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ABSTRACT 

	
Using Evarcha culicivora, a salticid spider from East Africa, my goal was to understand 

some of the different specific ways in which predatory specialization might be expressed. 

This spider was already known for its unusual prey-choice behaviour. It feeds indirectly on 

vertebrate blood by actively choosing blood-carrying mosquitoes as preferred prey and, as its 

preferred mosquitoes, actively chooses Anopheles, the genus to which all-human malaria 

vectors belong. Here I investigated another two distinct contexts in which predatory 

specialization is expressed by this species, adaptive timing of predatory activity and reliance 

on specific nutrients during the first active life-history stage. Using sampling procedures and 

experiments, I found evidence that, for E. culicivora, the timing of specifically predatory 

activity, not activity in general, corresponds to the time of day when its unusual preferred 

prey tends to be most readily available in the field. For investigating the role of different 

nutrients, particular attention was given to another unusual characteristic of this predator. 

Besides feeding on mosquitoes, E. culicivora also visits plants and feeds on nectar. In a large 

series of rearing experiments, I considered the effects of different feeding regimes at on E. 

culicivora hatchlings. Type and number of prey, as well as well as the timing of prey meals, 

access to plants for nectar meals, access to artificial nectar made from different sugars and 

amino acids and combinations of access to prey and plants were shown to influence success 

at completing the first instar, completion time for spiders that did succeed and longevity for 

spiders that failed to complete the first instar. 

 

 

 



	 8	

CHAPTER ONE: INTRODUCTION 

 

 

 

 

 

Credit: Robert Jackson 

Male Evarcha culicivora
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Using a small predator from East Africa, Evarcha culicivora, I investigated a large topic, 

specialization. Literature on predatory specialization is easy to find, but not always easy to 

understand because specialization seems to mean different things to different people in 

different situations. Compounding the problem, specialization is often discussed in a way that 

leaves the meaning of this expression implicit and obscure, sometimes with hypotheses about 

the consequences of becoming specialized seeming to be accepted as foregone conclusions 

and turned into part of an implicit meaning of specialization as a phenomenon. Finding one’s 

way through this literature has been likened to “stepping into a conceptual jungle where we 

can easily get lost” (Jackson & Cross 2015). 

The predator I investigated, E. culicivora, is a jumping spider (family Salticidae) 

known for being a mosquito specialist (Jackson & Cross 2015), but it seems to be easy to 

misconstrue what ‘mosquito specialist’ means. Many spiders and other predators eat 

mosquitoes (Jackson & Cross 2015), but eating mosquitoes or even eating primarily 

mosquitoes does not make a predator a mosquito specialist. With E. culicivora, we also have 

a predator that specializes at preying on a particular mosquito genus, Anopheles, this being a 

detail of unusual interest to people because all human malaria vectors belong to this mosquito 

genus. However, before going any further, I should emphasize that the basis for 

characterizing this spider as an Anopheles-specialist spider is not how many anopheline 

mosquitoes it eats compared to other prey in its environment. If we want to discuss 

specialization by predators on specific prey, then we need research specifically on the 

characteristics of a predator that make it proficient as a predator of the specified prey. There 

is no shortcut. Data on natural diet compared with prey availability does not suffice. 

It is especially confusing when stenophagy and specialization are discussed as though 

they were the same thing. ‘Stenophagy’ is a convenient term for when a predator’s natural 

diet is ‘narrow’, where ‘natural diet’ is what the predator eats in the field and ‘narrow’ means 
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a diet biased toward a specific ‘selection’ of the available prey. Stenophagy is of interest in 

the context of food webs and other topics in community ecology. However, the terms 

“choice” and “preference” are precisely the terms needed for discussing behaviour, 

motivation and cognition (Jackson & Cross 2011). Conclusions pertaining to choice and 

preference require data from experiments appropriately designed for detecting choice and 

preference. 

Previous research (Jackson & Cross 2015) has given us a lot of information about E. 

culicivora’s prey-choice behaviour, but much less about this predator’s natural diet. As an 

objective secondary to this thesis, I participated in research related to filling the gap in our 

understanding of E. culicivora’s natural diet and then considering the extent to which prey-

choice behaviour and natural diet correspond (see Appendix 1). This work was more 

conventional, but it prepared me for my primary thesis objective, which was less 

conventional. 

I set out to look more closely at the diversity of ways in which specialization can be 

expressed by a predator. For this, I decided to concentrate on two specific topics. One of 

these was the adaptive timing of predatory activity (Chapter 2) and the other was metabolic 

adaptation (Chapter 3). At the same time, I was interested in how different aspects of 

specialization might be interrelated. 

It was already known that E. culicivora’s predatory and mating strategies are 

entangled. For understanding this, there is a need for background understanding of salticid 

sensory systems. The most distinctive characteristic of salticids in general is their unique eyes 

and exceptional capacity to see fine details of their prey and mates (Harland et al., 2012), but 

E. culicivora is also attracted to the odour of blood-carrying mosquitoes (Jackson et al. 2005) 

and the odour of potential mates (Cross & Jackson 2013). Mating strategy converges with 
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predatory strategy because both sexes of E. culicivora smell more attractive to mates after 

indirect blood meals (Cross et al. 2009). 

However, the entanglement related to specialization I considered is related to yet 

another unusual characteristic of E. culicivora. Besides being attracted to the odour of prey 

and potential mates (Cross & Jackson 2013; Jackson et al. 2005), E. culicivora is also 

attracted to the odour of two particular plant species (Cross & Jackson 2009), Lantana 

camera and Ricinus communes. For one of these species, L. camera, the primary compounds 

that attract E. culicivora are known: (E)-β-caryophyllene and α-humulene (Nelson et al. 

2012), which I will refer to as simply caryophyllene and humulene. In olfactometer 

experiments, caryophyllene and humulene are attractive to E. culicivora individuals from all 

active life-cycle stages (instars) (Nelson et al. 2012). However, after a 7-day fast, juveniles 

but not adults become more strongly attracted to the odour of caryophyllene and humulene 

(Nelson & Jackson 2013). Cold-anthrone testing, which detects the presence of specifically 

fructose, has demonstrated that juveniles in particular acquire nutrition from plants (Kuja et 

al. 2012) and it is known that, after feeding on artificial nectar, the smallest instars of E. 

culicivora become more effective at subduing blood-carrying mosquitoes as prey (Carvell et 

al. 2015). All of this background information suggests that feeding on nectar is especially 

important for the juveniles and this has been the rationale for deciding to focus on E. 

culicivora hatchlings. 

‘Hatchlings’ are the smallest instars of E. culicivora and I propose that this is also a 

life-cycle stage in which nutritional factors are especially important to this predator. After 

emerging from their egg sacs, juveniles of E. culicivora can be thought of as facing the task 

of completing the first instar, which means staying alive, moulting and emerging as a second-

instar juvenile. With rearing experiments, I investigated the effects of different feeding 

regimes on the capacity of hatchlings to complete this task (Chapter 3) and, besides 
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considering the effects of feeding on prey, I considered the effects of feeding on plants, with 

and without prey also being available. 

In a general discussion at the end of the thesis (Chapter 4), my findings will be 

examined more fully in the context of understanding predatory specialization, and I will also 

consider the findings from my research in the context of our understanding of malaria. 

Strictly speaking, this thesis is about basic research on specialization, not applied work 

related to malaria. All the same, when doing research on a mosquito-specialist predator from 

Africa, especially when there is evidence of Anopheles in particular being the preferred 

mosquitoes, it would be difficult not to be interested in issues related to malaria. 
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CHAPTER TWO: ADAPTIVE TIMING OF PREDATORY ACTIVITY BY A 

MOSQUITO-SPECIALIST PREDATOR 
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ABSTRACT 

Evarcha culicovora, a salticid spider from East Africa, is a mosquito-specialist that 

feeds indirectly on vertebrate blood by actively choosing blood-carrying mosquitoes 

as preferred prey and by actively choosing Anopheles as preferred mosquitoes. Here, 

for the first time, we investigate whether specialization by this predator is also 

expressed in the timing of its predatory activity. With data from field sampling and 

from systematically observing E. culicivora under semi-field conditions, we show that 

predation tends to be concentrated in the early morning hours, this being when 

especially many night-feeding anthropophilic anopheline mosquitoes are resting while 

digesting blood acquired during the night. With data from experiments, we show that 

E. culicivora is significantly more responsive to prey in the morning than in the 

afternoon, where ‘responsive’ includes being significantly more inclined to eat living 

prey, choose the preferred prey, approach a source of prey odour and approach lures 

made from dead prey that can be seen but not touched or smelled. We found no 

significant diel pattern in the predator’s inclination to mate and, although mate, plant 

and human odour are salient to E. culicivora, there was no significant diel pattern in 

response to these odours. Our findings suggest that E. culicivora has an innate activity 

pattern specific to predation which should facilitate encounters with its preferred prey. 
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1.0. Introduction 

There has been considerable interest in predators that target specific types of prey, 

especially when the prey being targeted is a pest species or a disease vector (Murdoch 

et al. 1985; Poisot et al. 2011; Hodek et al. 2012), but blurring of the distinction 

between stenophagy and specialization often makes the literature confusing. A 

predator’s natural diet is what it eats in the field and ‘stenophagy’ is a convenient 

term for instances of a predator’s diet being biased toward a specific selection of the 

available prey (Pekár et al. 2011). Evidence of stenophagy can suggest hypotheses 

about predatory specialization, but a convincing case for characterizing a predator as 

specialized with respect to particular types of prey depends on having details that 

pertain to the particular adaptations which make the predator especially proficient at 

targeting the specified prey (West-Eberhard 2003; Huseynov et al. 2008; Pekár and 

Toft 2015). 

We have been interested in clarifying how predatory specialization can be 

expressed, by Evarcha culicivora Wesolowska and Jackson, 2003, a mosquito-

specialist predator from East Africa (Jackson and Cross 2015). This jumping spider 

(family Salticidae) feeds indirectly on vertebrate blood by actively choosing blood-

carrying mosquitoes as preferred prey (Jackson et al. 2005) and by actively choosing 

Anopheles as its preferred mosquito genus (Nelson and Jackson 2006). Specialized 

feeding on this particular prey is also evident in E. culicivora’s prey-capture 

behaviour (Nelson et al. 2005), feature-detection mechanisms (Nelson and Jackson 

2012a; Dolev and Nelson 2014) and systems for innate triggering of selective 

attention (Cross and Jackson 2009a, 2010a,b), along with other behavioural and 

cognitive capacities (Jackson and Cross 2011). Moreover, there are links between this 

unusual predatory strategy and E. culicivora’s mating strategy: both sexes become 
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more attractive to the opposite sex after feeding on blood-carrying mosquitoes (Cross 

et al. 2009). 

Owing to their unique, complex eyes which support exceptional proficiency at 

identifying different kinds of prey by sight (Harland et al. 2012; Land and Nilsson 

2012), salticids may come close to being ideal subjects in experiments related to 

specialized prey-choice behaviour. For example, when salticids are the test subjects, 

experiments can be carried out using dead prey (lures) mounted in life-like posture on 

cork discs and virtual prey generated by computer animation software (Harland and 

Jackson 2002; Nelson and Jackson 2006, 2012a; Dolev and Nelson 2014), thereby 

removing the risk of uncontrolled prey behaviour introducing confounding variables 

during experiments. Many salticids also have a well-developed sense of smell (Nelson 

et al. 2012a; Uhl 2013) and E. culicivora is known to be proficient at identifying 

blood-carrying mosquitoes even when restricted to using olfaction alone (Jackson et 

al. 2005). 

 It is particularly interesting that E. culicivora targets Anopheles as preferred 

mosquitoes because Anopheles is the genus to which all human-malaria vectors 

belong (Molina-Cruz et al. 2013) and malaria is an especially serious human-health 

problem in East Africa (Guerra et al. 2008; Murray et al. 2012), including in localities 

where E. culicivora is found. The one-cell parasites responsible for human malaria all 

belong to the genus Plasmodium (Garnham1966; Perez-Tris et al. 2005; Martinsen et 

al. 2008) and P. falciparum, the most lethal of these species, is the dominant agent of 

human malaria in East Africa. 

There are about 500 named species in the genus Anopheles, with about 70 of 

these appearing to be competent human-malaria vectors (Harbach 2004; Godfray 

2013). Discussing An. gambiae, the most notorious human-malaria vector in Africa 
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(Spielman and D’Antonio 2001; White et al. 2011), can be complicated because, 

instead of being a single species, this is a species complex (Coetzee et al. 2000) and 

molecular methods are necessary for distinguishing between the species in this 

complex (Fanello et al. 2002). One of these species, An. gambiae sensu stricto (Giles 

1902), has characteristics that make it especially effective as a vector of P. falciparum 

(Sinka et al. 2010). These characteristics include a strong expression of 

anthropophagy (i.e. a strong predisposition to take blood meals primarily from people: 

White, 1974) and olfactory anthropophily (i.e. being attracted to human odour: 

Takken and Knols 1999; Carey et al. 2010). Although two chromosomal forms of An. 

gambiae s.s. (Coluzzi et al. 1985) are now recognized as being two distinct species 

(An. gambiae and An. colluzii), both of which are highly effective malaria vectors 

(Coetzee et al. 2013), distinguishing between these two cryptic species was 

unimportant in the present study. 

There is no evidence to suggest that E. culicivora distinguishes between the 

odours of different Anopheles species or between the odours of mosquitoes from 

different genera (Jackson and Cross unpubl.), but there is a rationale for suggesting 

that, as an anthropophilic anopheline species, An. gambiae s.s. is particularly relevant 

to E. culicivora. For example, E. culicivora resembles An. gambiae s.s. by often being 

associated with human dwellings (Wesolowska and Jackson 2003) and perhaps this 

sharing of habitat facilitates frequent predation by E. culicivora on this particular 

mosquito species. However, the most striking convergence between An. gambiae s.s. 

and E. culicivora might be shared olfactory anthropophily. Like An. gambiae s.s., E. 

culicivora is attracted to human foot odour. Dirty socks have often been used as a 

convenient human-odour source in experiments related to olfactory anthropophily by 

An. gambiae s.s. (Mukabana et al. 2002; Omolo et al. 2013) and an earlier study 
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(Cross and Jackson 2011) showed that E. culicivora is attracted to socks worn by the 

same individual whose socks were known to be especially attractive to An. gambiae 

s.s. (Njiru et al. 2006). 

Unlike spiders (Foelix 2011), mosquitoes have specialized mouthparts for 

taking blood directly from vertebrates (Clements 1992) which means that, for An. 

gambiae s.s., responding to human odour can be a step toward finding opportunities to 

take blood directly from people. By contrast, olfactory anthropophily for E. culicivora 

probably functions primarily in the context of locating habitats where opportunities 

for indirect blood meals (i.e., for feeding on blood-carrying anthropophilic 

mosquitoes) are common. 

Anopheles gambiae s.s. and other anthropophilic anopheline mosquitoes tend 

to feed on blood especially at night and then rest on the walls of human dwellings in 

the mornings while digesting their evening blood meals (Ferguson et al. 2010; Gatton 

et al. 2013). Our objective here is to determine whether E. culicivora’s timing of 

predatory activity corresponds to the optimal time for finding its preferred prey. First 

we determined the prevalence of feeding on prey in the field at different times of the 

day and then we determined the daily feeding-activity patterns of individual spiders 

kept in cages under semi-field conditions but with mosquitoes being provisioned as 

prey throughout the day. As the findings from both of these objectives suggested a 

tendency to feed more often in the morning than later in the day, our next step was to 

determine whether E. culicivora is innately predisposed to express peak 

responsiveness to prey in the morning. For this, we carried out experiments in which 

E. culicivora could see, smell, touch and capture living prey, as well as experiments in 

which the prey-related cues were either visual alone or olfactory alone. 
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To determine whether peak responsiveness in the morning was specific to 

predation instead of being a general feature of E. culicivora’s activity pattern, we also 

carried out experiments using living mates instead of living prey, and using mate, 

human and plant odour instead of prey odour. The rationale for using these particular 

alternative odours was knowing that E. culicivora adults respond to the odour of 

opposite-sex conspecific individuals (‘mates’) (Cross and Jackson 2009b) and that 

juveniles as well as adults respond to the odour of Lantana camara and Ricinus 

communis (Cross and Jackson 2009c), these being plant species on which E. 

culicivora is typically found in the field. Findings from previous research suggest that 

E. culicivora juveniles visit plants especially for nectar meals (Kuja et al. 2012; 

Carvell et al. 2015) and that adults use this plant as a mating site (Cross et al. 2008). 

