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General abstract 

Agricultural production is one of the main drivers of the on-going biodiversity crisis. This has 

resulted in research on the impact of agriculture on biodiversity being at an all-time high. This is 

critical given that the world must produce food for the ever-growing human population. This 

growing demand for food often demands increasing production areas at the expense of protected 

ones. Such trade-offs can potentially lead to dire consequences on biodiversity and its associated 

ecosystem function. In an attempt to minimise this potential negative impact, and also to 

conserve biodiversity and its associated ecosystem function, scientists and producers have 

developed a system that integrates natural with production patches as part of making agriculture 

more sustainable. In most instances, decisions on agro-natural schemes for sustainable food 

production are based on research conducted on larger animals at the expense of smaller ones, 

especially arthropods, even though they constitute the largest group of animals. 

 If humans are to achieve the aim of producing food to meet the growing demand at minimum 

cost to the environment and biodiversity, studies on smaller animals such as insects, which 

constitute more than 75% of all animals, and are also major contributors of terrestrial ecosystem 

function in the terrestrial world, must be considered a high priority. An insect group that has 

much value for the purpose of designing agro-natural schemes is grasshoppers (Orthoptera, 

Acridoidea). This is because they show high sensitivity to changes in vegetation type and 

structure, and have high potential for expressing changes in environmental conditions and 

vegetation. This is even more important in a biodiversity hotspot which is also known for 

intensive agricultural production, such as the Cape Floristic Region (CFR). In view of that, I 
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embarked on a study to document the footprint of agricultural production types on biodiversity 

using grasshoppers as keystone species in four studies making up my four core chapters.  

 

Firstly, I compared species richness, abundance, composition, diversity and evenness of 

grasshoppers among 46 sites in four geographical areas in the CFR. Here, I investigated three 

land-use types: fynbos, vineyards and deciduous fruit orchards, the main production types in the 

region. Results showed that grasshopper abundance were significantly higher in vineyards than 

in fynbos or orchards. Species richness, diversity, and evenness were highest in fynbos followed 

by vineyards and then orchards. There was overall high species similarity among all three land-

use types, with high species assemblage similarities between vineyards and orchards. Species 

that preferred fynbos were mostly flightless and endemic to the CFR.  

 

In the second chapter, grasshopper abundance was studied under agricultural land-use 

(vineyards) and in natural vegetation (fynbos) across two peak seasons (spring vs. summer). This 

study aimed at quantifying the level at which different grasshopper species utilise the different 

aspects of the landscape and how this range of utilisation among species relates to certain 

species’ traits. My results showed that species traits play a major role in grasshoppers’ ability to 

move between patches, and which also affects how they utilize various different patches on the 

landscape. Highly mobile, generalist species are able to utilise more aspects of the landscape. 

And depending on seasonality, these species will inhabit either vineyards or fynbos aided by 

their high ability to move between patches. On the other hand, low mobility, specialists lack the 

ability to move readily between patches, and as a result, they are confined to one or a few 

patches across the seasons.   
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In the third chapter, I developed species distribution models for four localized, CFR endemic 

flightless grasshopper species, Euloryma larsenorum and E. lapollai, E. umoja and E. ottei. The 

first two are associated with fynbos only, while E. umoja and E. ottei, the second two, are both 

associated with both fynbos and vineyards. I used the Maximum Entropy algorithm, which 

showed that vegetation type and soil characteristics were the most important environmental 

factors affecting local distribution of Euloryma species in the CFR. My models also showed that 

Euloryma species have very narrow, predicted, suitable habitats in the CFR. I also showed that 

there are no significant differences in the distribution of species associated with fynbos only as 

well as those associated with both fynbos and vineyards.  

 

Lastly, in the fourth chapter, I investigated grasshopper species assemblage composition on three 

land-uses across the agro-natural mosaic landscape of CFR. This study documented species’ 

level of occupancy and abundances in relation to their life history traits in order to assess the 

amount of change occurring on the landscape in the CFR. My results show that very few species, 

and mostly from Acrididae, dominated the landscape. It also shows that the species that 

dominated the transformed landscape were generalists. There was also a high correlation 

between generalists, high to medium mobility and widespread species on one hand, and 

specialists, low in mobility, and localised species on the other.  

 

Conclusions 

My study shows that protected areas still remain vital for maintaining the full complement of 

CFR grasshopper species, especially flightless endemics. I also show that highly mobile, 

generalist species are better adapted to heterogeneous and novel landscapes compared to low 
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mobility specialists. Surprisingly, agricultural production supports a wide variety of species, and 

hence contributes positively towards grasshopper conservation in the CFR. This study further 

shows that it is the poorly-mobile, specialist species that are particularly vulnerable to ongoing 

landscape change as they can only benefit from remnant patches of natural vegetation, unlike the 

highly mobile generalists which can move around the landscape and benefit both from 

anthropogenic patches and natural ones. To reduce future biotic erosion and homogenisation, 

there should be concerted efforts to protect grasshopper groups which occur in low abundance in 

this biodiversity hotspot. 
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Algemene opsomming 

Landbouproduksie is een van die dryfvere agter die huidige biodiversiteitskrisis. Navorsing oor 

die impak van landbou op biodiversiteit is belangrik aangesien die wêreld moet aanhou om kos 

te produseer wat daartoe lei dat produksie areas dikwels groei ten koste van bewaarareas. Dit kan 

potensieel tot verdere verliese in biodiversiteit en ekosisteem funksie lei. In ‘n poging om die 

potensiele negatiewe impak van landbou te minimeer, het wetenskaplikes en produsente ‘n 

stelsel ontwikkel wat natuurbewaring en landbouproduksie integreer om landskappe meer 

volhoubaar te maak.  

 

In die meeste gevalle word besluite oor sulke agri-natuurskemas vir volhoubare 

voedselproduksie geneem op grond van groter diere eerder as kleineres, soos geleedpotiges, selfs 

al vorm laasgenoemde meer as 75% van alle diere op aarde, en speel hulle ‘n belangrike rol in 

die funksionering van terrestriële ekosisteme. As mense graag die doel wil bereik om die 

groeiende vraag na kos te beantwoord sonder om die omgewing beduidend te benadeel, moet 

studies oor kleiner diere soos insekte ‘n hoër prioriteit word. ‘n Groep insekte wat groot waarde 

het vir die ontwerp van agri-natuurstelsels is springkane (Orthoptera, Acridoidea). Hulle is 

sensitief vir veranderinge in plantegroeitipe en –struktuur, en weerspieël ook veranderinge in 

omgewingstoestande. In ‘n biodiversiteitshittekol wat bekend is vir sy intensiewe 

landbouproduksie, soos in die Kaapse Floristiese Streek (KFS), is dit selfs nog belangriker om 

hierdie klein diertjies in ag te neem wanneer ‘n mens na die integrasie van natuurbewaring en 

landbouproduksie kyk. In die lig hiervan, kyk hierdie studie na die effek van verskillende 

landproduksietipes op biodiversiteit deur te fokus op springkane as ‘n sleutel takson.   
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In die eerste hoofstuk het ek spesiesrykheid, talrykheid, spesiesamestelling, diversiteit en 

getalgelykheid van springkane tussen 46 areas in vier geografiese areas in die Kaapse Floristiese 

Streek (KFS) vergelyk. Ek het na drie landsgebruiktipes gekyk: fynbos, wingerde, en 

vrugteboorde. Laasgenoemde twee landsgebruiktipes is ook die hoof produksietipes in die streek. 

Resultate dui aan dat springkane se talrykheid beduidend hoër is in wingerde as in fynbos of in 

vrugteboorde. Spesiesrykheid, diversiteit en getalgelykheid was egter die hoogste in fynbos, 

gevolg deur wingerde en dan vrugteboorde. Vrugteboorde het geen unieke spesies gehad nie, 

maar wingerde het twee, en fynbos het 14 unieke spesies gehad. Nogtans was daar ‘n hoë 

soortgelykheid in spesiessamestelling tussen die drie landsgebruiktipes, veral tussen wingerde en 

vrugteboorde. Spesies wat fynbos verkies het was meestal vlugloos en endemies tot die KFS.  

 

Ek wys uit hoe landboustreke nie die volle komplement van spesies in natuurlike fynbos 

ondersteun nie, maar dat wingerde wel meer divers as vrugteboorde is. Ek wys ook hoe wingerde 

‘n goeie geleentheid bied vir harmonie tussen landbouproduksie en natuurbewaring deur 

verbetering in grondbedekking en ander landboupraktyke. Minder geleenthede bestaan in 

vrugteboorde aangesien hulle ‘n digte blaredak het, en nie gekenmerk word deur ‘n gras 

grondbedekking of fynbosplante nie. In die tweede hoofstuk het ons gekyk hoe springkane se 

talrykheid van wingerde en natuurlike plantegroei (fynbos) varieer oor twee piek seisoene (lente 

vs. somer) in die Kaapse Floristiese Streek (KFS). Die doel van die studie was om te bepaal 

watter springkaanspesies watter dele van die landskap gebruik, en hoe dit verband hou met 

spesiespesifieke kenmerke in die KFS. My resultate toon dat spesiespesifieke kenmerke ‘n groot 

rol speel in springkane se vermoë om te beweeg en verskillende kolle natuurlike plantegroei in 

die landskap te gebruik. Hoogs beweeglike, algemene voeder springkaanspesies kan meer dele 
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van die landskap gebruik. Hulle kan tussen wingerde of fynbos beweeg, afhangende van die 

seisoensveranderinge. Aan die ander kant kan minder beweeglike spesialis springkaanspesies nie 

maklik tussen verskillende kolle nauurlike plantegroei beweeg nie. Hulle word grotendeels tot 

een of ‘n paar kolle beperk oor verskeie seisoene.  

 

In die derde hoofstuk, ontwikkel ek ‘n spesiesverspreidingsmodel vir vier gelokaliseerde, 

vluglose springkaanspesies (Euloryma larsenorum and E. lapollai, E. umoja and E. ottei) wat 

endemies is tot die Kaapse Floristiese Streek (KFS). Die eerste twee assosieer slegs met fynbos, 

maar die ander twee (E. umoja and E. ottei) bewoon fynbos sowel as wingerde. Ek het die 

Maksimum Entropie algoritme gebruik wat getoon het dat plantegroeitipe en grondkenmerke die 

belangrikste omgewingsfaktore was wat verspreiding van hierdie vier spesies beinvloed het. My 

modelle het voorspel dat hulle ‘n baie nou geskikte habitat in die KFS het. Daar was geen 

beduidende verskil in die verspreiding van spesies wat met slegs fynbos, of met fynbos en 

wingerde geassosieer is nie. Beduidende pogings tot die bewaring van Euloryma spesies is nodig 

in die KFS, veral aangesien hulle geskikte habitat mag krimp in die geval van globale 

veranderinge. Omdat E. larsenorum en  E. lapollai baie sensitief is vir veranderinge in die 

landskap vanaf fynbos na landbou, behoort hulle bewaring geprioritiseer word. Dit is 

onwaarskynlik dat die ander twee spesies (E. umoja en E. ottei) tot dieselfde mate beïnvloed sal 

word aangesien hulle kan oorleef in die huidige landbou omgewing.  

 

Laastens, in die vierde hoostuk, oorweeg ek springkane se spesiesamestelling in drie 

landsgebruikstipes binne die agri-natuur mosaieklandskappe van die Kaapse Floristiese Streek 

(KFS). Ek het na spesies se vlak van okkupasie en talrykheid gekyk binne die konteks van 
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spesiespesifieke kenmerke sodat ‘n mens ‘n beter idee kan kry van verandering wat binne die 

landskap gebeur. My resultate toon dat slegs ‘n klein hoeveelheid spesies (meestal Acrididae) die 

landskap domineer. Dit het ook getoon dat dominante spesies algemene voeders was. Daar was 

‘n hoë korrelasie tussen algemene voeders, matige tot hoogs mobiele, en wydverspreide spesies 

aan die een kant, en spesialisvoeders wat minder beweeglik en gelokaliseerd is aan die ander 

kant.   

 

Gevolgtrekkings 

My studie het getoon dat bewaarareas belangrik bly om die volle komplement van springkane in 

die Kaapse Floristiese Streek (KFS) te bewaar. Dit is veral so vir vluglose endemiese spesies, 

want hulle het die nouste verspreidings en is baie sensitief vir antropologiese veranderinge. Ek 

het ook gewys dat hoogs beweeglike, algemene voeders beter aangepas is vir heterogene en 

nuwe landskappe as spesialisvoeders wat minder beweeglik is. Landbouproduksie areas 

ondersteun ‘n wye verskeidenheid spesies, en dra dus positief by tot die bewaring van springkane 

in die KFS. Hoogs beweeglike algemene voeders kan oor die hele landskap beweeg en baatvind 

by landbouproduksie en natuurlike kolle plantegroei, terwyl hulle optimeer vir 

seisoensveranderinge. Dit is meestal die minder beweeglike spesialisvoeders wat kwesbaar is vir 

veranderinge in die landskap, want hulle kan slegs oorblywende kolle natuurlike plantegroei 

bewoon. Die Euloryuma genus kan moontlik gebruik word as bio-indikatore vir grondstudies in 

die KFS. Om verdere vereenvoudiging van insekgroepe te verhoed moet daar gepoog word om 

springkaangroepe wat natuurlik teen lae getalle voorkom, te bewaar.  
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CHAPTER 1: Introduction  

1.1 Landscape context and biota 

Agricultural production and urbanisation are the two main causes of fragmentation and 

reductions in quality of native habitats occupied by many species (Opdam et al. 2003; Opdam & 

Wascher 2004; Foley et al. 2005; Lindenmayer et al. 2013). As a result of fragmentation, 

different components of ecological landscapes outside of native habitat patches are no longer 

regarded uniform and natural (Ricketts 2001; Hilty et al. 2012). In spite of that the dispersal and 

persistence of spatially distributed meta-populations are mostly controlled by such components. 

For instance, aspects such as ecological networks and corridors have become vital for linking 

different populations (Hilty et al. 2012). In view of this, the landscape as a whole can be 

considered as a utilitarian device for species and at the same time be used to assess where human 

land-use effects dominate and cause changes (Opdam et al. 2003). 

 

In addition to anthropogenic land-use (mostly agriculture and urbanisation), there is also the 

threat of global change (e.g. climate change, alien invasive species) on species persistence on the 

landscape (Masters & Norgrove 2010; Mainka & Howard 2010). Many studies on species’ 

ability to respond to changes in their habitat and to shift accordingly via landscape connectivity 

to avoid the effect of fragmentation have been conducted (Bradshaw & Holzapfel 2006; 

Kettunen et al. 2007; Pascual-Hortal & Saura 2007). Despite these important studies, a key area 

that requires more attention in most ecological studies, especially species distributions models, is 

heterogeneity of the landscape (Opdam & Wascher 2004). Furthermore, most studies lack 

information on species’ inherited traits that dictate their responses to habitat changes. In spite of 
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this, there have been some studies that have focused on species responses to landscape change 

based on their inherited traits. For instance, in the case of widespread generalist vs localised 

specialist species (Brouat et al. 2004; Colles et al. 2009; Clavel et al. 2011). 

 

This thesis aims to document the response of biodiversity, specifically grasshoppers, in a 

biodiversity hotspot (the Cape Floristic Region (CFR)) which also has intensive agriculture. It 

combines species responses with fragmentation and transformation of habitats, and predicts and 

measures grasshopper utilisation of different patches through their inherited traits and 

behavioural characteristics in an agro-natural mosaic. It also models their distributions taking 

into consideration features of the landscape and habitats which are fragmented by agriculture and 

urbanisation. Finally, it focuses on verifying that widespread, generalist grasshopper species 

occupy more patches in the landscape than do specialist species. My thesis also focuses on 

agriculture as one of the main causes of fragmentation in the CFR, a biodiversity hotspot of 

conservation priority in South Africa.  

1.2 Biodiversity hotspots in South Africa 

There are three major biodiversity hotspots of high conservation priority in South Africa. These 

hotspots largely follow round the rim of the country. Located on the east coast is the 

Maputaland-Pondoland-Albany (MPA) and two other hotspots are located in the south: the CFR 

and the Succulent Karoo hotspots (Mittermeier et al. 2004; Rutherford et al. 2014; Mittermeier et 

al. 2011; Esler et al. 2014). These biodiversity hotspots are based on the number of endemic 

plants, and on high species diversity that is mostly under threat in these hotspots (Myers et al. 

2000). The CFR is home to a very high number of endemic plants, with an estimated 6210 
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species, followed by Succulent Karoo with 2439 species and 1900 for Maputaland-Pondoland-

Albany (Mittermeier et al. 2004; Fonseca 2009).  

 

Threats of land transformation and global change are major drivers causing habitat and 

biodiversity losses in these areas, and hence there is an urgent need for increased conservation 

efforts in these hotspots. For instance, it is estimated that 80%, 76% and 71% of habitats in CFR, 

MPA and Succulent Karoo, respectively, have been ‘lost’ through land transformation and global 

change (Mittermeier et al. 2004; Fonseca 2009). One of the most important types of land 

transformation and land-uses in these hotspots is agricultural production which is a means of 

livelihood and source of food production in South Africa (Myers et al. 2000; Esler et al. 2014). 

According to Greef & Kotze (2007), Cowling et al. (2003), Rouget et al. (2003) and Esler et al. 

(2014), agriculture has been a major driving force in the loss of an estimated 83% of the original 

extent of the dominant natural vegetation (fynbos) in the CFR.  

 

1.3 Agriculture and biodiversity 

A large proportion of terrestrial environment is covered by agricultural production which is also 

home to thousands of species worldwide (Vitousek et al. 1997; Foley et al. 2005). Although 

agriculture is vital for producing food to meet the demands of increasing human population 

(Godfray et al. 2010; Chaplin-Kramer et al. 2015; Wezel et al. 2016), the process is also a major 

cause of biodiversity loss. In order to meet this growing demand for food, more natural/protected 

lands are often converted to production lands, giving rise to conflicts between agriculture and 

biodiversity conservation (Zorrilla-Miras et al. 2014).  
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Transforming natural lands to agricultural production areas greatly alters ecosystems and species 

habitats (Foley et al. 2005; Forman 1995). In spite of this transformation, certain species have 

adjusted to agricultural ecosystems for survival, especially when there is low intensity and 

traditional production practice (Sutherland 2004). Under intensive agricultural production more 

plant species that occur naturally are replaced by often few and introduced ones. This situation 

alters the arrangement of wildlife of both flora and fauna and can even force some species into 

local extinction (Sax & Gaines 2008; Brook et al. 2008). More importantly, agriculture creates 

situations where geographically widespread and common species are dominant on production 

lands compared to the former natural areas that were dominated by more indigenous and 

endemic species. Furthermore, common and opportunistic species tend to inhabit ecotones 

between natural and agricultural areas which hitherto were not in existence in the former 

continuous natural vegetation (Vitousek et al. 1996; Vitousek et al. 1997; Panel 2011). 

1.3.1 Effects of agriculture on biodiversity 

The sudden change in land-use from intricate natural systems to often streamlined ecosystems 

that are managed intensively often affects both flora and fauna (Mayfield & Daily 2005; Zhang 

et al. 2007; Panel 2011). In agricultural systems, high emphasis is placed on resource use for the 

purpose of creating good conditions for few plant and animal species to thrive in order to 

maximise production (Swift et al. 2004). For instance, the use of agrochemicals and fertilisers 

are meant to create environmental conditions that will increase the competitive ability of the 

species of interest. On the other hand, these inputs are also meant to reduce the competitive 

ability (if not destroy) of other organisms that may be in conflict with the wellbeing of the 

species in question, and thereby affect selection pressure (McEwen & Stephenson 1979; Murphy 

& Lemerle 2006). Although these input activities might seem straight forward, the long term 
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effect is often devastating due to the negative impact they have on the ecosystem. Agricultural 

production practices often lead to the destruction of non-target or beneficial organisms (Johnsen 

et al. 2001), leave chemical residues in soils, water bodies and plants (WHO 1990; Mullin et al. 

2010) and cause a general decline in farmland biodiversity, especially of habitat specialists 

(Robinson & Sutherland 2002; Benton et al. 2003). Other agricultural production practices, such 

as genetic modification of crops, are further simplifying the ecosystem at the gene level 

(Uzogara 2000; Vanloqueren & Baret 2009). 

 

At the landscape scale, agricultural production practices create homogeneous environments that 

are aimed at enhancing the efficiency of production. This leaves little natural vegetation for 

associations between organisms and hence depletion of ecosystem services (Foley et al. 2005; 

Tscharntke et al. 2005; Holzschuh et al. 2007). Agriculture also causes fragmentation of the 

otherwise continuous natural habitats, creating isolated and often small populations, and which 

eventually leads to a reduction in species (Verboom et al. 1991; Tscharntke et al. 2005). For 

instance, there has been widespread reporting of population declines of bees (an important 

ecosystem provider) due to adverse agricultural practices (Goulson et al. 2008; Rundlöf et al. 

2008; Gallai et al. 2009; Kremen et al. 2002; Potts et al. 2010). In another study, in Scotland, 

reductions in farmland birds corresponded with a decline in invertebrate diversity because of 

increase in agricultural activities (Benton et al. 2002). Other ecosystem dis-services that emanate 

from agricultural production are an increase in production costs from control of ‘undesired’ 

species which compete with crops for nutrients, water etc. (Mayfield & Daily 2005; Mayfield et 

al. 2005; Zhang et al. 2007). 
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1.3.2 Importance of agriculture to biodiversity 

Agriculture is not always detrimental. There is evidence of improvement in ecosystem functions 

and biodiversity in general as a result of certain, specific production activities (Tscharntke et al. 

