done with the multi-fractal concept.

The accuracy of ecological CA simulation is sometimes evaluated quantitatively by
the use of mean absolute error and root mean square error comparing the states of observed
and predicted cells [245,299] or using confusion matrix and kappa index [300]. The present
study adapts to multifractal concept initially developed to characterize the spatial distribution
of spatial point data in a map in order to evaluate the precision of the developed CA model in
this study. In clear, the multifractal dimension is used here for characterizing the spatial

distribution of infested CA cells and measuring the precision of the CA model.

I-6  Overview on coupling insect pest dynamic and crop

simulation models

1-6-1 Generalities

The majority of tropical countries and the sub-Saharan region, in particular, have an
increasing population and consumption which imply a rising demand for food production
while yield gaps due to biotic stresses remain a major problem [301]. Despite the existence of
crop protection methods, the global yield losses induced by pests, also called bio-aggressors
(weeds, insects, pathogens, etc.) remains a significant threat to the potential agricultural
production [302]. The study of pest-crop interactions is therefore of a paramount importance
for integrated pest management and sustainable agriculture [54,218]. In this particular context,
preventing simultaneously crop yield losses and lower quality of food production via an
efficient linkage between the forecast of plant growth dynamic and the prediction of pests and
diseases impact is crucial. This can assist in mimicking in real-time the yield losses due to the
pest in contrary to the purely empirical approaches which are limited to the specific conditions

at which the data were collected [54,218].

Numerous authors developed dynamical models for specific insect pests and crops

such as cereal leaf beetle [303], alfalfa weevil [304], cotton bollworm [305], oak leaf roller
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[306], onion maggot [307], rice leaf folder [308], moth of olive orchards [309] and
drosophila of berry fruits [310]. Moreover, a general mathematical modelling framework to
study pest-plant interactions has been suggested [311,312]. These- studies mostly used -
temperature as the only external driving variables for the pest, the crop, and the pest-crop
interaction; however, crop simulation models (CSMs) are advanced tools using a system
approach which integrate knowledge about soil, climate, crops, and management in order to
understand, predict, manage and control agricultural production [53]. They are emergent
powerful tools to forecast yield gaps, to foresee the agricultural production and to analyze the
effect of climate change [53]. The scientific community is currently deploying significant
efforts to take into consideration yield losses due to pest and diseases in CSMs [54]; to
illustrate, some oftheAexisting CSMs such as SOYGRO [56], CERES-rice [59], RICEPEST
[313], DSSAT [57], InfoCrop [55], and APSIM-wheat [58] attempted to design a module
able to predict the pest-crop dynamic and forecast potential reduction of the crop yield. These
CSMs linked the pest and the crop with a linear/nonlinear functional plant response to a
certain population level of the pest attacking different parts of the plant [55-59,313]. We will
suggest a generic approach coupling pest and crop with stem borers and maize as a particular

example.

I-6-2 A brief presentation of DSSAT

The decision support system for agrotechnology transfer (DSSAT) simulates growth,
development, and yield of a crop [57]. The DSSAT-CSM is made up of a set of inter-linked
modules coded in FORmula TRANslation (FORTRAN) programming language [57] (see also
Figure 4). The latest version of this software with a personal license is available online upon a
request to the development team (http://dssat.net/). This software has several CSMs including
the CERES-Maize which focuses on the simulation of the basic growth process and
phenological development of maize plants [60]. The subroutines, the functions and the link
between states variables used to simulate the phenological development and the growth
process is described in detail in references [57,60]. The model contains numerous differential
equations representing the dynamic of soil water change, nitrogen variation, phosphorous

dynamic, leaf area index and dry mass accumulation in plants that takes place under the
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cropping system over time [57,60]. Here we just mention the equation modified during
simulations which is the rate of change in total crop dry matter (W) in g/m’ is described as:
aw .
= =W =8, =8-S,

= o W= E*(Pg -R,) (10)

Where today’s new growth () is a function of photosynthesis (2,), maintenance respiration

(R,) and the conversion efficiency (E), 7 is the time in days, S;, Ss and Sy are the leaf

senescence, stem senescence, and root senescence respectively. To be able to run the program
for a particular experiment, a minimum data set is required for model development and testing.
DSSAT needs a specific set of data such as weather data (daily maximum and minimum
temperatures, precipitation, solar radiation, etc.), soil data (color, drainage, nitrogen, etc. ),
crop management data (crop, cultivar, planting date, row and plant spacing, etc.), just to name
a few [57]. Once the data files are ready, primary modules (weather, management, soil, soil-
plant-atmosphere, CROPGRO plant template and plant modules) and sub-routines are called
by the main program to perform each step of processing in order to generate daily and

seasonal outputs [57].
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I—6—3 Problem statement

Simulation of the population dynamic of insect pest such as, the apple orchard pest
Cydia pomonella (L.) [314], the fruit pest Carposina sasakii [315], Bactrocera (Dacus) tyoni
[316] and tea pest, Caloptilia theivora [317] have been done mostly using dynamical
equation with coefficients derived from experimental data. A plethora of experiments
regarding the biology of B. fusca have been conducted in order to assess the effect of
humidity, temperature, nutrients contained in maize plant but have never been exploited with

the aim of modelling the population dynamic and the maize-insect interactions [318-320].

The pest attack does not always induce yield reduction because of the possible plant
compensation of damages [321-324]; however, a proper representation of the feedback
mechanism between the plant and the insect pest is a challenge because of absence of specific
functional relationship between the biomass lost with time and the degree of pest attack [218].
This is among the major difficulties encountered while coupling pest and crop in a "two-way"
approach whereby the pest and the crop model variables drives each other [53]. Despite the
previously mentioned CSMs perform crop growth simulation, according to the best of our

knowledge, none of them integrate the "two-way" concept as well as a dynamical model

predicting pest population through its life cycle [55-59,313].

The present study attempted to fill this knowledge gap by improving the software
Decision Support System for Agrotechnology Transfer (DSSAT) which is a broadly used
modeling tool that comprises CSMs for over forty-two crops [57] and, integrates CERES-
Maize which is a simulation model for maize growth and development [60]. The pest and the

crop are coupled within DSSAT in this study via the fuzzy logic concept.

Fuzzy logic was developed with the aim of modelling uncertain and imprecise
knowledge [271]. It is a useful approach for an abstractive representation for a system that
cannot be very well formalized mathematically [271]. In contrast to the binary logic, the
fuzzy logic is used to modify to original real variables into a corresponding number between 0
and 1 [272]. By means of a set of membership functions and, formulation of appropriate

linguistic rules, the input and output variables of the system are connected [272]. Fuzzy logic
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approach has been employed to handle the negative effect of abiotic stresses on maize plants
such as the extreme wind speed effect in stalk lodging [325,326] and, the deficiency of
nitrogen in the soil [327,328]. Since the exact functional link between the pest and the crop is
usually unknown or, cannot be well formulated mathematically in general [218]; this

approach was used here for coupling the stem borer damage and the maize plant growth.

1-7 Conclusion

In the end of this chapter, a brief overview of each physical description of the
Davydov's model, its different limits and an highlight of our contributions have been provided.
Furthermore, an overview of microtubules and the models mimicking the electrical behaviour
as well as our potential contribution were highlighted. Moreover, we presented the insect pest
its ecology, life cycle and damages in maize farm. The challenges related to the modelling of
insect pest in general and the techniques that will be used in this study where presented.
Finally, we highlighted the problems and challenges encountered in coupling the insect pest
dynamic and crop simulation models. In the next section, we presented the different analytical,

experimental and simulation approaches used to tackle these different problems in this study.
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Chapter II: Materials and methods



I1-1 Introduction

This chapter present a brief overview on the techniques used to solve the open
ploblems stated in the chapter I are briefly presented. It is structured in three main parts: the
discrete breather investigate in the modified Davydov's model, the criteria for electrical wave
propagation in microtubules and finally, the analysis and modelling on insect pest damages in

maize farm..

II-2  Anharmonic correction of the linear potential

A polynomial correction of the harmonic potential was introduced as follow:

o

+
2! = (2k)!

=cosh(z) -1 (11)

The infinite summation in the right-hand side of the first equality represents an anharmonic

correction of the harmonic potential. The nonlinear potential is: V(r,) :c(cosh(b”,,)—l).For

KJZ.bzl_

convenience in the calculus, the following transformations were made:c = 5 y
X

Introducing these dimeénsionless variables we obtained: V,(x,)=cosh(x,)—1, where

X, = B,., — B,. The nonlinear hyperbolic cosine potential is a good approximation of harmonic

potential around the minimum. This nonlinear potential gives the possibility of high vibratory
energy amplitude for the very low value of displacements from equilibrium point. That is due
to higher order terms in the infinite summation. It was also observed that hyperbolic cosine
potential preserves the shape of harmonic potential from the original Davydov’s model in spite
of its nonlinearity. Phonon mass is larger than exciton one. Therefore, it is supposed to be very

slow compared to exciton. Let apply Born-Oppenheimer or time adiabatic approximation [11]

ddﬁ” — 0, we obtained from (9) the identity f,,, —
T

equation in the relation (8) we obtained:

B, = —arsinh (|¢,,|2) substituting this
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.dg, . 2
171_—+¢"+l —2¢,+ ¢, ,+¢,arsinh (Im )= 0. (12)

In the following section, we will show how to derive discrete breather of discrete nonlinear

Schrodinger equation (DNLSE) (12) using a two-dimensional map approach.

II-3  Two dimensional map

To find the intrinsic localized mode we conducted the calculation as in the literature [329—

335]. An estimate of the stationary breather for (12) was performed with the assumption that

the solution has the following stationary form ¢,(7) =17, exp(iw7), where 7, is the stationary

amplitude, and @ is the dimensionless frequency. By inserting this expression in (12) we have

—mn, +1,,, —21, +1,_, +7,arsinh(77?) = 0. By assuming 6

) «1 =17, we obtain the following two-

dimensional (2D) map:

T: |:77n:| — [’711+li| - |:(2 + a)) 77:1 - 77”al'Sinh(77§) - 911:| (13)

o 6 M,

n n+l

The nonlinear localized mode (pulse of kink) can be found obtained by searching homoclinic

and heteroclinic tangles of this 2D map .[335]. The fixed points of this map are given. by

P, =(0,0), R, = (+y/sinh(@), :/sinh(@)) . The eigenvalues of the Jacobian matrix:

. 2n’
2+ w-—arsinh(n’) - —2= -1
B Ji+7t (14)

] 0

around the fixed point I, are:

i :(2+a))i,/(2+a))2—4 (15)

2

The fixed point F is homoclinic if it is an unstable saddle point. This will happen if and only

if the absolute value of one eigenvalue is greater than one and the absolute value of the second

eigenvalue is less than one. Therefore, the trajectories of the nearby point in the direction of
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corresponding stable eigenvalue will move toward this point, the nearby points in the direction
of corresponding unstable eigenvalue will move outward from it [331,336]. To generate the
unstable manifold, first, we have to find the eigenvectors corresponding to the unstable
eigenvalue. Iterating the points, which are on the corresponding unstable vector and are close
to the fixed point, through the map (13), then we can obtain the unstable manifold (W"). We
can also generate the stable (W*) manifold by inverse map of the iteration (13) [331,336].
Once the unstable and stable manifold are generated, we can select the intersection as an initial

condition for the 2D map. The backward and forward iterations will provide a pulse like
profile 77_y <1y <ewee <Wys Mo > 1 > ... > 17, which is corrected numerically with the iterative

Newton-Raphson method.

II-4  Newton-Raphson method and linear stability

Let's consider the again the equation —ws, +1,,, —27, +1,., + 7,arsinh(7.) =0, we
are looking for the vector 77:(77“772,...,77")7‘ solution of f:(fl,fz,...,f”)r =(0,0,...,0)"
where:

f, =—0n, +1,, =21, +1, , +n,arsinh(77,) ‘ (16)

Let's define the Jacobian matrix J with the elements

) =% a7
The iterative formula of Newton is given by:
7 =1t =7 f () (18)
Where 77" is the value of 77 after k-iterations. The matrix J is a tridiagonal matrix with
9 9 9 (19)

67711 ’ annﬂ , 877'1—1
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The first term of J is at the principal diagonal and at the two others are located at the off-

initial

diagonals of J. This matrix should be invertible and, the initial value 7 should be closer

to the real solution to ensure a convergence of the iterative process. This is the reason why the
initial guess is estimated first from the 2D map approach. The iterative process will stop if the

following condition is satisfied [337]:

7™ =n"li<e (20)

€ has been chosen as 102°. After application of the Newton’s method, we finally get an
accurate stationary solution [338]. The linear stability of the obtained spatially localized mode
have been investigated using the perturbation method [335]. By perturbing the stationary

solution given by (12) we obtained:
é,(v) = [77“ +c(a,exp(or) +b, exp(&r))] exp(iot), 21

where a, and b, are complex parameters, c is an infinitesimal parameter. Substituting equation

(21) in (12) and keeping only linear terms in ¢ led to the following eigenvalue problem:

e = a a
1. a),l f;l . gll —'" =0 _" , (22)
1 g" _a)” + A + gll b" bn

where o is the eigenvalue of the spectral problem. A is a tridiagonal matrix with A, =2,

nn

—1/2

Ay =1, g, =m.(0+n)", @, = w—arsinh(7}) . The bar on top of b, and o represents the

complex conjugate. The intrinsic localized mode is linearly unstable if at least one eigenvalue
has a strictly positive real part. In the following paragraph, we explained how the impurity is
used to achieve the mobility of the discrete breather and how the thermal bath was

incorporated in the model.

II-5  Impurity and noise

In order to take into account the presence of an impurity, we reconsidered the original

Davydov’s model including the gauge transform (4) without the C=O stretching energy &, .

The ABE energy &, was added to the amide-1 energy. Furthermore, a time adiabatic
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approximation was performed. Moreover, we rescaled the impure vibrational mode ¢, in the

discrete  nonlinear  Schrédinger  equation  (12) by the gauge  transform

#,(t) > ¢,(7) exp[i(fli(l +y)+(1+ a”))r}. This transformation introduced the amide-1 and

impurity energy of the original Davydov’s model in non-dimensional form (1+¢,). It was
assumed that the impurity impact is explicitly time and space dependent [76]. A similar gauge
transforms have been used to introduce a stationary impurity in a discrete nonlinear
Schrédinger equation [339]. The obtained dimensionless equation governing the exciton
dynamic is:

|2

I%& —(] +an(T))¢n + n+l _2¢" t ¢""l ¥ "
T

¢, =0, (23)

where the dimensionless energy is given by: «,(7)=73,,,,- The anomalous band energy

(ABE) has a value &= 1650Cm™ [63]. Furthermore, y = £,/ & =0.990. Then, we derived a
representation of ABE under a non-dimensional from y =0.990 , symbol of Kronecker delta

given by the following rules:

v _ y ifn=1I07), 24
@0 it (7).

Where /(z) is the position of the impurity at the time 7 . The pseudo-centre of breather is

computed by the formula:

S nlg(o)F
XO= 5y oF &=

The dynamical position /(r) of & on the lattice is determined by E(z)—100. The function

E(7) rounds t to the nearest integer less or equal to 7 .

The Langevin’s approach [340] is commonly used while taking into account thermal

noise for Davydov’s model [84,341,342]. The Langevin equation for the lattice is:
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I”iin = V' (“n+l - ull) - V. (un - un—l) + X (lan|2 - |an—l |2) + én (t) - ’771_‘1;/”. (26)

The variables &, () are random forces with a Gaussian distribution. The thermal noise

satisfying fluctuation-dissipation relation is given by [342]:

2mUk,T

(1S, (L)) = 6(n, =) (1, —1,), 27)

where k,is the Boltzmann constant, T is the temperature, & is the delta Dirac function, @ is
the noise correlation time and I"the dissipation constant. The variables »n, and n,are two
distinct positions in the lattice. The noise temporal mean at a lattice point (&, (¢))is considered
null for the difference between two instants £, —t, > ®. Thus we considered @ very small,
given that the noise is assumed fluctuating quickly and the estimated lifetime of the
Davydov’s soliton at physiological temperature is in the order of few picoseconds [12,343].

Vi - .
Therefore, we have chosen @ :710c 107" . Furthermore, @ had been multiplied by the time

step used during numerical simulations. This is quite similar to [342] whereby the ® was
chosen as a time step. To generate numerically a normalized stochastic and uniform Gaussian
white noise, we applied the Box-Miiller algorithm [344]. In the classical Davydov’s model,
we used initial conditions commonly used the literature for visualising impact of the thermal
noise. In what follows, the methods used to study the second biological molecules which was

the second focus of this study are provided.

II-6  Modified formulation of voltage dynamic in microtubule

A unit cell of the transmission line is depicted in Figure 5. The microtubule is
assimilated to a succession of N adjacent unit cells. Each unit cell » of the lattice is made by a
linear inductance L in series with a linear resistance r, shunted by a nonlinear capacitance

C(V,) in parallel with a nonlinear resistance R, .
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C(Vn) Rn

Figure 5: Description of the electrical analogy of the MT model.