We used (E)-β-caryophyllene (hereafter referred to simply as caryophyllene) instead 

of living plants in our experiments because, besides being the dominant compound in 

the headspace of Lantana camara in Kenya, caryophyllene has been shown to attract 

E. culicivora in olfactometer experiments (Nelson et al. 2012; Nelson and Jackson 

2013). 

We carried out our field sampling and most of our experiments during the 

daytime because salticids are usually characterized as diurnal predators that rely 

primarily on vision to guide prey-capture (Foelix 2011) and there has been no 

evidence suggesting that E. culicivora is active under normal night-time ambient light 

levels. However, as a capacity for capturing prey in dim light (Penney and Gabriel 

2009) and in total darkness (Forster 1982; Taylor et al. 1998; Guseinov et al. 2004) is 

known for a variety of salticid species, we also included experiments designed 

specifically for investigating whether E. culicivora practises predation during the 

night, including under total darkness. 
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2.0. Materials and Methods 

2.1. General 

Our field site and our laboratory were at the Thomas Odhiambo Campus of the 

International Centre of Insect Physiology and Ecology in Mbita Point (western Kenya, 

elevation 1200 m above sea level, latitude 0◦25’S–0◦30’S, longitude 34◦10’E). Being 

close to the equator, there was a daytime period of 12–13 h throughout the year, with 

morning and evening civil twilight (i.e. the time when the geometric centre of the sun 

is 6° below the horizon) being at approximately 0630 h and 1900 h, respectively 

(http://time.unitarium.com/sunrise/114815). 

As our rearing procedures and many of the details pertaining to experiments 

corresponded to those in earlier research on E. culicivora (see Jackson and Cross 

2015), we provide only essential details here. For observations under semi-field 

conditions and for laboratory experiments, all E. culicivora individuals used as test 

spiders came from laboratory cultures (2nd and 3rd generation), with each individual 

maintained in its own plastic cage separate from other salticids. Laboratory 

photoperiod was 12 light:12 dark (lights on at 0700 h). 

Adult spiders are called simply ‘females’ and ‘males’ and all adults used in 

experiments were virgins which matured 3–5 weeks before being used. All 

mosquitoes were Anopheles gambiae s.s. (hereafter referred to simply as An. 

gambiae) from stock cultures in Mbita Point. These mosquitoes had continuous access 

to a 6% glucose solution on cotton wool. The sugar solution was the only available 

food for male and ‘no-blood female’ mosquitoes, but ‘blood female’ mosquitoes also 

received a blood meal 4 h before being used in experiments. Mosquito body lengths 

(accurate to the nearest 0.5 mm) were always 4.0–4.5 mm, but test-spider body 

lengths were more variable. 
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2.2. Field sampling (Objective 1) 

We searched for spiders by sight on or near the exterior walls of buildings occupied 

by people (i.e. in the kinds of habitat where E. culicivora was known to be prevalent). 

The area searched each time extended for 8 m along a wall at ground level, 1 m up the 

wall from the ground and 1 m out from the wall. There was grass growing against 

walls in all sites, and no plants within the area searched were ever more than 1 m 

high. 

We sampled in the morning (0700–0900 hours), at midday (1200–1400 hours) 

and in the afternoon (1600–1800 hours). We collected each feeding E. culicivora 

individual and its prey in a plastic vial and then separated the spider from its prey by 

shaking the vial or by prodding the spider with a soft brush (prey transferred to a vial 

containing 80% ethanol and the vial labelled with a code number corresponding to the 

spider). The prey was usually a mosquito, but here we were interested solely in the 

timing of predation. Prey-identification data will be a part of another manuscript in 

preparation. 

The sampling was carried out over an 8-year span (2004–2011), always in the 

same 4-month period (March–June). The time of day for each sample was decided at 

random until we had 25 samples from the morning, 35 from midday and 40 from the 

afternoon. More sampling later in the day compensated in part for an apparent trend 

of fewer spiders being found as the day progressed. Sometimes the same site was 

sampled more than once, but never more than once in the same year. We never 

sampled when it was raining or while vegetation was wet from earlier rainfall. 
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2.3. Daytime activity pattern under semi-field conditions (Objective 2) 

Activity was recorded intermittently between morning and evening twilight for 

spiders kept one per plastic cage (66 mm long × 66 mm wide × 110 mm high) under 

an awning outside the south side of the laboratory building where the photoperiod and 

temperature regime were approximately the same as in the field. The awning shielded 

the cages from the heat of direct sunlight which we knew would kill the spiders and 

mosquitoes inside. The awning also shielded the spiders from rain, which we knew 

could flood the interior of cages. We did not record activity on rainy days because our 

impression was that, despite being sheltered by the awning, spiders were disinclined 

to feed when it rained.  

We let all spiders feed to satiation on the day before observations began and 

then, throughout the following day while observations were being made, we ensured 

that 5–7 living mosquitoes were always in the spider’s cage (i.e. whenever fewer than 

5 living mosquitoes were present in a cage at the time of checking for activity, more 

living mosquitoes were added to bring the number in the cage back to 7). As with 

many salticids (Richman and Jackson 1992), E. culicivora builds cocoon-like silken 

nests for shelter and each individual of E. culicivora used for this objective had a nest 

in the cage on the day of observation. 

Wanting to avoid findings that might have been influenced by diel changes in 

E. culicivora’s expression of a preference for blood-carrying female mosquitoes (see 

Objective 5), we used male mosquitoes as prey for this objective. Male mosquitoes do 

not normally feed on blood (Nikbakhtzadeh et al. 2015), but E. culicivora expresses a 

preference for male Anopheles when the alternative is not a blood-carrying female 

mosquito (Nelson and Jackson 2012b). Another consideration was that blood-carrying 

female mosquitoes put into cages early in the morning would have been digesting the 
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blood steadily through the day, thereby changing gradually from blood to no-blood 

females. We might have solved this problem by continually removing uneaten prey 

and substituting more blood-carrying females throughout the day, but removing 

mosquitoes from cages would have introduced an undesirable risk of altering spider 

activity. 

With our goal being to acquire data each hour between morning and evening 

twilight, we assigned test spiders at random to three groups, with each group being 

defined by the times during the day when the spider’s location and activity were 

recorded: Group A checked at 0700, 1000, 1300 and 1600 hours; Group B checked at 

0800, 1100, 1400 and 1700 hours; Group C checked at 0900, 1200, 1500 and 1800 

hours. There were no scheduled recordings before morning twilight or after evening 

twilight. However, when we occasionally checked cages during the 30-min intervals 

before morning twilight and after evening twilight, the spiders were always in their 

nests and none were feeding (also see Objective 3). 

As E. culicivora always takes less than 3 h to complete feeding on an 

individual prey item, adopting a 3-h interval between checking times meant that, 

whenever we observed feeding by an individual at two successive checking times, we 

were confident that it was feeding on a different mosquito in two instances. That the 

spider might have been scavenging on a previously fed-upon prey was unlikely 

because the mosquito held in the spider’s chelicerae always lacked the dried-out 

appearance typical of discarded prey carcasses. 

Test spiders were females (4.5–5.5 mm), males (4.0–4.5 mm) and juveniles 

(1.5–3.0 mm). No juveniles moulted during the 5 days immediately preceding 

observation or the 5 days immediately after observation. We pooled the data from all 

observations because our objective did not encompass questions pertaining to whether 
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juvenile body length, the sex of adults or the adult-juvenile distinction had any 

influence on activity pattern, nor was our sample size large enough for considering 

these questions. 

 

2.4. Night-time activity under semi-natural conditions (Objective 3) 

Using a battery-operated headlamp, we checked spiders at 1900, 2000, 2100, 2200, 

2300 and 2400 hours (i.e. at times when it was dark outside and at 1-h instead of 3-h 

intervals). Spiders were exposed to direct light only momentarily because it took no 

longer than a few seconds to determine the spider’s location and whether there was 

any predatory activity. Otherwise, the methods adopted for this objective were the 

same as when making observations during the daytime (Objective 2). 

 

2.5. Determining whether spiders killed prey while in total darkness (Objective 4) 

Each spider was put into an individual cage at 2000 hours. The cage was then covered 

by a black cardboard box and kept in a windowless room in our laboratory with all 

lights turned off. Seven blood-carrying mosquitoes were put into each cage 30 min 

later. Immediately before transferring the mosquitoes to the cage, we removed the box 

and, using the battery-operated headlamp with a red light bulb, we removed the 

stopper from the top of the cage and transferred mosquitoes to the cage, after which 

we returned the stopper and the box, and turned off the headlamp. Spiders never ate 

any of the mosquitoes during the brief interval when the cage was lit by the headlamp. 

The cages were then left covered in the unlit room overnight. At 0600 hours the 

following morning, the laboratory lights were turned on, the box was removed and the 
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cage was checked for dead mosquitoes. Control trials were set up the same way 

except that there was no spider in the cage. 

 

2.6. Morning-afternoon differences in predisposition to capture preferred prey 

(Objective 5) 

Before a trial began, five blood-carrying mosquitoes were already in a cage (see 

Objective 2 for details concerning cages). The test spider was first put in a glass tube 

(diameter 15 mm; length 50 mm) with a stopper in each end of the tube. After 15 min, 

one of the stoppers was removed and, if the spider remained quiescent, this end of the 

tube was inserted into the introduction hole in the cage. We ensured that the open end 

of the tube was always the end that the spider was facing. The trial began when the 

test spider entered the cage. If the spider failed to walk spontaneously into the cage, 

we removed the other stopper and prodded the spider with a soft brush until it entered 

the cage. After the test spider entered the cage, the glass tube was removed and the 

introduction hole in the cage was plugged with a stopper. We then allowed 15 min for 

the test spider to capture the prey. 

Each test spider was used in two successive trials (i.e. this experiment was 

based on a paired design): in the morning (1000–1200 h) and, on the next or previous 

day (decided at random), in the afternoon (1500–1700 h). Spiders were fed to 

satiation the day before they were used in the first of the two trials. During the first 

trial, we removed the spider from the cage as soon as it captured prey (i.e. it was 

allowed to eat only one prey item). For standardisation, we used only E. culicivora 

adults and we decided to use females instead of males because, compared with males, 

female salticids tend to be more strongly motivated to feed (Givens 1978; Jackson & 

Pollard 1996). 
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2.7. Morning-afternoon differences in predisposition to mate (Objective 6) 

On the whole, our methods for this objective were the same as for Objective 5 except 

that, instead of a spider being in a cage with prey, a pair of adult spiders (one male 

and one female) was in each cage. We tested each male twice, on one day in the 

morning (1000–1200 hours) and on the next or previous day (decided at random) in 

the afternoon (1500–1700 hours). The female paired with the male on one day was 

always different from the female paired with the same male on the other day. The 

female was put into the cage 60 min before the male was put into the cage, and the 

pair was allowed 15 min to begin mating. No individual female was used in more than 

one trial and no individual male was used in more than one pair of trials. All spiders 

were 4.5 mm in body length. As a prerequisite for a successful trial, the female had to 

be outside of her nest when a trial began and the male had to be outside of his nest on 

both days when a trial began. We removed any spider that failed to meet these 

prerequisites from the experiment, replacing it with a substitute spider from our stock 

culture. 

 

2.8. Morning-afternoon difference in responsiveness to lures made from preferred 

prey (Objective 7) 

The testing apparatus (Fig. 1) was a transparent glass box (100 mm × 100 mm, walls 

35 mm high) that sat centred on the top of a wooden platform (170 mm × 170 mm). 

There was a hole (diameter 16 mm) centred on each of the four sides of the box and 

another hole centred in the top of a removable glass lid (100 mm × 100 mm). A glass 

vial (length 50 mm, diameter 16 mm) plugged each hole in each side of the box (open 

end flush with the inside of the box; other end plugged with a rubber stopper). Eight 

lures were distributed around the box, one on each side of each glass tube. The 
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wooden platform, with the glass box on top, was surrounded by a 40-mm high 

wooden fence (painted white). The fence served as a background against which E. 

culicivora saw the lures. 

Each lure was a dead blood-carrying female mosquito positioned in lifelike 

posture on the top of a cork disc (diameter 6 mm, thickness 2 mm). On the previous 

day, the mosquito had been immobilized using CO2 and then kept in 80% ethanol 

overnight. For preservation, we sprayed the lure and the cork disc with a transparent 

plastic adhesive (Crystal Clear Lacquer, Atsco Australia Pty). Double-sided sticky 

tape on the bottom of the disc secured the lure to the wooden table top 10 mm away 

from the nearest side of the nearest vial and 15 mm out from the nearest side of the 

box, with the dead mosquito facing the vial.  

Experiments were based on a paired design, with each test spider being used in 

one trial on one day in the morning and in another trial on the next or previous day in 

the afternoon (see Objective 5). Spiders were fed to satiation the day before they were 

used in the experiment. We began each trial by introducing a test spider (always an 

adult female) through the hole in the centre of the box lid. Once the spider was inside, 

the hole was plugged with a rubber stopper. The trial ended when the test spider 

entered one of the vials or, if the spider failed to enter a vial, when 15 min elapsed. In 

addition to fluorescent ceiling lamps providing ambient lighting, the apparatus was lit 

from 400 mm overhead by a lamp with a 100-W incandescent light bulb. Between 

trials, the lid was removed and the entire apparatus was washed with 80% ethanol 

followed by distilled water and then dried. For more detail about making lures and the 

experimental procedures, see Jackson et al. (2005). 
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2.9. Morning-afternoon differences in the expression of preference when tested with 

lures (Objective 8) 

Instead of adopting a paired design for this objective, we used independent samples 

(i.e. the spiders used for trials in the morning were different from the spiders used for 

trials in the afternoon). In each trial, the test spider could choose between a blood 

meal (i.e. lures made from blood-carrying female mosquitoes) and a no-blood meal 

(i.e. lures made from male mosquitoes). Lures at adjacent walls were different and 

lures at opposite walls were the same. Otherwise, the methods were the same as for 

Objective 7 and it was particularly important that test spiders fed to satiation on the 

previous day as this is the prior-feeding condition under which E. culicivora is known 

to express the strongest preference (Nelson & Jackson 2012b).  

 

2.10. Morning-afternoon differences in response to prey, mate, plant and human 

odour (Objective 9) 

Using a Y-shaped glass olfactometer (Figs 2, 3; for details, see: Jackson et al. 2005; 

Cross and Jackson 2011), all experiments were based on a paired design (see 

Objective 5) and, for standardization, all test spiders were adult females when prey 

odour was used (see Objective 5 for rationale) and all test spiders were adult males 

when any other odour was used. All test spiders fed to satiation on the day before 

being used in experiments. 

Except when using human odour (see below), air was pushed by a pump 

through two separate flowmeters (Matheson FM-1000 set at 1500 ml/min) into the 

two chambers, each of which was a glass cube made from 5-mm thick glass (inner 

dimensions, 70 × 70 × 70 mm, with a removable lid). There were two holes (diameter 
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20 mm) in the cube, positioned on opposite sides, and each of these holes was 

plugged with a rubber stopper. In each stopper, there was a hole and, inserted in each 

stopper hole, there was a glass tube (diameter 4 mm). Living prey and mates were 

confined to the chambers by putting nylon netting over the stoppers. New netting was 

used for each trial. Air moved independently through the stimulus chamber to the 

corresponding arm of the Y-shape olfactometer (i.e. the ‘stimulus arm’) and through 

the control chamber to the ‘control arm’ of the olfactometer, and then converged in 

the stem of the olfactometer (the ‘test arm’). For each trial, we determined at random 

whether the stimulus arm would be on the left or right. 