2005; Fahrig et al. 2011). It is also important to note that agro-ecosystems hold the major part of 

biodiversity in the world (Pimentel et al. 1992). Most importantly, it is widely known that 

traditional and low intensity agricultural production practices tend to improve biodiversity on 

farmlands. This is because such production practices give rise to a heterogeneous environment 

that creates many suitable habitats for a variety of organisms (Bignal & McCracken 1996; 

Mander et al. 1999). For instance, it has been reported that there are as many floral resources 

available in agricultural systems for pollinators as in the wild. Agroecological practices may also 

be characterised by plentiful supply of plant biomass such as palatable leaves and fruits for birds, 

mammals and insects (Kevan & Viana 2003; Tscharntke et al. 2005; Wratten et al. 2012). Low 

intensity agriculture also increases the competitive ability of less dominant species and reduces 

that of dominant species thereby increasing the number of organisms that can co-exist under such 

conditions (Hyvönen & Salonen 2002; Oehl et al. 2003). This means that agricultural production 

does not always increase the probability of species extinction but can provide important 

resources for increased diversity and co-existence. A few opportunistic species even prefer 

highly intensive agricultural production areas to thrive (Huston & Huston 1994). 

1.3.3 Agricultural production and endemic species 

Endemic and indigenous species respond to habitat transformation, especially agricultural 

production, in different ways. Some adapt to the newly created habitats and continue to persist in 

them (Corlett 1992; Midgley et al. 2003). Other species move away from the transformed 

environment (that is now considered hostile) to a friendlier environment and thus shift their 
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range of occupancy (Corlett 1992; Midgley et al. 2003). Failure to either adapt to this newly 

transformed habitat or shift range can only mean a species will die out and possibly go extinct 

(Corlett 1992; Midgley et al. 2003; Samways 2007). 

1.3.4 Agriculture production and insect conservation  

There are many supporting ecosystem services that are provided by insects (Samways 2007; 

Zhang et al. 2007). For instance, bees, butterflies and beetles are among the most prominent 

pollinators of crops in agricultural ecosystems (Proctor et al. 1996; Zhang et al. 2007; Buchmann 

& Nabhan 2012). Other ecosystem services such as pest control and dung burial are prominent 

among certain beetles (Zhang et al. 2007; Sepp 2012). Dung burying beetles accelerate the 

decomposition of animal waste and act as a driver of nutrient recycling (Losey & Vaughan 2006; 

Zhang et al. 2007). Parasitoids, predators, entomopathogenic fungi and nematodes provide 

important ecosystem services in the natural suppression of pests in agricultural ecosystems 

(Gaugler et al. 1997; Cardinale et al. 2003; Malan & Moore 2016; Odendaal et al. 2016; Stokwe 

& Malan 2016). Intensive agricultural production practices such as insecticide application often 

have unintended negative consequences on biodiversity of these important ecosystem service 

providers. There is therefore an urgent need for a systematic approach towards the conservation 

of such ecosystem providers to avoid future collapse of agriculture production which humans are 

entirely dependent on for survival (Samways 2007). 

 

Some of the useful strategies for insect conservation in agricultural systems are land sparing, use 

of cover crops, land sharing and the provision of natural corridors (Samways 2007; Phalan et al. 

2011). These strategies are aimed at providing refuges and good habitats, to maintain soil 

conditions (especially moisture), provide alternative sources of food, link agricultural production 

Stellenbosch University  https://scholar.sun.ac.za



 

8 
 

sites and natural areas etc. Linking agricultural production to natural areas through corridors and 

also sparing adjacent lands for conservation purposes have been reported to affect pollination 

positively and hence increase yields (Klein et al. 2003). 

1.3.5 Agricultural production and grasshopper conservation 

As key insect herbivores, grasshopper species have mixed responses to land transformation, e.g. 

agricultural production (Torrusio et al. 2002; Kuppler et al. 2015; Adu-Acheampong et al. 

2016), invasive alien plants (Yoshioka et al. 2010), grazing and fire (Gebeyehu & Samways 

2003; Joubert et al. 2016) and land management and design (Gebeyehu & Samways 2002; 

Bazelet & Samways 2011b) etc. Like other terrestrial insects some generalist species, mostly 

flighted, widespread species (e.g. Aiolopus thalassinus), benefit, while specialist, and often 

native or endemic, flightless species (e.g. Eremidium maius and Euloryma sp. both endemic to 

South Africa) are impacted negatively (Rainio et al. 2003; Yoshioka et al. 2010; Adu-

Acheampong et al. 2016; Joubert et al. 2016). According to Steck et al. (2007), grasshopper 

sensitivity and their subsequent change in diversity differs based on changing land-use and 

environmental scenarios.  

 

In Tanzania, grasshoppers responded positively to vegetation with close to 100% increment in 

diversity and abundance as a result of increases in density of grass cover (Kuppler et al. 2015). 

The study also reports that a heterogeneous landscape such as a low intensive agro-natural 

mosaic has the potential of maintaining higher grasshopper diversity compared to a highly 

intensive and conventional agriculture land-use (Kuppler et al. 2015). These findings agree with 

the findings of Griebeler & Gottschalk (2000) on German bush crickets (Tettigoniidae), where 

species had very high persistent rates under heterogeneous habitats compared to homogeneous 
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ones. These studies overall show that certain grasshoppers thrive better under well-managed 

agro-natural schemes compared to either pristine natural environment or a highly intensive 

agricultural production system alone. The most successful of these species in agro-natural 

landscapes are flighted species with high dispersal ability.  

 

Grasshoppers were chosen for this study because they readily respond to changes in land-use and 

hence have previously been employed as indicators of environmental changes. Some of these 

important uses are within afro-montane grasslands (Crous et al. 2013), agricultural production 

fields (Kuppler et al 2015, Adu-Acheampong et al. 2016), grassland remnants within a timber 

plantation matrix (Bazelet & Samways 2011a), fire and grazing management (Gebeyehu & 

Samways 2003; Joubert et al. 2016), monitoring invasive alien plants (Yoshioka et al. 2010) and 

community succession within alluvial pine plantation (Fartmann et al. 2012; Helbing et al. 

2014), succession and grass encroachment (Schirmel et al. 2011), restoration management 

(Gebeyehu & Samways 2002; Borchard et al. 2013), conservation (Gebeyehu & Samways 2006a 

and b) and developing tools to identify natural vegetation with high conservation priorities 

(Matenaar et al. 2015). Information on grasshoppers are also readily available and together with 

their relatively well understood biology, the group becomes one of the best candidates for a study 

in a biodiversity hotspot which doubles as an agricultural production area like the CFR. 

1.3.6 Insect utilisation of different patches in agro-natural landscapes 

Pressure from anthropogenic activities result in unexpected changes in resource allocation to 

various elements of a landscape. In this situation organisms are forced to change habitats in a bid 

to survive these impacted landscapes (Masters & Norgrove 2010; Mainka, & Howard 2010; 

Todgham & Stillman 2013). In such landscapes, animals move between habitats for the purpose 
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of locating any available resources as the season changes. This is one mechanism that enhances 

the survival of species under such changing landscapes. This movement between seasons can be 

described as dispersal which is defined in animals as either a passive or active effort to shift from 

a resting or breeding site to another site (Clobert et al. 2009). A vivid example is the movement 

of natural enemies of pests between non-cropped and cropped areas based on need and seasonal 

allocation of resources (Duelli et al. 1990; Wissinger 1997, Tscharntke et al. 2007; Todgham & 

Stillman 2013).  

 

More often, agricultural mosaics consist of semi-natural and cultivated patches (Westphal et al. 

2003). This environment houses plants with different phenologies and life history traits that 

cause significant differences and seasonal shifts in available resources (Tscharntke et al. 2005). 

The production of crops creates sudden large availability of dry matter during a short period 

followed by a lean one. On the other hand, natural and semi-natural habitats exhibit moderate 

phenological changes in seasons. The combination of the different habitat patches arising from a 

combination of both agriculture and natural vegetation, as opposed to just one of these land-

types, supplies most of the needed resources for species’ persistence. Free moving organisms 

may access resources based on their availability in different patches in different seasons, unlike 

less mobile species. Under such conditions, these different patches produce resources that are 

complementary to each other in terms of supporting local diversity of insects (Pilliod et al. 2002; 

Mayfield & Daily 2005; Lonsdorf et al. 2009). One example of complementary use of resources 

from different patches in an agro-natural landscape was demonstrated in a study conducted in 

USA where there was strong movement responses of bees to temporal availability of floral 

resources (Mandelik et al. 2012). In this study, most of the wild bees foraged within fallow areas 
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in early season, switched to crop production patches in the middle of the season, and later shifted 

towards old fields as the season drew to an end, with natural habitats not playing any significant 

role in this complementary support of bees (Mandelik et al. 2012).  

1.3.7 Dispersal of grasshoppers in agro-natural landscapes 

Dispersal plays a major role for grasshoppers in fragmented landscapes. This is mainly for the 

purpose of maintaining functional connectivity through genetic transfer between populations 

(Hanski & Gaggiotti 2004; Ortego et al. 2015). It also makes it possible for migration into new 

and suitable habitats and hence increases species persistence across a landscape (Ronce 2007; 

Ortego et al. 2015). This dispersal ability is more pronounced in highly mobile grasshoppers i.e. 

well-flighted species. The high correlation between dispersal ability and mobility in flighted 

species can be related to their wing morphology (Sekar 2012) which is also affected by habitat 

quality (Bazelet & Samways 2014) and hence can be inferred that the quality of habitat will have 

an indirect influence on dispersal ability of flighted grasshoppers. This explains partly the reason 

why wingless and less mobile grasshoppers have lower dispersal ability leading to less genetic 

transfer between isolated populations of such species (Ronce 2007; Sekar 2012; Hanski & 

Gaggiotti 2004; Ortego et al. 2015).  

 

In view of this situation, we can deduce that less mobile grasshopper species are likely to be 

more affected by fragmentation than highly mobile species, through lack of gene transfer and 

ability to shift range, and hence are more likely to be less persistent in agricultural landscapes. 

The opposite is arguably more likely to be the case for highly mobile and flighted species. Such 

movement under agro-natural landscapes has the potential to be used to influence conservation 

actions (Ronce 2007; Ortego et al. 2015). Ecological niche modelling has the potential of helping 
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understand the best habitat conditions (Pearson 2010) that can influence such grasshopper 

movements for effective prediction of potential destinations in agro-natural landscapes with 

changing seasons. 

1.4 Species distribution modelling and biodiversity conservation 

A very useful application tool for conservation purposes is developing a model that can be used 

to forecast or predict species distribution (Elith et al. 2006; Pearson 2010). This important model 

is constructed by combining environmental variables that affect the species in question and its 

occurrence records usually in modelling software (Franklin 2010; Pearson 2010). Some of the 

most important conservation decisions that can be taken based on species distribution modelling 

are forecasting the potential or current distribution of species on a landscape (Franklin 2010; 

Ferraz et al. 2012), estimating the suitability of environmental conditions where species can be 

maintained and finding the range of distribution (Anderson & Martínez-Meyer 2004; Chefaoui et 

al. 2005), identifying areas of conservation importance, (Thorn et al. 2009; Ferraz et al. 2012; 

Guisan et al. 2013), and predicting places of future invasion and forecasting climate change 

impacts (Peterson & Vieglais 2001; Guisan et al. 2013; Elith & Leathwick 2009; Elith et al. 

2006; Hulme 2016) on species.  

 

Characterising the most suitable environmental conditions has been the common approach for 

evaluating the potential or actual geographic range of a species (Pearson 2010). This 

characterisation can either be done using a mechanistic or correlative approach. Under a 

mechanistic approach, the modeller uses the species’ tolerance level to certain physiological 

limitation under certain conditions, usually environmental, to predict its potential or actual 

distribution (Pearson & Dawson 2003; Kearney & Porter 2009; Pearson 2010; Rebaudo et al. 
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2016); for instance, reproductive success under certain conditions such as heat, cold and or 

moisture stress. With such an approach, the modeller is obliged to have a thorough knowledge on 

the organism’s physiological reactions to various environmental factors (Pearson 2010). 

Correlative approaches on the other hand seek to match occurrence records with important 

environmental variables that are known to physiologically affect the species and its persistence 

under such locations (Ferraz et al. 2012; Hulme 2016; Jung et al. 2016). 

 

Here I use the correlative approach for modelling the local distribution of grasshoppers where 

occurrence is matched with environmental variables such as rainfall, temperature, vegetation and 

altitude to predict the most suitable environmental niche and conditions for the persistence of 

grasshoppers in a heterogeneous agro-natural landscape. Using this approach, information of the 

most useful environmental conditions for occurrence of a species is derived from its observed 

distribution (Pearson 2010). 

1.4.1 Species distribution modelling and conservation of insects 

For successful modelling of species distribution, a key factor to consider is spatial scale. Spatial 

extent or geographic range is a necessary factor to consider in an attempt to account for all 

habitats that are required for life history traits of the species in question. Another important 

factor to consider is also key environmental variables suitable for the persistence of the species 

in question (Lin et al. 2016; Silva et al. 2016). Insects, especially terrestrial species like beetles, 

butterflies, bees and grasshoppers are mainly found in association with their food resources, and 

hence vegetation cover and/or amount of floral resources available in an environment which may 

be key for their distribution (Jung et al. 2016).  
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Other important factors such as temperature, rainfall, elevation, level of biological activities (e.g. 

predation, competition etc.) may be important for the distribution of insect species and hence 

these factors need to be considered when designing ecological niche models (Schemske et al. 

2009; Kearney & Porter 2009; Franklin 2010). Usually, the population of insects occupying a 

unit area of land is higher than that occupied by other terrestrial animals like birds and mammals 

for a similar unit of land. Because of that, the exact spatial scale to consider for capturing the 

distribution of insects is often relatively small. According to Peters & Wassenberg (1983), 

relatively small animals often record higher population densities per unit area of land compared 

to larger ones. Inferring from this relationship, it can be extrapolated that the extent of an area to 

consider in order to cover the geographic ranges of insects will be relatively smaller compared to 

larger animals. 

1.4.2 Species distribution modelling and grasshopper conservation 

Although grasshoppers are mainly regarded as habitat specialists they are not necessarily limited 

by food sources because their feeding habits range from being omnivorous to polyphagous 

(Dadd 1963; Detzel 1998). The most likely determinant factors for their distribution in a habitat 

will be the capacity to provide necessary conditions for vital life history traits such a good soil 

conditions, ambient temperature and oviposition sites. Under a Mediterranean-type climate, as in 

the CFR, grasshoppers are usually seen in warmer places at the lowest part of mountains, and in 

dry and open habitats (Detzel 1998). For instance, the fynbos biome, a shrubland that occurs on 

both lowland and highland places in the CFR (Mittermeier et al. 2004; Myers et al. 2000; Esler 

et al. 2014) is this type of system.  
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Most grasshopper species tap resources from different vegetation types and structures throughout 

their life history, especially in open vegetation (Kemp et al. 1990), such as fynbos and 

grasslands. For example, they may use places with high temperature for hatching of eggs and 

others with long forbs and grasses for food and shelter (Detzel 1998; Hein et al. 2007). Therefore 

a measure of heterogeneity in the vegetation can approximate the number of grasshopper species 

present.  

 

To be able to successfully model the distribution of grasshoppers, vegetation structure and type, 

temperature and soil conditions must play a vital role. This is even more important if 

conservation actions are to be based on distribution models. For instance, a study conducted in 

Germany reported that habitat type e.g. grassland and marshy areas were the most important 

factors that determined the occurrences of grasshopper species (Hein et al. 2007).  

1.5 The main goals of this thesis 

My thesis aims at gaining insights into conservation of insects (specifically grasshoppers) in a 

biodiversity hotspot (the CFR) which is also known for high agricultural production. I focus here 

on grasshopper diversity in different land-uses, mainly agriculture (vineyards and orchards), with 

protected areas as reference. Firstly, I determine the land-use type that is grasshopper friendly 

and which offers most opportunities for grasshopper diversity conservation in the CFR. Then I 

assess the dispersal ability of the various focal species and relate this to the life history traits of 

the various grasshoppers to ascertain the actual dispersal mode of each grasshopper major group 

for conservation planning purposes in the CFR. Finally, I identify the more important of two 

known environmental conditions (topography and vegetation) necessary for the distribution of an 

Stellenbosch University  https://scholar.sun.ac.za



 

16 
 

endemic grasshopper through species distribution modelling in agro-natural landscapes in the 

CFR for the purposes of designing proper conservation schemes.  

1.6 Chapter outlines 

Chapter 1 consists of the general introduction of the thesis. It touches on the study background, 

goals and specific questions asked and the outline of the thesis. 

 

In chapter 2 I analyse the extent to which an agricultural mosaic supports grasshopper species in 

an agro-natural landscape to ascertain the level at which biodiversity is impacted by land-use 

activities in the CFR. This study also determines the best agricultural environment and practices 

for conservation, and recommends practices to improve biodiversity in agro-natural landscapes 

in the CFR. This chapter is already published as a paper in the journal Agriculture Ecosystems 

and Environment. 

 

In chapter 3 I relate species life history traits of grasshoppers to their ability to utilise different 

patches in an agro-natural landscape of the CFR. Specifically, I link grasshopper species 

inherited traits with their ability to utilise agriculture and or natural patches through changing 

seasons.  

 

In chapter 4 I develop species distribution models for the grasshopper genus Euloryma and focus 

on four species, E. umoja, E. ottei E. lapollai and E. larsenorum. I aim to identify the most 

important environmental variables that determine the distribution of these flightless, endemic 

species which have small geographical ranges in the CFR, and as such, are highly vulnerable to 

habitat transformation. This study also determines the extent of vulnerability of four species 
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groups to extinction (i.e. species associated with agriculture only vs. species associated with 

agriculture and natural areas). I also make recommendations on the appropriate conservation 

practices to be used.  

 

In chapter 5 I investigate the relationship between grasshoppers’ type of distribution and level of 

site occupancy and link these to mobility. I aim to prove an anecdotal observation that highly 

mobile, widespread species occupy more habitats compared to low mobility and localised 

species. I will then use this relationship as a baseline indicator for accessing landscape change in 

the CFR. I make recommendations towards developing a biotic index based on species mobility 

and type of distribution in the CFR.  

 

In chapter 6 I develop a synthesis and draw general conclusions for the thesis. I connect the 

various chapter findings to arrive at the general conclusion for the thesis. 

1.7 The main research hypothesis 

I first test the hypothesis that agricultural production has no impact on biodiversity of insects 

(using grasshoppers as a test case) and follow with a second hypothesis that irrespective of the 

agriculture production type (either vineyards or orchards), the impact on grasshopper diversity is 

similar. This hypothesis is also used for chapter 2.  

 

My hypothesis for chapter 3 is that, mobile, generalist species will migrate in between 

agricultural and natural patches in response to changes in habitat conditions aided by their life 

history traits of high mobility and seasonal change in vegetation structure. On the other hand, 
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narrow-range endemic species will not be able to move through different habitat patches due to 

their less mobile ability and hence will be confined to a small area throughout changing seasons.  

 

In chapter 4 I hypothesise that both topography and type of vegetation (both widely known 

environmental factors affecting grasshopper distribution) affect the distribution of Euloryma 

species equally. I also predict that the more sensitive a species is to likely climatic change, the 

lower the chances of it occurring in a transformed habitat (e.g. vineyards) other than fynbos, with 

the reverse being the case for less sensitive species. I also hypothesise that species that occur 

only in fynbos (and not in agricultural fields) are more sensitive to future land-use and climate 

change than species which commonly occur in both fynbos and agricultural fields.  

 

In Chapter 5 I hypothesise that widespread and generalist grasshopper species are abundant and 

occupy more sampling sites and land uses compared to localised and specialist ones. Here I 

assume that the high abundance and or occupancy of generalist and widespread species, is as a 

result of occupying more diverse habitats and sites over the course of evolutionary time. 
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CHAPTER 2: Extent to which an agricultural mosaic supports endemic 

species-rich grasshopper assemblages in the Cape Floristic Region 

biodiversity hotspot 

This chapter is already published as: Adu-Acheampong, S., Bazelet, C.S., Samways, M.J., 2016. Extent 

to which an agricultural mosaic supports endemic species-rich grasshopper assemblages in the Cape 

Floristic Region biodiversity hotspot. Agriculture, Ecosystems and Environment, 227:52–60. 

Abstract 

The impact of expansion and intensification of agriculture on biodiversity requires 

quantification, especially in areas of exceptionally high biodiversity like the Cape Floristic 

Region (CFR). In the CFR, landscape mosaics consist of agriculture alongside Mediterranean-

type fynbos scrubland natural vegetation rich in endemic insect species. However, little is known 

about how ground-dwelling insect herbivores utilize the various elements of the mosaic. I 

compared species richness, abundance, species composition, diversity and evenness of 

grasshoppers among 46 sites in four geographical areas in the CFR. I investigated three land-use 

types: fynbos (the historic condition as reference), vineyards and deciduous fruit orchards, the 

main production types in the region. Grasshopper abundance was significantly higher in 

vineyards than in fynbos or orchards. Species richness, diversity, and evenness were highest in 

fynbos followed by vineyards and then orchards. Orchards had no unique species, vineyards two, 

and fynbos 14 unique species. Nevertheless, there was overall high species similarity among all 

three land-use types, with high species assemblage similarities between vineyards and orchards. 