In standards models, the nonlinear components are represented by a conductance and a
capacitance [17-22]. Priel et al. [23] suggested that an ensemble MT-calcium ions could be
represented by a transistor, in which MT is the core part and the flow of calcium ion ionic
through the nanopores of MT constitute the base current of the transistor. The main difference
between the present model and existing models [17-22] is the incorporation of a nonlinear
resistance to capture the cation flow through nanopores within MTs. Our model is closer to the
one recently developed and proposed by Sataric et al. [20]. They were inspired by the
previous work of Freedman et al. [106] which indicated that /(V) characteristic in the presence
of the infiltration of cation ion through the nanopore of MTs was a nonlinear function.
However, the model in [20] does not take into consideration the nonlinearity described by
Freedman et al [106]. Thus we suggested adding a nonlinear resistance for modeling cation
flow through nanopores of MT. In Figure 5, an arrow crossing the electrical component is
used to represent the nonlinearity.

The nonlinear capacitance element C(V,), possess an electrical charge O, in the following
form [345]: O, =Q®,) = AC, ln(l + %) , where C; is the capacitance in the linear regime, 4

is a positive parameter. Such function is a good approximation of charge-voltage (C—V)
curve [346-348]. It recovers the quadratic nonlinearity of capacitances in model used to
mimic the electrical transmission properties of MT after asymptotic expansion with large

parameter 4 (A>>V, ) [17-22]. The negative nonlinear resistance effects of ionic flow

through nanopores is characterized by the following relation: 1™ = f(V,)= BV, - BV,

n?

where I% is the current flowing through each negative nonlinear resistance R,

1/R,=BYV?—B, where B, B, are positive parameters representing the nonlinear and linear

63



coefficients with the physical dimensions [Ohms_] -Volts—z] and [Ohms_]] respectively. By
applying Kirchhoff’s Voltage laws in unit cell n of Figure 5 we have obtained the following

expression:

C, |dV,

n

1400 | d (28)
A

c, dv, LG, (gﬁ

2
+| L(3BYV? - B,)+
+_VL d,z d[j ( 1" n 2)
A

V, 2
1 Al +-2)?
+=g)

+r(BY, - BYV,)=Y,

"n n+l

—2V, +V,

n-1

This equation represents the spatial and temporal evolution of the voltage V(1) The terms
containing B, and B, are the contribution of the ionic flow brought in by a nonlinear

resistance. The terms with » represent the contribution of the linear resistance. The right-hand
side of the Eq. (28) is the coupling entity between nearest neighbours [n—1]—[n]—[n+1]of
the system. Since we are in the presence of cationic current flow through MT, B, B, and r
values are implicitly linked to ions concentration [17,106], hence they were considered as

control parameters in the model. The remaining parameters were obtained from the literature,

Cp=0.1 fF [20]and L=1 fH [21]. In the following section, the analytical threshold for wave

transmission in the forbidden band is derived.

11-7 Cut-off soliton

In this section, the main point of interest is the estimation of the critical amplitude that
allows the wave to propagate with a frequency contained in the forbidden band gap of MTs.
The MTs boundary is assumed to be excited with a periodical driving Wh-i%:h frequency is
inside the forbidden band gap. Equation (28) can be rewritten by assuming that the capacitor is

linear (A>>V,) in a non-dimensional form as:

Vn T @, (3LBan2 U LBZ)) V,+ rBY, —rBYV, =V, =2V, +V,.., (29)
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where, @, =/1/LC, and the dot is the time derivative according to the non-dimensional time

7 =@, . The boundary condition is chosen as ¥,(7) =U cos(wr) . It was observed in literature

capacitors [110,112—117] that the analytical estimation of the transmission threshold for the
boundary condition neglected the dissipation. In addition, the type of nonlinearity included in

this section of the study has never been analyzed in this context. This justifies why we decided

to study two cases: f(l),,) =, (3LB,V”2 +(#C, — LB, )) V. =0 ,and f(V.") #0.

Case number 1I: _f(I},,)zO. By neglecting the contribution of the dissipative and

nonlinear terms in equation (29), and assuming that V, () «cexpi(@wz —gn), we obtained the

linear dispersion relation:

w(q) = 4sinz(§j—r132. (30)

The above relation is valid if the wave number satisfies the following condition:
. |rB, . .

q = q, = 2arcsin 2 The system is a low band pass filter with the allowed band defined by

the frequency interval [0 a)c] where @? =4 —7rB, is the square of the upper cut-off frequency.

Using the rotative wave approximation and the solution under the form:

V. (t)~ey, (7)™ + e l//; (€7)e™ " 1+ O(e?), (€3))
with
0. (t)=wr—qn, O<e<l, i*=-], (32)
16,(7) .

we obtained the following terms in different orders of € and e
e :~(&’ +rB)y, — (W, e =2y, +y, "), (33)
€3ela" : Zia)lﬂ-" + 3rBlWII |l//" Iz - (34)

By assuming that the wave number is at the edge of the first Brillouin’s zone (q=n) we

obtained the discrete form of the nonlinear Schrédinger equation:
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21.(0(/./" = (wz - wf)(//u - (l//n+l - 2‘//11 + l/jn—l) - 3)’Bll//" Il//n|Z . (35)

The continuous approximation of equation (35), has the well known static pulse soliton

solution given by:

w(x) = %;_w& sech(\/a)2 -’ (x—xo)). (36)
r 1

The approximative maximal value of V,(t) at the boundary called the supratransmission

threshold is then given by the expression [107]:

2 _ 2
Ulh = M ) (3 7)
3rB,

In order to insure that the threshold (37) is correct we used the nonlinear response

manifold (NLRM) for numerical a estimate [121-123]. The stationary and periodic wave

approximation V, (7)~a,cos(or) applied in equation (29) provided the backward two-

dimensional (2D) discrete map T:a, > a,:
3rB
2-0’—rB,+—1n? |n, -
T:[Z’:IH[Z'_l:': ( 2 4 77:1)77/1 Zn , (38)
n n-1

T
where n,=a,, x,=a, , ; and 0>w .. This discrete formulation is used to map the infinitesimal
boundary condition at ap; for approximating the value of ay belonging to the unstable

manifold of application (38). The critical value of the driving amplitude is obtained by
identifying the turning point in the plane (V1,U). Where V| is the voltage amplitude at the first

cell and U is the value of the driving amplitude.

Case number 2: f(V,) #0 . The supratransmission is well known as a generic feature for

nonlinear systems. However, it is noticed that most of the studies did not explicitly included
the dissipation during the determination of the analytical supratransmission threshold

[108,109,120,349]. Considering the nonlinear dissipative term and using the rotative wave
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approximation described in the preceding subsection we obtained at different order of ¢ and

PLALE

e (" +rB,)y, + iwo(rCO —LB)y, —(w, e =2y, +y,.e"),

_ (39)
e :[w,(rCy — LB,) +2i]ys, +3B,(r + iLow)y, |w, [ .
For g=n we obtained the discrete cubic complex Ginzburg-Landau equation:
7 2
¢n = Rr¢n + D(¢n—l . 2¢M + ¢n) + ﬂ¢n |¢n| > (40)

where w,(7)=¢,(t)exp(iRt), D=D,+iD,, p=p+if, R=R+iR, w=a./(the
expressions of the coefficients D, B and R are given in Appendix 1). The analytical
solution of equation (40) in the continuum approximation is assumed to be under the form
#(x,7) = u(&)expi(O(&) +vr), £ =x—97, § is the velocity and v is a frequency [350]. The

stationary (9= 0) Pereira-Stenflo soliton solution is given by [350,351]:

w(x,7) = zI'(r)sec h(p(x — x,)) exp— iLinsec h(p(x—x,)), 41

p
where I'(z) =expi(v+R,)z. (for the expression of z, p and g see the Appendix 1). In this
subsection, we are interested only in the maximum value of the amplitude for the solution (41)
centered at the origin boundary [109]. The supratransmission threshold and the frequency of

the approximate stationary solution ¥, (z) are given by:

U,=2z= Y'(a)C+R,.—Q— 1 ) (42)
1+D

where Y and @ are provided in the appendix, Q= @, + R, +v. Since Q> @,, the parameter v
should satisfy the condition v>—R,. In this subsection, Q has been considered as the

boundary driving frequency. The procedure for estimating the infratransmission threshold in
reference [109], is used here. For that purpose, the system has been excited at its first

boundary cell by the driving amplitude A(z)cos(Q2z) where A(7) is given by:

A@)=U,(1-e ") +U,-U,)(1-e"™),7,>> 7. For several values of the parameter U,
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we computed the total energy of the system including the coupling energy at the boundary

conditions of the system:

a“ rBz'
2

_ L | % ' 2 VB
E——z 5( n +(I/n+l_l/n) )+TI/I

n=l1

V,f}%(V. A (43)

The infratransmission threshold corresponds to the amplitude for which the accumulated
energy drastically changes. In the following section, we explained how the electrical wave

amplification is realised.

II-8  Simulating electrical wave amplification

According to Satari¢ et al. [352,353], an endogenous sinusoidal electrical field in
living cells plays an important role in MT dynamics. Thus sinusoidal input voltage stimulus is
usually a good candidate for boundary driving. Both experimental studies [23,105] used pulse
function as an input signal. We also opted for the same, making our sinusoidal input have a

secant hyperbolic function as amplitude. The analytical form of the input is considered as:

V.1
V,=V,()=V, sech(L—"'jcos(a)l), where ¥, is the maximal amplitude, V, is the group

m m
s

velocity of the wave packet and L, is the width of the pulse. An arbitrary value was chosen for

the pulse L =18 cell, Vg=3240.41 cell/ps, and for the driving pulsation ©=2.04 rad/fs which

belongs to the allowed band estimated in the previous section. The parameters were chosen
following analysis of the preceding section to ensure signal coherence without any resistance.
This is to minimize other factors influencing the amplitude and shape change during signal

propagation [346]. We have also chosen V,

m

and 1/4 to satisfy the condition (4> V-

In what follows, the data collection protocol, the preliminary analysis and the

modelling related the insect pest damages in maize farm are presented.
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I1-9  Study sites and sampling procedures

11-9-1 First data collection

The farms selected for the study are located in Naivasha, in the Rift Valley region,
Northwest of Nairobi. The geographical coordinates are: latitude 0°43'00" S, longitude
36°26'09" E, 2086 m a.s.l. Busseola fusca is the predominant lepidopteran maize stem borer at
this elevation [153]. The study was carried out on private land, after the owners gave
permission to conduct the study on these sites. Six maize plots (see Table 2) with monoculture
planting style were selected. The maize plants were planted at regular row and within row
space intervals, to facilitate counting. The planting date and crop management practices were
identical in all selected plots. Data collection consisted of visual checking of all plants
damaged by B. fusca, and was conducted weekly during 13 weeks, from the 23 November
2010 to the 10 February 2011. Coordinates of all sampled maize plants with/without damages
were recorded. Four plant damage types were considered: LD, DH, EH and D. Furthermore,
we placed two pheromone insect traps around each field to follow the flight dynamic of B.
fusca males. For each plant, we assigned an ordinal number ranging from 1 to the total number
of plants within the field. In addition, for each of the 4 damage types, we assigned for each
plant an integer value indicating the week of the observed damage. If there was no B. fusca

damage observed during the collection period, the value given was 0.

Plot Row Row spacing | Dimensions () Total number of GPS coordinates
length (m) (m) maize plants Latitude , longitude

(in degrees)
1 55.00 0.81 51.03%53.93 6547 -0.7701, 36.4959
2 31.54 1.86 150.66 x 31.57 3914 -0.7747, 36.4786
3 53.10 1.56 123.24 x 52.14 8146 -0.7819, 36.4711
4 30.50 1.49 120.69 x 30.50 4974 -0.7713, 36.4766
5 46.80 1.40 74.20 x 46.80 4884 -0.7826, 36.4704
6 27.82 1.05 153.30 x 27.82 7314 -0.7765, 36.4791

Table 2: Description of plots used for the first experiment. The dimensions are the maximal

repartition range of plants inside the plot. The six plots
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11-9-2 Second data collection

The second trial was conducted at Murang'a (00° 43' 00" S, 37° 09' 00" E and 1255
meters above sea levél) in Kenya. A commercial maize variety DUMA-4 commonly grown by
Kenyan farmers in mid-altitude areas was used throughout this study. The seed provided to
farmers were planted in four plots described in Table 3. The plots were submitted to identical
management and exposed to natural infestation by B. fusca; no control measures and fertilizers
were applied during the whole plant grow period. Planting was conducted on 3" March 2014
and the harvest occurred during the month of July 2014. The data collection started on 16"

April 2014 and ended on 25" July 2014.

Data collection protocol was identical for all plots. In each plot, all plants were
monitored weekly in order to detect infested maize plants. The incidence of damages was
determined by visual observation of the plant within the plot. Infected plants were tagged with
colored plastic materials having a unique set of number and letters which served as an
identifier. The types of damages assessed were leaf damage, exit hole, and dead heart.
Observations were done in one-week interval beginning 16" April 2014. Plants were
examined in situ without uprooting. Damage level, taken as the tunnel length bored in the stem
and the ear by B. fusca individuals that successfully colonized the plants was assessed at
harvest. This was conducted by dissecting (opening by vertical split) ears and stems of

infested plants.

During harvest, all infested plants were uprooted for proper inspection. Furthermore,
each plot was divided into four quadrats of equal size and 25 non-infested plants were
randomly harvested per quadrate. Plants features such as stem length, stem diameters, plant
dry mass (leaves and stem without the cob) were recorded. Physical characteristics of
unshelled maize cob with removed corn silk and husk were collected. Cob length, masses, and

diameters from both infested and non-infested plants were also recorded.
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Plots | Row Row Dimensions GPS coordinates
length | spacing | (LengthxWidth) | Latitude (in | Longitude (in
, (m) (m) (m) degrees) _degrees)
1 21.00 0.60 21.00x17.17 0.922244964 | 37.15198829
2 21.00 0.60 21.00x17.17 0.922477751 | 37.15234651
3 18.60 0.60 23.40x20.70 0.923219997 | 37.14361341
4 18.60 0.60 18.60x10.80 0.919620737 | 37.13853050
Plots | Total Total Space Total number of Total number
number | number of | between quadrats during of
of rows | plants per | plants in sampling at maize plants
row row harvest
| 36 60 0.30 4 2160
2 36 60 0.30 4 2160
3 40 70 0.30 4 2800
4 32 37 0.30 4 1184

Table 3: Description of the plots. Each dimension is given in meter. The plots were located

within an area having a radius of 0.708 Kilometers.

II-10  Preliminary analyses I: exploration of emergent patterns

11-10-1

Observation of infestation rate variation and insect trap catches

To get the weekly variation of LD rate, the differences between numbers of damaged

plants during two consecutive weeks were evaluated in each plot. Results were normalized so
that the associated values ranged from 0 to 1. As well, the weekly mean values of adult B.
Jfusca males caught in insect traps were computed and then, the temporal dynamics of LD rate

and the abundance of adult males were compared.

I1-10-2  Conditional probability for plant infestation

Because maize was planted at regular row/within row space and the planting date and
crop management were identical as well as the date of data collection, we decided to compute

the probability that a randomly selected plant is found dead (D) once damage i has occurred,
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where i = LD, EH or DH. Next, the conditional probability that D occurs once / has occurred

was computed.

11-10-3  Mean time transition between infestation types

The estimation of the average time span between damage types was done. First, for
plant P we recorded the damage type i (i= LD, EH, DH or D), and the corresponding week of
observation. Second, we checked and recorded the week of occurrence for other different
damage from i, which we called j. Third, we computed the difference between the two weeks

to get the time duration for the transition Pi— Fj . Fourth, we repeated the same process for

other maize plants to obtain a mean time transition from a damage type to another.