We put the odour source into the stimulus chamber 30 min before the trial 

began and we put a test spider in a holding chamber at the far end of the test arm 2 

min before testing began. There were two slits in the holding-chamber roof and there 

was a removable metal grill in each slit, with the test spider confined to the space 

between the grills. The grill on one side blocked the spider’s access to the test arm 

and the grill on other side ensured that the spider could not leave the holding chamber 

prematurely. At the end of the 2-min interval, we removed the grill from the slit 

closest to the test arm. Each trial began when the test spider entered the test arm and 

ended when the test spider responded, where ‘respond’ was defined as the test spider 

entering the stimulus arm and remaining there for 30 s. A maximum of 30 min was 

allowed for the test spider to respond. After each trial, the olfactometer was 

dismantled and cleaned with 80% ethanol followed by distilled water and then dried. 

No test spider and no odour source were used more than once. 

Depending on the experiment, the odour source was 10 blood-carrying 

mosquitoes (prey odour: Jackson et al. 2005), one opposite-sex conspecific individual 

(mate odour: Cross and Jackson 2009b), human odour (see below) or a 4 µl sample of 
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caryophyllene (plant odour). The caryophyllene was added to 1.0 g of petroleum jelly 

in the centre of a small (diameter 30 mm) open Petri dish that sat on the centre of the 

chamber floor (Nelson et al. 2012b),  

The source of human odour was a pair of white socks that had been worn for 

the previous 12 h by the same anonymous male volunteer who wore the socks used in 

earlier studies on An. gambiae (Njiru et al. 2006) and E. culicivora (Cross and 

Jackson 2011), with the control being a pair of clean but otherwise identical socks. All 

socks were 100% cotton (length 300 mm). There were two aluminium boxes (inner 

dimensions 150 × 130 × 130 mm), one for the pair of worn socks (stimulus chamber) 

and the other for the pair of clean socks (control chamber). There was a wire rack 

(110 × 100 mm, 90 mm high) inside each chamber, with one sock draped over the top 

of one 110-mm side and another sock over the top of the opposite 110-mm side of the 

rack (Fig. 3).  

 

2.11. Data analysis 

For details concerning the data analyses, see GraphPad, Prism version 6.00 for Mac OS 

X (GraphPad Software, La Jolla, California, USA, www.graphpad.com). We used 

Dunn’s multiple comparisons and tests of independence for analyzing data from field 

sampling. For data from experiments based on a paired design, we used McNemar tests 

for significance of change (note: this statistical procedure considers only instances in 

which the outcome from testing in the morning was different from the outcome from 

testing in the afternoon). For Objective 8, where our data came from using independent 

samples, we first used tests of goodness of fit (null hypothesis 50/50) separately on data 

from the morning and the afternoon, after which the morning and afternoon samples 

were compared using tests of independence. Bonferroni adjustments were applied 
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whenever data sets were used in more than one comparison, but these adjustments 

never changed findings from significant to non-significant. 

3.0. Results 

3.1. Field sampling (Objective 1) 

We found more spiders during sampling in the morning than at midday or in the 

afternoon (Fig. 4A) and the percentage of spiders feeding (Fig. 4B) was larger in the 

morning than at midday or in the afternoon (Dunn’s comparisons for the percentages 

of spiders that were feeding: morning vs. midday, mean rank difference 35.32, 

P<0.001; morning vs. afternoon, 42.54, P<0.001; midday vs. afternoon, 7.22, 

P=0.654). Entire samples in which no spiders were feeding were scarce in the 

morning (12%), more common at midday (69%) and most common in the afternoon 

(87%) (tests of independence: morning compared with midday, χ²=18.86, P<0.001; 

morning compared with afternoon, χ²=36.11, P<0.001; midday compared with 

afternoon, χ²=3.99, P=0.046). 

3.2. Daytime activity pattern under semi-field conditions (Objective 2) 

We determined each individual’s activity profile (i.e. when it was outside its nest and 

when it was feeding) and determined the number of individuals corresponding to each 

profile. At 0700 hours, 66% of the spiders were out of their nests and the percentage 

out of their nests then remained at 69% or higher until 1600 hours, after which it 

dropped to 45% at 1700 hours and then to 23% at 1800 hours (Fig. 5). About a third 

of the spiders (32%) were out of their nests every time they were checked; only 2% 

were in their nests every time; 38% were out of their nests three times, 18% only 

twice and 9% only once when checked. Most spiders (85%) were found out of their 
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nests at least once in the morning and at least once in the afternoon; 9% were found 

out of their nests only in the morning and 4% only in the afternoon. 

After pooling data for all spiders at each time of the day, we used least-square 

linear regression for a rough characterization of diel trends in predatory activity (Fig. 

6). Feeding was especially common in the early morning and then became 

progressively less often through the day. Of the 1281 spiders that we monitored, only 

295 (23%) were ever seen feeding when checked and, of these 295 spiders, 75% were 

seen feeding only in the morning, 17% only in the afternoon and 8% in the morning 

and in the afternoon; 88.5% of these 295 spiders were seen feeding once, 10.2% twice 

and 1.3% three times. For these comparisons, morning defined as 0700–1200 hours 

and afternoon as 1300–1800 hours. 

 

3.3. Activity and predation under dim light and in total darkness (Objectives 3 and 4) 

When checked between 1900 and 2400 hours, all E. culicivora juveniles observed at 

night under semi-field conditions (n=38) were in their nests and no predation was ever 

seen. For trials in total darkness, we used 44 E. culicivora adults (33 females and 11 

males) and, in each instance, no mosquitoes died during the testing period, and no 

mosquitoes from the 44 control trials (no spider present) died. 

 

3.4. Morning-afternoon differences in response to prey and mates (Objectives 5 and 

6) 

Prey capture was significantly more common in the morning than in the afternoon 

(Table 1, row 1, McNemar test: χ²=10.56, P=0.001), but there was no significant 

morning-afternoon difference for mating (Table 1, row 2, McNemar test: χ²=0.00, 
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P=1.000). Significantly more spiders mated in the afternoon than captured prey in the 

afternoon (test of independence using only data from afternoon trials: χ²=16.72, 

P<0.001). 

 

3.5. Morning-afternoon difference in response to lures made from preferred prey 

(Objectives 7 and 8) 

For spiders tested twice (once in the morning and once in the afternoon; Objective 7), 

responding to lures was significantly more common in the morning than in the 

afternoon (Table 1, row 3, McNemar test: χ²=13.07, P<0.001). There were also 

significant time-of-day effects on spiders in choice tests (Objective 8; Table 2), where 

each spider was tested only once, either in the morning or in the afternoon: 93% of 30 

spiders tested in the morning made a choice, but only 65% of 40 spiders tested in the 

afternoon made a choice (test of independence: χ²=7.80, P=0.005). Considering only 

those spiders that made a choice, 93% of 28 chose the blood meal in the morning but 

only 62% of 26 chose the blood meal in the afternoon (test of independence: χ²=7.65, 

P<0.001). Significantly more spiders chose blood instead of no-blood meals in the 

morning (test of goodness of fit, χ²=20.57, P<0.001), but there was no significant 

choice in the afternoon (test of goodness of fit, χ²=1.38, P=0.239). 

 

3.6. Morning-afternoon differences in response to prey, mate, plant and human odour 

(Objective 9) 

Response to prey odour was significantly more common in the morning than in the 

afternoon (Table 1, row 4, McNemar test: χ²=12.50, P<0.001), but there was no 

significant morning-afternoon difference in response to any other odour (Table 1, row 
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5–7, McNemar tests; mate odour, χ²=0.17, P=0.683; plant odour, χ²=0.10, P=0.752; 

human odour, χ²=0.00, P=1.000). In the afternoon, significantly more spiders 

responded to other odours than to prey odour (mate odour, χ²=11.83, P<0.001; plant 

odour, χ²=14.59, P<0.001; human odour, χ²=7.52, P=0.006). 

 

4.0. Discussion 

Referring to a single preferred prey category can be convenient when making passing 

reference to examples of predatory specialization. There are, however, important 

distinctions between the way E. culicivora categorizes prey (i.e. this predator’s own 

prey-classification system) and way scientists might categorize the same prey using 

Latin names from formal scientific taxonomy. When we say E. culicivora is a 

‘mosquito specialist’, ‘mosquito’ means specifically the adult stage in this insect’s life 

cycle. Paracyrba wanlessi is another mosquito-specialist salticid, but P. wanlessi uses 

different prey-capture methods depending on whether it is targeting aquatic juvenile 

mosquitoes or adult mosquitoes, these being substantially different types of prey 

(Jackson et al. 2014). In P. wanlessi’s prey-classification scheme, juveniles and adults 

of mosquitoes are two distinct preferred prey categories, whereas E. culicivora does 

not appear to classify juvenile mosquitoes as a prey category at all. Yet there are other 

distinctions which matter to E. culicivora, including whether the mosquito is carrying 

blood instead of not carrying blood, whether it is an anopheline instead of a culicine, 

and whether it is a female instead of a male (see Jackson and Cross 2015), with none 

of these categories appearing to matter to P. wanlessi. These two mosquito-eating 

predators illustrate how a deeper understanding of predatory specialization can come 

from considering preference profiles instead of simply naming a single preferred prey 

type for the predator.  
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It is also important to appreciate that prey-choice behaviour is not the only 

way in which specialization by predators on particular types of prey can be expressed. 

Our findings in the present study suggest that one of the ways in which E. culicivora 

expresses predatory specialization pertains to the adaptive timing of predatory 

activity, where ‘predatory activity’ refers to this predator’s innate predisposition to 

engage in prey-capture and prey-choice behaviour. 

There is an interesting correspondence between E. culicivora’s and An. 

gambiae’s activity patterns. Typically the activity pattern of An. gambiae females is 

summarized as feeding on blood late at night and in the early pre-dawn hours of the 

morning, and then resting on the walls of human dwellings while digesting nocturnal 

blood meals (Murray et al. 2012). This means that, when daylight arrives, E. 

culicivora encounters quiescent blood-carrying An. gambiae and other night-feeding 

malaria vectors on the walls of buildings. 

Our field sampling data (Objective 1) revealed an early morning feeding peak 

for E. culicivora. Declining availability of preferred prey during the day or other 

factors extrinsic to the predator appear not to be the sole determinants of the feeding 

pattern revealed by sampling because, when spiders were kept under semi-field 

conditions, but with prey availability kept uniform through the day (Objective 2), the 

timing of peak feeding was similar to that found in the field. We also looked for, but 

found no evidence of, nocturnal predation (Objectives 3 and 4). 

We proposed that, E. culicivora has an innate predisposition to be more 

responsive to prey in the morning and our experimental findings supported this 

hypothesis. When we used living prey (Objective 5), visual cues alone (lures made 

from dead prey: Objective 7) and olfactory cues alone (odour from prey in an 
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olfactometer: Objective 9), response to prey was significantly stronger in the morning 

than in the afternoon. 

We considered the possibility that E. culicivora’s predisposition to be 

especially responsive to prey in the morning was a consequence of an innate 

predisposition to be more responsive in general to salient stimuli in the morning. 

However, in other experiments, no significant morning-afternoon difference was 

found when E. culicivora pairs were given the opportunity to mate (Objective 6) and 

we found no significant morning-afternoon difference between how many E. 

culicivora individuals responded to mate, human or plant odours (Objective 9). On 

this basis, we propose that this spider is adjusting activity specifically in the context 

of predation. 

We also found a significant morning-afternoon difference in the expression of 

prey-choice behaviour (Objective 8). In our experiments, E. culicivora had 

simultaneous access to lures made from blood Anopheles females and lures made 

from Anopheles males. In the morning, but not in the afternoon, more spiders chose 

the blood meal. These findings suggested that E. culicivora is often sufficiently 

motivated to respond to prey in the afternoon without being sufficiently motivated to 

take the additional step of discriminating between the more preferred and the less 

preferred type of prey. The explanation for this difference might be partly related to 

the functioning of salticid eyes. 

Salticids have eight eyes, but a large forward-facing pair, called the ‘principal 

eyes’, plays the major role in identifying prey. The corneal lenses of the principal eyes 

are fixed in place on the spider’s carapace with the principal-eye retinas being located 

at the ends of long, slender eye tubes that extend deep into the salticid’s 

cephalothorax. Using muscles attached to these eye tubes, the salticid can orchestrate 
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specific movement patterns (Land and Nilsson 2012), with ‘scanning’ being 

especially elaborate. A salticid scans when viewing an object of interest by moving its 

eye tubes in unison from side to side while also rotating them in alternating fashion 

clockwise and anti-clockwise. It has been proposed that, while scanning, the salticid 

carries out an active serial search for salient features in the image and, using this slow 

and effortful piece-by-piece rendering of a visual object, identifies what it is looking 

at (Land,1969; Harland et al. 2012).Scanning appears to be a part of the process by 

which salticids express selective visual attention and selective attention is generally 

envisaged as a cognitively demanding task governed by capacity limitations (e.g. see 

Dukas 2004). Our findings suggest that there is a morning-afternoon difference in E. 

culicivora’s willingness to undertake the effortful, attention-demanding task process 

required for discriminating by sight, in the absence of non-visual cues, between 

Anopheles individuals that are and are not carrying blood. 
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Table 1 Response to prey, mates, lures and odours 

 

Row  Response in 
morning but 
not in 
afternoon  

Response in 
afternoon but 
not in 
morning  

Response 
in morning 
and 
afternoon  

No 
response in 
morning or 
afternoon  

1 Captured 
prey 

15 1 19 2 

2 Mated 4 3 43 0 
3 Moved to lure  15 0 12 1 
4 Moved to 

prey odour 
17 1 22 4 

5 Moved to 
mate odour 

3 3 41 5 

6 Moved to 
plant odour 

4 6 38 2 

7 Moved to 
human odour 

3 4 29 5 
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Table 2 Morning-afternoon difference in response to lures in choice tests. Blood 

meal: lures made from Anopheles gambiae females. No-blood meal: lures made from 

Anopheles gambiae males. Response: chose one of the two lure types. No response: 

failed to make a choice. Two groups of test spiders, one tested in morning and other in 

afternoon 

 

 Response No 
response 

Chose blood 
meal 

Chose no-blood 
meal 

Tested in morning 28 2 26 2 
Tested in 
afternoon 

26 14 16 10 
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Fig. 1 Testing apparatus (not to scale) used for Objectives 7 and 8. Fence surrounding 

box not shown. Lures positioned on each side of each vial. In Objective 7, all lures 

were blood-carrying female mosquitoes. In Objective 8, lures at adjacent walls were a 

different type and lures at opposite walls were the same type. Test spider ‘response’: 

gets closer to lures by entering a vial 

 

Fig. 2 Olfactometer (not drawn to scale) used for Objective 9 when testing Evarcha 

culicivora with prey odour, mate odour or plant odour. Arrows in silicone tubes 

indicate direction of airflow. Holding chamber (location of test spider at start of test): 

length 25 mm, internal diameter 25 mm. Start of test: test spider in holding chamber; 

grill removed, giving access to test arm, control arm and stimulus arm. Test spider 

enters stimulus arm to get closer to odour source in stimulus chamber (control 

chamber empty). Dimensions of test arm, control arm and stimulus arm: length 90 

mm, internal diameter 20 mm. Opaque barriers prevent test spider from seeing odour 

source 

 

Fig. 3 Olfactometer (not drawn to scale) used for Objective 9 when testing Evarcha 

culicivora with human odour coming from previously-worn socks. Arrows in silicone 

tubes indicate direction of airflow. Holding chamber (location of test spider at start of 

test): length 25 mm, internal diameter 25 mm. Start of test: test spider in holding 

chamber; grill removed, giving access to test arm, control arm and stimulus arm. Test 

spider enters stimulus arm to get closer to odour source (i.e. previously-worn socks) 

in stimulus chamber. Control chamber contained unworn socks. Dimensions of test 

arm, control arm and stimulus arm: length 90 mm, internal diameter 20 mm. Opaque 
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barriers prevent test spider from seeing odour source 

 

Fig. 4 Findings from field sampling of Evarcha culicivora (Objective 1). (A) Number 

of E. culicivora individuals found during sampling. (B) Percentage of those E. 

culicivora individuals found during sampling that were feeding when found 

 

Fig. 5 Percentage of spiders seen out of their nests at different times of the day under 

semi-field conditions (Objective 2) 

 

Fig. 6 Percentage of spiders that were seen feeding on mosquitoes at different times 

of the day under semi-field conditions (Objective 2). Least-squared linear regression, 

r2=0.810, y=21.32-1.19x 
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Fig. 1. 
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Fig. 2.		
	