Species that preferred fynbos were mostly flightless and endemic to the CFR. I show that 

agricultural areas do not support the entire species assemblage of natural vegetation, although 
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vineyards are more diverse than orchards, probably because of the presence of often grassy 

ground cover and an open canopy. Vineyards provide the greatest opportunity for improved 

harmony between production and biodiversity conservation through continuing to improve the 

ground cover quality and other farming practices. Fewer opportunities are provided by orchards 

in view of their closed canopy and absence of grassy ground cover (for generalist species) and 

fynbos plants (for endemic species). However, protected areas still remain vital for maintaining 

the full complement of species, especially flightless endemics. 
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2.1 Introduction  

Biodiversity is threatened by increasing human stressors (Crains & Lackey 1992; Corker 2011; 

de Baan et al. 2013). The threats come from increasing demands for food, fibre and fuel, 

necessitating the expansion of agricultural lands at the expense of natural vegetation (Norris 

2008; Pagiola et al. 1998). Agricultural production is considered to be one of the strongest 

drivers of this biodiversity loss (Lindenmayer et al. 2013).  

 

The Cape Floristic Region (CFR) is a world biodiversity hotspot, with high diversity of endemic 

plants and other organisms which face high levels of threat (Mittermeier et al. 2004; Myers et al. 

2000). The CFR is also known for intensive agricultural production (Esler et al. 2014). Over 

30% of the land mass of the CFR has been transformed by agriculture, urbanisation and alien 

invasive plants, with only 17% of the original extent of the primary natural vegetation (fynbos) 

still remaining (Cowling et al. 2003; Rouget et al. 2003). Furthermore, 47.7% and 78.6% of 

South Africa’s vineyards and apple orchards, respectively, are located in the CFR (Greef & 

Kotze 2007). These production types, together with potato and melon production, are responsible 

for the loss of the majority of the original extent of fynbos vegetation, mostly lowland fynbos 

(Esler et al. 2014) and there is still potential for expansion of agricultural holdings and further 

pressure on biodiversity within the CFR (Rouget et al. 2003).  

 

While agriculture is known to adversely affect biodiversity, if good management practices are 

observed, they may be able to benefit biodiversity through mitigating the effects of 

transformation. This can be done by land sparing, such as conserving remnant patches (as has 

been done in the CFR; Gaigher et al. 2015) or provision of large scale ecological networks 
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(Pryke & Samways 2012; Samways et al. 2010), or it can be done by land sharing such as the 

instigation of biodiversity-friendly farming methods such as organic farming (e.g. in the CFR; 

Gaigher & Samways 2010; Kehinde & Samways 2014), or a combination of both land sparing 

and land sharing into an agro-ecological matrix. Interestingly, it is estimated that half of all 

species in Europe are dependent on agricultural habitats (Kristensen 2003).  

 

Previous research conducted in vineyards in the CFR recorded high arthropod diversities with 

minimal declines in relation to neighbouring natural vegetation (Gaigher & Samways 2010; 

Kehinde & Samways 2012; Magoba & Samways 2011; Vrdoljak & Samways 2014). Other 

studies conducted by Bailey et al. (2010) in Switzerland, Brown (2012) in the U.S.A. and Horak 

et al. (2013) in the Czech Republic, on the impact of deciduous orchard production on 

biodiversity produced mixed results. These mixed results support the notion that the impact of 

agriculture on biodiversity depends mostly on the type of agricultural production, production 

practices, surrounding landscape features and in particular the taxon under consideration 

(Badenhausser & Cordeau, 2012; Bailey et al. 2010; Bruggisser et al. 2010; Horak et al. 2013; 

Liu et al. 2015; Norris 2008). Some taxa (e.g. snails and lichen) prefer a cold, wet and closed 

canopy with tall trees and dense vegetation (e.g. forests) (Bailey et al. 2010; Horak et al. 2013), 

while others (e.g. grasshoppers) prefer open, dry and warm relatively short vegetation (e.g. 

grasslands) (Uvarov 1966).  

 

Grasshoppers are good indicators of changes in environmental quality. For instance, grasshopper 

species assemblages showed strong responses to changes in semi-natural grasslands within the 

exotic timber plantation matrix in South Africa (Bazelet & Samways 2011b, 2011c) and 
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community succession in steppe grasslands and alluvial pine woodland in Germany (Fartmann et 

al. 2012; Helbing et al. 2014). Grasshopper diversity in grasslands of South Africa (Gebeyehu & 

Samways 2002), grassland remnants within a timber plantation matrix (Bazelet & Samways 

2011a, 2011b, 2011c) and rocky afromontane grasslands (Crous et al. 2013) have been shown to 

be high. However, grasshopper ecology or diversity has been little studied in fynbos or 

agricultural areas of the CFR biodiversity hotspot (but see Matenaar et al. 2014). In neighbouring 

xeric succulent thicket (Fabricius et al. 2003) and sugarcane plantations (Bam et al. 2013) in 

South Africa, natural and cultivated lands in Eurasia (Sergeev1998), small scale farms adjacent 

to savannah vegetation in Tanzania (Kuppler et al. 2015) and lac plantations in China (Chen et 

al. 2011), high grasshopper diversities were reported, especially on agricultural lands but without 

focus on narrow-range endemics such as those which occur in the CFR.  

 

Here, I aim to assess the extent to which the main agricultural land-use types in the CFR (grape 

vineyards and fruit orchards) are able to support indigenous grasshopper assemblages, including 

the CFR’s characteristic high levels of endemic species, relative to historic fynbos in protected 

areas. I tested two hypotheses: (1) that agricultural production in the CFR has no impact on 

grasshopper diversity; and (2) that different agricultural production types (vineyards vs. 

orchards) have similar impacts on grasshopper diversity. I compare grasshopper species richness, 

composition, diversity and evenness among the three land-use types in four geographical areas in 

the CFR. 
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2.2 Methods  

2.2.1 Geographical areas and sites  

Forty-six sites were selected belonging to three land-use types: historic Fynbos (F) in formally 

protected areas, Vineyards (V) and Orchards (O). The elevation of sites ranged from 90 m to 592 

m asl. All sites were located in one of four geographical areas within the CFR: Grabouw, 

Somerset West, Stellenbosch and Paardeberg (Fig. 2.1). The four areas constituted four 

independent landscape mosaics because they were either distant from each other (the farthest 

inter-site distance within an area was 23km, while the closest inter-site distance between areas 

was 35km), or separated by mountain ranges which probably acted as movement barriers to 

grasshoppers. Such distances, while seemingly short for northern-hemisphere temperate regions, 

are biogeographically highly significant for the CFR (Vrdoljak & Samways 2014). The area has 

many folded mountains with valleys and rivers. It has cold, wet winters and warm, dry summers. 

Forty-six sampling sites were selected. The selected areas were Stellenbosch (33° 55' 56" S, 18° 

51' 37" E), Somerset West (34° 04' 33" S, 18° 50' 36" E), Paardeberg (34° 27' 00" S, 19° 36' 00" 

E) and Grabouw (34° 09' 08" S, 19° 00' 13" E) (14-16 sites each) (Fig. 2.1). The selected farms 

were Vergelegen at Somerset West, Paul Cluver at Grabouw, Delvera, Delheim and Timbalea at 

Stellenbosch and Slent and Vondeling at Paardebeg. All fynbos sites were located in protected 

areas (PAs): Hottentots Holland at Grabouw, Jonkershoek at Stellenbosch, Helderberg at 

Somerset West and Limietberg provincial nature reserves at Paardebeg.  

 

All selected vineyards were conventional wine grape vineyards (Vitis vinifera) that followed 

pesticide and irrigation management regimes based on IPW guidelines (Tromp 2006). All 

vineyard sites were interspersed with one or more cover crops, mostly legumes (Vicia spp.) that 
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are annual, Raphanus raphanistrum annual or biennial and also grows in the wild, rye grasses 

(Lolium spp.) with both wild and cultivated species, oats (Avena fatula) which is considered an 

agricultural weed worldwide, Hypochoeris radicata which is a perennial cover crop, Bidens 

pilosa cultivated and also grows in the wild and is also known to be a weed on agricultural fields 

and Erodium moschatum which is also a weed which occurs both in natural environment and 

cultivated lands. Deciduous fruit orchards were mostly closed canopy apple trees. All selected 

apple orchard sites practiced conventional production that involved mostly the use of broad 

spectrum pesticides, although they were based on market standards and requirements (see 

Hortgro 2015). 
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Fig.2.1. Map of the study area in the Cape Floristic Region, South Africa. Forty-six sites were sampled in four 

geographic regions and of three land use types. The map shows how the forty-six sites are distributed across the four 

study areas. It also shows the proximity of fynbos, vineyards and orchards within a geographic area (e.g. 

Paardeberg). 

 

Most of the selected orchards had little to no cover crops. The few interspersed cover crops in 

orchards were mostly rye grasses, alfafa (Medicago sativa) a perennial cover crop and legumes. 

Irrigation application for my selected apple orchard sites were mostly based on soil moisture and 
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plant requirements, with irrigation being much more frequently used in orchards than in 

vineyards. My sampled farms either used drop, microjet irrigation or both in all orchard sites. 

Fynbos sites were all located in protected areas (PAs): Hottentots Holland, Jonkershoek, 

Helderberg and Limietberg provincial nature reserves and were adjacent to vineyards and 

orchards (Fig. 2.1). Fynbos is a scrubland, high in endemic plant species and dominated by 

Proteaceae, Restionaceae, and Ericaceae (Esler et al. 2014; Mittermeier et al. 2004).  

2.2.2. Grasshopper sampling  

Grasshoppers were sampled on four different occasions between November 2013 to April 2014 

between 09:00 and 17:00 on sunny days with low wind speed and cloud cover. A 50x50 m 

quadrat was delineated in the centre of each site >30 m from the edges, to avoid edge effects 

(Bieringer et al. 2013; Pryke & Samways 2011). The choice of quadrat size was based on 

successful use elsewhere in South Africa (Bazelet & Samways 2011a, 2011b). Each site was 

sampled for 30 min on four occasions by two collectors (i.e. four person hours per site). Sites 

were sampled repeatedly at different times of day and across seasons in order to eliminate bias 

and ensure that samples collected were an adequate representation of total grasshopper diversity 

at a site. All four samples were pooled per site. Grasshoppers were initially flushed out of their 

swards and individuals seen hopping, walking or flying were caught with an insect net (Bazelet 

& Samways 2011a, 2011b; Larson et al. 1999). The timed quadrat count method was appropriate 

for scrubland vegetation (fynbos), vineyards and orchards (see Bazelet & Samways 2011a, 

2011b; Gardiner et al. 2005). Captured grasshoppers were killed and identified in the laboratory 

using keys of Dirsh (1965), Eades et al. (2015), Jago (1994), Johnsen (1984), Johnsen (1991) and 

Spearman (2013). 
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2.2.3 Statistical analyses  

Sample-based and individual based rarefaction curves were plotted for each land-use type 

separately and for all sites together to verify the completeness of sampling using EstimateS 

(Colwell 2005; Gotelli & Colwell 2011; Moreno & Halffter 2000). Rarefaction curves showed 

that sampling was sufficient within each land-use type and for all land-use types combined. 

Sample-based and individual-based curves reached near asymptotes in all cases (Fig. 2.2). 

                                            (a)                                                                   (b) 

 

Fig. 2.2 Sample (a) and individual (b) based rarefaction curves for all (combined) vegetation types, fynbos sites, 

vineyard sites, and orchard sites. 

 

To characterise community differences among the various land-use types and areas of study, we 

calculated species richness, abundance, density of grasshoppers in 2500 m2, Shannon-Wiener 

Diversity index (H'), and Pielou’s evenness (J) (dependent variables) by hand in Excel (Fishel 

2014) and EstimateS. Two-way ANOVA was performed in Statistica 12.6 (Hill & Lewicki 2007; 

StatSoft 2013) to compare diversity indices of grasshoppers among geographical areas and land-

use types and their interaction term (independent variables). This was after a Shapiro-Wilk’s test 

of normality showed that the data were normally distributed (Shapiro-Wilk’s W = 0.94, p = 

0.13). When the interaction term was significant, one-way ANOVA was performed to compare 

0

10

20

30

40

0 10 20 30 40 50

S
p

e
c
ie

s 
r
ic

h
n

e
ss

No. of samples

Combined

Fynbos

Vineyards

Orchards

0

10

20

30

40

0 500 1000 1500 2000 2500

No. of individuals

Combined

Fynbos

Vineyards

Orchards

Stellenbosch University  https://scholar.sun.ac.za



 

50 
 

land-use types within each area. I chose to analyze my data using two-way ANOVA as this 

method is intuitive and easy to interpret, I had a simple two-way factorial design, and my data fit 

the assumptions of ANOVA. 

 

To illustrate the similarity of grasshopper assemblages among the three land-use types, a Venn 

diagram showing the percentage and the number of shared and unique species per land-use was 

constructed. The Bray-Curtis similarity index (Kindt & Coe 2005; Magurran 2013) was 

calculated in EstimateS to assess species assemblage similarity among each pair of land-uses 

based on study areas. Bray-Curtis was used because it is influenced by the most abundant species 

and it is assumed that the most abundant species in ecological studies are well sampled, and thus 

express differences among sampling sites and land-uses better than less abundant ones (Kindt & 

Coe 2005). The values of the Bray-Curtis similarity index range from 0 to 1 with 1 indicating 

sites have the same species composition and 0 indicating that sites have no common species. I 

compared differences in Bray-Curtis similarity indices (dependent variables) for each pair of 

sites classified by whether they were in the same or different geographic area and land-use type 

(independent variable with four levels: same area-same type, same area-different type, different 

area-same type, different area-different type) using one-way ANOVA and Tukey’s multiple 

comparison test in Statistica 12.6.  

 

These results were corroborated using a Mantel’s test performed in Pattern Analysis, Spatial 

Statistics and Geographic Exegesis (PASSaGE; Rosenberg & Anderson 2011). Three matrices 

were constructed: one with pairwise Bray-Curtis dissimilarity of species assemblage composition 

for each pair of sites (for Mantel’s tests, we required a distance matrix to compare with 
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geographic distance, and therefore used Bray-Curtis dissimilarity rather than similarity for this 

set of analyses only). Two binary dissimilarity matrices were constructed to indicate differences 

among sites. In the first, a score of 0 was given to a pair of sites in the same land-use and a score 

of 1 to each pair of sites of different land-uses; in the second binary matrix, a score of 0 was 

given to each pair of sites within the same geographic area and 1 to each pair of sites in different 

geographic areas.  

 

Mantel’s test in PASSaGE was also performed to test for the effect of geographical proximity 

(spatial autocorrelation) on species assemblage composition of the 46 sites (Legendre & Fortin, 

1989). The species composition matrix using Bray-Curtis dissimilarity was compared with a 

matrix with pairwise geographical distance in kilometers between each pair of sites. All Mantel’s 

tests were run using 1000 permutations. A two dimensional Multidimensional Scaling ordination 

(MDS) was constructed to show the relatedness of grasshopper assemblages per land-use using 

Bray-Curtis similarity index in Statistica 12.6 (StatSoft 2013). All species for which fewer than 

four individuals were collected were eliminated from the MDS due to lack of confidence in these 

results. These species were not removed from diversity analyses because the rare species are an 

important component to consider for species richness, diversity and evenness yet have a 

negligible effect on abundance and density. 

2.3 Results  

A total of 2453 grasshopper individuals belonging to 37 species, 25 genera, and 3 families, were 

collected (Table 2.1). The most speciose sampled family was the Acrididae and the most 

speciose genus was Euloryma.  
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2.3.1 Effect of geographical areas and land-use types  

There was a significant interaction between geographical area and land-use type for grasshopper 

abundance (two-way ANOVA F = 14.94, P < 0.001). Grasshoppers were significantly more 

abundant in vineyards than in orchards and fynbos (which did not significantly differ) at 

Stellenbosch (one-way ANOVA F = 16.98, P < 0.001) and Paardeberg (one-way ANOVA F = 

45.15, P < 0.001) but significantly less abundant in orchards than in fynbos and vineyards (which 

did not significantly differ) at Somerset West (one-way ANOVA F = 13.98, P = 0.002) and 

Grabouw (one-way ANOVA F = 12.75, P = 0.002; Fig. 2.3a).  

 

The interaction between geographical area and land-use type on species richness was also 

significant (two-way ANOVA F = 11.45, P < 0.001). Mean species richness was highest in 

fynbos followed by vineyards and then orchards (one-way ANOVA F = 41.55, P < 0.001). This 

was true for all geographic areas except for Paardeberg, which had significantly higher species 

richness in vineyards followed by fynbos and then orchards (one-way ANOVA F = 31.88, P < 

0.001; Fig. 2.3b). There was a significant interaction between geographic area and land-use type 

for Shannon-Wiener diversity (two-way ANOVA F = 4.21, P = 0.003). Fynbos had significantly 

higher Shannon-Wiener diversity than vineyards which in turn had significantly higher Shannon-

Wiener diversity than orchards overall (one-way ANOVA F = 53.86, P < 0.001). This pattern 

was consistent in all four geographic areas. The four geographic areas did not differ significantly 

in terms of their Shannon-Wiener diversity (one-way ANOVA F = 0.32, P > 0.05; Fig. 2.3c).  

 

There was a significant interaction between land-use and geographic area for Pielou’s evenness 

(two-way ANOVA F = 2.65, P = 0.03). Pielou’s evenness was significantly higher in fynbos than 
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in vineyards, with orchards not differing significantly from either of the other land-use types 

(one-way ANOVA F = 3.92, P = 0.03). Grabouw sites had significantly higher Pielou’s evenness 

than the three other geographic areas (one-way ANOVA F = 5.59, P = 0.003; Fig. 2.3d).  

                                       (a)                                                                         (b)                                                       
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Fig. 2.3. Mean abundance (a), species richness (b), Shannon-Wiener diversity (c) and Pielou’s evenness (d) of 

geographical area by land-use interaction.  = Somerset West,   = Stellenbosch,  = Paardeberg and  = 

Grabouw. 

 

There was no significant interaction among land-use type and geographic area in mean 

grasshopper density in 2500 m2 (two-way ANOVA F = 1.87, P > 0.05). Likewise, there was no 
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significant difference in grasshopper density among the geographic areas (two-way ANOVA 

main effects F = 0.45, P > 0.05). However, orchards had significantly lower grasshopper density 

than fynbos and vineyards which did not differ from each other (two-way ANOVA main effects 

F = 24.81, P < 0.001).  

2.3.2. Grasshopper similarity among land-use types  

In total, 35 species belonging to all recorded families and subfamilies were observed in fynbos, 

23 species were observed in vineyards, while nine species were sampled in orchards. Fourteen 

species belonging to three families and six subfamilies were observed in fynbos only, while only 

two species of Acrididae were sampled in vineyards only (Fig. 2.4). There were no species 

confined only to orchards. The average Bray-Curtis similarity index between fynbos vs. 

vineyards was 39%, fynbos vs. orchard was 38% and vineyard vs. orchard was 47%.  

 

 

Fig. 2.4. Venn diagram showing percentages and numbers of unique and shared grasshopper species between 

fynbos, vineyard and orchard sites. Grasshopper families found in each land-use type are also denoted. 
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Sites within the same land-use types located in the same geographical area shared mean Bray-

Curtis similarities of grasshopper assemblage composition of 70%, while sites within the same 

land-use types located at different areas shared mean Bray-Curtis similarity of only 50%. Sites in 

different land-uses located either in the same or different geographic areas shared 40% Bray-

Curtis similarities. Bray-Curtis similarity values for each pair of sites were significantly higher 

when the two sites were in the same land-use and same geographical area than for sites within 

the same land-use type but different geographical areas (Tukey’s F = 0.000, P < 0.05). Bray-

Curtis similarity was consistently low and did not differ significantly for any pair of sites from 

different land-use types regardless of whether the sites were in the same or different geographical 

area (Tukey’s F = 0.90, P < 0.05; Fig. 2.5). 

 

A Mantel’s two-tailed test produced similar results, with a distance matrix of species assemblage 

composition (Bray-Curtis dissimilarity) being significantly correlated with a binary matrix for 

sites of same vs. different land-use types (Mantel’s test t = 3.89, P < 0.01) and same vs. different 

geographic areas (Mantel’s test t = 15.92, P < 0.01). There was no significant spatial 

autocorrelation in the grasshopper assemblage, with no evidence that geographically closer sites 

had more similar species compositions than geographically distant sites (Mantel’s test t = 1.64, P 

= 0.10). 
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Fig. 2.5. Mean Bray-Curtis similarities of grasshopper species composition comparing sampling sites from different 

vs. same land-use types and geographic areas. 

 

A Multidimensional Scaling (MDS) analysis of the three land-uses showed that each land-use 

type had similar species composition to each other, which was different from other land-use 

types. Vineyards had intermediate species assemblages between orchards and fynbos sites (Fig. 

2.6). 

2.4 Discussion  

More than half of the grasshopper species were associated with more than one land-use type and 

one quarter was associated with all three land-use types. These are similar results to those from 

Switzerland, where species overlap between agriculture and various degrees of natural and semi 

natural land-uses was high for wild bees, true bugs and ground beetles (Diekötter & Crist 2013). 
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Heterogeneity in habitats is vital for grasshopper life history requirements, such as mating in one 

microhabitat and grazing in another (Sergeev 1998; Gebeyehu & Samways 2003). This 

heterogeneity coupled with some species only being present in a combination of more than one 

plant cover type could be responsible for the high species similarities across the three land-use 

types (Fahrig et al. 2011; Tews et al. 2004). 