II-11 Preliminary analyses I1: Spatial distribution

II-11-1  Spatial autocorrelation

Observations of damage in plants with different geographical coordinates may not be
uncorrelated. Spatial autocorrelation may be positive or negative symbolizing how similar or
dissimilar damage occurs close by. The falm in this context had a lattice structure made of
discontinuous spatial repartition of maize plants. The first step in this analysis was to define
the Euclidean distance matrix from x- and y—coondmates of two individual plants i and j (dj).
Secondly, the spatial relationship between damaged plants was quantified using the spatial
weight matrix W in which elements represent the strength of the spatial structure between
units [354,355]. This matrix was used to evaluate the level of spatial autocorrelation. There
are various ways to define W and the choice of a particular method to other is subjective. The
easiest option is to construct a binary contiguity matrix (made of 0 and 1) by specifying the
units that are adjacent (1) and those that are not (0) [356]. Therefore, the spatial weight matrix

-

w;:

;; is equal to 1 for dj less than a certain critical distance 7 and, it is equal to 0 otherwise. The

variable 7 is the radius of proximity. The Moran’s I coefficient I" is used to quantify the
degree of spatial correlation between neighbouring infested plants. The formula used to

calculate Moran’s I can be found in the literature [135,357-359]. In this analysis, the value
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assigned to each plant is a binary index of LD, EH, DH or D (0 for non-infested and 1 for
infested plants). The interpretation of Moran’s / is similar to the correlation coefficient [359].
If the Moran’s 7 is null, then the spatial link between infested plants at distant loczltions is null,
and there is no spatial autocorrelation (SA). If the Moran’s / is positive, then the
contagiousness of infested plants at distinct locations is considerable, and the SA is positive. If
the Moran’s [ is negative, then the majority of the infested plants are not next to each other,
and the SA is negative. The graphical representation of the Moran’s / function of r is called
variogram (or correlogram). For the Moran’s / computation, data were reorganized as follow:
for each maize plant we recorded the spatial coordinates. Values of LD, EH, DH and D, were
0 or 1 (1 is for infested and 0 for non-infested). The process was repeated cumulatively for

subsequent weeks to obtain a temporal variogram.

I1-11-2  Tracking the centre of plant infestation

Observing directly the spatial and temporal evolution of plant infestation is difficult in
a maize farm having a considerable number of stems; thus we opted to compute the iso-
barycentre (IB) coordinates of each occurring damage type. First, we selected the coordinates
of plants with leaf damage, and then we calculated the coordinates of the weekly IB without
taking into account results obtained from the previous week’s computations. We obtained the
IB coordinates by averaging x- and y-coordinates corresponding to the set of newly infested
plants observed at each week, which allowed us to track the position of the center of patches

formed by infested plants with time.

11-11-3  Model-based cluster analysis: spatial clustering

To follow the evolution of the initial shape, density and number of clusters of infested
plants formed with time the model-based cluster analysis was used. For a spatial classification
of clusters, the following procedure was adopted: (i) positions of damaged plants were
assumed implicitly generated by a mixture of probability distribution function in which
different components represent groups or clusters; (ii) based on the framework developed in
[360], we used Gaussian and non-Gaussian probability density (PDF) functions for the

clustering. In addition, orientation, volume, and shape of the cluster were determined using the

73



models summarized in Table 4 [361]. These three features are characteristics of the bottom of
the two-dimensional PDF. The likelihood of each model is estimated via the expectation-
maximization algorithm [362], which allows us to assign a Bayesian information criterion
(BIC) [363,364] for selecting the best model. This section of the analysis was carried out

using the statistical package “mclust” of the software R [365] .

II-11-4  Spatial and temporal contagion patterns: identification of cellular

automata rules for the propagation of infestation

Cellular automata (CA) are spatially and temporally discrete system characterized by local
interaction and synchronous dynamical evolution [366]. Usually, CA is used as a modeling
approach to mimic the behaviour and pattern of the spread of an infestation. However, our
objective was to find the likely geometrical configuration (rule) of the spread of infestation to
uninfested maize plants by considering each maize plant as an element, which is attributed a
state (infested/non-infested), which was assumed to change depending on the plant’s state and
the states of the plants in its vicinity. Hence, CA is useful for investigating the spatial pattern
of the nearest neighbouring plants around a safe central plant that is most likely the source of
the contagion. The minimal neighbourhood for the CA is estimated via the application of the
algorithm described in [366]. The methodology was structured as follows: (i) the state of each
* plant and its neighbours are collected in a maximal neighbourhood radius (initially fixed), then
the primary neighbourhood of a plant is formed by 24 maize plants (Figure 6); (ii) the initial
neighbourhood was reduced by selecting the configuration that minimized the variance
between the CA results and the data; (iii) in the obtained neighbourhood, the plants without
any effect on the state of the central plant are removed; (iv) the BIC is used to determine the
neighbouring configuration that has the most significant impact on the change of state of the

central maize plant. This approach was implemented in Matrix Laboratory [367].
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Model distribution
identifier

Ell Spherical
Vil Spherical
EEI Diagonal
VEI Diagonal
EVI Diagonal
WI Diagonal
EEE Ellipsoidal
EEV Ellipsoidal
VEV Ellipsoidal
VW Ellipsoidal

Table 4: Model identifiers use three letters encoding the geometric characteristics: Volume-
Shape-Orientation. E means equal, V means varying across clusters and 1 refers to identical

orientation [361].

(@) (b)

Figure 6: Neighbourhood plant configurations (black colour) around the central plant (white
colour). (a) Representation of the extended Moore neighbourhood types the central plant
possessing the label number 1 the rest are labelled randomly from 2 to 25. (b) Representation
of the Moore neighbourhood type. We consider the central plant possessing the label number

1, the rest are labelled randomly from 2 to 9.
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I1-12  Preliminary analyses II1: Yield losses analysis

Data were subjected to one sample Kolmogorov-Smirnov (K-S) normality test
[368,369]. The means values of physical features of stems and ears from both non-infested
and infested plants were compared using Welch’s two sample Student t-test for pairs of
normally distributed data [370,371] and, the Wilcoxon’s two samples test was used for pairs
non-normally distributed data [372]. The Fligner-Killeen (F-K) test was used to assess
variance homogeneity between plots [373,374]. All the statistical tests were considered as less

significant for p-values equal or greater than 0.05.

To determine yield loss, only the cob masses were considered [160,163,165,375].
Yield loss is frequently expressed as the fraction (percentage) of the attainable yield gone
because of pest injuries [152,173,175]. It is then called relative yield loss (RYL), and is
computed as: RYL=100=/(Y -Y;)/Y] [52,152,161,173,175-180]. Yield loss was expressed as a
difference of mean cob masses between the un-infested (Y) and infested plants (Y;). In
addition, the total losses per hectare were estimated by summing the difference between the
average value cob masse from non-infested plants and individual value of cob masses from

infested cob, then the result is divided by the plot surface value and expressed in hectare.

The estimate of the parameters of the damage functions which links B. fusca tunnel
length and corresponding cob masses was conducted through nonlinear least squaré using
Levenberg-Marquardt method [376,377]. The goodness of fit and selection of the candidate
nonlinear functions was operated with the Akaike Information Criteria (AIC) [363] and, the
R-squared. The linear link between the evaluation of yield losses and the mean cob tunnelling
were done by using the Person's correlation coefficient (PCC) [378]. All analyzes were

conducted with the statistical software R [365].
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I1-13 Modelling infestation spread

11-13-1 - Critical percolation scale

Two scales (critical and non-critical) of leaf damage spread caused by B. fusca were
distinguished. Using the percolation theory, the critical threshold scale of spatial resolution
necessary to representing farm infestation is estimated. The estimate is operated from the
temporal trends of the number of infested and isolated clusters of plants; derived from the
spatial and temporal infestation of collected data. A cluster is set of infested adjacent cells (or
one cell) that are (is) isolated from other infested cells by non-infested cells. To determine the
percolation threshold the following procedures were taken: (i) a scale to visualize the
infestation spread was selected, (ii) an isolated clusters formed by infested and isolated
patches of maize plants were counted using cluster labelling techniques [379,380] and (iii) the
number of clusters was plotted as a function of the number of sampling weeks. The three steps
above were repeated for different scales until the final scale of the percolation threshold was
obtained. This corresponds to the dimension that allows the observation of the number of
isolated cluster of infested plants at a certain time to start decreasing (see the Figure 7 for a

comprehensive diagram summarizing procedures for the percolation threshold estimate).

71



(a)

Enter the spatial
-/ and temporal data

A 4

Determine the
spatial scale

L
Y

The spatial scale
equal or grather
than the plot size

The system percolate

Increase the

spatia

| scale

1

N

at a certain time

78




{b) Scale 1 Scale 2 Scale 3
1111 1/2 1/3
1

1 1 I

>

Scales

cam
H

e
=

4 14 ]
5 3 g 00 5 Ot et
- - m 98 ®
7] (u] 0 ) 7] (8]
3 a 3 o 3 B o
° (w] o ] °
% o ® s o 5 a ® 0
5 Of 5 5
a 0 a o 2 (u]
E C [3 E a
S 0 S 0 E}
z z z

Weeks Weeks Weeks

(a) (b) ()

Figure 7: (a) Process for the spatial percolation threshold estimate before starting the CA
simulations. (b) Graphical illustration of the overall process for varying the scale and
detecting percolation threshold value. The lattice grid in sub-figures depicts a typical spatial
and temporal data at a fixed week. The red cells in (a) are the infested maize plants. In sub-
figures (b) and (c) the initial scale of observation for infestation dynamic (represented in sub-
ﬁghre (a)) is reduced to 1/2 (2 cells x 2 cells) and 1/3 (3 cells X 3 ce]]s) respectively. If at
least one cell of the spatial lattice in (a) are present in the unit cell of the re-scaled map in (b)
or (c), then that new unit cell is also assumed to be infested. The spatial resolution threshold is
obtained when the temporal pattern depicted bellow the lattice grid in (c) is obtained. The
temporal trend in (c) allows to distinguish two phases: in the left portion colored in gray (I) the
isolation phase which correspond to the increase of the total number of infested clusters and
in the right portion colored in pink (II) the connection phase which is the reduction of the total
number of infested clusters (subsequent connection of isolated and infested clusters) with
time. The maximum number of the curve represent the creation of the first connection among

isolated and infested clusters of the lattice.
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II-13-2  Cellular automata set up

The cell size selected for CA simulations was identical to the critical scale obtained for
the percolation threshold. The CA cell was assumed to have only two states: infested and non-
infested. Once a cell is infested, it never recovers. The temporal step of CA was fixed at 1
week; which corresponds to the time interval during data collection. The model assumed that
the central cell is contaminated by others cells in the neighbourhood following the rule of type
Moore (Figure 6). The edge effects were represented by fixed boundary conditions [381]. The
central cell was considered to be changing state if a certain number of cells were infested in

the neighbourhood.

I1-13-3  Fuzzy scattering

The fuzzy rules applied in this work consist of 1 input, 1 output and fuzzy rules of the form
"IF-THEN”. The statement: “number of flying adults is a decisive factor for the damage
dispersion” is imprecise. It was assumed that; if the infestation propagation is boosted by the
abundance of adults, then the neighbourhood of infestation spreading can be augmented based
on a propagation index (p), which is related to the number of adult (Na). So the
neighbourhood is extended/shrank at a rate p. We considered that p = p(Na). However, this
dependence is only partially known by means of rules of the type: higher the value of Na, the
higher p will be”. According to entomologists and crop protection experts, if the number of
adult catches by pheromone-baited trap is higher, the damage incidence is higher thus
infestation propagation could also be higher [382-390]. Expert knowledge about the link
between the adult abundance in insect trap and the damage spread is imprecise and not well
formulated mathematically. With this expertise on the dependence of p with respect to Na, we
formulated the following rules translated by fuzzy inference system:

Rule 1: if (MVa is very small) then (p is very weak)

Rule 2: if (NVa is small) then (p is weak)

Rule 3: if (Wa is medium) then (p is moderate)

Rule 4: if (Va is big) then (p is strong)

Rule 5: if (Na is very big) then (p is very strong)
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If one rule is applied, the others can still be applied, too. The implication rule developed by
[391] was further applied to link the input to the output. The real values of the fuzzy system

output were computed using central-gravity-defuzzification formulae proposed by [392]:

- Iz - p(z)dz 44)
j 1(2)dz

Where p(z) is the membership function, z the fuzzy variable and Z the real value associated to
fuzzy variable z. The triangular membership functions are represented in (Figure 8) (see
appendix for more details about the methodology). We assumed that if the real value of the
output pis in the interval [0 0.25] then the index is weak and the corresponding neighbourhood
is Moore-1. If p is in the interval ]0.25 0.75] then pis moderate and the neighborhood is
Moore-2. If p is in the interval ]0.75 1] then p is strong and the neighbourhood is Moore-3.

The index p taking effect on a precise week corresponds to the values computed in the

previous two weeks. This assumption is based on the fact that the leaf damage from B. fusca
larvae is only noticeable approximately two weeks after egg laying.
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Figure 8: Representation of the fuzzy processing of data. In the upper panels, membership

functions of the input variable number of adults (Na) and the output variable propagation
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index (p). In the lower left panel, the solution given by the fuzzy inference system. In the

lower right panel, the collected data from the field are represented.

I1-13-4  The complete model

The CA modelling was implemented as follow: (i) The minimal cell size for capturing
the percolation phenomena was estimated (ii) The minimal possible neighbourhood for spatial
and temporal contagion was assumed to be the Moore-1 (iii) Through fuzzy inference system
(FIS), the propagation index was selected and the neighbourhood was changed. Finally, after a
succession of trials and errors, the best number of infested cells in the neighbourhood of the
central cell was selected [393-397]. Let's take a symbol & as the threshold number of infested
cells in the neighbourhood provoking infestation of the inner safe cell at week n+].
Depending on the type of selected neighbourhood, there are three possible threshold numbers
of infested cells named &y, 6,, and 83 corresponding to Moore-1, Moore-2, and Moore-3
respectively. The operation ), State is the summation of all the cell states in the
neighborhood. The summation is for 9 cells (Moore-1), 24 cells (Moore-2) or 48 cells (Moore-
3). If this summation is strictly greater than &, then the inner cell becomes infested during the

following week. The model with each component is summarized in a flow chart (
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Figure 9).
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Figure 9: (a) Diagram summarizing the approach for modelling in field condition the leaf
damages spread caused by B. fusca larvae. The grid cells are abstractive representations of the
maize field quadrates. The approach is based on the combined application of cellular automata
(CA), fuzzy logic systems and percolation. The three type of Moore neighbourhood selected
after fuzzy calculus are represented: (a) Moore-1: the central cell surrounded by 8 cells, (b)
Moore-2: the central cell surrounded by 24 cells and (c) Moore-3: the central cell surrounded
by 48 cells. Where FIS = fuzzy inference system, S=state, (i,/) = coordinates, p = propagation
index and t=time. (b) Overview of the model and the sub-models. The model is made of three
sub-components: the part | estimating the cell size during all the simulations, the part I
inferring the adults B. fusca abundance via the fuzzy sets theory and the part 111 determining
the state of a cell at a week n+17 based on its current state and those of all its neighbours at
week n. Part I is not involved in the change of states and rules of the CA, reason why it is
drawn aside. In contrast, the fuzzy logic is applied during the whole simulation. We recall that

the cell has only two states: infested (1) or non-infested (0).
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II-13-5  Model validation, testing and uncertainty assessment

To measure the performance of the developed model using field data; cells infested at
the initial stage were assumed to remain the same as observed during the first week of
infestation [245], and subsequent state of other infested cells was predicted using CA
simulations. Correlation coefficient between observed and predicted binary pixel image

matrices was computed using two-dimensional correlation formulation [398]:

Z/'Zi(Aif — A)(B,-B)
p ) _ —
\/(ZJ'Z:‘(AI/ - A)z)(Z,Z,.(B,-, ~-B)%)

where Aij and Bij are the observed value during the data collection and the predicted value at

(45)

the cell (7, j) respectively, A and B are the average numbers of infested cells inside the plot.
When p is close to 1, the level of agreement between the model predictions and field data is
greater.

The cellular automata modelling framework also provides an additional feature; the
information fractal dimension (D;). Dj was evaluated using the methodology proposed by
[399]. If the value of Djis closer to 2, the highest is the probability of infested patches to
recover their initial surface [276]. In the contrary, if the value of Dj is very weak, the patches
are much clumped and the gaps between patchés are more important [276]. To assess the
level of agreement between the spatial distributions of infested cells obtained from model
prediction and the data, the multifractal dimension of the observed and the predicted maps
were compared. The error was evaluated by estimating the absolute value of the difference

between D; of the predicted map and observed map. In addition, the coefficient of

determination (r2 ) was evaluated to assess the goodness of fit of the multifractal dimension

estimate [400-403].

II-13-6  Sensitivity analysis

The aforementioned CA modelling approaches help us understand how specific rules

governing change lead to certain types of spatial patterns. Analysis of CA sensitivity consisted
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of; fixing the threshold number of infested cells in the neighborhood (&) to provoke infestation
at the following week and then compute the output taken here as the mean correlation
coefficient (p) estimated by averaging the different correlation coefficients obtained while
comparing all the model outputs and the observed data at each week. A multi-linear regression
liking the values of this mean correlation as response variable controlled by the threshold

number of cell for infestation was formulated as follow:
p=>0s +e, (46)

where §; threshold number of infested cells in the neighbourhood i, @; are the slope of the
regression quantifying the contribution of each neighborhood configurations and ¢ is the
intercept. Coefficients a; are considered significant for a P-value less than 0.05. Significance
implicates that changes in the slopes values are significantly associated to the change of p and
demonstrate potential impact of each neighborhood configurations on the accuracy level of the
CA. The ability of the linear model (3) to explain all the variability of p around its mean has
been done by calculating the r2. In order to assess the model performance, the combination of
threshold values for infestationd; providing the maximal j are selected. Furthermore, the
running time (in seconds) are recorded after simulations of damages spread with different
scales and previously estimated thresholds. Only the scales less or equal to the percolation

threshold values were considered.