	
	

	
	
 



	 54	

Fig. 3.  
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Fig. 4.  

 

 

	

1-10 11-20 21-30 31-40 41-50 51-60
0

5

10

15

20

25

Spiders in sample 

N
o.

 o
f s

am
pl

es

Morning

A

1-10 11-20 21-30 31-40 41-50 51-60
0

5

10

15

20

25

Spiders in sample 

N
o.

 o
f s

am
pl

es

Mid-day

1-10 11-20 21-30 31-40 41-50 51-60
0

5

10

15

20

25

Spiders in sample 

N
o.

 o
f s

am
pl

es

Afternoon

0 1-5% 6-10% 11-15% 16-20% 21-30% 31-35%
0

5

10

15

20

25

30

35

40

Spiders in sample that were feeding

N
o.

 o
f s

am
pl

es

Morning

B

0 1-5% 6-10% 11-15% 16-20% 21-30% 31-35%
0

5

10

15

20

25

30

35

40

Spiders in sample that were feeding

N
o.

 o
f s

am
pl

es

Mid-day 

0 1-5% 6-10% 11-15% 16-20% 21-30% 31-35%
0

5

10

15

20

25

30

35

40

Spiders in sample that were feeding

N
o.

 o
f s

am
pl

es

Afternoon



	 56	

Fig. 5.  
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Fig. 6.  
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CHAPTER THREE: EFFECTS OF PREY AND NECTAR MEALS ON THE 

CAPACITY OF A MOSQUITO-SPECIALIST PREDATOR TO COMPLETE 

THE FIRST ACTVIE STAGE IN ITS LIFE CYCLE 

	

 

Credit: Robert Jackson 

Juvenile Evarcha culicivora
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Abstract 

Evarcha culicivora is a mosquito-specialist salticid spider from East Africa that also 

feeds on nectar, but there has been no previous research pertaining to the roles 

nutrients from these two different sources might play in this unusual predator’s life 

cycle. Here I investigate dietary effects on E. culicivora’s first active life cycle stage 

(hatchlings). The dietary variables in experiments were the type and number of 

mosquitoes eaten, the timing of prey availability, access to plants (with and without 

also eating prey) and access to artificial nectar made from known sugars and amino 

acids (with and without also receiving prey). The mosquitoes used as prey were 

Anopheles gambiae s.s. (males, blood-carrying females and females without blood) 

and the plants belonged to five species. The diet-related effects that I found pertained 

to the likelihood of completing the first instar (‘completion successes), completion 

time of individuals that were successful and longevity of individuals that were 

unsuccessful at reaching the next instar. Prey meals appear to be especially important 

for completion success, but nutrients derived from plants can extend longevity and the 

hatchlings can then complete the first instar when prey later becomes available. 

Fructose appears to be the most beneficial sugar in nectar. Amino acids in nectar seem 

to have minimal effect. 

 

Keywords: Nectarivory, omnivory, spider, Salticidae, Evarcha culicivora, mosquito, 

Anopheles gambiae, Lantana camara, Ricinus communis, Parthenium hysterophorou
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1.0. Introduction 

The origins and adaptive significance of omnivory (i.e., feeding at more than one 

trophic level) have often been discussed in the context of hypotheses about avoiding 

overexposure to toxins associated with otherwise superior food, capacities to rely on 

inferior food sources during periods when superior food is scarce and the acquisition 

of an optimal balance between the different nutrients provided by different food 

sources (Pimm & Lawton 1978; Singer & Bernays 2003; Hunter 2009). Omnivory is 

especially interesting when animals from a group of that has traditionally been 

envisaged as strictly predatory are shown also to take nutrients directly from plants 

(e.g., Coll & Guershon 2002). For example, there is a tradition of characterizing 

spiders as strictly predators, but Bagheera kiplingi (Meehan et al. 2009), a Central 

American jumping spider (Salticidae), is a striking exception. This salticid cohabits 

with ants (Pseudomyrmex spp.) on ant-acacias (Vachellia spp.), where it sometimes 

captures and eats insects, including ant larvae snatched out of the mandibles of 

attending workers, but the ants as well as B. kiplingi feed primarily on specialized leaf 

tips the ant-acacias (Heil et al. 2004). 

Although plant products are not known to be the primary food any other 

spiders, many spider species may supplement a primarily predatory diet with direct or 

indirect plant products, including pollen, honeydew, seeds, sap and especially nectar, 

with the nectar being derived from extra-floral nectaries as well as flowers (Nyffeler 

2016, Nyffeler et al. 2016). Although the prevalence of feeding on plant products 

raises questions about how plant-derived nutrients, either by themselves or combined 

prey, function in the spider’s life cycle, most spider research has not gone much 

beyond the documenting that spiders feed on plant products. The primary exceptions 

have come from research on Cheiracanthium mildei (Miturgidae) and Hibana velox 
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(Anyphaenidae), two non-salticid spider species for which it is known that combining 

nectarivory with a predatory diet improves survival rate, growth and fecundity (Taylor 

& Bradley 2009; Taylor & Pfannenstiel 2009). However, a better understanding of the 

ways in which plant-related nutrients function in the lives of salticid spiders would be 

of particular interest because about 60% of the known examples of spiders feeding on 

plant products have come from this particular spider family (Nyffeler 2016). 

That there are especially many examples of salticids feeding directly from 

plants might be surprising because salticids are known for having a particularly active 

style of predation (Jackson & Pollard 1996) and also for having unusual eyes (Land & 

Nilsson 2012; Harland et al. 2012) with which they can detect and identify prey from 

a distance, and then make highly specific vision-based prey-choice decisions (Nelson 

& Jackson 2011). For a spider already so well adapted for using vision-based 

behaviour as an active predator, it may seem as though feeding on plant products 

would be superfluous, but this is intuition, not an evidence-based conclusion. 

Even by salticid standards, the level of prey-choice specificity expressed by 

Evarcha culicivora, the species I consider here, is remarkable (Cross & Jackson 

2010a). This East African salticid feeds indirectly on vertebrate blood by actively 

choosing blood-carrying female mosquitoes as preferred prey (Jackson et al. 2005) 

and it also chooses species from a particular genus, Anopheles, as its preferred 

mosquitoes (Nelson & Jackson 2006, 2012a). As all human malaria vectors belong to 

this mosquito genus (Clements 1999; Sinka et al. 2010), E. culicivora’s preferences 

are of unusual interest to people. 

Besides having an exceptional capacity for seeing detail, many salticids are 

also known for making extensive use of chemoreception, including olfaction (Nelson, 

Warui & Jackson 2012; Uhl 2013). However, the role of olfaction in the biology of E. 
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culicivora is especially complex (Cross & Jackson 2009a, 2010b, 2011, 2013, 2014) 

and perhaps the most surprising discovery related to this species’ use of olfaction has 

come from research showing that E. culicivora responds to the odours of two of the 

most common plant species in its habitat (Cross et al. 2009b), Lantana camara and 

Ricinus communis (Cross et al. 2008). 

In Kenya, two sesquiterpenes, β-caryophyllene and α-humulene, are the 

dominant volatile compounds from the headspace of Lantana and E. culicivora is 

known to be attracted to the odour from these particular compounds (Nelson et al. 

2012). Pre-trial fasts make the early-instar juveniles, but not the adults, of E. 

culicivora even more strongly predisposed to move toward the source of these odours 

(Nelson & Jackson 2013) and there is evidence from cold-anthrone testing that small 

E. culicivora juveniles in the field ingest sugar from plants more often than is the case 

for larger individuals (Kuja et al. 2012). Prior nectar meals have also been shown to 

improve the smaller juveniles’ capacities to overpower mosquitoes that are 

considerably larger than themselves (Carvell et al. 2015). 

This combination of findings suggests that nectar meals are especially 

important for the smaller juveniles of E. culicivora. On this basis, I decided to 

investigate diet effects on specifically the first active stage in E. culicivora’s life 

cycle. I refer to spiders in this stage as ‘hatchlings’ and my primary hypothesis is that 

plant-derived nutrients are especially important for hatchlings. In a series of 

experiments, I considered this hypothesis by recording the effects of feeding regimes 

during which hatchlings have access to prey, plants and artificial nectar prepared from 

known compounds, as well as combinations of prey with plants or artificial nectar. 
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2.0. Methods and Materials 

2.1. General 

Arachnologists sometimes refer to the non-feeding postembryonic stages in the life 

cycles of spiders with various terms, including ‘larva’ and ‘postembryo’. The first 

active feeding stage, which is normally the stage at which the juvenile leaves the egg 

sac, is sometimes called ‘nymph 1’, with similar terms for the stages after each 

successive moult (Foelix 2011). There appears to be no consensus pertaining to the 

use of the expression ‘instar’. As postembryonic individuals moult one or more time 

before leaving the egg sac, it is logical to call the stage after each moult a different 

instar and yet it is also common practice to call ‘nymph 1’ the ‘first instar’. All of this 

can be confusing for non-arachnologists and for arachnologists (Foelix 2011) and, in 

most instances, by using the expression ‘hatchlings’, I will avoid these terminological 

issues. When it is awkward to avoid specifying an instar, I will refer to the hatchling 

as the first instar, as this is perhaps the easiest usage for non-arachnologists. 

By relying on laboratory cultures derived from individuals collected at the 

field site in Mbita Point, Western Kenya (elevation 1200m above sea level; latitude 

0◦30’S; longitude 34◦10’E), I had access to large numbers of E. culicivora hatchlings. 

The basic methods for rearing, maintaining and testing spiders that I adopted were as 

in earlier studies (e.g., Cross & Jackson 2013) and I provide only essential details 

here. 

As is commonplace for salticids (e.g., Jackson 1978), E. culicivora females 

put their eggs in silk egg sacs situated inside cocoon-like nests. Hatchings emerge 

from the nest and spread about in the cage at roughly the same time. On the day of 

emergence, I isolated the hatchlings into separate cages and assigned them at random 

to different groups, each group being defined by a specific feeding regime (prey-only 
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regimes, Table 1; plant-only and prey + plant regimes, Table 2; artificial-nectar 

regimes, Table 3). 

Each cage was cylindrical (height 55 mm, diameter 45 mm) and made from 

clear plastic. Irrespective of feeding regime, each hatchling had continual access to 

water by means of a cotton roll (‘dental wick’) that was inserted into a hole in the 

bottom of the cage and positioned so that it extended into a water-filled plastic pot 

below the cage. For ventilation, there was a hole in the top of the cage, which was 

covered by metal screening. For introducing prey, there was a second hole in the top 

of the cage. Except when being used for introducing prey, this hole was plugged with 

a rubber stopper. All holes were 8 mm in diameter. 

For each experiment, I recorded how many hatchlings completed the first 

instar (‘completion success’) and the longevity of each hatchling that died without 

completing the first instar. For hatchlings that completed the first instar, I recorded 

completion time (i.e., the time elapsing between emerging from the nest and being 

successful at moulting). Longevity and completion time were recorded accurate to the 

nearest day. 

 

2.2. Prey and plants 

The mosquitoes used as prey in experiments were always Anopheles gambiae sensu 

strictu from stock cultures (see Mukabana et al. 2002). Three categories were used: 

males, blood females and no-blood females. All mosquitoes had access to 6% glucose 

prior to use in experiments (‘sugar meals’). Males and no-blood females received only 

the sugar meals, but blood females also received a blood meal 4 h before use. 

Cuttings from the plants were taken as needed from the field on the day when 

they were used. The plants were Lantana camara (Verbenaceae) and Ricinus 
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communis (Euphorbiaceae), these being the two species known to attract E. culicivora 

in olfactometer experiments (Cross & Jackson 2009b), and also Lippia kituensis 

(Verbenaceae), Parthenium hysterophorus (Asteraceae) and Hibiscus rosa-sinensis 

(Malvaceae). Although L. kituensis and R. communis are native to Kenya, L. camara 

and P. hysterophorus are invasive weed species of American origin that have become 

widespread in Africa and much of the world (Ghisalberti 2000; Beentje 1994; 

Mcconnachie et al. 2010). The other species, H. rosa-sinensis is a widespread 

horticultural species (Dharani 2011). All of these plants came from, and were 

common in, the field site. 

 

2.3. Artificial nectar 

The sugar and amino acid content of L. camara nectar is known on the basis of a 

personal communication from Irene Baker to Alm et al. (1990): sucrose 187.25 g/L, 

fructose 57.00 g/L, glucose 55.8 g/L, proline 0.256 g/L, glutamine 0.136 g/L, glycine 

0.178 g/L, serine 0.144 g/L, alanine 0.64 g/L, arginine 0.032 g/L, asparagines 0.056 

g/L, glutamic acid 0.048 g/L, threonine 0.080 g/L, tyrosine 0.040 g/L, valine 0.016 

g/L). Using these sugars and a selection of these amino acids, I made artificial nectar 

for use in experiments. Two of these were blends approximating the ratios for sugars 

or for sugars plus amino acids reported by Alm et al. (1990). 

Full blend: sucrose 187.3 g/L, fructose 57.0 g/L, glucose 55.8 g/L, proline 0.3 

g/L, glutamine 0.1 g/L, glycine 0.2 g/L, serine 0.1 g/L. 

Sugar-only blend: sucrose 187.3 g/L, fructose 57.0 g/L, glucose 55.8 g/L. 

The other artificial nectars were based on using, in different concentrations of 

single compounds and using specific combinations of compounds (Table 3). I also 

wanted to compare the performance hatchlings when using sugars known to be 
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present in Lantana nectar with a sugar that is not known to be present in this plant’s 

nectar. For this, I chose maltose, which is known to be present in the petals and other 

floral tissue of Ricinus and Parthenium (Nyasembe et al. 2012), but is not prevalent in 

the nectar of plants (Nicolson & Thornburg 2007). 

 

2.4. Control trials 

The performance of hatchlings in some of the experimental trials was compared with 

the performance of hatchlings in water-only control trials. The procedures for these 

control trials were the same as for the experimental trials except that no prey, plants or 

artificial nectar were provided. Hatchlings in the control trials for prey-only, plant-

only and prey+plant regimes (C1) had access to water from the cotton roll and 

juveniles in the control trials for artificial nectar (C2) had access to water-only 

artificial flowers in addition to the cotton roll. 

 

2.5. Methods specific to prey-only feeding regimes 

In each instance of feeding a hatchling, I first removed the stopper from the hole in 

the top of the hatchling’s cage and then, using an aspirator, I put two mosquitoes in 

the cage, after which I returned the stopper to the hole. Both of the mosquitoes were 

of the type specified for the group on that day. On the specified day or days for an 

experiment, I always introduced the mosquitoes into the cage at 0800 h. Each 

hatchling was then allowed 60 min in which to capture and begin feeding on one of 

the two mosquitoes. My rationale for having two mosquitoes present was knowing 

from preliminary work that having two mosquitoes in a cage at the same time ensures 

that hatchlings almost always capture a mosquito in the allowed time (i.e., when there 
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are two mosquitoes, but not when there is only one, hatchlings almost always 

captured a mosquito within 60 min). As my methods stipulated that the test spider 

would eat only one mosquito, I removed the other mosquito from the cage after the 

first was captured. Whenever the hatchling failed to capture a mosquito during the 60-

min interval on any one of the scheduled prey-feeding days, I removed this hatchling 

from the experiment and took a substitute hatchling from stock culture. 