 

Fig. 2.6. MDS ordination plot showing assemblage similarities among geographic areas and land-use types. Gray fill 

= orchards, Black fill = fynbos, spotted pattern fill = vineyard sites.  Somerset West, =    Stellenbosch, =   

Paardeberg and =      Grabouw=     . 

 

Although there was high species overlap among the three land-use types, species assemblages 

were distinct for each land-use. This was depicted by three distinct clusters in our MDS plots 

(see Fig. 2.6). Furthermore, close to 43% of all grasshopper species collected for this study were 

distinctly associated with either the agricultural sites or fynbos. Of the 14 species which were 

specific to fynbos, seven are flightless endemics to the CFR (Euloryma sp.1, E. lapollai, E. 

larsenorum, D. bothai, D. coryphistoides, Gymnidium sp.1, G. cuneatum) and two are flighted 
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and probably endemic to the CFR (K. capicola and P. rufipes). The remaining five species are 

widespread, strong flyers (C. aeruginosa, G. linea-alba, G. determi-natus vitripennis, G. 

crassicollis, and P. tricolor tricolor). This high number of unique species underscores the value 

of protected areas and perhaps even historic remnants (Gaigher et al. 2015) for conservation of 

the endemic grasshopper fauna. At the other end of the spectrum was one species confined to 

vineyards despite being widely distributed throughout southern Africa and flighted (T. nasuta), 

illustrating that vineyards can increase the area of occupancy albeit for an already widespread 

species. Even though there was high overlap in grasshopper assemblages between the various 

land-use types, there were differences in diversity (species richness and Shannon-Wiener 

diversity) of indigenous assemblages among the land-use types, with type of agricultural activity 

emerging as an important driver of compositional biodiversity. This shows the importance of 

type of land-use on grasshopper assemblages (Hahn & Orrock 2015; Koch et al. 2015; Kuppler 

et al. 2015). Here the fynbos was the most species diverse, followed by vineyards and orchards. 

Fynbos also had higher evenness compared to vineyards, a manifestation of vineyards being 

dominated by many individuals of a few species in contrast to fynbos. Therefore, my results 

support others on arthropod diversity in the region, where spiders, ants, beetles, bees, bugs, 

butterflies and other terrestrial arthropods all had moderate richness in vineyards compared to 

fynbos (Gaigher & Samways 2010; Kehinde & Samways 2012; Magoba & Samways 2011; 

Vrdoljak & Samways 2014). The low diversity in orchards might be due to the closed canopy of 

most sampled orchards, creating less favourable conditions for undercover grass and herb growth 

from lower solar penetration. This is due to the reported reduction in the ambient local climatic 

conditions of plants with closed canopies (Smith & Capinera 2005) and expecially apple 

orchards that are reported to be 2 degrees less compared to nearby sourrounding air temperature 
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(Tanny et al. 2008). It also results in a relatively cool microclimate compared to vineyards. A 

grasshopper’s growth and life activities are directly proportional to temperature, with cool 

conditions being less favourable for development (Uvarov 1966; Chapman & Joern 1990). 

Reduced undercover grass and herb growth, as was the case here in orchards, is also deleterious 

to some specialist feeders and less mobile species (e.g. wingless groups) (Davis et al. 1995). 

Although diversity of grasshoppers was relatively low in vineyards in comparison with fynbos, 

grasshopper abundance and density were highest in vineyards followed by fynbos and then 

orchards. Most of the high abundance and low evenness of grasshoppers in vineyards could be 

attributed to the species A. dorsalis, a strong flying oedipodine known for its association with 

bare ground for ovipositing and basking (see Bazelet & Samways, 2011a for species traits of 

close relative, Aiolopus meruensis), which was far more abundant in vineyards than in orchards. 

Its abundance in the vineyards can be explained by the open and bare ground within rows of 

vineyards which permit high sunlight penetration necessary for basking. Paardeberg had highest 

species richness and abundance in vineyards, a departure from the general patterns elsewhere in 

the CFR. Based on our MDS, where vineyards clustered somewhat with orchards, we conclude 

that this departure from the other geographical areas may be an indication of fynbos vegetation 

losing its naturalness in this area.  

2.4.1 Conclusions and conservation recommendations  

Although I found that agriculture has a negative impact on grasshopper diversity, there was high 

overlap of species between agricultural production areas and historic fynbos. Half of the species 

found only in fynbos were flightless CFR endemics, while those dominating the agricultural 

patches were winged, strong flyers and mostly more widespread species. These dissimilarities in 

grasshopper assemblages also varied according to crop type and production practices, with the 
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greater the divergence of the crop from the natural fynbos (the harder the filter) the lower the 

species richness of grasshoppers in that crop. This distinctive species composition associated 

with the various land-uses substantiates that grasshoppers can potentially be used for monitoring 

changes in availability of production patches in the CFR towards or away from the historic 

fynbos condition. Our evidence suggests that vineyards provide an opportunity for improving the 

land sharing approach for grasshopper conservation in the CFR. This is mainly because the 

vineyard floor has high insolation, as with fynbos. Furthermore, vineyard management practices 

usually involve the planting of cover crops, mostly legumes, rye grasses and oats, to preserve soil 

structure and conserve water. This favours grasshoppers, especially the widespread, flighted 

ones, at the expense of flightless, narrow range endemics. It will also favour the endemic species 

if alien cover crops were replaced by fynbos vegetation. Deciduous fruit orchards provide less 

opportunity than vineyards for land sharing, mostly because of the dense canopy shading the 

ground and making it unfavourable for grasshopper-friendly vegetation and for grasshoppers 

themselves. Management practices in orchards, especially high levels of irrigation and 

continuous application of pesticides, may have compounded the situation. In the case of both 

vineyards and orchards, land sparing will be an important management intervention to conserve 

endemic species in particular. Although rehabilitation and expansion of this historic land and its 

inclusion into the protected areas network would better conserve the endemic fauna, this seems 

unlikely given current human requirements for production landscapes. However, some degree of 

land sparing on farms in the form of remnant patches is possible, and likely to be positive for 

grasshoppers as it is for parasitoids (Gaigher et al. 2015) and monkey beetles (Donaldson et al. 

2002).  
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Table 2.1 Abundance and relative abundances of grasshopper species across sites among fynbos, vineyards and 

orchards in the Cape Floristic Region, South Africa.  

Family/sub-family /species 

Abundance 

Fynbos 

Abundance 

Vineyards 

Abundance 

Orchards 

Rel. abd. 

Fynbos (%) 

Rel. abd. 

Vineyards (%) 

Rel. abd. 

Orchards 

(%) 

ACRIDIDAE       

Acridinae       

Acrida sp.1 32 16 8 1.30 0.65 0.33 

Anaeolopus dorsalis 60 573 177 2.45 23.36 7.22 

Gymnobothrus carinatus 21 4 1 0.86 0.16 0.04 

Gymnobothrus linea-alba 8 0 0 0.33 0 0 

Keya capicola 8 0 0 0.33 0 0 

Gomphocerinae       

Paragymnobothrus rufipes 14 0 0 0.57 0 0 

Thyridota nasuta  0              4 0 0 0.16 0 

Oedipodinae       

Acrotylus apricarius 4 2 0 0.16 0.08 0 

Acrotylus bilobatus 3 31 0 0.12 1.26 0 

Acrotylus deustus 4 1 0 0.16 0.04 0 

Aiolopus thalassinus 13 78 31 0.53 3.18 1.26 

Gastrimargus crasicollis 5 0 0 0.20 0 0 

Gastrimargus determinatus vitripennis 5 0 0 0.20 0 0 

Heteropternis couloniana 88 35 7 3.59 1.43 0.29 

Heteropternis pudica 20 3 10 0.82 0.12 0.41 

Morphacris fasciata 8 1 0 0.33 0.04 0 

Oedaleus nigrofasciatus 21 32 0 0.86 1.30 0 

Paracinema tricolor 3 0 0 0.12 0 0 

Sphingonotus nigripennis 3 16 0 0.12 0.65 0 

Cyrtacanthacridinae        

Acanthacris ruficornis 3 32 9 0.12 1.30 0.37 

Cyrtacanthacris aeruginosa 2 0 0 0.08 0 0 
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…cont’ 

Cyrtacanthacris tatarica 2 3 0 0.08 0.12 0 

Catantopinae       

Vitticatantops humeralis 18 74 31 0.73 3.02 1.26 

Eyprepocnemidinae        

Eyprepocnemis calceata 226 256 138 9.21 10.44 5.63 

Euryphyminae       

Calliptamicus semiroseus 104 54 0 4.24 2.20 0 

Plegmapterus sinuosus  1 0 0 0.04 0 0 

Hemiacridina       

Euloryma sp.1 2 0 0 0.08 0 0 

Euloryma cederbergensis 0 2 0 0 0.08 0 

Euloryma lapollai 12 0 0 0.49 0 0 

Euloryma ottei 25 48 0 1.02 1.96 0 

Euloryma umoja 16 8 0 0.65 0.33 0 

Euloryma larsenorum 16 0 0 0.65 0 0 

LENTULIDAE       

Lentulinae       

Devylderia bothai 7 0 0 0.29 0 0 

Devylderia coryphistoides 2 0 0 0.08 0 0 

Gymnidium sp.1 1 0 0 0.04 0 0 

Gymnidium cuneatum 6 1 0 0.24 0.04 0 

PYRGOMORPHIDAE       

Pyrgomorphinae       

Dictyophorus spumans 3 1 0 0.12 0.04 0 
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CHAPTER 3: Seasonality and life history traits affect grasshopper utilisation 

of different patches in an agro-natural mosaic of the Cape Floristic Region, 

South Africa 

Abstract 

Understanding the link between species inherited traits and the utilisation of different elements in 

a heterogeneous landscape such as an agro-natural mosaic has value for conservation planning. 

Key among traits is species’ mobility which determine species’ ability to navigate in between 

different patches in a heterogeneous landscape. Furthermore, change in seasonality also affects 

the dynamics of resource allocation for herbivorous insects such as grasshoppers. Such traits are 

likely to be highly selected over long periods of time in biodiversity hotspots, and may not be 

adaptive in the face of landscape change. Studying grasshopper species traits, seasonality and 

how these factors affect their utilisation of the various aspects of the landscape will further 

increase our understanding of biodiversity conservation, especially in biodiversity hotspots. 

Grasshopper abundance was studied here under agricultural land-use (vineyards) and in natural 

vegetation (fynbos) across two peak seasons (spring vs. summer) in the Cape Floristic Region 

(CFR) biodiversity hotspot. My aim was to quantify the level at which different grasshopper 

species utilise the different aspects of the landscape and how this range of utilisation among 

species relates to certain species’ traits in the CFR. My results showed that species traits play a 

major role in their ability to move in between patches which also affects how they utilize various 

different patches on the landscape. Highly mobile, generalist species are able to utilise more 

aspects of the landscape. And depending on seasonality, these species will inhabit either 

vineyards or fynbos aided by their high ability to move between patches. On the other hand, low 
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mobility, specialists lack the ability to move readily between patches, and as a result, they are 

confined to one or few patches across the seasons. Highly mobile, generalist species are better 

adapted to heterogeneous and novel landscapes compared to low mobile specialists. I also show 

that agricultural production supports a surprisingly wide variety of species. It is the poorly-

mobile, specialist species that are particularly vulnerable to ongoing landscape change as they 

can only benefit from remnant patches of natural vegetation, unlike the highly mobile generalists 

which can move around the landscape and benefit both from anthropogenic patches and natural 

ones while optimising on season for doing this.  
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3.1 Introduction 

Linking landscape patterns and species traits to ecological processes is important in landscape 

ecology (Chen et al. 2008; Smith et al. 2015). For instance, animal dispersal which is often 

dictated by inherited traits is vital for understanding how organisms effectively utilize different 

resources and features located in different habitats in an agro-natural landscape (Ewers & 

Didham 2006; Griebeler & Gottschalk 2000). This is especially important for species that require 

heterogeneous habitats on a landscape for sustaining their future (Taylor 1993; Brooker et al. 

1999; Schirmel et al. 2010.; Mandelik et al. 2012). 

 

Landscapes are made up of all natural elements that differentiate one part of the earth’s surface 

from another. Examples of such elements are forest patches, hills and water bodies, with 

matrices, corridors, and patches (Sayer et al. 2013). By extension, an agro-natural landscape 

consists of agricultural production patches alongside natural patches and other natural features.  

 

In the Cape Floristic Region (CFR) the natural areas are composed of a sclerophyllous vegetation 

known as fynbos, with agricultural areas of mostly grapevines and deciduous fruit orchards 

(Wesgro 2015). In these agro-natural landscapes, there are often competing interests: economic, 

environmental and biodiversity conservation. This means that management factors become 

necessary to maintain population levels of highly impacted animals (Sayer et al. 2013). These 

competing priorities of land-uses, coupled with different responses of the various host biota to 

seasonal changes in an agro-natural landscape, has the potential of creating different patches with 

different survival probabilities for different species that inhabit them. Studies of agro-natural 
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landscapes, especially those inhabited by different species, are important because of the need to 

improve production without expanding agriculture into protected areas (Hutton 2010). 

 

A study conducted in the USA showed that wild bees utilised both agriculture and old fallow 

fields in different seasons although they visited natural fields less often (Mandelik et al. 2012). 

Similarly, a study in Sweden suggested that semi natural pastures acted as population sources for 

the dispersal of butterflies to agricultural fields (Öckinger & Smith 2007). Furthermore, another 

study conducted in Germany on grasshoppers reports that Ensifera (Orthoptera: Acridiodea) 

require a mixture of dwarf shrubs and sand dunes for their persistence on the landscape 

(Schirmel et al. 2010). Findings from these studies reiterates the importance of heterogeneous 

landscapes for the life history traits of terrestrial insects. In addition to the importance of 

heterogeneous landscapes for these species, such studies also increase our understanding of how 

to improve conservation of animals, especially threatened ones, and to be able to protect 

ecosystem processes e.g. pollination, pest and vector control, and to monitor their biodynamics 

for bio-indication (Hansen 2011).  

 

The CFR is a biodiversity hotspot with an exceptional number of endemic species experiencing 

great threats (Myers et al. 2000). This situation increases conservation concerns considering that 

the area is also used for intensive agricultural production (Rutherford et al. 2014; Mittermeier et 

al. 2004). In such a landscape, the identification of the relative importance of the various aspects 

of the landscape in terms of habitat selection and patch utilisation has the long term effect of 

helping in planning for conservation purposes (Morris et al. 1992). This is even more important 

for planning community interactions of species e.g. biological control and food web dynamics. In 
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the CFR, close to 19% of the total land cover has been transformed for agriculture production 

(Maree & Govender 2013). Among the agricultural land-uses, several regions are dominated by 

vineyards which constitute approximately 17% of total agriculture by area (Wesgro 2015). 

Nevertheless, 78% of the total land mass is still covered by natural vegetation (Maree & 

Govender 2013). These differences in vegetation type and land-use directly and indirectly affect 

grasshopper population dynamics in the CFR (Adu-Acheampong et al. 2016). 

 

In addition to differences in vegetation type and land-uses, seasonal variations of temperature 

and other abiotic factors also influence grasshopper population dynamics directly (Uvarov 1966) 

while resource availability can affect them indirectly (Smith & Capinera 2005). For instance, 

sprouting of leaves in vineyards is ephemeral due to its deciduous nature. This situation causes 

defaunated habitats over certain seasons (Mullins et al. 1992) thereby affecting grasshopper 

diversity indirectly through lack of food and microhabitats for their life history traits, although 

there may still be inter-cropping with either alien or exotic vegetation. Most fynbos vegetation 

on the other hand is evergreen, although recurring fire regimes can temporarily reduce leaf cover 

(Allsopp 2014; Rutherford et al. 2014), and possibly also create defaunated islands which reduce 

grasshopper population. Grasshoppers are supplied with high quality resources necessary for 

development during good conditions in a favourable habitat. They respond to these good 

conditions with an increase in population normally higher than the population in adjacent and 

relatively poor habitats (Adu-Acheampong et al. 2016). This behaviour is sometimes regulated 

by their mobility, food preferences and distribution.  
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Interestingly, mobility and food preferences also affect the distribution of grasshoppers and how 

they utilise the various aspects of agro-natural landscapes. Species with high mobility have a 

higher ability to migrate in between different patches on a landscape, and as such, are able to 

utilise different habitats (Hansson et al. 2014), especially winged and well-flighted species. 

Wingless species on the other hand, are mostly limited in movement and are confined to specific 

habitats on the landscape. Due to these physical limitations they are not able to utilise different 

patches or at best just a few. Food requirements also become a limitation for monophagous and 

often sedentary specialist insect species because they are often confined to their food sources or 

host plants. This is because they only feed on a single species or a single family of plants which 

are often located in few places (Wahlberg et al. 2002). Hence they are only able to utilise few 

habitats on the landscape. In contrast, polyphagous and often mobile generalist insect species are 

able to utilize more than one family of plant species for their life history requirements and hence 

are able to move in between different habitats more freely (Wahlberg et al. 2002). This feeding 

behaviour increases their ability to utilise different aspects of the landscape and to reside in more 

patches.  

 

Here I investigate grasshopper utilization of vineyards and natural fynbos in an agro-natural 

landscape mosaic of the CFR across two seasons of grasshopper abundance, spring/early vs. 

summer/late season, and related this utilization to functional traits of species. Specifically, I 

investigate how different habitat patches are utilised by various grasshopper species in different 

seasons under agro-natural landscapes. I also test whether species inherited traits are related to 

grasshoppers ability to inhabit and utilise different vegetation patches in agricultural landscapes. 
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I hypothesize that often mobile generalist species will have elevated abundances in vineyards 

compared to fynbos. This is because vineyards are mostly interspersed with more attractive cover 

crops especially during good conditions. Assuming this is true, I expect higher abundances of 

mobile, generalist grasshoppers in vineyards only, during the late/summer season, when 

conditions are optimal in the vineyards because conditions do not change much in the fynbos. I 

also hypothesize that there will not be any significant change in grasshopper abundance across 

seasons in the fynbos because a high proportion of fynbos plants are sclerophyllous and 

evergreen, as opposed to the deciduous vineyards and their cover crops. I expect decreased 

numbers of grasshoppers in vineyards during harsher times (early summer). I also hypothesize 

that low mobile specialist, narrow-range endemic species adapted to CFR conditions will have 

approximately similar abundances within fynbos across seasons. Similarly, I also hypothesise 

that generalist, broad-range, widespread and highly mobile species will have elevated 

abundances in different patches (vineyards vs. fynbos) depending on seasons (early vs. late). 

Based on the results of the study I make recommendations regarding grasshopper conservation in 

this CFR agro-natural landscape. 

3.2 Methods 

3.2.1 Geographical areas and sampling seasons  

Two land-use types, natural fynbos vegetation and vineyards, were sampled at 32 sites within 

four geographic areas in two sampling seasons. The elevation of sampling sites ranged from 90 

m to 592 m asl. The selected geographical areas within the CFR were Grabouw, Somerset West, 

Stellenbosch and Paardeberg. The four areas constituted four independent landscape mosaics 

because they were either distant from each other (the farthest inter-site distance within an area 

was 23km, while the closest inter-site distance between areas was 35km), or separated by 
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mountain ranges which probably acted as movement barriers to grasshoppers. Such distances, 

while seemingly short for northern-hemisphere temperate regions, are biogeographically highly 

significant for the CFR (Vrdoljak & Samways 2014). The two sampling seasons consisted of an 

early one, (late spring to late summer, called “spring” throughout) starting from November to 

February and a late one, (late summer to early autumn, called “summer” throughout) starting 

from February to April.  

3.2.2 Sampling of grasshoppers 

Sampling was conducted on clear sunny days with low wind speed by two collectors on four 

occasions (two per each season) between 09:00 and 17:00. A 50x50 m quadrat was delineated at 

the centre of each site >30 m from the edges, to avoid edge effects (Bieringer et al. 2013). The 

choice of quadrat size was based on successful use elsewhere in South Africa (Bazelet & 

Samways 2011a, 2011b).  
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Figure 3.1 The study area in the Cape Floristic Region, South Africa. Thirty-two sites were sampled at four 

locations and in two land-use types. The map shows how the thirty-two sites are distributed across the four study 

areas. 

 

Grasshoppers were initially flushed out of their swards with individuals seen hopping, walking or 

flying caught with an insect net (Bazelet & Samways 2011a, 2011b; Larson et al. 1999). The 

timed quadrat count method was appropriate for scrubland vegetation (fynbos) and vineyards 

(Bazelet & Samways 2011a, 2011b; Gardiner et al. 2005). Captured grasshoppers were frozen 

and later identified in the laboratory using keys of Dirsh (1965), Eades et al. (2015), Jago (1994), 

Johnsen (1984), Johnsen (1991) and Spearman (2013) among others. The six most abundant 
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species in my samples were selected for further analysis: Anaeolopus dorsalis, Heteropternis 

couloniana, Eyprepocnemis calceata, Calliptamicus semiroseus, Euloryma ottei and Aiolopus 

thalassinus (Table 3.1). These species were chosen for analysis because they were sampled in 

both fynbos and vineyards throughout the two seasons. Further consideration for the selection of 

these species was based on representation of the major groups of grasshopper species in the CFR 

(i.e. distribution, trophic level, mobility). Also these species were the most abundantly sampled 

groups. Commonly sampled species are expected to express differences among sampling sites, 

geographic areas and land-uses better than less abundant ones (Kindt & Coe 2005; Maurer & 

McGiII 2011). 