II-14  Coupling the pest dynamic and the CSM

In order to explore the effect of the pest on the plant, the data collected during in an
experimental study conducted at Gainesville at the University of Florida in the USA have been
used [53]. The maize cultivar McCurdy 84aa was planted the 26th February 1982 in a row
spacing 61.0cm and 7.2 plant/m2. The application of the nitrogen fertilizer was very low and,
the field was rainfed. The soil was loamy and silicate. The daily solar radiation, minimum
temperature, maximum temperature, rainfall and wind speed were collected near to the field
by instruments located at latitude 29.630m, longitude -82.370m and 10 meters above the
ground [53]. This geographical location present a typical
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In general, insect develops slower or faster if the temperature is low or high; thus it is a
vital factor regulating the life history of insects [404]. In this study, the phenology restricted
to the temperature as the key driver have been used here to simulate the fecundity,
development, and mortality of B. fusca. The female oviposit about 90% of its eggs during the

first 3 nights [183]. In the model, it is assumed that the proportion of the laid eggs (@) eggs

depend on the age of the adult females ():

“ 47)
1+ b, exp(c,x)

#a) =

where a,, b and ¢ are equal to 0.6, 0.0031 and 0.5085 respectively. In a controlled

experiment, the total number of eggs laid increased between 15°C and 20°C then decreased

with the following function [320]:
w(T") =exp(=3.7017 +0.8449T —0.01 8877) (48)

where T'is the temperature. The mean sex ratio between males and females is 1:1.] [187,405];
then an average of 60% of the female is assumed to emerge from laid eggs; thus total number

of eggs laid per day by an adult was estimated as 7 — 0.64()y/(T). The temperature
dependent mortality rate at immature life stages are defined by the following functions [320]:
£4:(T) = exp(5.0138 = 0.48697 + 0.0] 007%),

#4,(T) = exp(3.8718 - 0.38727 +0.007872), (49)
Hp(T) = exp(7.6441-0.7716T +0.017572),

The functions (T, 1, (T, p,(T) represent the mortality rate for eggs, larvae and pupae

respectively. Following the method in reference [308], the mortality rates have been put in the
1 1 L
inverse power or the longest development period ((x, (T)", ue (1), pp(T)7), where 1, 1

and 7, are 20 days, 168 days and 37 days respectively [320]. The developmental rate and

ageing rate of the insect at each immature life stages and adult stage respectively are estimated

as follows:
day=n| 24h
D= [ | RX(T"”)'(h))th, X=E—>LL->PorP—4 (50)
day=1|_ op
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day=n| 24h
Sion= D [ | SR(T"’”'(h))th, 1)

I—n
day=1| op

where R, (in day-1) is the daily developmental rate with £, L. P and 4 representing eggs,
larvae, pupae, and adult respectively. The equation (8) has been used to estimate the ageing
rate where the symbol SR represent the senescence rate for the adult. The variable % is the

hourly temperature of the insect estimated via the sine-wave approach [406-408]:

7..—T. 2zh T +T
T / — _max min Sin —— 4 Zmax min X 52
b (7)== ( 24 ) 2 42)

The variables Tonin and T, are the daily maximum and minimum temperature respectively.
The functions R, and SR (see the Appendix 1) are estimated from data in the literature [320].
The eggs laid by females at each day constitute a new cohort which population dynamic is
simulated with the following set of coupled differential equations:

dE
o ~FE-(u;+0,)E,

dl
_d7 =0,.E—(u, + o,)L,

dP
7[ =o,L- (a4 + 0,)P, (53)

dA ’
o opP—p A

If D, is equal to 1, the development at the corresponding immature life stage is completed,

I>n
then o is equal to one, u, have been arbitral fixed a 10%. If S, is equal to 1 all the
survivor adults die due to ageing. The relative growth rate (RGR) according to the temperature
is given by [319,409]:

RGR(T)=-0.00117> +0.138272% _ 4.6218T +49.870 (54)

The qualitative change of food during the maturity of the plant can induce diapause in some
tropical insect and in B. Jusca in particular [318,410]. The B Jusca larvae are most likely to

start a diapause when the nutrient quality provided by maize plant becomes lower [318].

89



Moreover, the quality decreases with the age of the maize plant, which indirectly force the
larvae to stop feeding itself. The link between the plant maturity and the regulation of the mass
accumulation by the larvae (symbolized by k) has been formulated the following set fuzzy
rules:

Rule I: if (the plant is very young) then (% is low)

Rule 2: if (the plant is young) then (k is low)

Rule 3: if (the plant is old) then (k is moderate)

Rule 4: if (the plant is moderately old) then (% is high)

Rule 5 if (the plant is very old) then (k is high)

The process of fuzzification of the age of the maize plant in weeks given by: very young (6-9
weeks), young (8-11 weeks), old (10-13 weeks), very old (12-15 weeks) [318]. The details of
the methodology are provided in the appendix. The symbol k represents the feedback and,

(I1-k)RGR(T)is the mass assimilated/consumed by the B. fusca larvae. It is assumed that the

consumption is done in 99% stem boring and 1% in leaf feeding. This has been done in the
program by subtracting these percentages in the equation (1). The RGR estimated from the

data of Ntri et al. [319,409] allow us to estimate the dynamic of the larvae mass (M,) by the

differential equation:

am,

1
—X

— = (1—k)RGR(T), M, (1 = 0) = 0.0 (55)

In order to assess the effect of the insect on the plant, we will only focus on the accumulated
biomass above the ground and the leaf area index. The leaf area index is a ratio between the
surface covered by the plant canopy and the ground surface [411]. It is a very important

variable that characterizes the ability of the plant to intercept light for photosynthesis [411].

II-15 Conclusion

In conclusion, different techniques to generate discrete breather, to investigate the
linear stability and the noise effect in a modified Davydov's model were presented. The
estimate of the supratransmission and infratransmission threshold foe electrical wave in

microtubules were estimated. Furthermore, the techniques used to analyse data, and to
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subsequently design a model based on these data were presented. In what follows we will

present the obtained results and discuss them subsequently.

Chapter III: Results and discussions
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I11-1 Introduction

This chapter present the main results obtained in this thesis. It is subdivided in five
parts dealing with the anharmonic and noise effects on Davydovs solitons, the electrical waves
transmissions in microtubules, the analysis of B. Jusca damages, the spatial and temporal
modelling of B. fusca damages and finally the coupling between pest population dynamic and

maize crop growth dynamics.

III-2  Discrete Davyvov's soliton in alpha-helical proteins with

anharmonic bond and thermal noise

I11-2-1 Results

The representation of the eigenvalue (15) as a function of the frequency is depicted in

Figure 10(a). For a positive value of @ we have both 1D unstable and stable manifolds
WHW?) given by =10 (7=21.60) around the saddle point Py. In Figure 10(b), the
homoclinic crossing of stable (gray) and unstable (black) are calculated. The localized mode

emerging from tangles are plotted in Figure 10(c) and Figure 10(d). exciton has the pulse
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mobile to carry information through the protein.

pulse solution as initial condition is depicted in Figure 11(b). The solitary wave has an
amplitude that increases during the collisjon at 7 =100 with radiations losses. [ can be noticed
that moving breather s Created after the collision and the mobile portion moves in the same
direction of ABE propagation. Referring to F igure 11(c), breather oscillates spatially with a

low amplitude in order of 10°'¢ around the position initial solution, This is an effect of the

However, in our model, the breather of 2D map js strongly localized and damped (Figure

12(c) and Figure 12(d)), with the presence of little radiatjons
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unstable and stable manifold around the origin. (b) Homoclinic tangles formed by stable and

unstable manifolds (W*® and W"). Unstable manifold in black, and stabje manifold in gray. The

94



110 120 130 140 150(C) 20 300 490 500  gog 700

v

Figure 11: (¢) Spatial and temporal Propagation of the ABE vibratory energy. ABE collides
Amide-] excitation at n=( 5t 7=100. (b) Numerica] simulation of the DNLSE with the cubjc

nonlinearity with the normalized pulse initia] condition +/] /8sech(n/4) [11] with nuli fixed
boundary conditions. The black arrow indicates the portion of the waye moving toward the

Same direction thap the impurity. (c) Plotting of the evolution of the soliton center in figure
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['1(b). (d) Numerical simulation of the DNLSE with the inverse hyperbolic nonlinearity. The
initial condition is provided by the 2D map. Null fixed boundary conditions are used. The
black arrow indicates the portion of the -wave moving toward the same direction than-the
impurity. The lattice length has been taken larger than the case in (b) with the aim to assess

possible collision between the middle hump and the upper one during a longer time period.
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Figure 12: On the left side, the temporal snapshots of the exciton amplitude are represented

(¢,(z=0)| (bottom) to |@,(r=>50)| (fop)), on the right side, the density plot are
depicted. In (a) and (b), simulation of the coupled Davydov's equations with the initial
conditions ¢,(z=0)=+/1/8sech(n/4), B,(r=0), T=310K and I'=2.406 10'’s" [342]. In

graphs (c) and (d), the same conditions are used with the exception of the pulse which is

estimated from the 2D map.
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III-2-2  Discussions

Some nonlinear potentials such as cubic [66—68] or Lennard-Jones [69] has been used
to correct anharmonicaly the original Davydov’s model. With the cubic potential [66—68], the
initial conditions of the fully discrete model were derived from continuous approximation.
This method assumes that the values of the physical quantity vary slightly from one lattice
point to another. Thus making the equation to lose its discrete form and becomes continuous
with partial differential terms. Such method can lead to neglecting higher other terms during
Taylor’s development, yielding a loss of accuracy in the final results. In Jones [69], the
authors simulated numerically the fully discrete model with arbitrary localized initial values
and the exciton-phonon collision was slightly stable. With the intention of getting more closer
to the reality, we have chosen to use two-dimensional map approaches for finding intrinsic
localized mode. The advantage of this method is the possibility of finding a solution by

keeping the system discrete as much as possible.

The discrete nonlinear Schrédinger equation with inverse sine hyperbolic nonlinearity
is very difficult to solve. According to our knowledge, it does not have an analytical solution.
In this study, it was p0551ble to find discrete mtr1n51c localized modes using 2D map appr oach
as in DNLSE with various type of nonlineari ltles [329-335]. The original DNLSE of harmonic
Davydov’s equation has a cubic nonlinearity and it can be obtained from the DNLSE with
inverse hyperbolic sine nonlinearity at very low amplitude by Taylor development around zero
of the nonlinear term. Thus, biologically this equation could model production of high

vibratory energy of amino acid during ATP hydrolysis.

The amide-I vibratory mode is most often the only excitation considered in Davydov’s
model for energy transport in alpha helix protein [11]. It is well known that many other
excitations including the ABE were detected [63,72,73]. Moreover, the ABE was reported as
not affected by the coupling with phonon and recognized as free exciton [63]. This was
assumed to be an impurity and has been introduced in the DNLSE by a gauge transform
[74,75,339]. In order to take into consideration, the effect of moving ABE along the protein, a

version of an impurity with spatial and temporal impact was proposed. Although the effect of
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the impurity was studied in molecular excitons, these type homogeneities did not trigger the
mobility of the localized exciton [74-76]. In this work, a different version of spatiotemporal

impurity-was proposed and it achieved the mobility of localized mode.

Discrete breathers have a propensity to be strongly localized [412]. Many techniques
can be used to move breathers. Some of the classical techniques are discrete Fourier transform
[413] and energy kick [414]. For the Davydov’s model particularly, mobility of the static
soliton was achieved by kicking the initial stationary condition in the form of the analytical
solution in the continuum limit [84], kicking the arbitrary discrete chosen initial condition for
the exciton [343] , kicking the discrete initial condition [329] derived from numerical map
method [415,416] or kicking the initial multi-peaked discrete breather [70]. We were able to
realize the mobility of the discrete breather by using a hypothesized mobile ABE impurity as
mediator. Such approach is different to previous works which consist to multiply (kick or
apply a phase gradient perturbation) the stationary initial condition with an exponential

function [65,70,84,329].

In the Davydov’s model, the soliton is generated via ATP hydrolysis, which energy is
transduced into the amide-1 vibration that propagates along the protein chain, coupled with
lattice distortion. The transport of the energy can be under the form of a single hump [84,343]
or multihump solitons as described by analytical and numerical approximations [70,417-419].
Considering ABE vibration as an impurity which propagates along the lattice provided the
mobility of static breather to the harmonic Davydov’s model. In the anharmonic case, we
observed a splitting of the stationary wave into multi-hump excitation which parts are moving
in different directions. According to our knowledge this dynamical impact of the impurity is
quite different from others inhomogeneity influences that were observed in DNLSE
[335,339,420,421] and the multi-hump formation mechanism in Davydov’s model [70,417-
419]. Such mechanism in addition to the hyperbolic cosine potential for hydrogen bond might
induce energy transport in more than one direction. It may be interesting in biological
explications of transporting energy in multi-direction instead of a uni-directional case. Another
biophysical significance could be the control of the movement of localized excitations on the

polypeptide chains.
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The problem of thermal instability of Davydov’s soliton in a harmonic hydrogen bond
potential has been investigated numerically [77-79]. Later, this instability was found due to:
critical velocity of the soliton [80], the value of the nonlinear coupling between phonon and
exciton [81,82], the disorder in the sequences of masses of amino acid [83] and multi-quanta
state of the amide-1 vibration [84]. Furthermore, most of the anharmonic Davydov’s models
did not include the noise impact [64,67,68,342]. Hamiltonian lattice with hard hyperbolic
cosine type on-site potential was modeled [87]. Such potential shown the ability to regulate
energy flow through the chain by accumulating energy of nonlinear localized mode in the
presence of thermal noise [87]. Using the same type of potential for coupled Davydov’s
equations whereby the lattice equation is coupled with a Schrodinger equation has revealed
that exciton keeps its shape longer in our proposed model than in the classical Davydov’s
equations. The present result is corroborated by the work on the anharmonic oscillation effect
on the Davydov-Scott monomer in the thermal bath [86]. This work emphasized the

importance of the nonlinear potential for controlling thermal noise which was not mentioned

in studies [64,67,68,342].

III-3  Waves transmission and amplification in an electrical

model of microtubules

I11-3-1 Results

The numerical and analytical values are compared in Figure 13. for different values of the

nonlinear coefficient B} and the forbidden band gap frequency w. There is a good agreement

between the analytical and numerical values of the thresholds. Using several numerical
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simulations (

60 80 10()0 20 40 60 80 100

n n

20 40

Figure 14), we assessed the validity of the value of the supratransmission threshold. If
the value of the amplitude of the periodic driving is below the threshold, the wave does not
reach remote sites whereas the solitons are generated .if the value of the amplitude is slightly
above the threshold. We further noticed that for very high values of amplitudes the wave is
still transmitted but the soliton loses its coherence quickly. In Figure 15, two types of trends
are depicted: when the value of B,is very low, the threshold amplitude decreases with 7
(Figure 15 (a)), while in contrast, the threshold amplitude increases with the augmentation of
r when B, in high (Figure 15 (b)). In Figure 16, we made several numerical simulations for
different values of the driving amplitude with a frequency inside the forbidden band gap. We
noticed also that if the value of the amplitude is around or above the value of the analytical
threshold, the wave is attenuated quicker than waves with amplitude very low compared to the
value of the threshold amplitude. In Figure 17 we attempted to estimate the infratransmission

threshold and obtained a value near 0.022.
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Figure 18 (a) displays the results of the numerical simulations in the absence of the
nonlinear resistance. Observed diminution on the amplitude of the stimulus due to the absence
of negative nonlinear resistance is a phenomenon that has been reported in the literature
[105]. By taking into consideration the effect of the negative nonlinear resistance, a
significant amplification of the amplitude of the pulse voltage is observed (Figure 18 (b)). This
result was also found in an experimental study using calcium ion [23] and it is of particular
relevance in the potential use of MTs as nano-technological device, in which negative
nonlinear resistance can be introduced into the system to capture the amplification of the

signal. In order to identify the regions in the parameter space (B,,B,) where the amplification

take place, we plotted in Figure 18 (c) the ability of the negative nonlinear resistance to
amplify the input signal. The system (with the nonlinear resistance and the nonlinear

capacitance) was simulated with the boundary condition V', for a given value the parameters
By and B,. If max]SnSN( 48 o)1) g then the signal increases for the couple (By.B5). The

point in the space parameter is plotted with a black dot. Otherwise, The blank area represents

the value of the coupling parameter that decreases input signal amplitude.
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Figure 13: (a) Representation of the supratransmission threshold. The gray line is obtained

using the analytical expression of the nonlinear supratransmission. The black cross is the

numerical values of the threshold obtained by the NLRM projection. The values of the

parameters are =0.01, B,=0.01, w=0,(1+0.1/100). (b) Display of the NLRM projection for

the same set of the parameter used in (a) and B=100, 6=0,(1+0.1/100). The small gray

arrow is pointing the turning point (T.P.) of the curve which represents the numerical value of
the threshold driving amplitude (U). (c) Different values for the threshold according to

different driving frequencies.
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Figure 14: : Spatio-temporal evolution of the voltage through the lattice with the boundary

condition VO('c)=Uexp(1—'r/'cl)cos(m'r) with  7=0.01, B,=0.01, B=100, T1=10
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Figure 15: Variation of the estimated supratransmission threshold with the master equation
containing the first order derivative of the voltage in respect to several values of rand B,.
The values assigned to B,and v are 100 and 0.1 respectively. When the values of B, and B,

are changed, only the threshold amplitude varies, and the obtained patterns remain unchanged.
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Figure 16: Spatio-temporal evolution of the lattice with the boundary condition

VO(T)=Uexp(1—T/rl)cos(Qr) with =0.01, B2=0.005, B]=10, v=0.1, 1,=10 , 0 =2, Q=2.1 and
U,;,=0.0210. The color bar at the right represents[Vn(T)l/ U. (a)U=0.001, (b)U=0.02, (c)U=0.03,

(d)U=0.04.
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Figure 17: Total energy of the lattice without nonlinear dissipation. The lattice has 100
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energy is extracted at t=1000.
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Figure 18: Results of numerical simulations of the developed model (with the nonlinear

resistance and the nonlinear capacitance) with 900 units cells. The pulse was applied on the
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first lattice cell. Firstly the absence of calcium ions was considered which is mathematically

translated by B=B,=0 (a). Secondly, in (b) the presence of calcium ion was considered with

B =1 0_3, B2¥0. I, 1/4=0.1, r=0.01. The temporal snapshot of pulse propagation is depicted at
=100 (black), =200 (Gray). The boundary driving amplitude is V;,=0.50, this value

decreases progressively from 0.3167 at t=100 to 0.2288 at t=200 (a). In the graph (b) it
increases from 1.084 at =100 to 2.157 at t=200. t is the dimensionless time obtained by the
relation =wr. In figure (c) we displayed the ability of the nonlinear resistance to amplify the

input signal. The black doted region represents a couple of parameters (By,B,) which allow

voltage amplification.