 

2.6. Methods specific to plant-only and prey+plant feeding regimes 

For each hatchling, a cutting was taken from a living plant in the field at 0700 hours 

and then held in a closed plastic box under 100% carbon dioxide for 10 min, after 

which it was examined under a microscope for any arthropods that might have 

remained. On rare occasions, a few tiny mites were seen under the microscope and, 

using forceps, I removed them. I then put the cutting inside the cage at 0800 hours. 

The cut end of the stem was the only incision or wound on the plant and this cut end 

remained outside the cage (i.e. the stem, positioned alongside the cotton roll, went 

through the hole in the bottom of the cage so that the cut end was in the pot of water 

below the cage). The remainder of the plant (stems, flowers and leaves) was inside, 

almost filling, the cage. 

For plant-only feeding regimes, I removed the plant from the cage at 1800 

hours and then, by repeating the procedure, I put a new plant cutting of the same plant 

species in the cage at 0800 on the next and each successive morning. For prey+plant 

feeding regimes, the procedure was the same except that there was no plant in the 

cage on the day when mosquitoes were provided. 
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2.7. Methods specific to feeding regimes based on using artificial nectar 

For providing hatchlings with artificial-nectar meals, I made artificial flowers, each 

being a disc (diameter 5 mm, thickness 2 mm) cut from a clean kitchen sponge. At 

0730 hours, I submerged the disc for 10 s in the solution specified for the particular 

feeding regime. The control was an artificial flower that had been soaked in water 

only (see Kuja et al. 2012). 

Next the sponge was attached with a pin to the centre top of a clean, dry cotton 

roll (i.e., the sharp end of the pin was inserted into the cotton) to form the artificial 

flower. At 0800 hours, the cotton roll that had been providing water to the hatchling 

was removed from the cage and replaced with the artificial flower (i.e., the lower end 

of the clean cotton roll went through the hole in the bottom of the cage and sat in a 

water-filled pot below the cage so that the cotton became damp). The sponge disc was 

positioned horizontal (i.e., with its long axis aligned with the floor and ceiling of the 

cage) at the blunt end of the pin, and it was 25 mm above the floor and 30 mm below 

the ceiling of the cage. At 1800 hours, I removed the artificial flower and then I 

repeated this procedure on each successive day (i.e., artificial nectar was available to 

the juvenile from 0800 to 1800 hours on ever day stipulated by the feeding regime). 

 

2.8. Data analyses 

I used Prism (GraphPad Software, San Diego, CA, USA) when analyzing data on 

completion time and longevity, and I display completion-time and longevity data as 

survival curves derived by using Kaplan-Meier methods. These methods are based on 

calculating the fraction of the original number of juveniles that were still alive 

(longevity) or still in the first instar (completion time) on each successive day. For 

determining whether there were significant treatments effects, I used log-rank Mantel-
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Cox tests (also known as Gehan-Breslow-Wilcoxon tests) for pair-wise comparisons. 

For determining whether the feeding regime that was adopted affected completion 

success, I used pair-wise tests of independence (based on chi-square). I applied 

Bonferroni adjustments (Sokal & Rohlf 1995; Hardin et al. 1996) whenever multiple 

comparisons were made using the same data sets. 

2.9. The use of terms 

Sometimes I use the expressions ‘prey-only’ (solely mosquitoes provided), plant-only 

(solely cuttings from plants were provided), ‘solution-only’ (solely artificial solutions 

provided) and ‘plant+prey’ (plant cuttings and mosquitoes provided). When referring 

to plants, sometimes I use the genus name with the species being implicit. 

 

3.0. Results and discussion 

3.1. Performance in experimental trials and performance in control trials compared 

No hatchling from control trials completed the first instar (Table 4, Rows 1 & 2). 

Longevity in control trials was significantly shorter than longevity of hatchlings in 

experimental trials in which hatchlings fed on even a single mosquito, had access to 

only a plant or had access to only artificial nectar (Table 5). 

 

3.2. Hatchlings that ate a single mosquito and had no access to plants or artificial 

nectar 

As the mosquitoes used in all experiments were 4.5 mm in body length and 

considerably larger than E. culicivora hatchlings (1.5 mm in body length), I initially 

predicted that hatchlings could complete the first instar after eating a single mosquito. 
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However, contrary to this prediction, no hatchlings in my experiments completed the 

first instar when their only meal was from a single mosquito on Day 1, regardless of 

whether the mosquito was a male, a no-blood female or a blood female (Table 4, rows 

3-5). Yet these hatchlings lived significantly longer than hatchlings in water-only 

control trials (Table 5). 

These findings suggest that one prey is not sufficient, but there is an 

alternative hypothesis that should also be considered: that hatchling can complete the 

first instar after eating a single mosquito, but this meal must come later than Day 1 

because, on Day 1, the hatchling’s digestive tract is insufficiently developed. 

However, contrary to this hypothesis, hatchlings that fed for the first time on Day 5 

still failed to complete the first instar (Table 4) and there was no significant effect on 

longevity (i.e., the longevity of hatchlings that ate a single mosquito on Day 5 was not 

significantly different from the longevity of hatchlings that ate a single mosquito on 

Day 1; Table 6). 

As previous research (Jackson et al. 2005) has shown that even the smallest 

juveniles of E. culicivora express an active preference for blood meals, I predicted 

that a single blood female mosquito would be the one-prey feeding regime that would 

have the most beneficial effects on hatchling longevity. However, my data did not 

corroborate this prediction (i.e., there were no significant differences related to 

whether the single prey on Day 1 was a blood female, a no-blood female or a male) 

(Table 6). 

When I compared groups in which the type of prey eaten by the spider stayed 

the same but the number of prey varied, I found that significantly more hatchlings 

completed the first instar after feeding twice than after feeding only once and I also 

found that significantly more of the hatchlings completed the first instar after eating 
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three times instead of only twice when the mosquito eaten each time was a no-blood 

female or a male, but not when it was a blood female (Table 7). 

When hatchlings fed twice, there was no significant difference in completion 

success related to whether the mosquitoes were blood or no-blood females (Table 7). 

However, before Bonferroni adjustments were applied, completion success for 

hatchlings that ate two males would have been significantly less than the completion 

success of hatchlings that ate two females, regardless of whether or not the females 

were carrying blood. However, when juveniles fed three times, there was no 

significant difference related to the type of the prey (Table 7). 

Completion times for hatchlings that ate three blood female mosquitoes was 

significantly shorter than completion times for hatchlings that ate three males (Table 

8), but there were no other instances of completion times being significantly different 

depending on the type of mosquito eaten (completion times ranged from 7 to 16 days, 

but with the median latency being 10 or 11 in most instances). 

Completion times for hatchlings that ate three mosquitoes were not 

significantly different from completion times for hatchlings that ate only two 

mosquitoes. Hatchlings that fed on two mosquitoes and still failed to complete the 

first instar lived significantly longer than hatchlings that ate only one mosquito. 

However, when the longevity of hatchlings that ate the same number of prey (one, 

two or three mosquitoes) was compared, no significant effect of prey type was found 

(Table 6) 

 

3.3. Hatchlings that had access to plants but did not eat mosquitoes 

First I considered whether E. culicivora hatchlings could complete the first instar 

when the only nutrients available to them had to be taken directly from plants. There 
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was evidence of this with two plant species: 25% of the hatchlings kept with Lantana 

and 38% of the hatchlings kept with Lippia completed the first instar (Table 4, rows 

13 & 14). The number of hatchlings that completed the first instar when kept with 

Lantana was not significantly different from the number that completed the first instar 

when kept with L. kituensis (Table 7). No hatchlings kept with Hibiscus, Parthenium 

or Ricinus completed the first instar (Table 4, rows 15-17). After Bonferroni 

adjustment, completion times for hatchlings kept with Lippia were not significantly 

different from completion times of hatchlings kept with Lantana (Table 8). 

Irrespective of the identity of the plant, the longevity of hatchlings from plant-

only feeding regimes was significantly better (i.e., they lived significantly longer) 

than the longevity of hatchlings in water-only control trials (Table 5). Moreover, the 

hatchlings we kept with Lantana and Lippia had significantly better longevity than the 

hatchlings from prey-only feeding regimes that ate only one mosquito (Table 6). 

Longevity with Parthenium was not significantly different from longevity with one 

mosquito in prey-only regimes, but hatchlings that ate a single prey in prey-only 

regimes had significantly better longevity than hatchlings kept with Ricinus and 

Hibiscus in the absence of prey (Table 6). 

 

3.4. Hatchlings that ate mosquitoes and also had access to plants 

The findings from prey-only regimes implied that, for completing the first instar when 

the only food came from eating mosquitoes, a single mosquito does not suffice, but 

sometimes hatchlings completed the first instar after eating two mosquitoes (i.e., two 

mosquitoes was the minimum requirement for completion success in prey-only trials). 

The findings from the plant-only regimes implied that nutrients taken directly from 

Lantana or Lippia, but none of the other plants, were sometimes sufficient food for 
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enabling hatchlings to complete the first instar. Here I take a next step by considering 

how the hatchling’s performance might be affected by combining feeding on prey 

with feeding from plants. 

An initial prediction was that combining feeding from plants with a single 

mosquito meal would make hatchlings more successful at completing the first instar. 

However, contrary to this prediction, the number of hatchlings that completed the first 

instar after having access to plants and also eating a single no-blood female mosquito 

was not significantly different from the number that completed the first instar while 

having access to the same plants but without eating a mosquito (Table 7). The 

completion times of hatchlings kept solely with either Lantana or Lippia (i.e., 

provided no mosquitoes as prey) were not significantly different from the completion 

times of hatchlings kept with these same plants after eating a single no-blood female. 

I also found no significant difference in completion times for hatchlings that were 

kept with Lantana and hatchlings that were kept with Lippia after eating a single no-

blood mosquito. 

The type of plant hatchlings were kept with had a significant effect on the 

completion success of hatchlings after they ate two no-blood female mosquitoes. 

Almost 100% of the juveniles that ate two female mosquitoes, irrespective of whether 

these were blood or no-blood females, completed the first instar when the plants were 

Lantana or Lippia (Table 4), these being the two plant species on which, in the 

absence of prey, hatchlings performed best in plant-only feeding regimes. No 

significant difference was found when Lantana and Lippia were compared, but 

hatchlings sometimes had significantly better completion success when the plant was 

Lantana or Lippia instead of Parthenium or Ricinus. There were no significant 

differences when Parthenium was compared with Ricinus (Table 7). 
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Completion times were significantly longer when hatchlings had access to 

Lantana or Lippia after eating a single no-blood female instead of eating two no-

blood females without having any access to a plant. I also found that completion times 

were significantly longer when hatchlings had access to Lantana after eating one 

instead of two no-blood female mosquitoes and when hatchlings had access to Lippia 

after eating one instead of two no-blood female mosquitoes. 

When hatchlings ate two no-blood female mosquitoes and also had access to 

plants, their completion times were significantly shorter than when they ate two no-

blood female mosquitoes without having any opportunity for taking plant meals. 

However, when the two mosquitoes were blood females instead of no-blood females, 

completion times were not significantly different. Hatchlings that ate two mosquitoes 

and were then given access to the plant Lantana or Lippia had completion times that 

were significantly shorter than the completion times of hatchlings that had access to 

these same plants but without eating mosquitoes. 

I found that the type of mosquito had a significant effect on completion time 

when the hatchlings that ate two mosquitoes were then given continuous access to 

Lantana or Lippia. The completion times for these hatchlings were significantly 

shorter when the mosquitoes were no-blood females instead of blood females, but 

there was no significant difference between no-blood and blood females when the 

plant was Parthenium or Ricinus (Table 8) 

When hatchlings ate two mosquitoes and then were given continuous access to 

plants, there were no significant difference in the type of plant on completion times 

for hatchlings that ate the same type of mosquito (Table 8). There are no significant 

differences of the completion time when hatchlings ate two mosquitoes and were then 

kept with different plants. 
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When hatchlings failed to complete the first instar, I did comparisons of 

longevity. With one exception, hatchlings that had access to a plant after eating a 

single no-blood mosquito lived significantly longer than hatchlings that ate a single 

no-blood mosquito and then had no access to a plant (Table 6). The exception was 

Hibiscus. 

In some instances, significant plant-species differences in longevity were 

found when hatchlings ate a single no-blood female mosquito and were then given 

continuous access to the plant (Table 6). I found that the hatchlings kept with 

Hibiscus had longevity that was significantly shorter than that of hatchlings kept with 

Lantana, Lippia or Parthenium. I also found that hatchlings kept with Ricinus had 

significantly shorter longevity than hatchlings that were kept with Lippia. 

 

3.5. Hatchlings that had access to artificial nectar but no prey 

Juveniles kept on feeding regimes in which the only food source was artificial nectar 

never completed the first instar (Table 4), but the type of artificial nectar sometimes 

had a significant effect on longevity (Table 6). When using sucrose, the dominant 

sugar in Lantana nectar (Alm et al. 1990), I varied concentration over a range from 

1% to 40%. When using sucrose-only artificial nectar, I found that even at 1%, 

hatchlings had better longevity than in the water-only control trials (Table 5), but the 

longevity of hatchlings kept with 1% sucrose were significantly shorter than the 

longevity of hatchlings kept with 5% sucrose. I found no significant differences when 

the longevity of hatchlings kept with 5% sucrose was compared to the longevities of 

hatchlings kept with any of the higher concentrations of sucrose. 

The type of sugar used for making sugar-only artificial nectar also mattered. 

When the concentration was constant at 20%, longevity with maltose was decidedly 
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shorter than longevity with any of the other sugars (Table 6). I also found that 

longevity with sucrose was significantly better than longevity with glucose. Sucrose 

appears to be the most beneficial sugar, followed by fructose, then glucose and then 

maltose. 

For glucose and for fructose, there was no significant difference between 

longevity related to whether the concentration was 5% instead of 20% (Table 6), and I 

also found no significant difference between 5% fructose and 5% sucrose. Longevity 

when hatchlings were kept with 5% sucrose was significantly longer than when 

hatchlings were kept with 5% glucose. The longevity of hatchlings kept with 5% 

fructose was significantly longer than the longevity of hatchlings kept with 5% 

glucose, but there was no significant fructose-glucose difference when the sugar 

concentration was 20%. 

Sucrose is a disaccharide, with the component monosaccharides being glucose 

and fructose (i.e., splitting each sucrose molecule generates one glucose and one 

fructose molecule, the resulting total concentration of sugar being twice what it had 

been when the disaccharide was intact). With this as my rationale, I decided to 

compare the longevities of hatchlings kept with 5%, 10% and 20% sucrose with the 

longevities of hatchlings kept with blends corresponding to the concentrations of the 

two monosaccharides separated out instead of being bound together in the 

disaccharide (i.e., I used glucose-fructose blends: 5% glucose + 5% fructose, 10% 

glucose + 10% fructose, 20% glucose + 20% fructose). When I made these 

comparisons, I found no significant longevity differences between disaccharide and 

the corresponding two-monosaccharide blend at any concentration (Table 6). 
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3.6. Hatchlings that had access to artificial nectar containing amino acid as well as 

sugar 

Being interested in whether the small volumes of amino acid typically found in nectar 

might affect the longevity of E. culicivora hatchlings, I compared the longevity of 

hatchlings kept on a 4% amino-acid blend with the longevity of hatchlings from 

control trials and found that, even in the absence of prey or sugar, hatchling longevity 

was significantly longer when kept with the amino acid blend instead of water alone 

(Table 5). 

I was also interested in whether small volumes of amino acid combined with 

sugar in would be better for hatchlings than sugar alone. For this, I used a blend of 

20% sugar combined with 4% amino-acid. With one exception, no significant 

differences were found in longevity when I varied the type of sugar that went into the 

blend (Table 6). The exception was maltose. When hatchlings were kept with 20% 

maltose combined with 4% amino acid, their longevity was significantly longer than 

when hatchlings were kept with 20% maltose alone. 