 

Three life-history traits: geographic distribution, trophic level, and degree of mobility were 

chosen to characterize species (Bazelet & Samways 2011a; Iverson et al. 2011; Henle et al. 

2004). These life history traits were taken from all available articles, and books on life history 

traits of grasshoppers (Grunshaw 1986; Bazelet & Samways 2011a; Dirsh 1965; Johnsen 1984, 

1991, Matenaar et al. 2016). Extrapolations based on closest relatives were the only possible 

means for evaluating traits of species that did not have enough information from available 

materials. Categorisation of grasshopper distributions into widespread, regionalised or localized 

was based on the extent of occurrence in South Africa. Species that are known to occur 

worldwide are categorised as widespread, those known to occur only in the southern African 

region are termed regionalised and those known to occur only in South Africa are termed 

localised. For trophic levels, grasshoppers were placed into either one of three groups: mixed-

feeder, graminivorous, or forb-feeder (Bazelet & Samways 2011a). Grasshoppers belonging to 

subfamilies, Acridinae, and Oedipodinae are strong fliers and hence arbitrarily considered high 
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in mobility and those belonging to Eyprepocnemidinae consists of medium fliers and hence are 

arbitrarily considered to be medium in mobility (Ritchie 1981). On the other hand, apterous to 

brachypterous sedentary grasshopper species such as lentulids and hemiacridines were 

categorised as the low mobility group.  

 

All vineyard sites selected for this study observed conventional production approach and 

application of pesticide and irrigation management regimes based on IPW guidelines (Tromp 

2006). These vineyards were also interspersed with several green leafy cover crops during the 

late season (Fig. 3.2a) but devoid of any or at best have few dry cover crops in the early season 

(Fig. 3.2b). Notably amongst these cover crops were Raphanus raphanistrum (wild radish), 

Lolium spp. rye grasses, Vicia spp., Hypochoeris radicata, Bidens pilosa, Erodium moschatum, 

and Avena fatula (oats). Fynbos, defined as a scrubland that is dominated by Restionaceae, 

Ericaceae and Proteaceae, and high in endemic plant species (Rutherford et al. 2014; Mittermeier 

et al. 2004), was the natural mosaic used for this study.  

      

a 

b 
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Figure 3.2. Interspersed dry leafy (a) and green leafy (b)  cover crops in between rows of vines in early (spring) and 

late (summer) seasons respectively, as well as fynbos vegetation in early (c) and late (d) seasons. 

 

Sites selected within the fynbos were located in Helderberg, Jonkershoek, Cederberg and 

Hottentots Hollands nature reserves. The fynbos phenologies did not differ significantly between 

the two seasons (Fig. 3.2c and d).  

 

All selected vineyards were managed under the Integrated production of wine program in South 

Africa (IPW). The IPW management practice mainly includes the use of selected pesticides for 

the control of key pests such as weevils and fruit flies. Other precautionary spray programmes 

are also conducted to control fungal diseases such as powdery mildew under this scheme mainly 

at the latter season. Pesticides application is entirely dependent on levels of pest attacks on the 

grapes under IPW scheme. With increasing stirngent export requirements for export integrated 

pest management schemes, farmers are advised to apply pesticides with caution under this 

scheme (Tromp 2006) . Some of the important pesticides Chloropyrifos for the control of ants at 

400ml/vol endoslfan for the control of mites at 125ml/vol and Mancozeb for the control of 

Plasmopara viticola at 200g/100L on the field. 

 

c d 
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3.2.3 Statistical analyses  

Generalized linear mixed model (GLMM) fit by maximum likelihood (Laplace Approximation) 

were constructed in RStudio version 3.2.5 to compare total grasshopper abundance (dependent 

variable) among seasons and land-use types. Poisson distribution was used because my response 

variable is discrete count data and GLMM was used to account for the underlying spatial 

structure in the experimental design (RStudio 2015). Here, abundance was my dependent 

variable, while season and land-use type were my independent variables. I also constructed 

Wilcoxon matched paired test in Statistica 13.0 (Hill & Lewicki 2007; StatSoft 2013) to assess 

whether there were significant differences in species abundance between early vs. late season for 

each land-use separately. 

3.3 Results  

There was a significant difference in total abundance of all species between seasons at all study 

sites (Z=6.60, p<0.01). Also total abundance between land-uses at all study sites was 

significantly different (Z=8.29, p< 0.01). However, there were no significant difference in 

seasonal abundance in fynbos for all selected species, although there was a significant difference 

in vineyards in the majority of the selected species. Abundance was significantly higher in late 

season compared to early season for H. couloniana, A. dorsalis, C. semiroseus and E. calceata 

(Fig. 3.4).  
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Figure 3.3 Mean (±SE) of abundance of grasshoppers per study season and land-use type in the Cape Floristic 

Region. 
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Figure 3.4 Mean (±SE) of abundance of six grasshopper species in early and late seasons in the Cape Floristic 

Region. Fynbos=    ,  vineyard= 

 

Table 3.1: Results of Wilcoxon’s matched-pairs test of abundance for the two seasons in vineyards and fynbos. 

Grasshopper species Wilcoxon matched paired test 

(Vineyards only) 

GLMM by maximum likelihood 

(Land-use*Season interaction) 

Heteropternis couloniana  Zv=3.65  p<0.01 **    ZF=1.77  p=0.08                     Z=5.456   p<0.01 ** 

Anaeolopus dorsalis  Zv=4.94  p<0.01 **    ZF=0.59  p=0.55                    Z=4.80     p<0.01** 

Calliptamicus semiroseus Zv=4.13  p<0.01 **    ZF=0.23  p=0.82                     Z=4.156   p<0.01** 

Eyprepocnemis calceata Zv=4.50  p<0.01 **    ZF=0.73  p=0.46                      Z=5.456   p<0.01** 

Euloryma ottei  Zv=1.45  p=0.15        ZF=1.27   p=0.20                    Z=1.078    p=0.28 

Aiolopus thalassinus  Zv=0.07  p=0.94         ZF=1.53  p=0.13                    Z=-1.646   p=0.10 

Abbreviations: ZV=Z value in vineyard, ZF=Z value in fynbos, **=significantly different 

 

Wilcoxon matched paired test as well as the generalised linear mixed model results are 

summarised above in (Table 3.1). Significant Z value for both sets of tests means significant 

differences in abundance between seasons on the same land-use type by the species involved. 

Here, the abundances of H. couloniana, A. dorsalis, C. semiroseus and E. calceata were all 
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significantly different between the two seasons in vineyards but not fynbos. This can be 

interpreted as them occupying different patches on the landscape in different seasons. Because a 

shift in abundance from late to early in vineyards clearly is an indication of movement in and 

out. Therefore, a shift in abundance in vineyards was the most important determinant of 

movement in between patches because abundances in fynbos did not differ significantly between 

seasons.  

 

Table 3.2. Three life history traits and predicted dispersal mode of six grasshopper species in the Cape Floristic 

Region. 

Grasshopper species Distributiona Trophicb Mobilityc  

Heteropternis couloniana W M H 

Anaeolopus dorsalis R G H 

Calliptamicus semiroseus W M M 

Eyprepocnemis calceata W M M 

Euloryma ottei  L F L 

Aiolopus thalassinus W G H 

Abbreviations (Distribution): L, localized; R, regional; W, widespread 

Abbreviations (Trophic type): G, graminivorous; M, mixed-feeder; F, forb-feeder 

Abbreviations (Mobility): L, low; M, medium; H, high 

 

Of the six species, three, H. couloniana, C. semiroseus, and E. calceata, were widely distributed, 

with good mobility and also mixed feeders. They were also found to be most abundant in the late 

season in vineyards when there was little or no pesticide application. Two additional species, A. 

thalassinus and A. dorsalis, were relatively widely distributed, graminivorous, highly mobile and 
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most abundant in vineyards in the late season. Only one species among the selected group, E. 

ottei, was an endemic, flightless, forb-feeder which was most abundant in fynbos, regardless of 

the season (Table 3.2).  

3.4 Discussion 

Highest grasshopper species richness and abundance was recorded in late season in vineyards in 

all geographic areas. This contrasts with the early season results which show lower abundance in 

vineyards in comparison with the late season’s abundance. This underscores that there is distinct 

grasshopper diversity and abundance in each season, although the seasonal variation was far less 

in fynbos than in the vineyards. The late season also coincided with the peak plant production, 

with grasshopper richness and abundance of A. dorsalis, H. couloniana, E. calceata and C. 

semiroseus being influenced by the increase in edible cover crops as reported elsewhere (Kruess 

& Tscharntke 2002; Joern 2005) and little or no pesticides application. Early season conditions 

in the vineyards (e.g dried leaves, high pesticide application) could be less suitable because of 

little edible cover crop and high pesticides application within. At this time, there are few or no 

individuals of these species in vineyards but they are present in fynbos which offers alternative 

life supporting conditions. In spite of this alternative habitat occupancy, there is little change in 

population levels of these species in fynbos compared to when conditions are good in vineyards. 

Favourable (e.g. less pesticides pressure and high temepreture) conditions in vineyards return 

late season, leading to a population increase in vineyards. At this time, populations are low in 

fynbos. 

 

The characteristic dispersion patterns, coupled with medium to high mobility traits, suggest 

migration in between patches based on suitability because they have the ability to move across 

Stellenbosch University  https://scholar.sun.ac.za



 

92 
 

the landscape. Also, being graminivourous or mixed feeders, means that A. dorsalis, H. 

couloniana, E. calceata and C. semiroseus can survive in both fynbos and in vineyards when 

palatable grasses are present in both patches (Table 3.2). Although mobility by adults and even 

nymphs is possible, the overall differences in abundance between the two seasons could have 

been influenced by the natural seasonal dynamics of grasshoppers in this type of climate, where 

egg diapause during winter and adults emerge to complete their life cycle during spring-summer-

autumn seasonal cycles (Uvarov 1966). Also, it is not clear at this stage if these species are 

utilising either one or both vineyards and fynbos for breeding and the other strictly for browsing 

or foraging. Nevertheless, it is certain that both vineyards and fynbos patches are utilised in 

different seasons.  

 

In contrast to the above four species, E. ottei and A. thalassinus showed no significant 

differences in abundance between the two seasons. Relating the species traits and seasonal 

abundance across the two seasons in both fynbos and vineyards suggest these species are not 

utilising vineyards to any extent. This could be the result of their high sensitivity towards land 

transformation and agricultural production. Their characteristic traits of low to medium mobility 

could also play a role in their inability to migrate among patches. The high fragmentation of the 

agricultural environment might have also created barriers to movement for these relatively less 

mobile species. Another possible reason why these species are not able to utilise vineyards might 

be due to the absence of their preferred host plants. Furthermore, other biotic interactions such as 

predation and competition from other species might have played a role in these species which 

seemingly do not move between patches and do not take advantage of the different patches on 

the landscape. With these characteristic traits, the two species maximise their search for good life 
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conditions by occupying the best habitat or patch type where foraging efficiency will be higher 

(especially in the fynbos for E. ottei) (Pyke et al. 1977), especially during harsh conditions 

because of their limited mobility.  

 

The fynbos leafy vegetation changes little in phenology during the different seasons (although 

the flowers change greatly). This could mean that the fynbos biome is the best and surest patch to 

find food if these species are to expend less energy in the searching process, even if they can still 

utilise vineyards. Under such circumstances the species will only occupy the best possible 

habitats in both early and late seasons to further reduce the energy expended on searching for 

food. These findings also suggest that heterogeneous landscapes e.g. agro-natural mosaics are 

vital for the persistence of grasshoppers. This means such landscapes can potentially serve to 

complement each other in the provision of resources and vital habitats at different stages of 

grasshoppers’ life cycle and in different seasons. For instance, the most suitable soil conditions 

that determine breeding sites may not necessarily be the preferred soils for the host plants. Also 

different life stages of grasshoppers may require different resources for development e.g. early 

instar nymphs may prefer a different type and structure of food compared to later ones and so on 

(Uvarov 1966: Gardner et al. 1995; Jeanneret et al. 2003). A study conducted on German bush 

crickets (Orthoptera: Tettigoniidae) reported that they have higher rate of persistence under 

optimal habitats surrounded by sub-optimal habitats than optimal habitats only (Griebeler & 

Gottschalk 2000). Similarly, it seems heterogeneous habitats are vital for the development and 

life history traits for some orthopteran species. Indeed, vineyards and fynbos appear to provide 

just such a heterogeneous environment for these life history traits, with seasonality of the CFR 

also being important.  
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Species in the Lentulidae, Hemiacridinae, Eyprepocnemidinae and Pyrgomorphidae (i.e. 

wingless, localised/endemic, forb feeders to mixed feeders with limited to medium mobility) 

would be expected to utilise only one or few habitat patches in heterogeneous landscapes. This is 

because most species that belong to these groups, especially Hemiacrididae species (Spearman 

2013) and Lentulidae species (Matenaar et al. 2015, 2016) are only associated with fynbos with 

slight changes in densities throughout seasons. A few Hemiacridinae species are also associated 

with vineyards. Even so, their abundance does not vary significantly between seasons in both 

fynbos and vineyards. Under optimum environmental conditions these species will locate the 

best possible habitats in the fynbos or any other patch on the landscape at a particular time of the 

year for best living conditions. However, the quality of habitats varies with time of year and it is 

necessary to move to find optimal conditions at any time (Loreau et al. 2013). Here, densities of 

E. ottei, and A. thalassinus did not differ much between seasons.  

3.4.1 Conclusions and conservation recommendations 

Grasshopper species that are highly mobile, widely distributed and mostly grass to mixed feeders 

utilise a greater variety of patches on the landscape. They characteristically establish in good 

quality habitat (vineyard) for a short time during favourable conditions but decrease there greatly 

during unfavourable conditions. Nevertheless, the life history traits of overwintering as eggs, 

hatching as nymphs during spring, and then reaching adulthood in a different habitat may also 

play a role in the seasonal dynamics of these species. Further studies are required to ascertain 

which species are abundant in vineyards due to the presence of good conditons in vineyards or as 

a result of life cycle traits. Other species, especially the wingless, localised endemics that display 

little to medium mobility, that eat mostly forbs or are mixed feeders, utilised relatively low 

variety of patches on the landscape. This is because they were either encountered on few 
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occasions or not at all in vineyards across the changing seasons. These species can potentially be 

used as bio-indicators of high quality habitats, with vineyard seemingly a lower quality habitat 

for their persistence. The dynamics of hemiacridines for example, could be used for fynbos 

quality surveillance. Furthermore, a biodiversity conservationist could use the life history traits 

of a particular grasshopper species to help design conservation schemes in agro-natural 

landscapes. These species could be used to determine the quality and the quantity of fynbos/forb 

vegetation in and around vineyards to see whether these are sufficient to maintain population 

levels without any ecological relaxation. My study also shows that agricultural land is of high 

importance for the persistence of certain species, especially those that are generalist, widespread 

and mobile. Under large-scale expansion of agriculture into natural vegetation, low mobility 

habitat specialists will be at risk of extinction, because of their limited ability to move between 

optimal patches to escape harsh conditions.  
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CHAPTER 4: Endemic grasshopper species distribution in an agro-natural 

landscape of the Cape Floristic Region, South Africa 

Abstract 

Conservation biologists and ecologists often make use of models to identify important biotic and 

abiotic factors that constrain species distributions for conservation decisions to be taken. In line 

with such practice, I developed species distribution models for four localized, Cape Floristic 

Region (CFR) endemic flightless grasshopper species. Euloryma larsenorum and E. lapollai are 

associated with fynbos only, while E. umoja and E. ottei both associated with fynbos and 

vineyards. I used Maximum Entropy algorithm, which showed that vegetation type and soil 

characteristics were the most important environmental factors affecting local distribution of 

Euloryma species in the CFR. Models also showed that Euloryma species have very narrow 

predicted suitable habitats in the CFR. I also show that there are no significant differences in the 

distribution of species associated with fynbos only as well as those associated with both fynbos 

and vineyards. This calls for concerted efforts for conservation of Euloryma species in the CFR. 

In spite of the fact that all modelled species may suffer range constriction in the event of a global 

change, E. larsenorum and E. lapollai may require higher conservation priorities since they are 

sensitive to land-use change. E. larsenorum and E lapollai are likely to be the most affected 

species in the event of further habitat transformation from fynbos to agricultural production. This 

is not likely to be the case for E. umoja and E. ottei which can tolerate agriculture environment, 

although they might survive both sets of environments according to their life history traits. The 

Euloryma species group can potentially be used as bioindicators for soil assessments in the CFR. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

105 
 

4.0 Introduction 

Conservation biologists and ecologists are often faced with the difficult task of identifying 

important factors (biotic and abiotic) with high implications for species distributions under the 

current biodiversity crisis (Rangel & Loyola 2012; Lin et al. 2016). Such models are often 

referred to as species distribution, habitat suitability or ecological niche models (Dormann 2012; 

Porfirio et al. 2014). Species distribution models (SDMs) often link species’ known occurrences 

with certain environmental conditions peculiar to sites where they were recorded to predict 

possible locations where populations could be maintained on the landscape (Pearson 2010; 

Peterson et al. 2011). This is in accordance with the ecological niche theory where species’ 

tolerance to certain environmental factors limit their persistence on a landscape (Soberón 2007; 

Colwell & Rangel 2009). Most ecological correspondence analyses and species distribution 

models are aimed at describing mathematical or statistical patterns underlining species 

occurrences with fitted models (Franklin 2010; Peterson et al. 2011). In view of this, species 

distribution models can be described as the quest to simplify complex realities involving 

observed biological phenomena with a model. Consequently, species distribution models 

(SDMs) have become important instruments for generating simplified expected responses to 

potential future impacts of environmental change on biodiversity (Howard et al. 2014). This is 

particularly important in a biodiversity hotspot which is also heavily utilized for agricultural 

production, such as the Cape Floristic Region (CFR) with its high conservation priorities 

(Rutherford et al. 2014; Mittermeier et al. 2004; Esler et al. 2014). For instance, application of 

SDM’s will help design ecological survey guides that have the potential to increase sampling 

precision through enhanced efficiency of data capture. Guided and precise data capture can have 

many applications in conservation biology especially for rare and threatened species (Elith & 
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Leathwick 2009; Pearson 2010; Simaika & Samways 2015; Silva et al. 2016). It can also be used 

to identify important ecological factors that affect species persistence on a landscape (Lin et al. 

2016) and predict the geographic range expansion of species, especially invasive ones 

(Calatayud et al. 2016; Kanturski et al. 2016). This is even more important for under-studied 

groups such as insects (Ballesteros‐Mejia et al. 2016) many of which are highly threatened on 

the landscape. Such threatened species can be used as surrogates for determining and/or 

designing conservation strategies for other such species that appear to occupy same geographic 

space. This is because such species often display similar physiological responses to 

environmental constraints similar to conditions which affect the focal surrogate species (Brooks 

et al. 2006; Mace et al. 2008). Surrogate species are usually referred to as indicator species (Caro 

2010; Rodrigues & Brooks 2007) because they play a vital role in monitoring the organisational 

structures of ecological communities in locations of interest (Menon et al. 2012). 

 

For such a study to be successful, especially in an agro-natural landscape (e.g. CFR), an ideal 

group of insects to focus on as surrogates for accessing land-use change or land transformation 

are grasshoppers (Orthoptera: Acridoidea). This is because of their reasonably well understood 

biology, high responsiveness to environmental changes (changes in vegetation and land-use) and 

readily available information on distribution and abundances worldwide. In spite of the available 

information, grasshopper studies are few in the CFR. However, there are some studies on 

grasshopper behaviour and ecology in this region (Matenaar et al. 2014), geographic distribution 

(Spearman 2013), conservation in natural systems (Gebeyehu & Samways 2002; Matenaar et al. 

2015) and agro-natural mosaic (Kuppler et al. 2015; Adu-Acheampong et al. 2016), grazing and 

fire (Gebeyehu & Samways 2003; Joubert et al. 2016), land management and design (Gebeyehu 
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& Samways 2003; Bazelet & Samways 2011c) diversity (Gebeyehu & Samways 2002) and 

utilisation of different patches in agro-natural mosaics (Chapter 3). Notably absent from this list 

of studies is ecological niche or species distribution models e.g. models that can predict their 

potential distribution based on known environmental factors and predict suitable areas where 

they could occur.  

 

One such important potential surrogate grasshopper species endemic to the CFR are the 

flightless, narrow range Hemiacridinae of the genus Euloryma. Their value lies in their high 

sensitivity to environmental changes and their tight coupling to the dominant natural fynbos 

vegetation in the CFR. Most importantly, their biodynamics on this landscape can be translated 

into changes in habitat or land-uses. The majority of these flightless endemic Euloryma species 

are associated with only the dominant native vegetation (fynbos) in the CFR (Spearman 2013). 

Nevertheless, few species in this group are also associated with agriculture production e.g. 

vineyards (Adu-Acheampong et al. 2016). Because they are particularly sensitive to changes in 

environmental conditions, it is important to develop a model that describes the set of 

environmental conditions that are necessary to support the persistence of a viable population for 

bioindication in the CFR.  