III-3-2  Discussions

In the models to mimic the electrical transmission in MTs [17-22], the reason raised to
explain the decrease of the amplitude of the input signal is the contribution of the resistance
that dissipates the energy. However, the observation of such phenomenon could also be linked

to the frequency of the stimulus outside the allowed band.

For the numerical confirmation of the value of the analytical threshold, the monitoring
of the average flux of energy as a function of the driving amplitude have been employed
[115]. Another rough estimation can be done by monitoring the value of the energy for
several amplitudes of the driving [107]. However, these methods are computationally
intensive because the system evolution has to be numerically simulated for each value of the
driving amplitude. Moreover, another method like the NLRM can be used to detect critical
amplitude(s) in a nonlinear system driven by a periodic excitation [121-123]. The obtained
critical amplitude(s) from the NLRM is related to a transmission threshold in driven and
disordered systems [123]; it seems that this quantity has not been explicitly compared with
the analytical value of the nonlinear supratrasmission threshold. However, in the present
study, it was noticed that the critical value of the amplitude obtained numerically by the
NLRM is equal to the analytical value of the supratransmission threshold. It is important to
note that such comparison is operated when the assigned value to the gap frequencies is

slightly above the critical frequency [115].
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In cases without dissipation with Klein-Gordon type of nonlinearity [422,423]; the
system is a frequency filter of band pass type and the supratransmission is only possible below
the lower cut-off frequency. Above the upper cut-off, the derivation of the analytical threshold
is not possible because the expression for the solution is a kink. Thus the supratransmission
threshold cannot be derived because the maximal amplitude is an infinite number. In our
context, the model is a low band pass type and the nonlinear supratransmission occurred above

the upper cut-off frequency.

Several studies have shown that nonlinear system with a linear dissipation could
exhibit infratransmission phenomenon [108-110,349]; in addition, the obtained threshold is
usually lower than the supratransmission threshold. Herein is was found that the
supratransmission threshold can be lower than the infratransmission threshold in nonlinear
dissipative system. However, both values of the threshold amplitudes are very close in the
dissipative case. This could be the reason why we observed very weak wave propagation

above the estimated supratransmission threshold.

High frequency and repetitive transcranial magnetic stimulation have an attenuating
effect on motor signs in Parkinson’s disease [15,102]. However, the exact mechanisms of this
effect are not clearly understood [15]. The theoretical results obtained in the present study
suggest that the infratransmission phenomenon could contribute to that observed effect. The
primary motor signs of the Parkinson’s disease are originated form electrical signal generated
by excessively firing nerve cells. If the axonal MTs are stimulated with the high frequency
they could undergo infratransmission phenomenon. Thus, the intensity of message flows could
be attenuated. In addition to documented electrical behavior of MTs [15,16], Cytoskeletal
elements of the axon of neuronal system, which contain excited MTs, could possibly influence

ionic conduction within neurons by infratransmission.

Standards models for representing the ionic waves propagation in MT are often studied
using the method of approximation with continuous limits [17-22]. This method assumes
that the values of the physical quantities vary slightly from one lattice point to another. Such
approach is well known to be appropriate only when looking for analytical solutions.
However, these methods can lead to disregard of higher order terms during Taylor’s

development, yielding a loss of accuracy in the final results. Furthermore, it was reported that
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first cel| of the discrete electrical line,
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II1-4  Investigation of damages spread and yield losses due to

lepidopteran stem borer in a maize farm

111-4-1 Results
First data collection

Due to climatic conditions in Naivasha, B. fusca was the exclusive lepidopteran maize
stem borer found during the survey periods. Subsequently the results presented here only focus

on this specie.

Variation of the number of damaged plants and damage types per week for each plot
are shown in Figure 19. It is observed that the phenomenon is not linear. A detailed
observation of LD in plots 3, 5 and 6, displayed two notable phases of the occurrence of
damages, especially around weeks 4-5 and weeks 7-8. During weeks 4 to 5 a sudden increase
of damaged plants in plots 3, 5 and 6 is detected although no damage was previously noticed.
At weeks 7 and 8, another sudden peak of damage is noted before starting to gradually
decrease, as the maturity of the plants approached. In Figure 20, we showed the variation of
the average number of insects caught and the number of LD in the six plots. Two peaks of
male flying activities can be clearly seen during weeks 2 and 6. Subsequent appearances of LD
peaks during weeks 4 and 8 can also be noticed. Linking Figure 19 and Figure 20, we
estimated that the time lag between the peak of B. fusca male captured and the observed peak

of LD is approximately 2 weeks.
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Figure 19: Differences in infested plants densities between two consecutive weeks. The
computation has been done for the four infestation types, leaf damages (LD), death hearth

(DH), exit hole (EH) and death (D).
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Figure 20: (a) Mean values of number of adult B. fusca caught weekly with pheromone traps ‘
at. (b) Mean values of plants with the leaf damage (LD) infestation recorded weekly. (1a) and
(2a) represent the peaks observed before the apparition of the infestation peaks (1b) and (2b)

respectively. The bars represent the standard deviation error of the mean

The conditional probability for a randomly selected plant to die following different
situations is given in Table 5. In plots 1 and 2, the probability for a plant to die given that it
has LD is the highest. For plots 3, 4, 5 and 6 those probabilities are null. Table 6 shows the
mean transition time between different types of damage. The time spans are similar for plots 1
and 2 and, longer for plot 5. In plot 4, the transitions are faster compared to the other plots.
Plots 3, 4 and 6 have a shorter transition time between damages. The transition LD—DH

seems to be the fastest. Overall, if all the plots are considered as a unique field, the results
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would demonstrate that the transition time between different types of damage is not uniform,

which means the phenomenon is stochastic.

Probabilities

Events Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6
P(D|LD) 0.0116 0.0337 0 0 0 0
P(D|EHU DH) 0.0082 0.0303 0 0 0 0
P(D|EHU DHU LD) 0.0102 0.0330 O 0 0 0

Table 5: Conditional probability for a plant to die following different cases. P(D|i) is a

probability that a plant died, given that it has an infestation i. LD =leaf damage, EH= exit hole,

DH=dead heart and D =dead. The symbol (-) means null probability and the symbol (U)

stands of “or”.

Mean time + SEM

Transition Plot 1

LD — DH 6.3440.12
DH —D 714 +£0.30
LD—D 7.17 +£0.28
LD—-EH 7.23+0.08

Plot 2

6.42+0.17
7.45 +0.31
7.07 +£0.31
8.28 +£0.16

Plot 3

6.75 4+ 1.60
703 4053
7.03 +£0.53

Plot 6
6.49 +0.11

7.77+0.20

Table 6: Mean time in weeks for transition between infestation types. It is given in the format:

mean time tstandard error of the mean (SEM). The symbol (-) means that such transition was

not observed. For the plot 4 and 5 see the appendix.

The weekly evolution of spatial and temporal autocorrelation (Moran’s 1) for the LD is

depicted in Figure 21. For plots 2, 3, 5, and 6 the infestation is strongly spatially correlated for

a very low radius of proximity between infested plants, but over time, the spatial link between

damaged plants became more and more considerable. The spatial correlation distance for

damaged plants inside these four plots did not exceed 10 meters. A considerable spatial

autocorrelation was observed between damaged plants within a radius of proximity exceeding

10 meters in plot 1 and 4. These results help us to understand the level of similarity and
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dependence between the point locations of damaged plants. Figure 22 shows the weekly
tracking of spatial iso-barycentre (IB) for LD plants. The initial 1B position is random; the
others are located around the former 1B. After the first cycle of infestation, we observed a
general trend towards an 1B further from the previous recorded during the first cycle. Indeed, a
spatio-temporal pattern of infestation is clearly visible: a spiral-like pattern of LD at the

beginning, which goes farther from the origin point with time.

Spatial clustering analysis was carried only on plots 3, 5 and 6 where the damage was at the

initial stage of plants growth. Figure 23,

Figure 24 and Figure 25 displays the initial spatial classification of LD plants in plots
3, 5 and 6 respectively. The spatial clusters generated by patches of infested plants are
dissimilar in terms of the number of damaged plants at the start of observation; however the
gap reduced as it approaches the last weeks. In plot 3, we initially observed a small number of
damaged and scattered plants; whereas plot 5 and 6 engorged big number of damaged plants.
The cluster shape made by damaged plants is typically ellipsoidal. With time, two phases were
observed; during the first phase, the number of clusters remained almost the same but the
shape of the initial clusters and their respective size (number of plants) changed gradually.
During the second phase, new clusters arose possibly from the fragmentation of the initial

clusters rather than the creation of isolated new entities.
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Figure 23: Spatial clustering of plants with LD infestation for plot 3 at week 4 (a), week 5 (b),
week 8 (c) and week 12 (d). Each colour represents a cluster. The ellipsoids/circles represent
the bottom of two dimensional probability density functions (PDF). The shapes are chosen
accordingly to the Bayesian information criteria. The centers represent the centroid of the
cluster distributions. The dot outside the circular represents plants positions with weak

probabilities compared to the center of the PDF.
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Figure 24: Spatial clustering of plants with LD infestation for plot 5 at week 5 (a), week 7 (b),
week 9 (c) and week 12 (d). Each colour represents a cluster. The ellipsoids/circles represent
the bottom of two dimensional probability density functions (PDF). The shapes are chosen
accordingly to the Bayesian information criteria. The centers represent the centroid of the
cluster distributions. The dot outside the circular represents plants positions with weak

probabilities compared to the center of the PDF.
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Figure 25: Spatial clustering of plants with LD infestation for plot 6 at week 4 (a), 9 (b), 11 (c)
and 13 (d). Each color represents a spatial cluster. The ellipsoids/circles represent the bottom
of two-dimensional probability density functions (PDF). The shapes are chosen according to
the Bayesian information criteria. The centers represent the centroid of the cluster
distributions. The dot outside the circular represents plants positions with weak probabilities

compared to the center of the PDF.
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According to Table 7, the LD dynamics in plot 1, 2 and 4 followed a cellular automata
law. It is demonstrated that, if four plants are infested following the Moore neighbourhood of
contagion pattern, the plant at the central position is most likely to be infested during the
subsequent week. However, in plot 3, 5 and 6 the algorithm reduced the initial neighbourhood
to the central cell, indicating the failure to estimate the neighbourhood in these cases. Such
results are justified by the non-linear and perhaps chaotic behaviour of the spread of the
infestations of pests within plants at field level. A summary of all the spatial results are

provided in Table 8.

Plots Initial number of Number after reduction made during ~ Number after reduction made during Maximal Bayesian information criteria after step
neighbors step (ii) step (iii) (iv)
Plot1 25 25 4 4
Plot2 25 25 4 4
Plot3 25 25 1 1
Plot4 25 25 4 4
Plot5 25 25 1 1
Plot6 25 25 1 1

Table 7:Results obtained after estimations of the neighbourhood configuration of the cellular
automata (CA). Step (ii), (iii) and (iv) are briefly describe in the text, in the methodology 3.7.

The number represents the number of plants in the neighbourhood (including the central cell).
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Purpose of the method
Evaluates with time | Tracks the Follows the Estimates the
the spatia4l link positions of the | evolution of the rules by
between infested center of initial shape, the which plants
Method plants located at patches formed | density and the get infected Main result
different positions by infested number of through
plants with time | clusters of neighbors
infested plants
formed with time
The spatial correlation
between infested
Morans' | v * * * plants is considerable
at aradius of 10 m
The spatial shift of the
patterns created by an
Center * v s * infested plant moves
tracking with time in a form of
a spiral from an origin
point to other parts of
the plot
The initial shape and
number of spatial
Model based clusters remain stable
cluster * x v * during a certain
analysis period of time and,
later disaggregate to
create new clusters
A safe plants
surrounded by four
Cellular infected plants is most
automata * * x v likely to become
damaged in the next
subsequent week

Table 8: A summary of the purpose of applying each spatial analysis symbols x

and v stand for no and yes respectively
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Second data collection

Data collected at harvest show that plants infested by B. fusca outnumbered the
proportion containing the crambid Chilo partellus (Swinhoe) and the noctuid
Sesamiacalamistis Hampson. The relative percentages of the tunnelled maize plants were
92.57%, 0.57% and 6.87% for B. fusca,C. partellus and S. calamistis respectively (Table
9).The majority of larvae were found in stem tunnels and less in cob tunnels (Table 9); the
ratio (%) of the total number of larvae inside stem tunnels-cob tunnel is 90.63-9.37 for B.
Sfusca, 52.94-47.06 for S. calamistis. The unique C. partellus larvae have been found in stem

tunnel. The average number of larvae per plant and per cob did not exceed 2 (Table 9).

Busseola fusca inside Chilo partellus inside Sesamia calamistis inside
tunnels tunnels tunnels
BfilS| Bf | Bf/C | Bf | Cp/S| CP | Cp/C| Cp Sc/S Sc Sc/C Sc
Total Total Total Total Total Total
n in n in in in
Stem Cob Stem Cob Stem Cob
Plot1 | 1.25 | 45 l 7 1 1 0 0 1 5 1.66 5
Plot2 | 1.15| 37 | 1 0 0 0 0 1.5 3 | 3
Plot3 | 1.38 | 63 1.33 8 0 0 0 0 | l 0 0
Plot4 | 1.07 | 29 | 2 0 0 0 0 0 0 0 0
Total of | Total of cob Total of Total of cob Total of Total of cob
plants tunneled plants tunneled plants tunneled
tunneled tunneled tunneled
Plot 1 40 7 1 0 5 3
Plot 2 32 | 0 0 2 3
Plot 3 47 6 0 0 1 0
Plot 4 27 2 0 0 0 0

Table 9: Number of larvae found in the plants during sampling on the field. Bf/S, Cp/S, and
Sc/C are the average number of B. fusca (Bf), C. partellus (Cp) and S. calamistis (Sc) per
maize stem (S). Bf/C, Cp/C, and Sc/C are the average number of B. fusca, C. partellus and

S.calamistis per maize cob (C).
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The comparison between average physical traits of infested and un-infested maize
plant is depicted in Figure 26. Only the cob masses between non-infested and infested plant
were significantly different across all plots. The variance homogeneity among infested plants

cob masses across all plots was less significant (p-val<0.05) compared to all other factors.
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Figure 26: The black and white bar represent infested and non-infested sets of plants. The star
is the significance level between means. The symbols N.S. (Not Significant) for P-value>0.05,
*for P-value <0.05, **for P-value <0.01, ***for P-value<0.001, ****for P-value<0.0001. Bars

with the same colored letter are not significantly different (P-value> 0.05).