At 27 days, median longevity of hatchlings kept with glucose combined with 

amino acid was the highest among the sugars and this median of 27 days was more 

than twice the median longevity of hatchlings kept with 20% glucose alone. The 

longevity of hatchlings kept with 20% glucose combined with amino acids was 

significantly longer than the longevity of hatchlings kept with 20% maltose combined 

with same amino acids. When hatchlings were kept with 20% glucose combined with 

amino acids, longevity was not significantly different from when hatchlings were kept 

with 20% sucrose or fructose combined with same amino acids. Good performance on 

glucose seems to depend on having amino acid as well in the meal. 
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3.7. Performance when kept on full-blend artificial nectar 

The longevity of the hatchlings that failed to complete the first instar when they had 

continuous access to Lantana was not significant different from the longevity of 

hatchlings had access only to the full-blend artificial nectar (i.e., the blend that was 

based on the reported content of Lantana nectar), the sugar-only blend (i.e., the blend 

that was based solely on the reported sugar content of Lantana nectar), 20% fructose, 

20% sucrose or the blend of sucrose plus amino acid (Table 6). 

I also found no significant difference in the longevity when hatchlings that were kept 

with full blend were compared with the longevity of hatchlings kept with the sugar-

only blend or hatchlings kept with 20% sucrose. However, hatchlings kept with the 

sugar-only blend had significantly shorter longevity than hatchlings that were kept 

with 20% sucrose. 

 

3.8. Hatchlings that fed on mosquitoes in addition to having access to artificial nectar 

No hatchlings that ate only one mosquito and had no access to any other food and no 

hatchlings that had access to artificial nectar but did not eat mosquitoes completed the 

first instar. However, hatchlings that had access to cuttings from Lantana or Lippia 

after eating a single mosquito sometimes completed the first instar. On this basis, I 

predicted that hatchlings kept on artificial nectar after eating a single mosquito might 

complete the first instar. 

When hatchlings ate two mosquitoes and then had access to the same artificial 

nectars, some completed the first instar and completion success of these hatchlings 

was significantly better than that of the hatchlings that fed on one or no prey (Table 

7). When the full blend was used, 60% and 50% of the hatchlings completed the first 

instar after eating either two no-blood females or two blood females, respectively 
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(Table 4, row 54 & 55); however, there was no significant effect of prey type on 

completion success or completion time of these hatchlings (Tables 7 & 8). 

Completion success was significantly less and completion time was 

significantly longer for hatchlings kept on the full blend after eating two mosquitoes 

instead of being kept with Lantana cuttings after eating two mosquitoes (Table 7 & 

8). However, for completion success and for completion time, whether hatchlings that 

ate two blood female mosquitoes were then kept with the full- blend artificial nectar 

or with Lantana cuttings had significant effect. 

Regardless of whether they ate two mosquitoes, only one mosquito or no 

mosquitoes and regardless of whether the mosquitoes they ate were no-blood or blood 

females, there were no significant differences in longevity when the hatchlings had 

continuous access to the full blend (Table 6). However, hatchlings kept with the full 

blend after eating one or two mosquitoes lived significantly longer than hatchlings 

that ate same number and type of mosquitoes but with the mosquitoes being their only 

food (Table 6). 

Although there was no significant longevity difference between hatchlings 

kept with only the full blend and hatchlings kept with only Lantana cuttings, 

hatchlings kept with full blend after eating a single no-blood female mosquito lived 

significantly longer than hatchling kept with Lantana cuttings after eating a single no-

blood female mosquito (Table 6). This suggests that the nutrients provided on the 

artificial flowers were more abundant or more easily accessed than the nutrients from 

the cutting. 
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3.9. Hatchlings that received unlimited access to mosquitoes after being kept for 15 

days with only artificial nectar 

When we supplied hatchlings with only water, they died without completing the first 

instar about a week later. When only mosquitoes were provided as food, a minimum 

of two mosquitoes was necessary before hatchlings completed the first instar. When 

plant cuttings, but no mosquitoes, were provided, some hatchlings completed the first 

instar when the plants were Lantana or Lippia, but not when any other plants were 

used. No hatchlings completed the first instar when provided with only artificial 

nectar, even when it was the full blend. However, even though they failed to complete 

the first instar, hatchlings tended to live significantly longer than on water alone when 

they had access to plant cuttings, artificial nectar or insufficient numbers of 

mosquitoes as prey. For example, the median longevity of hatchlings that failed to 

complete the first instar while kept with Lantana, Lippia or the full blend in the 

absence of prey was 22, 21 and 26 days, respectively, which was three times longer 

than the median longevity of hatchlings in the water-only control trials. 

We can characterize hatchlings that did not complete the first instar as 

experiencing “hard times”. Any feeding regime that extended the longevity of these 

hatchlings significantly beyond that of hatchlings that received water alone might be 

characterized as a feeding regime that supports better performance (i.e., better than in 

control trials). However, the expression “better” would appear to be adaptively 

irrelevant if the hatchling, despite living longer, becomes incapable of completing the 

first instar even should a good diet become available before it dies. My hypothesis is 

that, during hard times (e.g., times when prey is scarce), extending longevity by 

feeding on food source that will not be adequate for completion of the first instar has 

an important adaptive benefit. When opportunity comes to eat what they need for 
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completing the first instar, these hatchlings that stayed alive on a subsistence diet are 

proficient at taking advantage of the opportunity and completing the first instar (i.e., 

“better late than never”). 

I carried out an experiment designed to consider a specific version of this 

more general hypothesis. I considered specifically the capacity of hatchlings that 

stayed alive on a diet of full-blend artificial nectar alone (i.e., no prey) retained the 

capacity to complete the first instar when sufficient prey became abundant at a later 

time. An alternative hypothesis would be that these hatchlings are merely slow to die, 

meaning that they have lost the capacity to complete the first instar even should prey 

become abundant while they are in their extended life span. 

My findings corroborated the prediction from the first hypothesis. After 

surviving for 15 days on the full-blend artificial nectar alone, 46% of 84 hatchlings 

provided with unlimited from day 16 onward succeeded at completing the first instar. 

The median completion time for these hatchlings was 29 days. This meant that the 

median time elapsing between prey becoming available and the first instar being 

completed was two weeks (14 days), which was similar to the median completion 

times for hatchlings that ate two or three mosquitoes in prey-only feeding (Table 4). 

 

4.0. General discussion 

4.1. Prey quantity versus prey quality 

Food-related stress has been frequently discussed in the literature on spiders (Foelix 

2011), but the role of food quantity has been more often emphasized instead of food 

quality. For example, spiders are often characterized as predators that are unusually 

well adapted to surviving through periods of low prey availability (Wise 1993). The 

resting metabolic rate of spiders tends to be lower than that of most similar-sized land 
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arthropods, after taking body size into account (e.g., Kawmoto et al. 2011; Canals et 

al. 2015; but see Lighton et al. 2001), and spiders are well known for their capacity to 

reduce metabolic rate dramatically and sometimes survive fasts lasting for months at a 

time (Anderson 1970). However, there is also evidence that spiders sometimes 

encounter food stress in the context of food quality and imbalances in the nutrient 

composition of the spiders’ intake (Greenstone 1979; Maynst & Toft 2001; Maynst et 

al. 2003; Wilder 2011). These findings are of interest in the context of understanding 

the prey-choice and prey-handling behaviour of spiders, with the normal assumption 

being that the spider’s behaviour in relation to a specific prey type pertains to direct 

adaptation to that prey type, with this adaptation leading to the maximization of the 

spider’s fitness. 

Prey-choice behaviour is especially pronounced, and unusual, in the biology of 

E. culicivora, a salticid which has been characterized as a “mosquito-specialist 

predator”. This salticid has remarkable expertise at identifying particular types of prey 

by sight and also by odour. It appears to be unique as a predator in its active 

preference mosquitoes, including a particular preference for the mosquito genus 

Anopheles. This salticid is one of the few spider species for which we have a large 

body of data on prey-choice behaviour from laboratory experiments complemented by 

a large body of data on natural diet in the field (see Appendix 1). Based on 1115 

records of E. culicivora feeding in the field, we have evidence that mosquitoes 

dominate this predator’s natural diet; the prey was a mosquito for 80.2% of these 

1115 records. These field records along with data from prey-choice experiments were 

my rationale for using mosquitoes as the prey in all of my experiments. 

However, E. culicivora is also known for being attracted to plants and it is 

known that especially the smaller juveniles ingest plant-derived nutrients when they 
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visit these plants (Jackson & Cross 2015). This was my rationale for including access 

to plants and to artificial nectar consisting of known compounds in some of my 

experiments, and also to focus on how variation in diet specifically affects the 

smallest active stage in E. culicivora’s life cycle (i.e., ‘hatchlings’). My underlying 

hypothesis was that fulfilling nutrition requirements is an especially urgent need for 

the hatchling stage. My first step was to consider the effects of prey quality, prey 

quantity and these two factors together on hatchling performance. 

 

4.2. Effects of the number of mosquitoes eaten when prey is the only food source 

When using prey-only feeding regimes, I found evidence that, in the range 1-3, the 

number of mosquitoes eaten by hatchlings had a pronounced effect on hatchling 

performance. However, despite a single mosquito being much larger than the E. 

culicivora hatchling, feeding on one mosquito did not suffice for letting hatchlings 

complete the first instar. Eating at least two mosquitoes appears to be a prerequisite 

for completion success. 

These findings suggest that the size disparity between the mosquito and the E. 

culicivora hatchling gave me an unrealistic impression of what a hatchling can 

acquire by eating a single mosquito. That spiders practise extra-oral digestion (Cohen 

1995) needs to be taken into consideration when trying to understand what is meant 

by saying a hatchling ate a mosquito. If the predator had been a toad, for example, 

then “eating a mosquito” would have meant ingesting the mosquito’s entire body in 

one gulp. However, we have no clear understanding of precisely how much of the 

mosquito’s content and what compounds in particular are ingested when an E. 

culicivora hatchling is using its procedure of extra-oral digestion. The smallness of 

the hatchling’s digestive tract relative to the size of the mosquito suggests that the 
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quantity of nutrients ingested in a single feeding event is considerably less than the 

quantity of nutrients a larger E. culicivora juvenile or an adult could acquire from the 

same mosquito. As E. culicivora is not a predator that saves uneaten prey remains for 

later meals, the hatchling acquires only what it can take in a single feeding event. 

Regardless of what this might be in quantity and quality, it is apparently not as much 

as the hatchling needs for completing the first instar. 

Although two mosquitoes sometimes sufficed for completing the first instar 

when no other food source was available, most hatchlings appeared to need three. 

When hatchlings were given three mosquitoes, almost 100% completed the first 

instar. However, it seems that a feeding regime insufficient for completing the first 

instar can have other potentially beneficial consequences for the hatchling. It was with 

longevity that we found the evidence suggesting this. For all prey-only feeding 

regimes, hatchlings that failed to complete the first instar nonetheless lived longer 

than hatchlings from water-only control trials. There was also a significant effect of 

the number of mosquitoes eaten on longevity, with unsuccessful hatchlings, which ate 

more mosquitoes living longer. This suggests as a hypothesis that a diet which is 

insufficient for completing the first instar can benefit the hatchling by keeping it alive 

until a better diet becomes available and that, when the better diet arrives, even 

though it is late, the hatchling is still competent to complete the first instar. I found 

evidence that seems to corroborate this hypothesis (Section 4.5), but this was in the 

context of hatchlings feeding on plant products instead of an inferior prey-only 

regime. 

Toft and Wise (1999) used the expression “high quality prey” for prey that 

allows a spider to complete its full life cycle with low mortality even when the diet is 

monotypic. This is not quite the same as what I investigated because I considered only 
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the hatchling stage, but there is a basis for calling Anopheles gambiae “high quality 

prey” for E. culicivora. In the Kenya laboratory, healthy cultures of E. culicivora have 

frequently been maintained for a generation on a diet of midges (Chironomidae and 

Chaoboridae, known locally as “lake flies”), only to die off in the 2nd and 3rd 

generation. However, when supplied with Anopheles as prey, healthy E. culicivora 

cultures in Kenya have been sustained indefinitely. Healthy cultures of E. culicivora 

have also been sustained for one generation in the New Zealand laboratory, where 

there was no reliable access to Anopheles or other mosquitoes, only to die off in the 

second and third generation (Jackson & Cross 2015). That Anopheles gambiae 

appears to be a high-quality prey for E. culicivora was my rationale for using this 

species as the prey in my experiments. 

 

4.3. Evidence that female mosquitoes are superior to males as prey for E. culicivora 

hatchlings 

Indirect feeding on vertebrate blood may be the most surprising characteristic of E. 

culicivora. This is something E. culicivora achieves by choosing blood-carrying 

female mosquitoes as preferred prey. This preference is expressed even when the only 

available prey-choice cues in experiments are visual and also even when the only 

available prey-choice cues in experiments are olfactory (Jackson et al. 2005). We also 

know that E. culicivora is innately predisposed to express stronger preference for 

blood-carrying female mosquitoes in the morning than in the afternoon, morning 

being when this specific prey is most available (Chapter 2). 

This predator’s unusual prey-choice behaviour has links to unusual mate-

choice behaviour. The adult males as well as the adult females of E. culicivora 

express distinctive mate-choice behaviour (Cross & Jackson 2007) and it is known 
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that both sexes acquire a diet-related odour when they feed on blood female 

mosquitoes and that this odour makes males more attractive to females and females 

more attractive to males (Cross et al. 2009). 

Even when the mosquitoes are not carrying blood, adults and juveniles of E. 

culicivora discriminate between female and male mosquitoes and express a preference 

for the females (Nelson & Jackson 2012a). Female and male mosquito antennae differ 

in appearance and this difference is a major cue used by E. culicivora for identifying 

the sex of the mosquitoes during predator sequences (Nelson & Jackson 2012b). 

These preferences suggest that eating females, even in the absence of blood, might be 

more beneficial than eating males throughout this predator’s life cycle. 

This was my rationale in the present study, for investigating a hypothesis that, 

for hatchlings, female mosquitoes, even in the absence of blood, are superior to male 

mosquitoes in the context of completion time. However, my findings failed to 

corroborate this hypothesis. Although my results showed that hatchlings took 

significantly fewer days to complete the first instar when they ate three blood females 

instead of three male mosquitoes, no significant difference in completion time was 

found when hatchlings on a diet of blood females were compared to hatchlings on a 

diet of no-blood females or hatchlings on a diet of no-blood females were compared 

to hatchlings on a diet of male mosquitoes. However, before Bonferroni adjustments 

were made, completion time for hatchlings on both the blood female and the no-blood 

female diet was significantly shorter than completion time for hatchlings on the male 

mosquito diet when they ate two mosquitoes (X2=6.94, p=0.008), suggesting that 

increasing the sample size for this comparison would be of interest. If a larger sample 

size were to reveal a significant difference, then it would be of interest to investigate 

the basis for this difference. 
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The diet of the adult mosquitoes appears to be unimportant, as females and 

males were both fed solely a glucose solution. If the nutrients in these adult females 

and these adult males differed in a way that influenced hatchling completion time, 

then it would be useful to try to determine whether, as larvae, females and males 

foraged differently and, as a consequence of this difference, they had nutrient 

composition as adults. 

 

4.4. Performances of hatchlings on different plant-only diets 

We know E. culicivora is often found on plants in the field, that all life-cycle stages of 

E. culicivora are attracted to the odour of Lantana and Ricinus in olfactometer 

experiments (Cross & Jackson 2009b) and that juveniles in particular frequently 

ingest fructose (plant sugar) in the field and the laboratory (Kuja et al. 2012). From 

earlier work, it was also known already that taking nutrients directly from plants was 

not a necessity when rearing E. culicivora because normal rearing was based on 

providing prey alone and yet cultures have been sustained for generation after 

generation year after year in the laboratory without plants being part of the feeding 

regime. My own data also show that hatchlings complete the first instar when fed 

mosquitoes in the absence of access to plants. 