 

In this study, I use SDM techniques to identify the most important variables that constrain the 

occurrence of Euloryma species in the CFR. Such studies focus on patterns of biodiversity and 

geographical distribution, and which have often been used to describe the relationships between 

biodiversity indices and a number of environmental variables. Studies involving modelling of an 

organism’s responses to habitat constraints mostly highlight the contributions of abiotic 
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components only and often neglect biotic interactions. However, in real life situations, species 

distribution focuses on the interaction between the two (Soberón & Peterson 2005; Soberón 

2007). This has generated much debate over the appropriateness of projecting species range in 

space using SDM techniques only (Virkkala et al. 2013; Russo et al. 2014). Despite these 

practical difficulties, SDM’s are still relevant in filling the knowledge gaps in species 

distribution, especially with regards to groups with limited information for conservation purposes 

(De Almeida et al. 2010; Bosso et al. 2013; Silva et al. 2014). This is even more important in an 

agro-natural landscape that is dominated by highly endemic vegetation, and subsequently 

classified as biodiversity hotspot with many undescribed insect groups (Rutherford et al. 2014; 

Mittermeier et al. 2004). According to Adu-Acheampong et al. (2016) there are species of 

Euloryma grasshoppers associated with only natural vegetation and others that are associated 

with both natural vegetation and with agriculture. If the Euloryma genus is to be protected, 

identifying the precise environmental conditions and areas with high probability of maintaining 

viable populations in the fynbos could assist conservation efforts in CFR. This is even more 

important to ensure their protection in the event of land transformation or climate change. 

 

The main objective of this study was to determine the environmental variables that affect the 

distribution of Euloryma species (both associated with fynbos only and with both agriculture and 

fynbos) and to establish what the effects might be of agricultural expansion on these species. I 

first hypothesise that there are important environmental variables that influence the distribution 

of Euloryma in the CFR. I also hypothesise that the set of environmental variables that influence 

species associated with fynbos only are different for those species associated with both fynbos 

and agriculture. I further suggest that species that occur in fynbos only (and not in agricultural 
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fields) are more sensitive to future land-use change than species which occur in both fynbos and 

agricultural fields. I go on to develop species distribution models for the flightless CFR endemic 

grasshopper species. 

4.1 Methodology  

4.1.1 Study area  

The dominant natural vegetation in the CFR is a sclerophyllous shrubland referred to as fynbos 

(Esler et al. 2014; Mittermeier et al. 2004), with this biome also being classified as a global 

biodiversity hotspot (Cowling et al. 2003; Frazee et al. 2003). Although the CFR is known for its 

diverse and unique natural vegetation, it is also an area of intensive agricultural production 

(Rebelo et al. 2006; Rutherford et al. 2014). This agricultural production and other 

anthropogenic processes have led to the transformation of parts of the historic natural vegetation, 

especially in the case of lowland fynbos (Rutherford et al. 2014). There has been a reduction in 

biodiversity in agricultural production areas compared to natural areas in the CFR (Gaigher & 

Samways 2010; Kehinde & Samways 2012; Magoba & Samways 2011; Vrdoljak & Samways 

2014, Adu-Acheampong et al. 2016).  

 

The study area is located in the Western Cape in south-western part of South Africa. The area 

has many folded mountains with valleys, rivers and beaches. It has cold, wet winters and warm, 

dry summers. Thirty-two sampling sites were selected, comprising of 16 vineyards and 16 

fynbos sites. The prioritised areas were Stellenbosch (33° 55' 56" S, 18° 51' 37" E), Somerset 

West (34° 04' 33" S, 18° 50' 36" E), Paardeberg (34° 27' 00" S, 19° 36' 00" E) and Grabouw (34° 

09' 08" S, 19° 00' 13" E) (Figure 4.1). This area was selected because a previous study on 
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Euloryma reported that they are endemic here and confined to certain specific geographic 

locations (Spearman 2013). 

4.1.2 Description and sampling of Euloryma species  

Euloryma is an endemic, flightless South African grasshopper genus (Acrididae, Hemiacridinae). 

The species are highly sensitive, narrow-range grasshoppers, small (12.62 mm, males) to 

medium in size (37.94 mm, females). There are two proposed species-groups of Euloryma. The 

Karoo group mostly found in the Succulent Karoo biome and the Fynbos group is often 

associated with fynbos biome. Currently, there are 11 known species inhabiting the Karoo and 10 

known species in the Fynbos group (Spearman 2013). Only Fynbos-species group was used here 

as it was the only group present (Spearman 2013). Diet requirements of Euloryma genus can 

only be likened to that of their close relatives in Hemiacridinae subfamily (e.g. genus Kassongia 

that are specialist feeders) because of lack of information on Euloryma genus (Dirsh 1965; 

Grunshaw 1986). 

 

Four species, E. larsenorum, E. umoja, E. lapollai and E. ottei, were selected, which fell into two 

sub-groups: 1) those associated with both agriculture and fynbos, and 2) those associated with 

fynbos only. In addition, the total number of occurrence of all species that were found associated 

with fynbos only and the total for those associated with both fynbos and vineyards were each 

modelled separately. Also the total number of all occurrence records of Euloryma genus was also 

modelled. Two of these species, E. umoja and E. ottei, were selected because of their association 

with both vineyards and fynbos, while E. larsenorum and E. lapollai were chosen to represent 

the group associated with fynbos only. 
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Although the geographic range of Euloryma is known (Spearman 2013), details of the ecological 

niches and environmental variables that affect the specific occurrences and persistence of each 

species on the landscape are still unknown. The relatively small geographic area of distribution, 

the low mobility, coupled with their probable high sensitivity to environmental change, increases 

the vulnerability of species of the genus. E. lappolai was first described at Klondyke, of 

Swaarmoedpas (near east of Warm Bokkeveldt north of Hexrivierberge) (S33°18.486’, 

E19°35.375’), while E. larsenorum and E. umoja were first described from Somerset West and 

south Helderberg (S34°03.833, E018°52.453’) and E. ottei is known from Tulbagh (west of 

Witsenberg) and Malmesbury (S33°19.800’, E19°09.572). 

 

Field sampling of grasshoppers was conducted on clear sunny days with no or low wind between 

09:00 and 17:00. Within each sampling site, I laid out a 50 m x 50 m quadrat >30 m from the 

edges (Bieringer et al. 2013; Pryke & Samways 2012) to quantify grasshopper abundance and 

density (Bazelet & Samways 2011a, 2011b). Insect nets were used to trap and collect Euloryma 

species that were walking or hopping (Larson et al. 1999). 

Stellenbosch University  https://scholar.sun.ac.za



 

112 
 

 

Figure 4.1 Study area for Euloryma species distribution showing the sampled fynbos and vineyard sites. It also 

shows which species were sampled at each location and their proportional occurrence in the samples in the Cape 

Floristic Region, South Africa. Colours of the pie charts represent E. lapollai (black), E. umoja (blue), E larsenorum 

(purple) and E. ottei (orange). 

 

Each site was sampled for 30 min on four occasions by two collectors. The surveyed sites were 

chosen randomly within fynbos and vineyards based on geographic location (eight sites per 

geographic area). Collected specimens were stored in a -40 degree deep freezer, and later 

identified using Spearman (2013). During the sampling process, geographic position system 

(GPS) coordinates of these sampling sites were also recorded for the modelling process. These 
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data were used for the ecological niche modelling of the four species, the two Euloryma groups 

(those associated with fynbos only and fynbos and vineyards), and the genus as a whole. 

4.1.3 Selection of environmental variables  

Sets of environmental raster layers at 90 m2 grid resolution, and a shapefile constructed from 1 

km2 grid cell sizes for the Western Cape and South Africa, respectively, were acquired from Van 

Niekerk & Joubert (2011) and Development of a Soil and Terrain database for Southern Africa 

(SOTERSAF) website (http://www.isric.org/projects/soter-southern-africa-sotersaf). The 90 m2 

grid raster layers were: altitudes, mean annual minimum and maximum temperatures, mean 

annual rainfall, mean annual relative humidity, and vegetation cover. The 1 km2 vector 

(shapefile) layer, acquired from SOTERSAF, was for soil types. The selection of these sets of 

layers was based on the physiological requirements and/or limitations of grasshoppers, and 

especially Euloryma spp., in the environment. The geographic points and extent of the study sites 

was clipped and cut out from all layers and converted into an appropriate file type for easy input 

into the model algorithm (Young et al. 2011). All selected variables were used for the initial 

training, and after the most important variables were selected and used for the actual modelling 

process.  

4.1.4 Algorithm selection and habitat suitability modelling 

The most desirable attribute for this study was precision, because according to Spearman (2013) 

Euloryma spp. occur in specific, limited places and in small numbers. Such a task required an 

algorithm that prioritizes on precision. To explain further, high precision algorithms are referred 

to as “vault” models by their lack of transparency in modelling and interpretability (Rangel & 

Loyola 2012). Alternative modelling algorithms, classified under “fish bowls” and “turbines” are 

known for their high to medium transparency, high to low generality and low to medium 
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precision (Franklin 2010; Rangel & Loyola 2012).  Maximum Entropy (MaxEnt, Phillips et al. 

2006; Phillips & Dudík 2008) which falls under “vault models”, and with particularly easy to fit 

settings, was selected for modelling the distribution of Euloryma because it has the potential of 

achieving high precision (Elith et al. 2006) which is the desired attributed being sought for the 

characteristic distribution of Euloryma spp. across the landscape. In short, by selecting MaxEnt, 

the easy interpretability and generalisation features were sacrificed for high precision (Jiménez‐

Valverde et al. 2008). Another reason for this choice comes from the few known occurrence 

records for Euloryma spp. in my study area. Under such low occurrence records, MaxEnt has a 

high probability of producing more reliable results (Hernandez et al. 2006; Phillips & Dudík 

2008; Pearson et al. 2007). This is because Maximum Entropy employs generative means 

compared with other algorithms such as Generalised Linear Models that use more discriminative 

means, since it is already known that generative methods perform better under situations with 

small training data (Ng & Jordan 2001). 

 

Maximum Entropy models were constructed in MaxEnt 3.3.3.k (Phillips et al. 2006; Phillips & 

Dudík 2008) under all default settings (Anderson & Gonzalez 2011; Merow et al. 2014). This 

allowed for the processing of both categorical and continuous variables in the sets of 

environmental layers used for the modelling (Phillips et al. 2006). There were background and 

pseudo-absence data generated throughout the study area. Before model development, 

Spearman's Rank-Order Correlation test was conducted in Statistica 13.0 (Hill & Lewicki 2007; 

StatSoft 2013) to check for multicollinearity of the selected environmental variables. Under such 

circumstances and also the fact that the selected environmental variables consisted of both 

categorical and continuous values, Spearman’s Rank Order Correlation is deemed appropriate 
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because it is a non-parametric test. This was necessary to check for overfitting of models as a 

result of environmental variables’ association that can create uncertainty in the interpretation of 

the results (Phillips et al. 2006; de Oliveira et al. 2014; Merow et al. 2014; Varela et al. 2014). 

Values >0.7 for Spearman’s Rank Order Correlation (r) between any two variables suggests 

collinearity and hence they may be excluded from the modelling process (Dormann et al. 2013). 

Nevertheless, the ecological relevance of variables to the organism or phenomenon under study 

is given prominence over collinearity and hence can still be included in modelling processes 

(Dormann et al. 2013). Jackknife tests were employed to pre-select the most significant variables 

for the actual modelling after the initial training of the data. Because of the few occurrences that 

characterise Euloryma species distribution, all records for all species were put together as a 

group (Euloryma genus), all those associated with fynbos only, and those that occurred in both 

fynbos and vineyards were also modelled separately. In previous studies elsewhere, occurrences 

and few additions for poorly sampled and rare species proved important for model performance 

(De Almeida et al. 2010; Silva et al. 2013). Because of the very few occurrences of Euloryma 

spp. in general, all species random records were used for training and also for validation of 

models in 100 replicated runs. Because of the very small geographic ranges of Euloryma spp. 

and also this study being the first for this group of grasshoppers, there was more emphasis on 

places where they actually or could potentially occur, with less concern over autocorrelation of 

sampling sites. 

 

Area under the receiver operating characteristic curve (AUC) was used to validate as well as 

compare results between models. The AUC statistic evaluates the ability of models to 

differentiate between absences and presences with values >0.7 being good, <0.5 being poor and 

Stellenbosch University  https://scholar.sun.ac.za



 

116 
 

0.5 showing random predictions (Pearce & Ferrier 2000; Elith et al. 2006; Newbold 2010).  

Furthermore, a comparison of occurrences and distribution of Euloryma spp. was made between 

this study and Spearman (2013). 

4.2 Results 

At the beginning of this study, the aim was to develop models for the four Euloryma spp. E. 

umoja, E. ottei, E. lapollai and E. larsenorum from data that was collected from field surveys. 

Before the actual modelling process, results from Spearman's Rank-Order Correlation test 

showed that minimum temperature, maximum temperature, relative humidity and mean annual 

rainfall variables were highly correlated with each other. However, these variables were still 

included in the initial modelling process due to their high physiological importance to the life 

history traits of grasshoppers. Table 4.1 is a summary of results of the Spearman’s-Order 

Correlations tests. 

 

Table 4.1 Spearman’s Rank-Order Correlation test for environmental variables in the Cape Floristic Region, of 

South Africa (P<0.05) 

 
Alt. Max. Temp Min. Temp. Vg. Cover Ann. Rain Rel. Humidity Soil types 

Alt.  1.00       

Max. Temp -0.30 1.00      

Min. Temp -0.66  0.74* 1.00     

Vg. Cover -0.27 -0.43 -0.19 1.00    

Ann. Rain   0.31 -0.91* -0.82* 0.41 1.00   

Rel. Humidity. -0.38 0.88* 0.77* -0.40 -0.80* 1.00 

 
Soil types  0.10 -0.72* -0.37 0.46 0.55 -0.58 1.00 

*=significant correlation 
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The initial search for environmental variables that limits the distribution of these species showed 

that, vegetation cover, soil type and altitude are the most important limiting factors for the 

distribution of Euloryma. This was similar for all selected species and groupings. The 

temperature variables, rainfall and relative humidity were rejected after the jack-knife tests 

because they contributed close to nothing to model development of each individual species, the 

various groupings based on land-use associations, as well as the Euloryma genus as a whole. 

Figure 4.2 shows the initial contributions (percent and permutation) of each of the variables to 

the model building process. 

 

Figure 4.2 Initial percent (bar chart) and permutation contributions (line chart) of environmental variables of each 

individual as well as all species (same results for all groups) of Euloryma in the Cape Floristic Region, of South 

Africa. 
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A single model was developed for each of the selected species, the genus Euloryma in general, 

species associated with both vineyards and fynbos, and for species associated with fynbos only 

(Figures 4.3 and 4.4). Vegetation type, altitude and soil types emerged as the most important 

variables contributing the most in explaining species distribution. This result was same for all 

individual species and groups. Temperature, rainfall and relative humidity were discarded 

because of their small contribution to the actual models for all species and groups. The 

environmental variables that influenced species that were associated with both agriculture and 

fynbos sites were not different from variables that influenced species that were associated with 

fynbos only, as well as the Euloryma genus as a whole. 

 

Maps generated from the models show that all Euloryma spp. have very small geographic ranges 

Also, species that are associated with both agriculture and fynbos (E. ottei, E. umoja and a 

combination of these two) differed only little in distribution compared to those species that are 

associated with fynbos only (E. larsenorum and E. lapollai and their combination) The map also 

shows that there are areas outside the sampling sites with the probability of Euloryma 

occurrences in the CFR. Results of the Area under the receiver operating characteristic curve 

(AUC) values from MaxEnt models developed for this study was approximately 0.97 for all 

species indicating very good performances in terms of predicting the distribution of Euloryma 

spp. in the CFR. 

4.3 Discussion 

I show the relative importance of certain environmental parameters as key predictors of suitable 

habitats for the occurrence of an endemic grasshopper group in a biodiversity hotspot which is 

also an important agricultural production area in the CFR. I also show how a conceptualised idea 
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can be used to evaluate a possible future event, using species distribution modelling techniques 

for ecology. The evaluation of the species distribution models here also enabled easy assessment 

of implications of a possible expansion of agriculture into fynbos on an endemic insect group in 

the CFR.  

 

I found the most important environmental variables that determine the occurrence of Euloryma 

species groups to be vegetation types, soil characteristics and altitude. Grasshopper species are 

known to be strongly associated with type and structure of vegetation (Kruess & Tscharntke 

2002; de Wysiecki et al. 2011). The majority prefer vegetation with open spaces, with grassy to 

shrub-like forms that allow enough sunlight penetration. Importantly, specialist species can be 

confined to a small geographic location because of their feeding behaviour which is strictly 

associated with their specific host plants (Clavel et al. 2011), which contributes to limiting 

Euloryma spp. to small areas of the CFR and Karoo, in case their host plants are also located in a 

small geographic location. Euloryma spp. are suspected to be specialist feeders (based on the 

feeding habits of close relatives e.g. genus Kassongia, Dirsh 1965; Grunshaw 1986) and also 

only weakly mobile. Due to the combination of these life history traits, they have become more 

vulnerable to increasing threats from habitat change, especially when it affects vegetation cover. 

The results of the MaxEnt models confirm a previous study in the CFR which reported that 

grasshoppers are affected by land-uses (Kemp et al. 2002; Torrusio et al. 2002; Adu-

Acheampong et al. 2016) because, by extension, land-use can be a proxy measure of vegetation 

cover. 
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Soil properties can directly affect the persistence of grasshoppers on a landscape, with soil 

moisture, temperature, texture etc. affecting the choice of breeding sites (Uvarov 1966; Chapman 

& Joern 1990; Schell & Lockwood 1997). Indirectly, soil conditions can also limit a 

grasshopper’s development and persistence on a landscape via their effect on the type of plants 

that can grow in a particular geographic location. This situation can be especially pronounced for 

specialist feeders where their host plants can only grow in particular type of soil which are 

confined to a specific geographic location. This finding agrees with a study conducted in 

Germany where sand dune type is reported to be a key determinant of habitats for grasshoppers 

(Schirmel et al. 2010). At this stage, it is not clear whether soil conditions in the Western Cape 

affect the distribution of Euloryma directly through breeding sites or indirectly via host plants, 

but likely to be both.  

 

Because grasshoppers are ectothermic and mesophilic animals, their physiology is controlled 

directly by their surrounding temperature conditions (Hunter‐Jones 1964; Uvarov 1966; 

Chapman & Joern 1990; Schell & Lockwood 1997), but temperature variables here did not 

contribute significantly to the models, owing to lack of variability among the small areas to 

which the grasshoppers were naturally confined. Relative humidity and rainfall variables also did 

not contribute to model development, for similar reasons as temperature (i.e. lack of variability 

in a small geographic location of occurrence). Altitude is also a known factor which affects 

grasshopper distribution and hence its significant contribution to the model building process. 

This is because the relatively low temperatures make habitats less conducive for grasshoppers at  
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Figure 4.3 Distribution of Euloryma species, E. umoja, and E. ottei (both fynbos and vineyards) and E. larsenorum 

and E. lapollai (fynbos only) in the Cape Floristic Region of South Africa. Colour range shows less likelihood of 

occurrences (blue) to very high probability of occurrence (red).  
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Figure 4.4 Maps of distribution of the general Euloryma genus, species associated with both fynbos and vineyards 

(both land-uses) and those associated with (fynbos only) in the Cape Floristic Region of South Africa. Colour range 

shows less likelihood of occurrences (blue) to very high probability of occurrence (red).  

 

high altitudes and hence they are less likely to inhabit high altitudes (Wettstein & Schmid 1999; 

Gebeyehu & Samways 2006).  

 

Maps generated from the study area show that for the categories all species E. larsenorum, E. 

lapollai, E. umoja, E. ottei, total occurrence in both fynbos and vineyards together, total sampled 

in fynbos only, and the Euloryma occurrence in general, all show that there is a very narrow 

geographic range in the CFR. Each individual species has a very small actual and predicted 

ecological niche that can enhance their persistence on the landscape (Figures 4.3 and 4.4). These 

modelled occurrences agree with findings from previous work conducted on Euloryma genus, 

which reported that E. larsenorum and E. umoja occur in Somerset West (Spearman 2013). This 

further validates the accuracy or correctness of models produced from this study. In addition, 

models produced through occurrence records also show that these species (E. larsenorum and E. 
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umoja) are also present in Stellenbosch, with high probability of occurrence at Grabouw and 

Malmesbury but with moderate likelihood of occurrence at Paardeberg. The study also confirms 

the geographical location of E. ottei to be near Malmesbury (Paardebeg) but also have suitable 

habitats at both Somerset West, and Stellenbosch. Grabouw and Somerset West are predicted to 

have highly suitable habitats for each individual species and for all groups of species. Although 

the previous study mapped the distribution of Euloryma and in particular their associations based 

on certain geographic locations, it did not give reasons why they are specifically assigned to 

those locations.  

 

Further interpretation of maps generated from all of the species show that the fundamental niche 

for each Euloryma species and groups exceeds their realised niches. This could be as a result of 

geographic restriction imposed on their movement and dispersal through barriers e.g. mountains 

historically, and roads today etc., and their low dispersal capabilities. Biotic interactions among 

organisms e.g. competition for resources, predation and even human transformation of the 

landscape likely play a role in them occupying small habitats in their fundamental niche (Phillips 

et al. 2006; Pearson 2010). Interestingly, the distribution of E. lapollai shows that all of the 

modelled geographic space is at least 20% suitable for their persistence on the landscape. This 

shows that although E. lapollai is only associated with fynbos and hence highly vulnerable to 

land transformation, it also has a higher rate of expansion and subsequent establishment in new 

suitable areas under possible future planned introduction programs.  