The relative yield losses in term of average cob masses reductions are estimated for
each plot as 40.79%, 43.14%, 48.19% and 35.96% for plot 1, 2, 3 and 4 respectively. Given
the plant density across plots ranging from 5811 1plants/ha to 58940plants/ha with an average

of one cob per plant, infestations from B. fusca inflicted losses ranging from 56.85kg/ha to
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133.48 kg/ha. Total yield losses due to stem tunnelling and cob tunnelling were 42.86% and
62.52% respectively.

Busseola fusca was able to bore 60.23% and 15.18% in average in term of length of
maize cob and plant stem respectively. An investigation of damages severity in cobs according
to the type of infestation such as leaf damages (D), dead heart (DH), exit hole (EH) has been
conducted. It is observed that all infested plants have on average a lower cob mass compared
to the non-infested (Figure 27(a)). The cob tunnelling induced lowest cob masses directly
followed in term of incidence by LD+DH (Figure 27(b)). It can be noticed that a high
proportion (greater than 70%) of infested plants has the stem tunnelled. A lower number of
infected plants has cob tunnelling; it was also noticed that a reduced proportion (less than
20%) of plants were damaged with stem tunnelling and cob tunnelling simultaneously.
Additionally, 100%, 24.67%, 19.48% and 6.49% of infested plants with LD, LD+EH,
LD+EH+DH, and LD+DH respectively had a cob at the time of harvest.
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Figure 27: (a) Effect of the first infestation on the mean cob biomass reduction. The letter A
stands for LD+DH+EH. (b) The proportion of plants infested (P.1.), plant with stem tunnelling
(ST) and cob tunnelling (CT) according to the type of infestation such as leaf damage (LD),
dead heart (DH), exit hole (EH).

Yield losses patterns due to different damages with time are depicted in Figure 28.
When the damages are taken separately, a particular trend of variation of yield according to
the week of the first infestation is not observed. No yield losses for plants with LD at week 11
was noticed; for weeks 4, 7 and 10no new damages were recorded (Figure 28(a)). The time of
infestation does not matter for leaf damage incidence. The EH graph (Figure 28(b)) does not

show any particular trend. For the DH (Figure 28(c)), the time factor seems important; when
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this damage occurred at the initial stages of maize development, the incidence on yield loss is
high. However when DH occurred later in the plant life cycle (after the 7th week of planting),
yield losses are lower. In general, the maize variety selected showed that after 5 weeks almost
half of the plants in each plot have managed to generate cobs. When the analysis is conducted
by pooling data without distinguishing the type of infestations, the losses tend to decrease with
the time period of infestation (Figure 28(d)). The linear regression between the yield losses (y)
and the time (t) of infestation in week (y=at+b) has the slope a=-4.2840.02 and the intercept
b=60.48+0.17 (P-val>0.05, R?=0.31); the Pearson correlation coefficient is -0.56. This
suggests that the linear function is not a good function for that data set. However, the linear
regression between the average cob tunnel (y)and the time of infestation (t) in week (y=at+b)
has the slope a=0.5010.13 and the intercept b=3.14+0.11 (P-val<0.05, R?=0.78); the Pearson
correlation coefficient is 0.88; then the mean cob tunneling increases with time in a linear

tendency.
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Figure 28: In subfigures (a), (b), (c) the temporal patterns of yield losses for plant with leaf
damage, exit hole and dead heart respectively are depicted. The abbreviations N.L and N.C
stands for no losses and no cob respectively. (d) linear regression between the week of

infestation and the yield losses
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Analysis of the link between the cob masses and severity of damages on the stem and
cob is presented in Figure 29. After several trials to select a bell-shaped nonlinear function
using the AIC, it was observed that the link between cob mass (y) and the cob tunnel length-(x)
follows a trend represented by a cubic function (Figure 29(a)). The analytical expression is:
y=a+bx+cx3 and the coefficients are: a=-54.46+19.70, (P-val>0.05), b=26.13+£4.99 (P-
val<0.05) and ¢=-0.16+0.03 (P-val<0.05); R? = 0.92. We were not able to find any function
linking the cob mass and tunnel length (Figure 29(b)). This result implies that while the
average value of cob tunnel length increases linearly with time of infestation, the cob masses

of infested plants follow a pattern depicted by a cubic functional curve.
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Figure 29: (a) Relationship between length of cob tunnel and cob mass. The blue dots are the

data and the red curve is the estimated function. (b) cob mass as a function of cob tunnel.

111-4-2  Discussions

Developed sampling schemes for assessing lepidopteran stem borer pest infestations in
maize farms are often focusing on checking/collecting at random a few plants
infested/uninfested by the larvae without taking into consideration the precise point location of
the plants within the field [208-211]. In our study, all the plants had a precise geo-referenced
position in each field. We did not used destructive sampling, as the dissection of plants can
interfere with the spread of the larvae and the oviposition distribution of the females in the
plots. In addition, farmers perceive destructive sampling as unacceptable, and it is time
consuming and expensive [425]. The presence/absence infestation data collected from visual
inspection of external and comprehensive signs of insect pest damages in the plants may be

more appropriate. Particular attention was given to leaf damage because young larvae are
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often responsible for this type of damage and it occurs mainly on young maize plants;
therefore making it easy to be used as a proxy for relating the spread of the infestation. In
addition, leaf damage has also been reported as an important factor in contributing to yield

losses in maize farms [155,231].

Considering that B. fusca egg development is completed during 8-10 days at 25-20°C
[320], the first flight period started at least 10 days before the first set of leaf damage, and
ended in all plots at least 10 days before the end of the 5™ week. This suggests an absence of
B. fusca female oviposition during days 10-15 days around week 5-6 as no damage was
recorded in week 7 in all plots. The second peak of damages is observed on all plots between
weeks 7 and 8. No exit holes were noticed in all plots during the second peak; which suggest
that majority of eggs laid within this period of time was caused by females from other
localities. The observation of a fixed time lag between the occurrence of peaks of LD and
adult male abundance in pheromone traps is in accordance with previous studies [382-390].
The abundance of males in pheromone-baited traps is significantly correlated to observed
damages in studies [382-390]. Additionally, the spacing of two weeks is the B. fusca egg
development time, after which it emerges to larva stage and starts damage. It has been
reported that B. fusca prefer to lay eggs in young maize plants [155,184,187]; however, the
continuous infestation pattern observed in this study suggest that oviposition on older plants is

possible.

Although the main goal of this study was to examine the spatial and temporal spread of
maize stem borer B. fusca under field conditions, we though necessary to comprehend the
sequence of plants infestations by estimating the conditional probabilities of each damage type
causing death of the plant. A higher mortality of maize plants with LD was observed.
However, the stem tunnelling which is logically expected to occur after LD and before DH, D,
EH was not considered here. Moreover, the data collection protocol of the present study was
unsuitable for assessing stem tunnelling, which effect is a major cause of grain yield reduction
in maize [178]. It might be convenient to sample and dissect a few plants to assess and account

for the incidence of tunnelling.

The mean transition time from a type of damage to another damage type was different

from one plot to another. This suggests either a variability of the phenological stage of the
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plants due to the difference in sowing time in each plot and/or the heterogeneous
characteristics of the soil and nutrients managements, which were different from one plot to
another. Variability might be also due to the phenological stage of the stem borer larvae and
the difference in nutritional quality of the plants. Temperatures difference may as well play a

part in the discrepancy.

The mean transition time from one damage type to another was different from one plot
to another. This suggests either variability of the phenological stage of the plants due to
difference in sowing time at each plot and/or the heterogeneous characteristics of the soil and
nutrients managements, which was different from one plot to another. Variability might be
also due to the phenological stage of the stem borer larvae due to the difference in nutritional

quality of the plants or differences in average temperature from one plot to another.

An increase of the spatial correlation with time implies an overall trend toward a single
gradient. The results of independence of damaged plants noticed via negative spatial
autocorrelations in some plots are likely an artefact and not a biological phenomenon. The
variogram is expected to depict no spatial autocorrelation for some distances
[135,136,189,190]. During data collection, independent samples must be taken at random at
different locations so that each sample has an equal chance to be selected [426]. However,
infested plants separated by a small radius of proximity (less than 10 meters) were
considerably correlated. Therefore, such evidence of a spatial link between infested plants
leads to the conclusion that sequential plant samples may not be a proper representative of a
statistically independent sample procedure, thus violating the assumptions of random sampling
in the field [426]. In improving traditional sampling schemes devoted to lepidopteran stem
borer infestation through a selection of samples far enough from each other to ensure total

independence, this finding should be taken into account.

The movements of the focal area (centroid) associated with infestations might reflect
shifts in the spatial and temporal patterns of adult and larval dynamics during the damaging
process. Centroid infestation tracking was used to monitor the movement of Eoreuma loftini
by pheromones baited traps throughout Texas rice belt [132], to check the spatial evolution of
Nasonavia ribisnigri after release of few adults at the center of lettuce field [133], and

quantifying spatio-temporal infestation patterns of Ips fypographusin the Bavarian Forest
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National Park via dead wood patches surveillance [134]. These studies provided an
approximate speed of leading edge of Rice borer infestation movement [132], the ability of
Aphid to spread far away from a source plant of release over time in a green house [133] and
spatio-temporal dispersion patterns of bark beetle damages on trees at a wide area scale over
years [134]. A similarmethod was applied here, but with regular monitoring of all plants
within the fields and their precise damage characters. Such consistency in the experiments
helps to detect that the dynamical spatial and temporal pattern of B. fusca infestations had a
geometrical trend of occurrence under a form of a spiral around initial patches of damaged
plants. The identification of such infestation pattern can be very difficult or impossible to

describe with the previous approaches [132-134].

It has been reported that oviposition of females insect species such as Delia radicum on
cabbage plants [427], Eurosta solidaginis on late golden rod plants [428], Lygocoris
pabulinus on potato plants [429] and Anthocoris nemorum on apple/pear/peartrees [430] can
be observed where conspecifics have already oviposited; the contrary has been reported for
Trichoplusia ni on cotton plants [431], Narnia femorata on cactus plants [432], Heliothis
virescens on tobacco plants [433] and Pieris rapae on Crucifer plant [434]. In the present
study, results of spatial clustering suggest that B. fusca females tend to oviposition patches of
maize plant already infested; and thus, exhibit the fisrt behavorial characteristic. The
homogenization of distribution inside each cluster might be due to overcrowding duﬁng plant
host selection [435,436]. Furthermore, a strong instability (drastic changes in clusters shapes
and a number of plants inside each spatial cluster) during the evolution of initial damage
distributions might be due to a combination of adult moth oviposition and larvae interplant

movements [184,187,437].

Spatial pattern dynamics generated by insect pest can be used to improve sampling
strategy, site-specific pest management, and sowing distribution. However, when agricultural
practices are undertaken, the precise spatial and temporal dynamic of the damages are usually
not well known [131]. Moreover, most of the existing statistical techniques used in similar
agro-ecological frameworks than ours are not strongly accurate in order to detect a precise
plant-to-plant contagion patterns [129-147,189,190,192,194-198,201]. The methodologies

used in these studies focused on two main aspects: analyzing the count-variance of samples
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without taking into account the spatial locations (indices of dispersion, aggregation and
clumping indices, Taylor power law, quadrat-variance methods, probability distribution
models) or focus on count-variance on few samples and-the locations of samples (semi
variography, spatial autocorrelation analysis, local spatial statistics) [26,129,358,438-443]. In
order to gain a considerable amount of information from spatial data, use of several
methodologies is recommended [441]. However, it is noticed that conducted studies in a
similar framework than ours usually employ one method [129-147,189,190,192,194—
198,201]. Thus, our study aimed to be more precise using several approaches which have not
been used in the literature such as centroid tracking and spatial clustering in order to track
easily the shift of spatial patches and their relative stability respectively. In addition, the
cellular automata method was used in our study to go beyond these classical analyses in order
to investigate on the likely geometrical configuration of infested plants to contaminate healthy

maize plants.

As an attempt to advance the knowledge on movement ecology, the quantification and
qualification of the delocalization pattern of the damages spread of B. fusca with time were
studied. We examined whether the infestation is initiated from an origin point from which it
spreads to other locations to create a big cluster of plants damages, or whether multiple
damages of plants erupted simultaneously in different locations to create clusters, which
mergeﬂ with time. Through the record of point location for individual infested plants at each
week and their respective centroid, it is noticed that the shift of the focal point moves as a
spiral centered around the first set of damaged plants. The formation of new spiral during the
second cycle of damages could be explained by the ability of B. fusca to distinguish patches of
larvae/eggs and oviposit in different zones. Practically, while probing for more host plant and
flying toward adjacent stems, the pest female is showing preference to the areas with less
density of infection, thus spreading their offsprings more widely by creating a new spiral at a
distant radius. This result corroborates the hypothesis stating that a lepidopteran is able to

adopt a regular pattern during host selection [435].

We observed that the selection of the first plants to be infested by the B. fusca female is
likely to be random; subsequently the neighbours to the infected plants are most likely to be

infected. In addition, it is noticed that the initial infestations occurred simultaneously in
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numerous plants. The enhancement of the spatial expansion of damage clusters can be
explained by the pest larvae short-range movement ability to migrate from a maize plant to
another [187]. This displacement is considered as a survival mechanism; because of
competition, the larvae of B. fusca are likely to die in a highly infested maize stem [319].
Although B. fusca females have the ability to fly over several kilometers [207,444], it was
observed that the number of plants infested within a cluster increase progressively and, the
shape of the cluster was relatively maintained with time; this can be explained by the ability of
lepidopteran to visit patches of plants already infested by their conspecifics [435]. The
competition among B. fusca female for the same set of host plants during oviposition may be
further considered as a key factor that influences the appearance of the patterns observed in

this study.

In regard to the yield losses and damages due to B. fusca in maize farm, all recorded
studies are based on different methodological approaches, yielding a high variability of results
[159—170]. This problem of standardization of experimental methods makes a comparison of
results difficult or subjective; thus, causing a serious problem in the choice of the information
concerning the damaging ability of B. fusca that may be given to farmers and decision makers.
In this study, a simple, realistic and accurate approach has been implemented to study this

topic.

In our study all the plants in the field were considered in contrast to what is presented
in literature [159-170]. Focusing on few samples can create a considerable bias which
reduces the accuracy of the results because the selected plants could not be a good
representation of the whole farm. Majority of methods used in the literature for studying yields
losses due to lepidopteran stem borers are visual damage rating, in which grain or cob masses
are assessed [159—170]. Weekly visual rating and measuring of cob masses at harvest were

applied here.

Although several studies about the link between B. fusca damaging factors and yields
losses were conducted during decades [159-170], it is noticed that a rigorous selection of the
plant physical features suitable to study incidence of the pest has not been done. Comparing
features of infested and uninfested plants has been suggested as a systematic method for

assessing yield losses in cereals [52]; however, studies considered directly cob mass (infested
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versus non-infested) as an indicator for assessing the pest impact without much justification
[160,163,165,375]. In this study, a statistical comparison of the plants physical features has

been conducted in order to select cob masses as the key factor.

The study of pest damage incidence provides crucial data to decision makers in order
to allocate meaningful resources for research and management [173,175,445,446]. Therefore,
making decisions for controlling lepidopteran stem borers rely on an accurate estimate of
damage incidences and yield losses. However, the values of the overall yield losses in maize
due to B. fusca reported in the literature varies greatly from one country to another and
different agro-ecological zones [155]. It is 10% to100% in South-Africa [155], 0.4% to 36%
in Lesotho [165], 0.4% to 41% in Cameroon [160,161,176,447] and 17% in Zimbabwe
[212]. In Kenya and Tanzania,12% of yield reduction for every 10% of plants attacked were
reported [170] and, later on, yield losses of 14% was reported in [212]. All the methods for
estimating the yields losses were done either by comparing grain masses or cob masses from
few plants infested in the field [160] or by comparing grain masses from few samples of the
field that were protected and unprotected by insecticide [161,165,170,176,212,447]. The
present research opted to sample all the damaged plants in naturally infested farms. Average

yield losses estimates in this study are between 35.96% and 48.19%.

In order to identify the type of damages implying higher yield losses due to B. fusca,
several studies have been conducted [159,160,163,165,168,375]. Because of various
experimental approaches adopted in these different studies, it was difficult to specify the type
of damages (LD, DH, EH, ST or internodes attack) having the most significant effect in the
reduction of maize yield. About tunnelling, B. fusca was reported to tunnel from 15% to 30%
of the length of the stem [180], a range almost similar to our results. In this study, although
the stem tunnelling considerably reduced the cob masses, the obtained results suggest that cob

tunnelling of B. fusca has more effect on the yield.

Busseola fusca is reported to attack young plants preferably [155,184,187]; this is a
primary reason leading integrated pest management (IPM) practitioners to apply control
measures at the early stage of development of maize crop [155]. However, the results
obtained in this study suggested that all the plants with leaf damages (primary infestation

damage from B. fusca) had a cob at the end in contrast to those having secondary and ternary
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damages like dead heart and exit hole respectively. Therefore, control measures should be

applied continuously during maize life cycle.