As a next step, it might be tempting to propose that, for hatchlings, prey meals 

are an absolute prerequisite for completing the first instar. However, this hypothesis 

also appears to be refuted by my data. In the plant-only rearing regimes, 25% and 

38% of the hatchlings completed the first instar when the plant was Lantana and 

Lippia, respectively. No hatchlings kept with plants other than Lantana and Lippia 

completed the first instar. When using plant cuttings, an effort was made to eliminate 

any access to prey and certainly the hatchlings in these trials had no access to 
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mosquitoes or any other large prey. We cannot entirely rule out the possibility that 

there were some tiny arthropods (e.g., mites) on Lantana and Lippia that we missed 

and that it was nutrients hatchlings got from eating these unknown, unseen arthropods 

that account for some individuals completing the first instar, but this is probably a far-

fetched hypothesis. It seems more likely that the factor that lets 25% and 38% of 

hatchlings complete the first instar was nectar or some other plant products that comes 

directly these two species from the family Verbenaceae. 

For the five plant species, the apparent ranking of as a food source Ricinus and 

Hibiscus as the least beneficial, Parthenium intermediate and Lantana and Lippia 

best. All plants seemed to have a beneficial effect on longevity. Compared to 

longevity in the control trials, longevity of hatchlings that had access to plants of all 

species was significantly longer. Whether access to a plant alone was better or worse 

than eating one prey and receiving no other food depended on the plant species. When 

Lantana, Lippia or Parthenium was the plant species in plant-only feeding regimes, 

hatchlings survived significantly longer than hatchlings in prey-only feeding regimes 

fed on a single mosquito, but hatchlings that fed on a single mosquito in prey-only 

feeding regimes survived significantly longer than hatchling kept on Ricinus and 

Hibiscus in plant-only feeding regimes. 

These findings suggest that the identity of the plant species hatchlings visit 

matters, but the characteristics of the different plants that mattered are not clear. If 

nectar was the primary plant-derived food for hatchlings, then the volume and 

chemical composition of different plant species’ nectar would be factors that we 

might consider. However, although there is information for Lantana, we know little 

about nectar volume or content for the other species. 
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When on Ricinus, E. culicivora juveniles press their mouthparts against drops 

of nectar on the surface of the conspicuous extra-floral nectaries (EFNs) that are 

characteristic of this species (Baker et al. 1978, van Rijn & Tanigoshi 1999) and yet 

even Ricinus has, besides its large, conspicuous EFNs, other EFNs that are evident 

only with magnification (Reed 1923). Conspicuous extra-floral nectaries are not 

characteristic of Lantana, Lippia, Parthenium and Hibiscus, but EFNs are widespread 

among plants and often they are not conspicuous (Heil 2013). When on Lantana, E. 

culicivora juveniles only rarely go into flowers and yet they become positive for 

fructose (Kuja et al. 2012). The way E. culicivora feeds when on Lantana and Lippia 

appears to be by pressing its mouthparts against petals and stems of these plants. This 

might suggest E. culicivora finds and feeds from inconspicuous EFNs on Lantana and 

Lippia. This in turn suggests that, instead of thinking about nectar volume, perhaps we 

should be giving more attention to understanding the manner in which a plant can 

deliver nectar to hatchlings when attempting to explain the ranking of plants. 

Poor performance by hatchlings kept with Hibiscus might be explained at least 

in part by this plant’s nectar seeming to be especially sticky. Hatchlings kept with this 

plant were sometimes seen with nectar appearing to be stuck on their mouthparts. This 

problem seems to go beyond being a situation where it is instructive to say Hibiscus 

nectar is of low quality and instead is a situation that is more accurately described as 

Hibiscus nectar being actively dangerous for hungry hatchlings. 

Butterflies in particular seem to visit Lantana frequently (Weiss 1997; 

Andersson & Dobson 2003; Barp et al. 2011, Mukherjee et al. 2015) and feed on this 

plant’s floral nectar (Baker & Baker 1983). However, a butterfly uses its long 

proboscis for taking nectar from the flowers. Not having a proboscis, it might be that 

hatchlings would have considerable difficulty taking nectar from the Lantana flowers 
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in particular and maybe flowers in general. A food source on petals and stems may be 

particularly advantageous to hatchlings. 

 

4.5. The roles of plant nutrients play when prey is scare or arrive late 

Questions concerning how E. culicivora might benefit by visiting Lantana are of 

particular interest because this is one of the two plants that ranked highest in my 

plant-only rearing regimes and E. culicivora is frequently found on Lantana in the 

field. We also know that (E)-β-caryophyllene, which I will simplify to 

“caryophyllene”, is the dominant volatile compounds in the headspace of Lantana in 

Kenya and that E. culicivora is attracted to caryophyllene odour (Nelson et al. 2012). 

Knowing that pre-trial fasts make the early-instar juveniles of E. culicivora even more 

strongly attracted to caryophyllene (Nelson & Jackson 2013) and knowing that, in the 

field and during laboratory experiments, E. culicivora juveniles often, but larger 

individuals comparatively rarely, ingest nectar. Kuja et al. (2012) suggest that, for 

hatchlings, there are important nutrition-related benefits to be gained by visiting 

Lantana, as well as the closely related plant Lippia. A short-term benefit was 

demonstrated in an earlier study where prior nectar meals improved the smaller 

juveniles’ capacities to overpower mosquitoes that are considerably larger than 

themselves (Carvell et al. 2015). This effect was expressed on the next day after the 

nectar meal. My objective was different because I was interested in longer-term 

nutrition-related effects. 

The findings from the plant-only feeding regime showed that Lantana and 

Lippia have the capacity sometimes to serve as an alternative to eating mosquitoes 

and enable hatchlings to complete the first instar. For those hatchlings that failed to 

complete the first instar, access to plants extended longevity and, as demonstrated 
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using artificial nectar instead of plant cuttings, hatchlings that survive well past what 

their longevity would have been on water alone can complete the first instar when 

unlimited prey eventually become available. 

Using plant+prey feeding regimes, I found evidence of a third way hatchlings 

can gain nutrition-related benefits when visiting plants. Access to Lantana and Lippia 

can compensate for having fed on a suboptimal number of mosquitoes. When 

hatchlings were kept with the good-performance plants Lantana and Lippia, almost 

100% completed the first instar after eating two mosquitoes whereas only about half 

of the hatchlings completed the first instar after eating two mosquitoes and then 

having no access to a plant. 

 

4.6. The effects of specific sugars and amino acids 

It is known from numerous studies that sugar and amino acids acquired by feeding on 

nectar has beneficial effects on growth, survival and reproduction of insects (e.g. 

Vrzal et al. 2010, Portillo et al. 2012, Cahenzli & Erhardt 2012, Choate & Lundgren 

2013), but my experiments were unusual because they were designed to investigate 

benefits that apply during a particular phase in the life of a spider, namely the phase 

immediately after emerging from egg sacs and before having a first prey meal. We 

have been especially interested in the roles plant-meals derived nutrients might have 

in improving the capacity of E. culicivora hatchlings to complete the first instar. 

However, it soon became apparent that, for understanding the consequences of plant-

related feeding, we needed a baseline understanding of how different prey-only and 

prey+plant feeding regimes affected the juvenile performance. 

The results from these experiments seem to give us a precise understanding of 

the nutritional requirement of the first-instar spider and they are particularly useful for 
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clarifying the benefits of plant-derived nutrients from this specialized predator. I was 

interested in the relevance to the hatchlings of specific sugars and amino acids. For 

Lantana but not for any of the other plants, we had details concerning nectar content 

from Baker (Alm et al. 1990). However, caution is needed because Baker’s work was 

done using Lantana in California and it would not be surprising to discover that 

composition and volume of Lantana nectar in Kenya is different. Unfortunately, it 

was not realistic in my study to extract enough fresh Lantana nectar to do the 

chemical analysis needed for determining the specific nutrient composition and 

volume. However, I was able to investigate the performance of hatchlings when they 

had access to different sugars, amino acids and blends. 

My experiments revealed that sugar and amino acid in nectar both matter to 

the hatchlings. Although no hatchling completed the first instar when the only food 

source was artificial nectar containing only sugar, only amino acid or combinations of 

sugar and amino acid, artificial nectar did improve hatchling longevity. 

As determined by Baker, the dominant compound in the nectar of L. camara is 

sucrose (18.7% of the total weight: see Alm et al. 1990) and my experiments showed 

that sucrose improves hatchling longevity. The amount of sucrose present in artificial 

nectar also appears to be important. At the lowest concentration (1%) of sucrose, 

hatchling longevity was significantly less than at higher sucrose concentrations. 

However, no significant differences in longevity were found when concentrations 

within the range 5%-30% were compared to each other. This suggests that, when 

ample sucrose is available, a hatchling can avail itself of the time needed to extract as 

much sucrose as needed for significant extension of longevity. 

Evaporation effects were not investigated, but they might have been important. 

During the 24-h period during which the sponge holding the solution was in the 
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spider’s cage, evaporation might have resulted in substantial changes in the 

concentration of sucrose. Higher sugar concentrations seem to create difficulties for 

hatchlings. When I used solutions with higher sucrose concentration (30% and 40%), 

the sponge disc became noticeably sticky and sometimes hatchlings seemed to be 

experiencing problems with their mouthparts getting gummed up. Sometimes we 

could see that the hatchlings were sticking to the sponge discs. However, the 

longevity of hatchlings that survived when provided with these high-concentration 

solutions was not significantly different from the longevity of hatchlings kept on 20% 

sucrose. 

 

4.7. The metabolism of different sugars and combined with amino acids 

The disaccharide sucrose, and its component monosaccharides fructose and glucose, 

dominate the nectar of most plants (Pate et al. 1985). Other sugars, such as the 

disaccharide maltose, can also be present, but often in only trace amounts and these 

other sugars are generally considered to be of minor nutritional importance to insects 

(Baker & Baker 1982, 1983; Barker & Lehner 1974). 

In our experiments, we used four sugars. When we reared hatchlings with a 

single sugar at a concentration of 20%, longevity was highest with sucrose followed 

by fructose, then glucose and then maltose. No significant difference in longevity was 

found between the two monosaccharides (fructose & glucose), each being a six-

carbon sugar (hexose). However, when a single sugar at a concentration of 5% was 

used, the hatchlings kept with fructose lived significantly longer than hatchlings kept 

with glucose. At lower concentration, fructose seems to be an especially beneficial 

sugar. 
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Fructose and glucose have the same molecular formula, C6H12O6, but they 

differ in molecular structure and tend to be metabolized differently by invertebrates. 

Fructose metabolism relies on fructokinase whereas glucose mechanism relies on 

glucokinase or hexokinase. Although fructose has a lower glycemic index than 

glucose, it creates a much higher glycemic load. The precise mechanism by which 

sugars are transported within the spider’s body is unknown. When referring to 

mammals, glucose is sometimes called “blood sugar” and glucose is the primary 

initial fuel used by most organisms for energy production in the form of ATP. 

However, fructose significantly increases levels of postprandial triglyceride levels (a 

type of fat) (Bray 2007). This might explain why hatchlings fed with sucrose in my 

experiments performed better than hatchlings fed maltose at the same concentration. 

Although sucrose and maltose are both disaccharides, a sucrose molecule consists of a 

fructose plus a glucose molecule, but each maltose molecule consisting of a pair of 

glucose molecules. By being proficient in the hydrolysis of sucrose, the hatchling can 

acquire glucose and fructose, which gives it two potential metabolic pathways for 

energy derivation. However, the consistently poor performance of hatchlings kept 

with maltose alone suggests that hatchlings have poor capacity for the hydrolysis of 

this sugar. 

Besides considering the effect of sugar when it is by itself, I also considered 

the effect of amino acid by itself in artificial nectar. My data show that amino acids by 

themselves let hatchlings live significantly longer than hatchlings in the water-only 

control trials. Organisms use amino acids for synthesizing proteins and other 

biomolecules, but amino acids can, when oxidized to carbon dioxide, serve as an 

energy source. Although sugars are more important and direct as energy sources, than 

amino acids, proline is unique because it can stimulate the salt cell and has the 
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potential to modify insect behaviour by stimulating insect chemosensory receptors 

(Hansen et al. 1998; Wacht et al. 2000). Proline is known from Lantana nectar and is 

also common in the nectar of many plants. It may be that, when in a difficult situation, 

hatchlings can consume amino acids from nectar and use them as an energy source. 

Proline is an especially efficient fuel in short term, as it produces 71% of the levels of 

ATP that are produced by glucose, but glucose is a far superior fuel in the long term 

(Carter et al. 2006). 

After adding amino acids in small amounts to a blend with sugar, hatchlings 

fed a blend of 20% maltose with amino acids lived significantly longer than 

hatchlings fed 20% maltose by itself. There was no significant difference between 

20% maltose and 20% glucose, but hatchlings lived significantly longer when kept 

with glucose instead of maltose combined with amino acid. Amino acid combined 

with glucose should give hatchlings the basic elements needed for synthesizing 

protein essential for the hatchlings development, but hatchlings never completed the 

first instar when they got their sugar and amino acid from artificial nectar. Yet 

hatchlings sometimes completed the first instar when kept with Lantana or Lippia 

cuttings. If the food acquired from the cuttings was nectar, then there are various 

hypotheses that could be investigated as possible explanation for the different 

outcomes when using plant cuttings instead of artificial nectar. For example, perhaps 

some critical component of real nectar was missing from artificial nectar, perhaps the 

delivery system for nectar on the plant was considerably superior to the artificial 

nectar or perhaps yeast and bacteria degraded the artificial nectar. The plant cuttings 

might have replenished nectar throughout the day or the plant cutting might have 

guarded in some way against yeast and bacteria (see Vannette & Fukami 2016). 
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4.8. Diet of 15 days on full blend nectar followed by unlimited prey  

The hypothesis considered here is that, although full blend Lantana nectar does not 

suffice for completing the first instar, it does keep the hatchling alive and, when 

mosquitoes then become available, the hatchling can feed on the mosquitoes and 

complete the first instar. With water alone, hatchlings only lived around seven days, 

but hatchlings that had access to the full-blend artificial nectar survived significantly 

longer (median longevity 26 days) than the hatchlings in the water-only control trials 

(about one week). The critical question I considered was whether the hatchlings that 

were kept alive on artificial nectar for much longer than they could have lived on 

water alone still had the capacity to complete the first instar. The alternative 

hypothesis was that they were just slow to die when kept on artificial nectar, having 

lost the capacity to complete the first instar even should mosquitoes become 

abundant. 

My data show that, consistent with the first hypothesis, 46% of 84 hatchlings 

completed the first instar after they were given unlimited prey from day 16 and 

afterwards. That about half of the hatchlings died despite receiving unlimited prey 

from day 16 onwards suggests that there the long spell of feeding only on the artificial 

nectar rendered many hatchlings too weak or impaired to complete the first instar 

despite unlimited prey being provided. Additional experiments in which the time with 

only artificial nectar is reduced stepwise from 15 days would be of interest. 

Even with success being 46% instead of 100%, this is an important finding. It 

suggests that, in the field, during difficult times when prey might be scarce, hatchlings 

could, by relying on nectar, hold on for considerably longer than with water alone and 

then complete the first instar when prey becomes abundant. 
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4.9. Nutrient balance 

A reasonable expectation is that a predator’s prey-choice and prey-handling 

behaviour, and the methods of food utilization in general, can be understood as 

adaptations by which fitness is maximized. How this maximization might be achieved 

by E. culicivora is of particular interest. This is the only predator known to feed 

indirectly on vertebrate blood by expressing a pronounced preference for blood-

carrying female mosquitoes, but its preference profile goes beyond this and also 

includes a choice of Anopheles as the preferred mosquitoes and a preference for 

female instead of male mosquitoes even when the female is not carrying blood. In 

addition to this unusual style of predatory behavior, E. culicivora is also unusual 

because of the way particular plant species also feature in its feeding repertoire. For 

some time now, there has been a sense of mystery concerning the role of plants in this 

predator’s life. It might have appeared likely to be complex and interesting, but 

rearing studies have been lacking until now. 