 

From the relative contributions of each variable to the model development, it can be argued that 

expanding agriculture into fynbos is likely to have a negative impact on sensitive species that are 
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associated with fynbos only (E. lapollai and E. larsenorum). This is because agricultural 

expansion into fynbos will cause changes in the vegetation cover and possibly destroy their 

habitats and host plants. Euloryma spp., being suspected to be specialists, means a possible 

reduction of food sources and area of occupancy. A change in vegetation which has been 

reported to also affect grasshopper persistence on the landscape (Kuppler et al. 2015, Adu-

Acheampong et al. 2016) will likely accelerate their decline, especially in view of their relative 

immobility. This contrasts with highly mobile species that can change their area of occupancy or 

shift range easily, and often diet (Hansson et al. 2014).  

 

E. umoja and E. ottei occur in both fynbos and vineyards, their occurrences of which can be 

translated into higher tolerance of land transformation and specifically from relatively benign 

local viticultural practices. They occupy larger geographic ranges and heterogeneous habitats 

compared to E. larsenorum and E. lapollai although the models predict similar ranges and hence 

are unlikely to have any changes in population dynamics as evidenced from their comparatively 

low sensitivity to land-use change. Expanding agriculture into fynbos might not affect the 

dynamics of E. umoja and E. ottei since they can equally dwell in both agriculture and Fynbos.  

4.3.1 Conclusions and conservation implications 

The most important environmental factors which accounted most for Euloryma species 

distribution patterns in the CFR were vegetation and soil characteristics, with altitude a 

secondary contributor. The distribution models showed that Euloryma species have very narrow 

ranges of predicted habitat suitability. My results suggest that E. larsenorum and E. lapollai 

should be a higher conservation priority than, say, E. umoja and E. ottei, because of their 

sensitivity to land-use change and hence are more vulnerable to habitat transformation. 
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Cultivating the host plant (requiring further study) of E. larsenorum and E. lapollai at the farm 

level as cover crops has the potential of attracting them into the farm environment to promote 

farm biodiversity and reduce the risk of their extinction. But at this stage there are no 

informations on the host plants of Euloryma genus and hence further studies e.g. feeding 

preferences are recommended to be able to find out their prefered host plants. These species can 

possibly also be used as surrogate species for designing conservation schemes for species with 

similar life history traits in the CFR. Euloryma species groups can also be used as bioindicators 

to measure type of soil and or most importantly its quality in the CFR. Further studies are 

required to ascertain if soil conditions affect Euloryma directly through breeding sites or 

indirectly through host plant regulation. 
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CHAPTER 5: Grasshopper assemblage shifts relative to selected traits in the 

Cape Floristic Region biodiversity hotspot 

Abstract  

Landscape change is a phenomenon caused by both anthropogenic and natural factors and often 

results in change in the constituent biodiversity. One critical impact of landscape change is 

taxonomic and functional modification of biological communities, with specialist species usually 

being disfavoured and generalists less so, and in some cases even being given new opportunities. 

Proportions of specialist vs. generalist (feeding traits) species can reflect level of change in biotic 

communities. Another measure, proportions of widespread vs. localised (distributional traits) 

species, can also indicate impact of landscape change on biodiversity. Relating these two traits 

(as often anecdotally observed to be positively correlated) will help increase understanding on 

the impact of landscape change on structure of biological communities. I investigated 

grasshopper species assemblage composition on three land-uses across an agro-natural landscape 

of CFR. The study documentmented species’ level of occupancy and abundances in relation to 

their life history traits in order to assess the amount of change occurring on the landscape in the 

CFR. My results show that very few species, mostly from Acrididae, dominated the landscape. 

They also show that the species that dominated the transformed landscape were generalist. There 

was also a high correlation between generalists, high to medium mobility and widespread species 

on one hand, and specialists, low in mobility and localised on the another hand. There is a need 

for concerted efforts to protect groups that occur in low abundance, especially the many endemic 

specialist species, to reduce possible future biotic erosion and homogenization in this hotspot. 
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5.1 Introduction 

Landscape change is a phenomenon often associated with change in biodiversity, with altered 

biotic roles and forms of ecosystems that in turn affect human livelihood (Chapin et al. 2000; 

Fisher et al. 2009; Cardinale et al. 2012). Anthropogenic landscape change usually means 

urbanisation and agricultural production (Forman 1995; Pickett & Cadenasso 1995; Lambin et 

al. 2003), with climate change and invasive alien species also being drivers of landscape change 

(Vitousek et al. 1997; Anderson et al. 2004). Agriculture and urbanisation often lead to 

fragmentation of previously continuous landscapes, with negative consequences for resident 

biota (Foley et al. 2005; Ewers & Didham 2006; Lindenmayer & Fischer 2013). Infrastructural 

development, farming activities and other anthropogenic transformation of the landscape often 

deprives species of key life resources and habitats for their continuous persistence (Ricketts & 

Imhoff 2003; Kim et al. 2006; Lindenmayer & Fischer 2013). This either drives them towards 

extinction, forces them to shift geographic range, or to adapt to the new environment (Elmhagen 

et al. 2015). Climate change affects landscape and biota by altering environmental conditions 

that dictate the type of species that can inhabit and or persist in the area in question (Dale et al. 

2001). In addition, invasive alien species alter the dynamics of resource availability by often 

outcompeting native ones (Levine et al. 2003; Gurnell et al. 2004). Furthermore, climate change 

affects the synchrony of biological features such as life cycles of invertebrates especially insects 

and appearance of leaves and inflorescences of their host plants (Dixon et al. 2009; Traill et al. 

2010). Such structural changes on the landscape often affect species adversely, especially short 

distant migrants (Kullberg et al. 2015).  
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There is a direct correlation between landscape structures and or design and abundance of several 

taxa (McGarigal & McComb 1995; Van Buskirk 2005; Pardini 2005). Of key importance to 

these relationships are the different elements and the scale and geographic range under which 

they occur (Gaston & Lawton 1990; Kunin 1998; Schaffers et al. 2008). This is because there are 

many differences in species reactions to these different elements and the extent to which they 

occur in the surrounding landscape (Hunter 2002; Jeanneret et al. 2003). These reactions are 

often dictated by the functional traits and mobility characteristics of the species involved. In 

general, insects are among the most impacted animals with anthropogenic landscape change 

(Schaffers et al. 2008). Impacts such as habitat loss and degradation can cause reduction in local 

species richness, especially of specialists in comparison with generalists, with increased 

extinction risks for some of these specialists (Clavel et al. 2011).  

 

According to evolutionary theory, diet specialisation develops over long periods of stable 

environmental conditions. However, generalist species traits develop as survival mechanisms 

against a more disturbed and or heterogeneous environment over a long period of time (Bernays 

& Graham 1988; Futuyma & Moreno 1988; Kassen 2002, Scheiner 2002; Julliard et al. 2006). 

Species often described as widespread, are those that are also mostly generalist. This is also 

because they are successful immigrants. Due to their generalist approach towards feeding, they 

have a relatively high establishment rate under a novel or introduced environment. Compared to 

generalists, specialist species are often geographically localised with a very low rate of 

establishment in novel environments. In the absence of their preferred host plants they will not 

survive due to their non-flexibility in choosing diets (Fisher & Owens 2004; Colles et al. 2009). 

Widespread generalists establishing in novel environments often have much genetic variability 

Stellenbosch University  https://scholar.sun.ac.za



 

143 
 

and high levels of adaptation, going hand in hand with high abundance and high survival rates, 

with the reverse being the case for specialist, localised species (Kattan 1992; Blackburn & 

Duncan 2001; Duncan et al. 2003; Zayed et al. 2005). 

 

Effect of landscape change on insects and other terrestrial invertebrates is often pronounced 

compared to other taxa as they are the largest group of terrestrial animals and often have 

relatively high densities per unit area. A small change in habitat conditions often corresponds to 

high impact on their relative abundance (Hunter 2002; Tscharntke & Brandl 2004; Klein et al. 

2007). Landscape change also creates isolated patches that restrict gene flow and reduce species 

persistence (van Strien et al. 2014), especially insects with low mobility (Kullberg et al. 2015). 

Pollution from agricultural production, urbanisation and other land transforming or landscape 

change drivers can further increase stress on insects, often affecting host plants, soil conditions, 

and water quality (Mohamed et al. 2009; Edokpayi et al. 2010; Conway & Pretty 2013). Under 

such altered conditions insects may be forced to shift their range, die out or adapt (Elmhagen et 

al. 2015). Species of dragonflies and worms, for example, require specific chemical composition 

of water and soil conditions for breeding and feeding, respectively (Watson et al. 1982; Lagadic 

& Caquet 1998; Lee Foote & Rice Hornung 2005). Another sensitive insect group that is gaining 

recognition in use for bioindication of landscape change are grasshoppers (Gebeyehu & 

Samways 2002, 2003, 2006a and b; Jonas & Joern 2007; Yoshioka et al. 2010; Bazelet & 

Samways 2011a, b and c, 2014; Branson 2010; Hill 2012; Borchard et al. 2013; Fartmann et al. 

2012; Crous et al. 2013; Helbing et al. 2014; Kuppler et al. 2015; Hao et al. 2015; Adu-

Acheampong et al. 2016; Joubert et al. 2016). 
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Grasshoppers are important insect herbivore assemblages on the landscape, especially grasslands 

(Gillon 1983; Cigliano et al. 2000; Batáry et al. 2007; Schaffers et al. 2008). Their feeding 

behaviour in combination with some other features (e.g. ease of sampling, and high sensitivity to 

environmental change), coupled with their often high abundance makes them good bioindicators 

of landscape change (Samways & Moore 1991; Samways & Kreuzinger 2001; Gebeyehu & 

Samways 2002; Joern 2005; Yoshioka et al. 2010; Fartmann et al. 2012; Helbing et al. 2014; 

Hao et al. 2015). Their abundance and distribution (which is often dictated by differences in 

vegetation patches) are used to measure landscape change (Hao et al. 2015), land use type and 

topography (Gebeyehu & Samways 2006a and b; Hill 2012; Crous et al. 2013; Kuppler et al. 

2015; Adu-Acheampong et al. 2016), fire, and grazing management (Gebeyehu & Samways 

2003; Jonas & Joern 2007; Branson 2011; Joubert et al. 2016), effect of invasive alien plants on 

native biota (Yoshioka et al. 2010); importance of restoration and design of land management for 

conservation purposes (Gebeyehu & Samways 2002, 2003; Bazelet & Samways 2011a and b), 

habitat quality assessment (Bazelet & Samways 2011c, 2012, 2014), and for prioritisation of 

conservation areas (Matenaar et al. 2015). 

 

An important consideration when choosing grasshopper species for bioindication of landscape 

change is their life history traits. Grasshopper species life history traits that can be used for well-

informed conservation decisions are mobility, geographical distribution, trophic level, and 

habitat preferences. A species’ ability to move in between habitat patches greatly influences their 

response to changes in the landscape. Species with high mobility (e.g. winged and flighted) are 

able to move in between different patches easily in response to changes in their habitats 

compared to those of low mobility (e.g. wingless and flighless) (Ewers & Didham 2006; Fischer 

Stellenbosch University  https://scholar.sun.ac.za



 

145 
 

& Lindenmayer 2007). Grasshoppers also respond differently according to whether they are 

specialist or generalist feeders. Specialist feeders and or habitat specialists are more vulnerable to 

landscape change compared to generalist feeders. Furthermore, habitat specialists risk local 

extinction when their host plants and/or habitats are modified or destroyed as they are not 

flexible to shift host plants or habitats. Generalists, in contrast, are more flexible in shifting host 

plants and habitats and hence are more tolerant of landscape change (Hunter 2002; Bolwig et al. 

2006; Laaksonen et al. 2008; Hinsley et al. 2009).  

 

In terms of species traits, grasshoppers can be categorised into two groups: widespread and 

localised species. Widespread species occur over large geographical areas and occur mostly in a 

variety of habitats because of their flexibility for adapting to many local environments. In 

contrast, localised species occur at specific locations and often in restricted or particular habitats 

along with low ability to survive different environments. However, there is little evidence that 

these relatinships hold for grasshoppers, especially in Africa (Bazelet & Samways 2012). 

 

There are few studies of grasshoppers in the Cape Floristic Region (CFR), with those in natural 

habitats being investigated by Spearman (2013) and Maternaar et al. (2015), and relative to land 

use by Adu-Acheampong et al. (2016), and along riparian corridors by (Pronk et al. 2016). 

However, there is a need to improve our understanding of the relationship between grasshopper 

species geographical distribution, and type of mobility in relation to the number of habitats that 

species occupy, in order to be able to access the level of change in the landscape. In response, I 

investigate here the number of sites occupied by each individual species in both natural and 

cultivated lands (fynbos vs agriculture). I then relate grasshopper species’ known distribution or 
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type of mobility to their level of occurrence or occupancy on all of the study sites across a 90 km 

agro natural landscape in the CFR. Specifically, I aim to find out which grasshopper assemblages 

are most abundant at sampling sites under different land uses. I then relate the number and type 

of sites occupied by grasshoppers to their mobility type (high, low or medium) and their known 

distribution (widespread or localised). Finally, I draw conclusions in the grasshopper assemblage 

relative to degradation of the landscape. I hypothesise that widespread and generalist 

grasshopper species are abundant and/or occupy more sampling sites and land uses compared to 

localised and specialists ones. This high abundance and/or occupancy of generalist and 

widespread species, is assumed to be as a result of occupying diverse habitats and sites that 

include both natural and transformed sites. 

5.2 Methods 

5.2.1 Study areas and sampling sites 

Data were collected from 46 sites from four areas: Somerset West, Grabouw, Stellenbosch and 

Paardeberg (14-16 sites each), and each comprised of three components: natural Fynbos 

vegetation, vineyards, and apple fruit orchards (Figure 5.1). All sites were >23 km apart, which 

can be biogeographically significant in this area of rugged topography and narrow endemism 

(Vrdoljak & Samways 2014). 
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Figure 5.1 Study area in the Cape Floristic Region with the four sampling areas indicated in grey. 

5.2.2 Grasshopper sampling 

Grasshopper sampling was conducted between 09:00 and 17:00 on sunny days with no or little 

cloud cover and wind. I laid a 50x50 m sampling quadrat on each sampling plot at least 30 m 

from the edges (Bieringer et al. 2013). Two persons sampled each site for 30 min on four 

occasions (a total of four person hours per site). Insect nets were used to capture grasshoppers 

after initial flushing out of their swards (Bazelet & Samways 2011a and b; Larson et al. 1999). 

Specimens were then transferred into a zip lock bag and transported into a deep freezer for later 
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identification using Dirsh (1965), Eades et al. (2015), Jago (1994), Johnsen (1984), Johnsen 

(1991) and Spearman (2013). 

 

Geographic distribution and the degree of mobility traits of grasshoppers were selected from all 

available articles, and books on life history traits of grasshoppers (Dirsh 1965; Johnsen 1984, 

1991, Henle et al. 2004; Bazelet & Samways 2011a; Iverson et al. 2011; Matenaar et al. 2016). 

Categorisation of grasshopper distributions into widespread or localised was based on the extent 

of occurrence worldwide and in South Africa. Species that are known to occur worldwide are 

categorised as widespread, those known to occur only in South Africa are termed localised. 

Grasshoppers belonging to subfamilies, Acridinae, and Oedipodinae are strong fliers and hence 

arbitrarily considered high in mobility and those belonging to Eyprepocnemidinae consists of 

medium fliers and hence are arbitrarily considered to be medium in mobility (Ritchie 1981). On 

the other hand, apterous to brachypterous sedentary grasshopper species such as lentulids and 

hemiacridines were categorised as the low mobility group. 

5.2.3 Statistical analyses  

Rank abundance curves were constructed in Statistica 13.0 (Hill & Lewicki 2007; StatSoft 2013)  

for the total grasshopper abundance as well as their abundances relative to the various land-uses. 

Four natural or biological cut offs of species abundances were identified: (1) species with >100 

individuals (highly abundant species, Hh), (2) species with 50-90 individuals (medium 

abundance, Md), (3) species with 15-40 individuals (low in abundance, Lw), and (4) species with 

<15 (very low or rare (Vl/Rr). 
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A histogram of (log abundance + 1) was constructed in Excel (Fishel 2014) involving all species 

so as to minimise the visual effect of the large disparities in these biological classifications. To 

be able to relate species distribution type and mobility with the total number of sites that species 

occupied, a table was constructed followed by cluster analysis from Bray-Curtis dissimilarity 

distance in Statistica 13.0 (Hill & Lewicki 2007; StatSoft 2013). The Bray-Curtis dissimilarity 

cluster analysis was done from a combination of species abundance in fynbos, vineyard, orchard, 

their mobility and the number of sites that they occupied (Kindt &Coe 2005; Magurran 2013). 

Bray-Curtis cluster analysis was used in view of its sensitivity to differences in abundance and 

ability to distinguish between different species, study sites and land-uses from differences in 

occurrences (Kindt & Coe 2005). Species with similar abundances in all of the various land-uses, 

type of mobility and number of occurrences in all of the study sites have a very low dissimilarity 

index, often close to zero, and those with values closer to 1 are highly dissimilar. Generalized 

linear mixed model (GLMM) fit by maximum likelihood in R-studio version 3.2.5 was used to 

compare total number of occupied sites and abundance of grasshoppers (response variable) by 

widespread vs. localised species and high vs. medium or low, mobile species from all study sites. 

Poisson distribution was used because the response variable was discrete positive count data. 

Also, to account for the underlying spatial structure in the experimental design, GLMM was 

used. Spearman’s Rank-Order Correlation test was used to quantify the relations between 

grasshopper abundance and number of sites occupied by each species (RStudio 2015). Also to 

account for the underlying spatial structure in the experimental design, GLMM was used. 

Spearman’s Rank-Order Correlation tests were used to quantify the relations between 

grasshopper abundance and number of sites occupied by each species (RStudio 2015). 
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5.3 Results 

The species rank abundance curve constructed for total individuals sampled showed that species 

richness was high (S=37) relative to total abundance (N= 2400) of the sample. Evenness was 

low, with only two species A. dorsalis and E. calceata making up 60% of the total sample. These 

same two species constituted 77% of total abundance in orchards, 67% in vineyards and 40% in 

fynbos. A histogram of (log+1) of species abundance showed that species of Acrididae 

dominated all samples, and classified as high to medium in abundance. All other species in other 

groups were classified as rare to medium in abundance. Of particular importance are the 

wingless species, with a majority falling into the very low or rare species group. Table 5.1 shows 

that only widespread species occupied >40% (19-46 sites) of all sites. 
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Figure 5.2 Species rank abundance curves for total grasshopper abundance (a), and for land-uses (vineyards, 

orchard and fynbos) (b). 
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Figure 5.3 Log abundance + 1 of grasshopper species in the entire study. Hh=High; Md=medium; Lw=low; 

Vl/Rr=very low/rare.  

 

The highest number of sites that a species classified as ‘localised’ occupied was 16 or 35% of all 

sampled sites (E. ottei in Table 5.1). Although all species which occupied >40% of all sites were 

classified as widespread species, twice as many of this widespread group also occupied <30% of 

all sites. Most localised species occupied only 1-11 sites, out of 46. Furthermore, widespread 

species mostly fell into the high to medium mobility category, while all localised species were in 

the less mobile category (Table 5.1). In general, species with lager abundances or high number of 

individuals also occupied the highest number of sites (Fig. 5.4a). Also, widespread species 

occupied more sites compared to localised species (Fig. 5.4b). Furthermore, widespread species 

in general were the most abundant of the two distribution groups (Fig. 5.4c) while medium to 

highly mobile species occupied more sites compared with low mobility species (Fig. 5.4d). 

 

The GLMM results showed that for each site occupied by a localised (often CFR endemic 

species), there was the likelihood of 1.5 sites being occupied by a widespread species or for 
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every three sites occupied by a widespread species there was the likelihood of localised species 

occupying two of them. Even with these differences, there was no significant difference in the 

number of sites occupied by widespread vs. localised species (Z=1.35, P=0.18). The GLMM 

results also showed that for every single site occupied by a highly mobile species there is the 

likelihood of a medium mobile species occupying 1.7 sites i.e. highly mobile species occupied 

60% of sites occupied by species with medium mobility. There was a significant difference in 

total number of sites occupied by high and medium mobility species (Z=6.34, P<0.001). Sites 

occupied by species with low mobility (and often CFR endemics), reduces by a similar margin 

for every site occupied by highly mobile ones. Sites occupied by highly mobile species and 

species with low mobility were significantly different (Z=-3.03, P<0.005). The GLMM results 

further illustrated that abundance of widespread species for each site was more than twice that of 

localised species, and there was a significant difference between the two distribution types 

(Z=3.74, P<0.001).  