Numerous information on the temporal patterns of stem borers infestations are reported
in the literature [155,165,231,448,449]. It is demonstrated that C. partellus infestation on
younger plants has a higher incidence on the yield losses than infestation on older plants;
additionally, it is reported that the intensity of leaf damage is significant in younger plant and,
stem tunnelling is significantly correlated to yield losses in older plants [231]. In this study,
we did not observe any particular trend in yield losses according to the leaf damage and exit
hole made by B. fusca. For the dead heart, the time of infestation is important; when it happens
within a two-week interval from planting, yield losses is high. Furthermore, the decrease of
the yield losses with the time of infestation observed in this study is similar to what has been

reported in the literature [450].

Numerous studies attempted to link the stem tunnelling damages and the cob masses
[160,163,165,375]. A linear link was presented with little significance in [163]. We failed
also to establish a link between the two variables in this study. It implies that others factors
should be considered while liking yield losses and stem tunnelling or, no link could exist
between these two variables. We went beyond existing studies by estimating the type of link
between the cob tunnelling and the cob masses. In general, yield due to a pest on a crop is
reported to be a linear or a non-linear function decreasing with pest damage intensity
[158,171-173]. This trend was observed in maize in the case of B. fusca
[160,161,163,170,174] and, C. partellus [231,445,451]. In this study, a different tendency
was observed while analyzing cob mass function of the length of the tunnel in a cob wich is a

cubic function.

Control of negative impacts of lepidopteran stem borers is a serious challenge [452].
These pests can be reduced using: chemical insecticides [453], botanical agents, habitat
managements, synthetic pheromone, genetically resistant maize varieties, cultural control and
biological control [155]. Based on the previously mentioned methods, IPM strategies for
lepidopteran stem borers were developed [51,155,282,283,285,286]. Despite the fact that
precise spatio-temporal dispersal of the insect pest damages is of primary importance, this

information was not taken into account in IPM strategies toward B. fusca. The spatial
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arrangement of trap plants should be reflective of the patterns of natural field
colonization/infestation by the pests [454]. The insect pest B. fusca is reported to attack
young plants preferably [155,184,187]; this is a primary reason leading IPM practitioner to
apply control measures at the early stage of development of maize crop [155]. However, the
continuous pattern of infestation observed in this study throughout the whole growing stages
of maize plants suggests that the application of chemical insecticides should be done in older
plants also. The present study provides a prior overview of B. fusca damage spread, which can
be used by IPM practitioners during spatial and temporal disposal of the control measures.
Therefore, allow cost strategy can be developed by optimizing the applications of control

measures embedded in existing IPM methods for B. fusca.

The understanding of the timing of damages induced by the offspring of B. fusca moth
subsequent to its first arrival in the field and, a precise characterization of spatial patterns
resulting from the spread of the damages in the field with time are two major challenges in
pest management. These keys information can be used to improve the field application of
existing control methods such as pheromones traps [155], parasitoids [455,456],
entomopathogenic fungi [457] and insecticides [155]. The extended flight periods of B.
Jfusca observed in this study suggest that oviposition occurs continuously with time; therefore,
pheromone traps should be installed throughout the whole plant growth period. A biological
"~ control approach such as egg parasitoids release has been suggested‘ [455,456]; however its
efficient application can be improved by the knowledge of the flight dynamics of B. fusca
male observed in the current study. Once adult moths have been noticed in pheromones baited
trap, egg parasitoids should be released the next week to limit eggs hatching. The disposal of
pheromone-baited trap combined with the dissemination of entomopathogenic fungi using B.
fusca male as the vector can be done by a protocol described in [457]. The current study
suggests that such device containing the fungi must be kept in the field during the whole plant
growth period in order to increase the probability to kill neonates from staggered oviposition
during several weeks. If the farmer does not have an access to the previously mentioned
control methods, the use of the results obtained by spatial analyses in this study can help to
make a site-specific management more efficient by offering the advantage of limiting the

amount of insecticide used within a maize farm, as well as the time and labor involved with its
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application. Since this method allowed us to estimate a plant-to-plant contagion rule with time,
it is possible to predict potential hot spots or aggregated infestation sites and to apply targeted
and preventive sprays of insecticides located within a few meters around the areas where the

first leaf damages are observed.

I1I-5  Modelling damages spread of stem borer

I11-5-1 Results

Although the sizes of the plots are different, the scale of percolation is relatively
constant in all the plots (Table 10). The observed dynamic of cluster densities at different
observation scales for each plot is depicted in Figure 4. During data processing, when at least
one plant in the & times k& matrix was found infested, the resulting cell was considered as
infested. If the scale of observation of the infestation process is above a certain threshold
value, the infested clusters are connected with each others. In contrast, below that threshold
scale value, the infested plants are restricted to small and non-connected patches scattered on
the farm. The sub-figure with the gray curve represents the critical resolution whereby the
reduction of the number of infested patches started decreasing. A similar pattern for plot 2, 3
and 4 was observed (Figure 30). Aphl“[ from plot 1 where the resolution threshold for
percolation is 1/5, other 3 plots have a resolution threshold of 1/4. The critical concentrations
of infested cells for plots 1-4 are 0.0707, 0.0406, 0.0140 and 0.0224 respectively. The time of
occurrence of the maximal number of clusters in each plot at the scale of percolation was
observed the fifth week in plot 1 and 2, the second week in plot 3 and the eighth week in plot

4. It can be noted that the cluster density decreases when the scale is too large (sub-Figure 30).

Before conducting the spatial and temporal spread of the pest damages, all plots were
rescaled at the percolation dimensions (Figure 30). The sensitivity analysis that models
precisions variability according to rules of CA infestation at each plot is presented in Figure
32 (a). The ability of the linear model to explain the variability of p around its mean as well as
the significance level was acceptable (r?=0.72, P-value=9.29x 10~>* for plot 1; r?=0.65, P-
value=3.67x 10™** for plot 2; r?=0.74, P-value=6.38x 107°¢ for plot 3 and r?=0.63 and P-
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value=8.51x 10™*? for plot 4). Results illustrate that the transition rules are crucial
components in modelling in order to replicate accurately the observed experiment in the field.
Although the Moore-2 contains more cells and is more extended spatially, -the mean
correlation coefficient seems to be more sensitive to Moore-1 neighbourhood. This suggests
that nearest infested plants in the modelling framework have more impact than the distant
infected plants. The sensitivity of the running time of the simulations in a computer for
deferent scales is depicted in Figure 32 (b). The time spent by a personal computer to simulate
the damages spread decrease significantly. When comparing the model simulation at a scale of
1/1 and the time taking to simulate using percolation scale; over 50% in reduction of time was
noticed. The initial conditions for simulations were the same for each plot as displayed in the
data obtained from all fields. The positions of the first infested cells during the first
observation are recorded in Figure 31. After several trials, the couples of parameters (41, ;)
were fixed to be equal to (3,11), (2,9), (3,11) and (2,5) for plot 1, 2, 3 and 4 respectively.
Others choice did not provided good results. The model predictions of the spatial and temporal
evolution of infested cells for plots 1 are presented in Figure 33 (for plot 2-4 see the
appendix); the predictions are more accurate for plots 2 and 3 than for plots 1 and 4.
Simulations of infested cells in plot 1 and 2 predicted fewer cells compared to the data. In
addition, the simulated pattern of plots 4 is different to the data. Such discrepancy may be due
to the initial conditions of the model simulations or to the non-linear pattern of the insect
species oviposition pattern. An additional explanation for this difference is that, a number of
infested cells in the neighbourhood as parameterized in the model might be lower or higher

than what exists in reality.

A comparison between CA simulations of a weekly sequence of plant infestations and
the observed data is presented in Figure 34 . The correlation level was greater than 60% in
each plot for the subsequent weeks once we have initialized the simulation with the position of
infested cells at the first week of infestation occurrence. It was noticed that the level of
similarity decreased over time. This level of agreement shows that IPM practitioners can use
the results for improving management of B. fusca. The temporal trend for the density
difference between the spatial distribution of data and the simulations increased with time,

meaning that the data and the simulations the fact that CA replicates very well the data during
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the first weeks. Differences between model results and observations are relatively minimal
given the significant spatial correlation and comparisons between multifractals at each week.
In addition, it can be noticed-that the multifractals approach can be a good mean to evaluate
the accuracy of CA model output. This finding reveals that the model assumptions were

effective at ensuring that the simulated infestation dynamic is close to those observed in the
field.

Plots Plot 1 Plot 2 Plot 3 Plot 4
Size (in meter) 51.03x53.93 | 150.66x31.57 120.69x30.50 153.3x27.82
Spacing between 0.81-1.05 1.86-0.65 149-2.10 1.05-0.53

columns (in meter) -
spacing between rows

(in meter)

Percolation scale 1/5 1/4 1/4 1/4

Unit cell size at the 4.05x5.25 7.44%2.6 5.96x8.4 4.2x2.12
percolation scale (in

meter)

Table 10:Results obtained after searching for the percolation scale. Each decimal dimension is

given in meters.
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Figure 30: Estimation of the percolation scale in plot 1,2,3 and 4. The cluster density

represents the number of infested cells week after week. This number was normalized between

0 and 1. The fraction above each sub-figure represents the scale of observation. The

denominator of each fraction represents the square root of a number of maize plants inside

each unit square. In clear, //p means that the maize plot was observed by taking a unit of pXp
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plants. If at least one plant in the pXp matrix was infested then the resulting cell was

considered as infested. The sub-figure with the gray curve represents the critical resolution

whereby the reduction of the number of infested patches start decreasing after a certain

number of weeks.
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noticed during the data collection on the field. The blue dots represents the infested cells and

the white cells are the non-infested cells.
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Figure 33: Representation of the spatial and temporal evolution of infested cells in plot 1. On
the left are the collected data and at the right the simulated infestations. The blue dots

represents the infested cells and the white cells are the non-infested cells.



Figure 34: Comparison between observed and simulated infestations at each iteration. The
black bar represents the correlation coefficient (p) between the observed and the simulated
results. The gray bar represents the fractal average error (FAE) between the spatial distribution
of infested cells in the observed and predicted results. The coefficient of determination 72 was

greater than 0.95 for each plot during the estimate of the multifractal dimension.

I11-5-2  Discussions

Percolation, one of the method applied in this study has been extensively used in
different contexts such as spatial epidemiology [241-244], petroleum geosciences [458],
geometrical effects in physical properties [459] and on the connectivity among fragmented
landscapes [460,461]. In animal behaviour research, effects of the observation scale on the
movement were also quantified with the percolation [462]. However, the theoretical
conjectures of these numerous studies were mainly based on numerical simulations without
connection with experimental data for performance evaluation and validation [241-244,458—
462]. The present study shows the link between the percolation and the spatial resolution

during B. fusca infestation and spread in maize farm via a spatial magnification threshold. The
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results obtained with the percolation theory are in agreement with those of [462] and [460].
Their findings demonstrated that the scale of observation and the distances between elements
could play a significant role in the percolation threshold; we also arrived at similar
conclusions. Furthermore, the approach used allowed simultaneous estimation of the distance

threshold and occurrence time period of the percolation threshold.

In multiples studies using CA, the cell representing an infestation is most often a
surface or a set of plants [246-248,270]. The choice of the unit cell size is usually subjective
and mostly guided by the aim of optimizing the computation efforts for reducing the
simulation time. In an agro-ecological context such as the present study, an approach was
proposed to choose the optimal cell size based on the theory of percolation. Contrary to
numerous studies [241-243,458-460], the resolution scale in our context was used as a
parameter that directly affects the start-up of the percolation phenomena during the spread of
infestation of B. fusca damages. Such choice of a resolution was made to allow a good balance
between the cell size and the percolation of plant damage spots caused by B. fusca. Although a
trial and error method was proposed to select an appropriated spatial scale thought multiples
simulations for different cells sizes [293], a simpler process using the percolation theory has
been suggested here; our results suggest that percolation theory can be used as a method to
select cell size of CA in order to solve this recurrent challenge reported in literature [240,287—

292].

The direct implication of using percolation with CA goes beyond ordinary CA
simulation framework find in literature [246-248,270]. The ability to scale-up and scale-
down is crucial to overcome the difficulties dues to the limited amount of data [463].
Moreover, it offers to IPM experts a new opportunity of improving sampling methodology
based on the choice of the optimal quadrate size of infested plants. Instead of sampling
systematically within the entire field, it may be more relevant to work at a certain unit size of
surface capable of capturing the infestation spread. Therefore, our findings suggest the
application of the theory of percolation to supplement the sampling design for collecting
spatial and temporal information of insect pest damages spread; and to complement to the
existing methods for spatial and temporal statistical analysis of data in the literature

[129,359,438,439]. Cellular automata with its fundamental features of homogeneous
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transitions rules, synchrony in the changes of state of cells and static neighbourhood
configuration are not appropriate in yielding good replication of a spatial and temporal
ecological process [268]. Modifications of these fundamental features are required in order to
generate good results [232,233,235,237,239,263-268]- In addition, there are situations where
important factors influencing the spreading of the pest are known, but the exact link between
the damage spread and these factors are unknown or imprecise [245-249,269,270]; for
instance, the impact of wind intensity [245], the suitability level of spatial grid point
[246,249], the level of plant susceptibility [247], the concentration level of the chemical
substances [248], climatic conditions [464], pesticides [465] and the level of population
density of the natural enemies [269,270]. Because of the pitfalls in the use and direct
application of homogeneous CA, we opted for B. fusca male abundance inference by mean of
fuzzy logic concept. A direct correlation of adults abundance obtained via pheromone-baited
traps to infestation rate has been done in several several studies on others crops and different
insect pests [382-390]. Therefore, since life duration of B. fusca adult is very short (2-4
days) and the mean sex ratio between males and females is 1:1.1 [187,405,466,467], the
abundance of adult males can be considered as a good indicator of the density of females
whose larvae offspring will cause damages on maize plants. In reality, the efficiency of a CA
model is highly influenced by the neighbourhood configuration [288,290]. During the
implementation of ecological CA with fuizy logic inference, the 'neighbourhood conﬁgur'ation
is often unchanged for the simulations [245-248,269,270]. Static neighbourhood

configurations have been used in numerous applications [381,468—474]. However, in the

current exploration, we opted for a dynamical neighbourhood, similar to what was applied to
optimize the speed of computation [298] and in land use modelling [296,297]. The approach
consisted on provoking dynamical changes of the radius of the CA neighbourhood based on

expert knowledge coupled with the optimal selection of the cell size via the percolation theory.

This study gives an insight into the effect of different transition rules, which is not an
explored field in sensitivity analysis for CA models for insect pest infestation in agro-
ecological models [232,233,235,245,249,263-266,268,269]. Meaningful IPM decisions in the
management of B. fusca damages can be obtained through adequate understanding and

exploitation the impact of the variation of the CA neighbourhood highlighted in this research.
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In clear, specific neighbourhood triggering infestation coupled with pest control measures can
be represented in the model framework to develop a strategic and tactical decisions support

system for IPM practitioners.

The evaluation of the performance of ecological CA simulation is sometimes
conducted by the use of mean absolute error and root mean square error [245,299]. In this
case, such approach did not provide an indicator of the spatial repartition of infested plants
inside the farm. Fractal dimension was applied with CA model outputs to represent and
understand the complexity and fragmentation of land use [288,475]. However, the
multifractal dimension was viewed suitable for describing the spatial repartition of spatial
point data instead of providing only a global geometrical description of the area as the fractal
dimension [276,279,280]. Multi-fractal dimension was selected as a means to characterize
the spatial repartition of living organism in a surface [274-277,279,280] and the spatial
characterization of disturbance pattern from biological invasion [278], but it can also
characterize the spatial distribution of insect pest infestation [250]. Although there are several
multifractal dimensions, the present study focused on the information dimension (Dj) because
it is the most informative in the dimension spectrum [274]. The D; was used for comparing

the model simulation outputs and the collected data.

We further suggest multi-fractal as a tool for uncertainty analysis of CA models
dealing with insect pest damage spread. The multifractal concept brings two simultaneous
benefits: it guides on the estimate of the level of spatial distribution and assists on the

comparison of spatial clustering level between observed data points and model outputs.

With a combination of several approaches (percolation, CA, fuzzy logic and multi-
fractal) the developed model for stem borers infestation spread dynamics gave a satisfactory
result for mimicking the observed infestations but some slight imperfections in the accuracy
still persist. Such pitfalls could be due to the stochastic nature of living organism behaviour
within their environment. The flight and egg laying tactic of insect are probabilistic
phenomena [181,476—479]. That is why a stochastic behaviour is often explicitly taken into

account during modelling flight, post/prelanding comportment and female oviposition [480-

482]. The larvae movements of stem borers, which impact on damage spread was neglected in
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the current study could possibly be another factor responsible for the model predictions skills
[184,187,437,483]. In addition , the non-consideration of natural enemy effects on the
population density of the insect pest could be a supplementary reason for the model
imprecision [375,484-487]. Despite these limitations, the developed model is able to forecast
with an acceptable level of accuracy the spread of the plant infestation in the field. The
accuracy increases if the model inputs the observed plants infected at any specific week and
try to predict potentially infested plants in the next consecutive week. Thus, it is possible to

foresee the next set of plants infested and apply adequate preventives control measures.
II1-6  Coupling the pest dynamics and crop simulation model

111-6-1 Results

In order to compare the effect of the pest damages on the plant, a simulation have been
done with and without the effect of presence of B. fusca (see Figure 35). The initial
conditions are 10 Adults, no eggs, no larvae and no pupae.. The plants were able to
compensate the removed biomass by the larvae during the first weeks of growing season. The
leaf area index showed the same pattern. At the middle of the growing season, the plants
attempts to compensate the relative yield losses in biomass but the difference in biomass from
damaged and undamaged plant became more considerable with time. The leaf area index and
the total consumption of the larvae population decreases drastically with time 80 days after

planting. The initial number of adult decreased quickly with time and remerged from pupae
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approximately 60 days after planting ({
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Figure 36). In general, adults died very quickly compared to immature life stage and,
larvae lived for a longer period of time which is in accordance to what is observed in

experiments [320]. In addition, the eggs hatched in 09 to 10 days after oviposition similar to

what is reported in the literature.
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Figure 35: Simulations of the potential effect of B. fusca on maize plants
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Figure 36:Population dynamics of the insect at each life stage (a) eggs, (b) larvae, (c) pupae

and (d) adults

111—6-2 Discussions

Simulation of the population dynamic of insect pest such as, the apple orchard pest
Cydia pomonella (L.) [314], the fruit pest Carposina sasakii [315], Bactrocera (Dacus) tyoni
[316] and tea pest, Caloptilia theivora [317] have been done mostly using dynamical
equation with coefficients derived from experimental data. Numerous experiments regarding
the biology of B. fusca have been conducted in order to assess the effect of humidity,
temperature, nutrients contained in maize plant but were not exploited with the aim of

modeling the population dynamic and the maize-insect interactions [318-320,409].

Although the biology and the ecology of B. fusca have been extensively studied but no
one has developed a dynamical model to simulate the number of insect with time
[51,155,187]. By using the experimental result from reference [320], the pest component of
this model was developed in a similar way than other conducted studies [314-317].
However, in these studies, the plant dynamic itself was not considered which is not the case
here. Although a varying the temperature can considerably influence the survival and ageing
of insects [488,489], the mortality rate of adults was fixed in these models [314-317].
Similarly to the approaches used for the daily developmeﬁt rate, the longevity rate estimating
the daily accumulation of heat or cold effect on female adults over time was used here as

suggested in  [490].

The classic method to assess yield losses due to cereal stem borers consists in
comparing the feature of damaged and undamaged plants [52]. Furthermore, the estimate of
the losses was most often made at the end of the growing season or, by uprooting few
damaged plants collected in the field with time [160,163,165,375]. In this study, we suggested
a dynamical system approach to simulate the daily consumption of maize by B. fusca whit a
simultaneous estimate of the dry matter accumulation inside the plant and the B. fusca life

cycle dynamic.

The existing model in the literature integrating the interaction with the plant and the

pest was "one-way"; meaning that the pest have an impact on the plant but the plant does not
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have an effect on the insect [308-310,491]. Furthermore, the main driving variable
influencing the whole pest-crop system was the external temperature. In this study, a crop

simulator model which includes more factors was used to overcome such limitation.

In the CSM named CERES-rice, the effect of multiple pest effects on rice has been
included by functional responses [59]. In the software InfoCrop, the effect of rice insect pest
has been simulated with a constant assimilation rate of larvae and no feedback from the plant
[55,492—495]. In APSIM-wheat, the leaf area was the link between the pest and the CSM;
however, feedback mechanisms from the crop and the pest were neglected [58]. The existing
generic pest module in DSSAT/CSM linked the effect of the pest by a linear response to a
fixed number of the pest in the field with no dynamical prediction of the pest population and
life cycle driven by environmental factors [57]. In this study, we simulated the plant dynamic
in parallel with the insect pest dynamic including a "two-way" interaction between maize and

B. fusca.

Although the negative influence of wind speed and Nitrogen deficiency have been
modelled using fuzzy logic [325-328], it is observed that none of the existing pest-crop
models is able to consider uncertainty during the plant-pest interaction. In this study, fuzzy
logic has been used to modulate the assimilation rate of dry matter from maize plant and the

relative growth rate of B. fusca larva.
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General conclusion and perspectives

In summary, this study attempted to improve the Daydov’s model by accounting for
the influence of mobile inhomogeneity and the introduction of a hyperbolic nonlinear

potential. This work led to conclude that the mobility could be achieved by a traveling energy
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mode among in the protein lattice. The approach used here has the potential to be generalized

to any type of DNLS physical system .

The nonlinear coupling in the DNLSE contributes to the localization of the energy.
Furthermore, in the DNLSE derived from Davydov’s equations after adiabatic approximation,
the nonlinear term depends on the potential energy function of hydrogen bonds. Indeed, there
is a high probability that the rapid decoherence of waves under thermal bath obtained in
previous studies on Davydov’s model might be due to either the initial conditions or the usage

of an inappropriate hydrogen bond potential.

The current study showed that the electrical wave propagation in microtubule (MT)
could be modelled by a discrete nonlinear transmission line including a cubic negative
nonlinear resistance. Nonlinear resistance was used to represents the ionic flow through
nanopores of MT. The nonlinear supratramission threshold can be estimated by the NLRM. In
a dissipative system, nonlinear supratransmission threshold can be lower than the
infratransmission threshold; when these two thresholds are closer, the supratransmission
threshold could be considered as infratransmission threshold. At the biological viewpoint, a
specific intensity of ionic flow through nano pores of MTs can allow the high frequency of
electrical signal processing by neurons. Also, the infratransmission phenomenon in MTs of
neurons can be leeway for the explanation of why repetitive transcranial stimulation with the
high frequency magnetic field can attenuate the motors signs of the Parkinson’s disease. The
wave amplification of MT-induced by calcium wave could be explained with a model

including nonlinear resistance.

The current study attempted to understand the spatial and temporal patterns generated
by the damages of B. fusca within a smallholder maize farm. This investigation provides an
estimate of the time interval between the incidence of the peaks of abundance of B. fusca adult
male and the leaf damage in the field. It was found that leaf damage caused by the immature
live stage of B. fusca seems to be a key factor causing the death of maize plants. This research
further helps in illustrating the evidence of considerable spatial autocorrelation with time of
damaged plants within a small radius and, the initial area of infestation and spread from foci
under a form of cluster/spiral pattern. Finally, the rules by which a plant gets infested by

neighbors were identified. These findings lead us to conclude that the known biological and
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ecological processes of infestation by the African maize stem borer B. fusca reported in the
literature occurs under the form of explicit spatial and temporal patterns. To be more specific:
(i) there is a time synchrony during the appearance of damage peaks and males moth
abundance, (ii) particular attention should be paid for the leaf damage and, (iii) spatial
distribution of the infestation with time occurs in a pattern which can be tracked. In this
context our findings can assist in identifying and, in prioritizing an adjacent set of plants for
either reactive, direct control efforts, or anticipative strategy optimizing the existing biological
controls in order to reduce B. fusca damages. We hope this study will pave the way for a

deeper understanding of movement ecology of B. fusca and stimulate further investigations.

The important role of cob damages by B. fusca infestation is emphasized. The results
confirm that both early and late infestation can be important causes of maize yield losses
during the plant life cycle. There is real need for standardization of experimental approaches
to investigate damages and yield losses of B. fusca in order to ensure replication of studies and
facilitation of comparisons between results from different authors. The important yield losses
recorded in this study in small-scale farms in Central Kenya indicate that B. fusca remains a
major pest of maize in spite of many methods deployed to control it since decades. Our results
suggest that the current control methods like male disruption, cultural control, habitat
management should be improved and intensified and probably innovative new control
methods such as, dissemination of entomopathogenic fuﬁgi and more specific natural enemies

should be deployed.

The results of this study revealed that B. fusca induced leaf damage pattern spread at
farm scale can be simulated using a fuzzy-CA approach linking local dispersal of B. fusca
adult populations’ density. The spatially explicit cell-based approach for modelling the
damages incorporates B. fusca adult abundance by combining the population density and
dynamics of cell neighbourhood configuration for infestation seems suitable here. It is
believed that the proposed hybrid modelling approach adequately captures the dynamics of B.

fusca damage spread.

The use of spatial dynamic modelling for understanding the spread of the lepidopteran
B. fusca was useful for creating a framework for assembling known information about how the

insect pest damage can spread. Modelling the damages spread of B. fusca in maize farm is
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important insofar as it enhances the development of appropriate control measures for
minimizing the negative impact of the pest on maize crop. Practitioners interested in IPM for
optimizing the timing of control measures need accurate predictions of the dynamic- of pest
damage spread with the aim of reducing losses. The fuzzy-CA inference approach permits to
better understand the implication of adult population on spatial and temporal spread of maize
crop damaged by the insect pest. IMP practitioners could design, efficient timing strategy
knowing the most likely pattern of farm contagion week after week. The developed model to
simulate damages spread of B. fuscain selected maize farms in Kenya can also be
applied/adapted to others types of insect pests and agricultural crops in others areas. In the
futures studies, it could be of a particular interest to predict the quantitative impact of pest

such B. fusca on the yield of maize crops.

Finally, we have developed a simple dynamical system for the population dynamics of
B. fusca and coupled it to a crop model. Although the model did not included other attacks
likes cob boring, effect of parasitoids, the obtained results are encouraging in trhe sense that
the generic approach can be applied or adapted for another crop and pest (weed, diseases, or

insect).
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Appendix 1: Constants and functions used in the text
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Appendix 2: Supplementary tables and figures

Mean time + SEM

Transition Plot 4 Plot 5
LD—EH 4.8610.05 7.004+0.00
DH-D - 8.931+0.39
LD—DH 4,9540.10 9.00+0.70
LD-D - 8.9340.39

Table S1 Mean time in weeks for transition between infestation types. It is given in the format:

mean time + standard error of the mean (SEM). The symbol (-) means that such transition was

not observed.
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Figure Al: Representation of the spatial and temporal evolution of infested cells in plot 2. On
the left are the collected data and at the right the simulated infestations. The blue dots

represents the infested cells and the white cells are the non-infested cells
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Figure A2: Representation of the spatial and temporal evolution of infested cells in plot 3.0n
the left are the collected data and at the right the simulated infestations. The blue dots

represents the infested cells and the white cells are the non-infested cells.
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Figure A3: Representation of the spatial and temporal evolution of infested cells in plot 4. On
the left are the collected data and at the right the simulated infestations. The blue dots

represents the infested cells and the white cells are the non-infested cells



Appendix 3: Fuzzy processing of number of adult

The purpose of this section is to provide a concise explanation on the technicality
related to the sub-component of the overall model handling the dynamical change of a
neighbourhood. This was done by a fuzzy based representation of the adult number of B. fusca

collected in pheromone-baited traps (Na) and the propagation index (p).

To determine the type of function, we referred to the expert knowledge. In the
literature, the relationship between the abundance of insect males in pheromones baited traps
and the damages incidences are usually linear [382-390]. Thus, piecewise linear functions
were selected and used to characterize and classify B. fusca adult abundance. The triangular

membership function has the analytical forms:

a if b <x,
J
. ﬂ if blijSbé/,
_ bl — b/
//l./ (x) = 2/ 1 (64)
:j _;, if b/ <x<bl,
3 02
a-z’ lf X > bj/.

For the number of adults (Na) we selected five functions (x/(Na), j =1 to 5) corresponding to
five degrees of membership: "Very Small", "Small", "Medium", "Big", and "Very Big"
respectively. The Maximal number of insects collected per week in the pheromone baited traps
is divided to have four intervals separating the five peaks of the triangular function in Figure
8. The membership functions "Very small", "Medium" and "Very Big" do not overlap because
they are considered as extreme cases. It is assumed in the model that the number of adults
cannot be "Very Small" and "Medium", or "Medium" and "Very Big" at the same time. Thus,
the probability of occurrence for theses combined states cases is null; reason why the
overlapping of triangular is at 4 = 0. Finally, the parameters a{ (i=1,2)and b{ (i=123)of
the membership functions are selected to satisfy previously mentioned conditions. The index
of propagation p is assumed to belongs to the interval [0 1]; and associated membership

functions ¢/ (p) (j = 1 ("Low™), 2 ("Medium") or 3 ("Strong")) are assumed to be identical



and symmetrical. Parameters a{ and b{ for this membership are chosen in order to have three
equally partitioned and symmetric functions.

The fuzzy rules are already mentioned in the methodology section. Here we explain
how these rules are used to get the final membership function. The Mamdani and Assilian

(MA) implication rules developed in the reference [391] have been applied here. The general

aspect of the two fuzzy propositions is connected with the IF and THEN syntax:

R¥:IF (Na is j) THEN (p is i),

where k is the rule number (k = 1 to 5); i and j are the membership degrees of Na and p with
the associated membership functions y{VA (x),and y;', (x) respectively. To apply a rule k, a

specific value x; of Na is selected and u{;,A(xo) is estimated. The resulting membership

function ¥ (x) is obtained by applying the MA implication (min operator) [391]:
A (x) = minf 2], (), 12, (0. (65)

To obtain the final membership all the functions resulting from MA implication at each

rule are aggregated. The aggregation has been done here by the max operator [496]:
H(x) = max, s (44" (x)) (66)

Once this function is obtained the output is deducted by the central-average-defuzzification

formulae [392]:

- Jx-,u(x)dx

B j 2(x)dx (67)

The output of the fuzzy computing (p) is a positive number that determines the type of
Moore neighbourhood. If that number belongs to a certain interval (0-0.25, 0.25-0.75 or 0.75-

1) then the corresponding Moore neighbourhood is 1,2 or 3



Appendix 4: Fuzzy processing of plant age

The purpose of this section is to provide a concise explanation on the technicality related to
the sub-component of the overall model handling the dynamical change of the coupling
between the crop and the pest. The link between the plant maturity and the regulation of the

mass accumulation by the larvae.

To determine the type of function, we referred to the expert knowledge. In the
literature, the qualitative change of food during the evolution of the age of the maize plant
with time which increase the probability of diapauses in the larvae population [318,410].
Thus, piecewise linear functions were selected and used to characterize and classify age of the

plant. The triangular membership function has the analytical forms:

a if b <x,
b _
;/_ ]2, if bl <x<bl,
w(a) =" 69
2L b <x<bl,
b/ —b] ;
a] if x>bl.

For the number of weeks during the plant growth (WK) we selected five functions
(1! (WK), j =110 5)) corresponding to five degrees of membership: "Very Young", "Young",
"Old", "Moderately Old", and "Very Old" respectively. The couple of membership functions
"Very Young" - "Old", and "Young" - "Very Old" do not overlap because they are considered
as extreme cases; it is assumed in the model that age of the plant cannot have both
characteristics at the same time. Thus, the probability of occurrence for theses combined states

cases is null; reason why the overlapping of triangular is at = 0. Finally, the parameters
a/(i=1,2)and b/(i=1,2,3) of the membership functions are selected to satisfy previously

mentioned conditions. The index (k) representing the regulation of the mass accumulation by

the larvae is assumed to belongs to the interval [0 1]; and associated membership functions



L (k) (j=1 ("Low"), 2 ("Medium") or 3 ("High")) are assumed to be identical and

symmetrical. Parameters a{ and b{ for this membership are chosen in order to have three

equally partitioned and symmetric functions.

The fuzzy rules are already mentioned in the methodology section. Here we explain
how these rules are used to get the final membership function. The Mamdani and Assilian
(MA) implication rules developed in the reference [386] have been applied here. The general
aspect of the two fuzzy propositions is connected with the IF and THEN syntax:

R¥:1F (WK is j) THEN (K is i),

where k is the rule number (k = 1to 5); i and j are the membership degrees of WK and K
with the associated membership functions u{;VK (x),and pk (x) respectively. To apply a rule k,
a specific value x, of WK is selected and ﬂiw((xo) is estimated. The resulting membership

function u!(x) is obtained by applying the MA implication (min operator) [386]:
' (x) = min[ 245, (x,), 4 ()] (69)

To obtain the final membership all the functions resulting from MA implication at each rule

are aggregated. The aggregation has been done here by the max operator [494]:
H(x) = maX/e[ls](/Ul(x)) (70)

Once this function is obtained the output is deducted by the central-average-defuzzification

formulae [387]:

" Jx-,u(x)a’x

 Juods o

The output of the fuzzy computing (k) is a positive number that regulate mass accumulation

by the larvae.
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