 

There were also significant differences in abundance of highly mobile species vs. species with 

medium mobility (Z=13.63, P<0.001) and the highly mobile species vs. species with low 

mobility (Z=-9.59, P<0.001). Spearman’s Rank-Order Correlations tests calculated using the 

‘cor’ function in package ‘stats’ in R-studio version 3.2.5 (RStudio. 2015) showed that 

increasing the number of sites occupied by grasshoppers increased their overall abundance (r = 

0.77).  
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Figure 5.4 Number of sites occupied by grasshoppers vs. abundance (a). Number of sites occupied by grasshopper 

species vs. distribution type (b), abundance vs. type of distribution (c), and type of mobility (d). Wd=Widespread, 

Lc=localised, Hh=High, Md=Medium and Lw=Low,    = outlier, + = extreme values. 

 

The Bray-Curtis dissimilarity based cluster analysis of Table 5.1 showed that all species that 

occupied >40% of all sampled sites clustered together (Fig. 5.4). These species also shared <30% 

dissimilarity in abundance based on land-uses, mobility and number of sites occupied. Species 

that occupied <20% of sampled sites clustered together sharing <20% dissimilarity (Fig. 5.5). 
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Also, winged, flighted and highly mobile species clustered under those that occupied most 

sampling sites, while wingless and less mobile species clustered under those that were sampled 

in <20% of the total sampling sites. Acrididae species dominated most sampling sites, and 

grouped together, indicating high similarity while wingless species also clustered together (Fig. 

5.5). 

 

Table 5.1 A species type of distribution, mobility and total number of sites occupied in fynbos, vineyards and 

orchards among the grasshopper species sampled here. 

Grasshopper species Type of distributiona Mobilityb Number of sites occupied 

Anaeolopus dorsalis Wd Hh 46 

Eyprepocnemis calceata Wd Md 46 

Aiolopus thalassinus Wd Hh 40 

Vitticatantops humeralis Wd Md 36 

Heteropternis couloniana Wd Md 34 

Calliptamicus semiroseus Wd Md 31 

Acanthacris ruficornis ruficornis Wd Hh 24 

Heteropternis pudica Wd Md 21 

Acrida spp Wd Md 19 

Euloryma ottei Lc Lw 16 

Gymnobothrus carinatus Wd Md 13 

Euloryma umoja Lc Lw 11 

Acrotylus bilobatus Wd Hh 10 

Oedaleus nigrofasciatus Wd Hh 10 

Sphingonotus nigripennis Wd Hh 8 

Euloryma lapollai Lc Lw 8 
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a Abbreviations: Lc, localised; Wd, widespread b.   bAbbreviations: Lw, low; Md, medium; Hh, high 

 

…cont’ 

Euloryma larsenorum Lc Lw 8 

Keya capicola Wd Md 7 

Morphacris fasciata Wd Hh 6 

Gymnobothrus linea-alba Wd Md 5 

Cyrtacanthacris tatarica tatarica Wd Hh 5 

Devylderia bothai Lc Lw 5 

Gymnidium cuneatum Lc Lw 5 

Paragymnobothrus rufipes Wd Md 4 

Gastrimargus crasicollis Wd Hh 4 

Gastrimargus determinatus vitripennis Wd Hh 4 

Dictyophorus spumans Wd Lw 4 

Thyridota nasuta Wd Lw 3 

Acrotylus apricarius Wd Hh 3 

Acrotylus deustus Wd Hh 3 

Paracinema tricolor Wd Hh 3 

Cyrtacanthacris aeruginosa aeruginosa Wd Hh 2 

Euloryma sp.1 Lc Lw 2 

Euloryma cederbergensis Lc Lw 2 

Devylderia coryphistoides Lc Lw 2 

Plegmapterus sinuosus Wd Hh 1 

Gymnidium sp.1 Lc Lw 1 
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5.4 Discussion 

Rank abundance curves are one of the most useful and statistically relevant ways of estimating 

differences in terrestrial invertebrate assemblage structures between sites. Here, rank abundance 

curves were used to differentiate grasshopper species richness and evenness under three land 

uses (vineyards, orchards and fynbos). Two species, E. calceata and A. dorsalis, dominated the 

entire sample, as well dominating each land use. Despite this dominance by the two species, 

richness was high under all land uses, with fynbos the highest, followed by vineyards, and then 

orchards. This indicates that E. calceata and A. dorsalis are highly tolerant of landscape change 

and habitat transformation, typical of generalist species. Indeed, overall the CFR agro-natural 

landscape is dominated by the Acridinae but with other groups, especially the lentulids, showing 

a distinct preference for natural fynbos (Matenaar et al. 2015). Domination by Acridinae species 

and only a few species from other groups is indicative of high levels of fragmentation in the CFR 

as elsewhere (Joern & Gaines 1990; Marvier et al. 2004; Pawson et al. 2009). Nevertheless, the 

genrally high species richness indicates a diverse insect group in a biodiversity hotspot. Overall, 

there were many species in low abundance and only a few others in great abundance, suggesting 

that cultural practices or landscape changes that are taking place in the CFR favour the few and 

disfavouring the majority. 
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Figure 5.5 A Bray-Curtis dissimilarity tree showing clusters of grasshopper species based on a combination of 

abundance, type of mobility, and number of sites they occupied. 

 

Those most affected by land transformation are likely to be specialists which are localised. My 

results suggest 73% of the grasshopper species here have been impacted negatively as evidenced 
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from the recorded abundances. The most affected of all are the low mobility species that are 

mostly wingless, and confined to South Africa or endemic to the CFR. These species are mostly 

specialist feeders and with transformation of the landscape destroying their food resources or 

habitats (Kassen 2002; Brouat et al. 2004). In contrast, only ten species, about 27% of the total, 

benefitted from the landscape transformation here. Interestingly, all of these that benefitted from 

anthropogenic activities were acridids, which are known often to withstand highly impacted 

environmental conditions (Uvarov 1966; Peveling 2001). The most notable acridids that 

responded positively to this land transformation in the CFR were E. calceata and A. dorsalis, 

which benefitted in particular from the open spaces associated with vineyards, and made up 77% 

of all indivuduals, even though the agricultural environment in the CFR can be detrimental to 

grasshopper development (Adu-Acheampong et al. 2016). Surprisingly, E. ottei is the only 

wingless and flightless species that was dominant in both natural vegetation and vineyards, yet 

not recorded in the highly impacted orchard environment. 

 

The general theme arising from my research is that for this grasshopper there is a tendency to 

taxonomic and functional homogenization, which would be exacerbated given further landscape 

transformation, and even possible local extinction (Devictor et al. 2008a and b; Clavel et al. 

2011). In effect, they could replace localised and specialist CFR endemics like Devylderia spp. 

and Euloryma spp. Such great changes in the grasshopper assemblages could also have long term 

effects and cause non-reversible ecosystem function change (Díaz et al. 2006), which will also 

be synergistic with global climate change (McKinney & Lockwood 1999; Warren et al. 2001; 

Sodhi et al. 2009), with reduced evolutionary opportunities (Futuyma &Moreno 1988; Kassen 

2002; Brouat et al. 2004). My results from this biodiversity hotspot confirm a worldwide trend of 
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declining specialists across all taxa (Steffan-Dewenter & Tscharntke 2000; Kotze & O’Hara 

2003; Krauss et al. 2003; Devictor et al. 2008a and b). The magnitude of the situation in the CFR 

is emphasized by almost 30 of species being recorded as <100 individuals in 184 sampling 

events at 46 sites across a 90 km transect.  

 

I also found that the higher the individual counts or abundance of a species, the higher the 

number of sites it occupies, with a high and near perfect correlation between abundance and 

number of sites occupied by species. Obviously, very rare species would not be able to occupy 

all or even many of the sites, but still abundant species were the most widespread ones. 

Furthermore, all species that were sampled in >50% of the total number of sites were either high 

or medium in mobility, which points to site occupation and mobility going largely hand in hand, 

which in turn is largely the widespsread species. 

5.4.1 Conclusions and conservation recommendations 

Grasshopper species assemblages in agro-natural landscape of CFR are dominated by species of 

Acrididae family, especially E. calceata and A. dorsalis. Most acridid species, including these 

two, are dominant across the land uses investigated here. These species are also largely 

generalists, in contrast to the flightless/low mobility specialists which are mostly CFR endemics 

with particular natural habitat requirements. There is taxonomic replacement of specialists by 

generalists with an overall drift towards homogenization across the local area. I recommend 

development of a biotic index using generalist/high mobility species vs. specialist/low mobility 

species for keeping track of the extent and degree of homogenization taking place in the CFR as 

has been developed elsewhere in Germany (Poniatowski & Fartmann 2008).  
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CHAPTER 6: General conclusions and conservation recommendations 

Agricultural production is one of the main drivers of the on-going biodiversity crisis in the 

world. As a result, research in this area has increased over time, especially on larger animals e.g. 

birds and mammals. Studies on arthropods and especially insects are relatively small. More 

often, findings from such studies (mostly larger animals) show trends of decline with respect to 

agricultural production compared to natural areas. Nevertheless, there are few exceptions, with 

some positive contributions from agricultural production on biodiversity when the production 

methods are eco-friendly.  

 

Although insects constitute more than 75% of all animals and are also major contributors of 

ecosystem functions in the terrestrial world (Samways 2005), relatively little (compared to 

mammals) is known about the impact of agriculture on them. This is especially true for 

grasshoppers that are reported to show high sensitivity to changes in vegetation type and 

structure. There is therefore the need for concerted efforts to document the impact of agriculture 

on insects (and other arthropods), especially grasshoppers, on both negative and positive 

contributions for well-informed conservation actions to be taken in agro-natural landscapes. This 

is even more important in a biodiversity hotspot which is also known for intensive agricultural 

production such as the Cape Floristic Region (CFR). To date, there are a few reported cases of 

the impact of agriculture on different insect taxa except grasshoppers in the CFR (Gaigher & 

Samways 2010; Kehinde & Samways 2012; Magoba 7 Samways 2011; Vrdoljak & Samways, 

2014). 
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Grasshoppers are an important insect group that can be studied towards conservation under 

heterogeneous landscapes e.g. agro-natural mosaics with the potential of success, because of 

their generally wide-ranging sensitivity to land-use change. In view of that, I used grasshoppers 

here as keystone organisms to further increase our understanding on the importance of 

agricultural production on biodiversity in the CFR. I set to accomplish this task through four 

main studies. I first quantified the contribution of two types of agricultural production systems 

towards supporting local biodiversity compared to the dominant natural vegetation in the CFR 

(fynbos). This study measured the relative contributions of different agricultural systems towards 

biodiversity conservation especially on insects using grasshoppers as keystone species (Chapter 

2). Secondly, I went on to study the level at which various patches (agriculture vs. natural 

vegetation) in an agro-natural landscape are utilised by grasshopper species as a function of their 

inherited traits through changing seasons. This study also shows how the agriculture 

environment can contribute to local diversity of an insect group in terms of providing support for 

species that require heterogeneous habitats for their persistence on the landscape (Chapter 3). 

Thirdly, I developed species distribution models for four CFR endemic, flightless grasshoppers 

based on their association with either natural vegetation only (two species) or both natural and 

agriculture (two species) in order to identify the most important environmental variables that 

account for their distribution in the CFR. This study compared important variables for the 

distribution of these flightless groups between those associated with natural vegetation only, and 

those associated with both natural and agricultural production sites, to draw conclusions on the 

importance of agriculture on species distribution. (Chapter 4). Finally, I studied grasshopper 

species assemblage composition as a key indicator of landscape change. Here, I also quantify the 

Stellenbosch University  https://scholar.sun.ac.za



 

180 
 

observation that grasshopper generalist species occupy more habitats and patches in 

heterogeneous landscapes compared to specialist species (Chapter 5). 

 

My findings from the first study (Chapter 2) show that although agriculture has a negative 

impact on grasshopper diversity, species overlap between agricultural production areas and the 

dominant natural vegetation (fynbos) is high in the CFR. Half of the species found only in 

fynbos were flightless CFR endemics, while those dominating the agricultural patches were 

winged, strong flyers and mostly more widespread species. This shows that the agricultural 

environment is a more degraded habitat compared to natural patches, especially for the endemic, 

narrow range, highly sensitive species. On the other hand, the agricultural environment was the 

more preferred of the two broad land-use classifications by highly mobile, generalist, and 

widespread species. This is a positive contribution of agricultural production towards the 

conservation of local biodiversity in the CFR. Furthermore, these dissimilarities in grasshopper 

assemblages also varied according to crop type and production practices, with the greater the 

divergence of the crop from the natural fynbos (the greater the filter) the lower the species 

richness of grasshoppers in that crop. I arrived at this conclusion based on evidence from 

vineyards because it provided more opportunities for improving the land sharing approach for 

grasshopper conservation. Vineyards were less divergent from natural fynbos compared to 

orchards which were also in the agricultural environment studied. This is mainly because the 

vineyard floor has high insolation, as with fynbos. Furthermore, vineyard management practices 

usually involve the planting of cover crops, mostly legumes, rye grasses and oats, to preserve soil 

structure and conserve water. This favours grasshoppers, especially the widespread, flighted 

ones, at the expense of flightless, narrow range endemics. Perhaps it will also favour the endemic 
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species if alien cover crops were replaced by fynbos vegetation. Deciduous fruit orchards on the 

other hand provided less opportunity than vineyards for land sharing, mostly because it has dense 

canopy that shades the ground making it unfavourable for grasshopper-friendly vegetation and 

for grasshoppers themselves. Management practices in orchards, especially high levels of 

irrigation as well as pesticide applications, may have compounded the situation. These 

conclusions, especially for vineyards, show that the agricultural environment is very important 

for a number of grasshoppers especially generalist, wide spread and strong flyers. Nevertheless, 

natural and protected areas are still important for conserving the diversity of a variety of insect 

taxa as has been shown for butterflies (Krämer et al. 2012)  

 

This chapter 2 was published as: Adu-Acheampong, S., Bazelet, C.S., Samways, M.J., 2016. 

Extent to which an agricultural mosaic supports endemic species-rich grasshopper assemblages 

in the Cape Floristic Region biodiversity hotspot. Agriculture, Ecosystems and Environment, 

227:52–60.  

 

My second study (Chapter 3) provided more evidence to suggest that certain aspects of the 

agricultural environment is required if the landscape is to support a higher density of grasshopper 

species than would be the case naturally. I show that highly mobile, widely distributed and 

mostly grass to mixed feeders utilise more than one patch for their life history activities on the 

landscape. They characteristically establish in good quality habitat (vineyard) for a short time 

during favourable conditions, but later, decrease there greatly during unfavourable conditions 

(see Figs. 3.3 and 3.4.). This could be as a result of their life history traits of overwintering as 

eggs, hatching as nymphs during spring, and reaching adulthood in a different habitat. Other 
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species, especially the wingless, localised endemics that display little to medium mobility, and 

that eat mostly forbs or are mixed feeders, utilised a small variety of patches. This was 

determined through their being encountered on a few occasions or not at all in vineyards across 

the changing seasons. Agro-natural landscapes in the CFR provide the perfect heterogeneous 

environment for diverse grasshopper assemblages to persist. 

 

My third study (Chapter 4) further suggested that agricultural production is an important factor to 

consider when conserving narrow range endemic CFR species (Euloryma species). 

Environmental factors accounted most for Euloryma species distribution patterns in the CFR. 

These were mainly vegetation and soil characteristics, with altitude a secondary contributor. 

Vegetation type was also important. The distribution models also showed that these endemic 

species have very narrow ranges of predicted habitat suitability. My results also suggest that 

although all species in Euloryma have narrow geographical ranges, species associated with only 

fynbos should be a higher conservation priority than those associated with both agriculture and 

fynbos, because of their high sensitivity to land-use change and hence are more vulnerable to 

habitat transformation.  

  

My last study (Chapter 5) also showed that, although agriculture is important for providing a 

heterogeneous environment for maintaining high diversity of grasshoppers, it also reduces 

evenness on the landscape. Here, I show that the Acrididae family, especially E. calceata and A. 

dorsalis, dominate the entire assemblage composition, and that most acridid species, including 

these two, are dominant across the land-uses investigated here. These species are also largely 

generalists, in contrast to the flightless/low mobility specialists which are mostly CFR endemics 
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with particular natural habitat requirements. With agricultural conversion there is taxonomic 

replacement of specialists by generalists with an overall drift towards homogenization across the 

local area.  

Conservation recommendation from this thesis 

 The distinctive species composition associated with the various land-uses substantiates 

that grasshoppers can potentially be used for monitoring qualitative changes in 

production patches in the CFR towards or away from the historic fynbos condition.  

 Land sparing in both vineyards and orchards, will be an important management 

intervention to conserve endemic species in particular. Therefore, some degree of land 

sparing on farms in the form of remnant patches are likely to be positive for 

grasshoppers. 

 Grasshopper species in an agro-natural mosaic in the CFR can potentially be used as bio-

indicators of habitat quality. For instance, the dynamics of hemiacridines could be used 

for fynbos quality surveillance.  

 A biodiversity conservationist could use the life history traits of a particular grasshopper 

species to help design conservation schemes in agro-natural landscapes. E.g. 

 Euloryma species can possibly also be used as surrogate group for designing 

conservation schemes for species with similar life history traits in the CFR.  

 Euloryma species-groups can also be used as bioindicators for measuring type of soil 

and/or, most importantly, its quality in the CFR.  

 These species could be used to determine the quality and the quantity of fynbos/forb 

vegetation in and around vineyards to see whether these are sufficient to maintain 

population levels without any ecological relaxation.  
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 My study also shows that although agricultural land is of high importance for the 

persistence of certain species, especially those that are generalist, widespread and mobile. 

Under large-scale expansion of agriculture into natural vegetation, low mobility habitat 

specialists will be at risk of extinction, because of their limited ability to move between 

optimal patches to escape harsh conditions. 

 I recommend development of a biotic index using generalist/high mobility species vs. 

specialist/low mobility species for keeping track of the extent and degree of 

homogenization taking place in the CFR. 

 I suggest that further studies be conducted to ascertain whether soil conditions affect 

Euloryma species directly through breeding sites or indirectly through host plant 

regulation. 
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Appendix  

Location of sampling sites in Somerset West, Stellenbosch, Paardebeg and Grabouw including 

and indication of land-use type in the CFR 

Sampling area Land-use Latitude Longitude 

Somerset West Natural S34°03'42.8"    E018°52'16.7" 

Somerset West Natural S34°03'42.5"    E018°52'28.8" 

Somerset West Natural S34°03'54.6"    E018°52'28.5" 

Somerset West Natural S34°03'54.6"    E018°52'15.8" 

Somerset West Vineyard S34°04'12.4"    E018°53'55.4" 

Somerset West Vineyard S34°04'18.2"    E018°53'44.1" 

Somerset West Vineyard  S34°04'59.9"    E018°54'08.1" 

Somerset West Vineyard S34°04'56.4"    E018°54'02.9" 

Somerset West Orchard S34°04'48.1"    E018°53'33.7" 

Somerset West Orchard S34°04'11.2"    E018°53'55.4" 

Somerset West Orchard S34°04'17.2"    E018°53'44.7" 

Somerset West Orchard S34°04'48.1"    E018°54'05.3" 

Stellenbosch Natural S33°58'29.7"    E018°56'19.3" 

Stellenbosch Natural S33°58'52.8"    E018°56'45.0" 

Stellenbosch Natural S33°59'20.4"    E018°57'59.5" 

Stellenbosch Natural S33°58'39.1"    E018°56'35.1" 

Stellenbosch Vineyard S33°52'26.6"    E018°53'26.5" 

Stellenbosch Vineyard S33°52'14.4"    E018°53'14.8" 
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…cont’ 

Stellenbosch Vineyard S33°50'46.3"    E018°51'20.6" 

Stellenbosch Vineyard S33°50'52.9"    E018°51'04.8" 

Stellenbosch Orchard S33°54'15.0"    E018°52'21.5" 

Stellenbosch Orchard S33°54'16.3"    E018°52'08.9" 

Stellenbosch Orchard S33°54'23.8"    E018°51'38.6" 

Stellenbosch Orchard S33°54'10.3"    E018°51'43.8" 

Paardebeg Natural S33°35'38.0"    E018°50'34.5" 

Paardebeg Natural S33°35'39.2"    E018°50'29.2" 

Paardebeg Natural S33°37'15.8"    E018°49'03.2" 

Paardebeg Natural S33°37'15.3"    E018°49'06.2" 

Paardebeg Vineyard S33°37'24.2"    E018°49'06.4" 

Paardebeg Vineyard S33°37'44.0"    E018°49'11.4" 

Paardebeg Vineyard S33°35'44.3"    E018°50'35.3" 

Paardebeg Vineyard S33°35'48.6"    E018°51'00.8" 

Paardebeg Orchard S33°38'15.2"    E018°51'0.07" 

Paardebeg Orchard S33°37'43.1"    E018°49'26.2" 

Grabouw Natural S34°04'05.7"    E019°03'16.6" 

Grabouw Natural S34°03'57.6"    E019°02'44.9" 

Grabouw Natural S34°04'09.3"    E019°03'0.06" 

Grabouw Natural S34°04'09.2"    E019°03'08.7" 

Grabouw Vineyard S34°09'26.8"    E019°06'32.6" 

Grabouw Vineyard S34°04'45.7"    E018°54'05.6" 
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…cont’ 

Grabouw Vineyard S34°05'0.04"    E018°54'07.6" 

Grabouw Vineyard S34°09'36.4"    E019°06'23.4" 

Grabouw Orchard S34°10'24.48"    E019°05'04.80" 

Grabouw Orchard S34°10'05.52"    E019°04'53.63" 

Grabouw Orchard S34°09'49.8"    E019°05'15.0" 

Grabouw Orchard S34°10'13.8"   E019°05'06.8" 
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