I considered specifically the hatchling stage in this predator’s life, where the 

primary task can be envisaged as completing the first instar. My data show that 

feeding on three Anopheles mosquitoes, in the absence of any other food source, is 

enough to let almost 100% of the hatchlings complete the first instar. A few complete 

the first instar after eating only two mosquitoes, but plants give this predator an 

alternative to prey as a source of nutrients that can help it complete the first instar. If 

the plant is Lantana or Lippia, some hatchlings manage to complete the first instar 

without eating any mosquitoes, demonstrating that eating mosquitoes is not an 

absolute prerequisite for completing the first instar. 

It is particularly interesting that, within limits, nutrients taken from plants and 

nutrients taken from mosquitoes are interchangeable. For example, if three 
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mosquitoes are not available, but Lantana or Lippia are provided, two mosquitoes 

plus the plant lets close to 100% of the hatchlings complete the first instar. The plant 

seems to be a good substitute for the third mosquito. There are other effects arising 

from mosquito-plant pairings. For example completion time was significantly reduced 

when the hatchling could get a plant meal instead of the third mosquito. 

The findings from these experiments suggest that an imbalance in nutrients 

can be compensated for by taking nutrients from a plant or by eating more 

mosquitoes. That the plants with the strongest effect were Lantana and Lippia 

suggests that there are specific nutrients that hatchlings can acquire especially 

effectively from these particular plants. 

When thinking only about E. culicivora as a predator, it is easy to characterize 

this species as stenophagous, although this is somewhat misleading because, if we 

focus on how this predator instead of human taxonomists, classify prey, E. culicivora 

starts to seem more appropriately characterized as euryphagous (Appendix 1; Jackson 

& Cross 2015). When we take into consideration feeding from plants as well as 

feeding as a predator, the case for characterizing E. culicivora as euryphagous 

becomes even stronger. We just need to allow for euryphagy to apply to feeding at 

more than one trophic level. Yet, when we focus on E. culicivora as a spider that 

feeds on plant products, a case can be made for stenophagy because Lantana and 

Lippia appear to be of special importance. The lesson to learn from E. culicivora is 

perhaps that we should not expect it always to be the case that we can justify simply 

saying a species is stenophagous or simply euryphagous. Real animals in the real 

world are more complicated than that. 
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Table 1. Experimental groups of Evarcha culicivora hatchlings kept on prey-only 

feeding regimes. Prey always Anopheles gambiae s.s. Day 1: day when prey was put 

into cage. C1: see text. Groups defined by mosquitoes eaten 

Description of group Number of 
prey eaten 

Feeding days 
specified for 
this group 

Type of mosquito eaten 

Water-only control (C1) 0 Nil Nil 
Male on Day 1 1 1 Male 
Blood female on Day 1 1 1 Blood female 
No-blood female on Day 1 1 1 No-blood female 
No-blood female on Day 5 1 5 No-blood female 
Male on Day 1 & Day 5 2 1 & 5 Male on both days 
Blood female on Day 1 & Day 5 2 1 & 5 Blood female both days 
No-blood female on Day 1 & Day 5 2 1 & 5 No-blood female both days 
Male on Day 1, 5 & 9 3 1, 5 & 9 Male each day 
Blood female on Day 1, 5 & 9 3 1, 5 & 9 Blood female each day 
No-blood female on Day 1, 5 & 9 3 1, 5 & 9 No-blood female each day 
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Table 2. Experimental groups of Evarcha culicivora hatchlings kept on plant-only and 

prey+plant regimes. Prey always Anopheles gambiae s.s. Day 1: day when juvenile is 

put into cage. Groups defined by plant or plant & mosquitoes was provided 

Description of group Plant species Number 
of prey 
eaten 

Feeding days 
with mosquitoes 
specified for this 
group 

Type of mosquito eaten 

Lantana camara, no 
prey 

Lantana camara 0 Nil Nil 

Lippia kituensis, no 
prey 

Lippia kituensis 0 Nil Nil 

Parthenium 
hysterophorus, no 
prey 

Parthenium 
hysterophorus 

0 Nil Nil 

Ricinus communis, 
no prey 

Ricinus 
communis 

0 Nil Nil 

Hibiscus rosa-
sinensis, no prey 

Hibiscus rosa-
sinensis 

0 Nil Nil 

Lantana camara, 
no-blood female on 
Day 1 

Lantana camara 1 Day 1 No-blood female 
mosquito 

Lippia kituensis, no-
blood female on 
Day 1 

Lippia kituensis 1 Day 1 No-blood female 
mosquito 

Parthenium 
hysterophorus, no-
blood female on 
Day 1 

Parthenium 
hysterophorus 

1 Day 1 No-blood female 
mosquito 

Ricinus communis, 
no-blood female on 
Day 1 

Ricinus 
communis 

1 Day 1 No-blood female 
mosquito 

Hibiscus rosa-
sinensis, no-blood 
female on Day 1 

Hibiscus rosa-
sinensis 

1 Day 1 No-blood female 
mosquito 

Lantana camara, 
no-blood female on 
Day 1 & 5 

Lantana camara 2 Days 1 & 5 No-blood female 
mosquito each day 

Lantana camara, 
blood female on 
Day 1 & 5 

Lantana camara 2 Days 1 & 5 Blood-carrying female 
mosquito 

Lippia kituensis & 
ate a no-blood 
female on Day 1 & 
Day 5 

Lippia kituensis 2 Days 1 & 5 No-blood female 
mosquito each day 

Lippia kituensis, 
blood female on 

Lippia kituensis 2 Days 1 & 5 Blood-carrying female 
mosquito each day 
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Day 1 & 5 



	 111	

Table 3. Experimental groups of Evarcha culicivora hatchlings kept on artificial-nectar regimes. Artificial nectar always present in cage. In some 

instances, prey is also eaten. Prey always Anopheles gambiae s.s. Day 1: day when juvenile is put into cage. Groups defined by type of artificial 

nectar present & mosquitoes eaten 

Description of group Details 
Water-only control (C2) Water-only artificial flower available continuously 
1% sucrose, no prey 1% sucrose in artificial flower available continuously 
5% sucrose, no prey 5% sucrose in artificial flower available continuously 
10% sucrose, no prey 10% sucrose in artificial flower available continuously 
20% sucrose, no prey 20% sucrose in artificial flower available continuously 
30% sucrose, no prey 30% sucrose in artificial flower available continuously 
40% sucrose, no prey 40% sucrose in artificial flower available continuously 
20% glucose, no prey 20% glucose in artificial flower available continuously 
5% glucose, no prey 5% glucose in artificial flower available continuously 
20% fructose, no prey 20% fructose in artificial flower available continuously 
5% fructose, no prey 5% fructose in artificial flower available continuously 
20% maltose, no prey 20% maltose in artificial flower available continuously 
1% amino-acid blend, no prey 1% of each amino acid (glutamine, glycine, serine, proline) in artificial flower available continuously 
Glucose+amino-acid blend, no prey 20% glucose & 1% of each amino acid (glutamine, glucine, serine, proline) in artificial flower 

available continuously 
Fructose+amino-acid blend, no prey 20% fructose & 1% of each amino acid (glutamine, glucine, serine, proline) in artificial flower 

available continuously 
Maltose+amino-acid blend, no prey 20% maltose & 1% of each amino acid (glutamine, glucine, serine, proline) in artificial flower 

available continuously 
Sucrose+amino-acid blend, no prey 20% sucrose & 1% of each amino acid (glutamine, glucine, serine, proline) in artificial flower 

available continuously 
5% glucose & 5% fructose blend, no prey 5% glucose & 5% fructose in artificial flower available continuously 
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10% glucose & 10% fructose blend, no prey 10% glucose & 10% fructose in artificial flower available continuously 
20% glucose & 20% fructose blend, no prey 20% glucose & 20% fructose in artificial flower available continuously 
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Table 4. Descriptive statistics from experiments using different feeding regimes (groups) for Evarcha culicivora hatchlings. Groups defined by: 

mosquitoes eaten; plant or plant & mosquitoes provided; type of artificial nectar present & mosquitoes eaten. Completion success (CS): number 

that completed 1st instar. Completion time (CT): median (range) of days elapsing before successful hatchlings became 2nd-instar juveniles. 

Longevity (L): median (range) of days elapsing before unsuccessful hatchlings died 

Row Group N for 
group 

CS CT Fig. 1 
for CT 

N 
for L 

L Fig. 2 
for L 

1 Water-only control for prey & plants (C1) 260 0 Nil  260 7 (2-15) L1 
2 Water-only control for artificial nectar (C2) 240 0 Nil  240 7 (4-16) L2 
3 No-blood female on Day 1 30 0 Nil  30 13 (9-22) L3 
4 Blood female on Day 1 30 0 Nil  30 14 (8-17) L4 
5 Male on Day 1 30 0 Nil  30 12 (8-19) L5 
6 No-blood female on Day 5 30 0 Nil  30 14 (9-23) L6 
7 No-blood female on Day 1 & Day 5 30 17 11 (10-13) CT7 13 22 (16-23) L7 
8 Blood female on Day 1 & Day 5 30 17 11 (9-15) CT8 13 21 (13-24) L8 
9 Male on Day 1 & Day 5 30 7 10 (10-12) CT9 23 19 (14-26) L9 
10 No-blood female on Day 1, 5 & 9 60 55 11 (8-15) CT10 5 24 (24-26) L10 
11 Blood female on Day 1, 5 & 9 60 48 10 (7-15) CT11 12 23 (19-26) L11 
12 Male on Day 1, 5 & 9 60 48 12 (9-16) CT12 12 21 (15-28) L12 
13 Lantana camara, no prey 100 25 15 (9-57) CT13 75 22 (4-69) L13 
14 Lippia kituensis, no prey 60 23 33 (16-64) CT14 37 21 (7-83) L14 
15 Parthenium hysterophorus, no prey 100 0 Nil  100 15 (5-38) L15 
16 Ricinus communis, no prey 30 0 Nil  30 10 (7-15) L16 
17 Hibiscus rosa-sinensis, no prey 30 0 Nil  30 10 (4-25) L17 
18 Lantana camara, no-blood female on Day 1 30 7 22 (11-34) CT18 23 20 (5-40) L18 
19 Lippia kituensis, no-blood female on Day 1 30 7 30 (7-56) CT19 23 22 (9-68) L19 
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20 Parthenium hysterophorus, no-blood female on Day 1 30 1 Nil  29 18 (8-38) L20 
21 Ricinus communis, no-blood female on Day 1 30 1 Nil  29 18 (2-32) L21 
22 Hibiscus rosa-sinensis, no-blood female on Day 1 30 1 Nil  29 13 (8-25) L22 
23 Lantana camara, no-blood female on Day 1 & Day 5 30 29 10 (7-11) CT23 1 22  
24 Lantana camara, blood female on Day 1 & Day 5 30 27 10 (8-17) CT24 3 4, 17, 19  
25 Lippia kituensis, no-blood female on Day 1 & Day 5 30 28 8 (8-13) CT25 2 8, 18  
26 Lippia kituensis, blood female on Day 1 & Day 5 30 29 10 (9-19) CT26 1 25  
27 Parthenium hysterophorus, no-blood female on Day 1 & 5 30 15 9 (8-17) CT27 15 23 (19-28) L27 
28 Parthenium hysterophorus, blood female on Day 1 & 5 30 16 10 (9-14) CT28 14 24 (17-35) L28 
29 Ricinus communis, no-blood female on Day 1 & 5 30 10 10 (7-24) CT29 20 31 (9-35) L29 
30 Ricinus communis, blood female on Day 1 & 5 30 21 10 (9-16) CT30 9 28 (22-32) L30 
31 1% sucrose, no prey 30 0 Nil  30 15 (9-33) L31 
32 5% sucrose, no prey 30 0 Nil  30 28 (8-43) L32 
33 10% sucrose, no prey 30 0 Nil  30 26 (9-48) L33 
34 20% sucrose, no prey 30 0 Nil  30 30 (11-46) L34 
35 30% sucrose, no prey 30 0 Nil  30 24 (3-45) L35 
36 40% sucrose, no prey 30 0 Nil  30 21 (4-48) L36 
37 20% glucose, no prey 30 0 Nil  30 11 (4-41) L37 
38 20% fructose, no prey 30 0 Nil  30 19 (7-45) L38 
39 20% maltose, no prey 30 0 Nil  30 10 (3-21) L39 
40 5% glucose, no prey 30 0 Nil  30 15 (5-26) L40 
41 5% fructose, no prey 30 0 Nil  30 28 (9-45) L41 
42 5% glucose-fructose blend, but no prey 30 0 Nil  30 31 (11-53) L42 
43 10% glucose-fructose blend, but no prey 30 0 Nil  30 29 (11-49) L43 
44 20% glucose-fructose blend, but no prey 30 0 Nil  30 20 (3-50) L44 
45 4% amino-acid blend (Glu,Gly,Pro,Ser) but no prey 30 0 Nil  30 8 (6-16) L45 
46 20% glucose+amino-acid blend, but no prey 30 0 Nil  30 27 (5-44) L46 
47 20% fructose+amino-acid blend, but no prey 30 0 Nil  30 22 (10-36) L47 
48 20% maltose+amino-acid blend, but no prey 30 0 Nil  30 15 (7-35) L48 
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49 20% sucrose+amino-acid blend, but no prey 30 0 Nil  30 23 (11-37) L49 
50 Sugar-only L. camara blend, but no prey 30 0 Nil  30 22 (8-40) L50 
51 Full L. camara blend, but no prey 30 0 Nil  30 26 (12-61) L51 
52 Full blend & ate one no-blood female 30 0 Nil  30 37 (7-58) L52 
53 Full blend & ate one blood female 30 0 Nil  30 29 (10-53) L53 
54 Full blend & ate two no-blood females 30 18 11 (8-17) CT54 12 38 (15-56) L54 
55 Full blend & ate two blood females 30 15 11 (9-12) CT55 15 37 (26-43) L55 
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Table 5. Comparisons of longevities of Evarcha culicivora hatchlings kept on different experimental feeding regimes with hatchlings in water-

only control trials (C1 for prey-only, plant-only & plant+prey feeding regimes; C2 for artificial-nectar regimes. See Table 4 for descriptive 

statistics pertaininig to experimental groups and controls. For each row, df=1. All comparisions significant by adjusted alpha for 0.05 

(Bonferroni). 

Experimental group Row in 
Table 4 

Adjusted alpha Mantel-Cox test 

No-blood female on Day 1 3 0.002 X2=79.82, p<0.001 
Blood female on Day 1 4 0.005 X2=87.18, p<0.001 
Male on Day 1 5 0.005 X2=63.51, p<0.001 
Lantana camara, no prey 13 0.003 X2=205.50, p<0.001 
Lippia kituensis, no prey 14 0.004 X2=107.90, p<0.001 
Parthenium hysterophorus, no prey 15 0.004 X2=183.10, p<0.001 
Ricinus communis, no prey 16 0.004 X2=23.39, p<0.001 
Hibiscus rosa-sinensis, no prey 17 0.004 X2=20.57, p<0.001 
1% sucrose, no prey 31 0.008 X2=86.21, p<0.001 
5% glucose, no prey 40 0.006 X2=84.16, p<0.001 
5% fructose, no prey 41 0.006 X2=103.90, p<0.001 
20% maltose, no prey 39 0.006 X2=36.95, p<0.001 
4% amino-acid blend, no prey 45 0.010 X2=25.73, p<0.001 
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Table 6. Comparisons of longevities of Evarcha culicivora hatchlings kept on different experimental feeding regimes. See Table 4 for 

descriptive statistics pertaining to experimental groups and controls. For each row, df=1. *Comparision significant by adjusted alpha for 0.05 

(Bonferroni). When significant, Group 1 value for longevity larger 

Group 1 Group 2 Rows in 
Table 4 

Adjus
ted 
alpha 

Mantel-Cox test 

No-blood female on Day 1 No-blood female on Day 5 3 & 6 0.003 X2=2.00, p=0.157 
No-blood female on Day 1 Blood female on Day 1 3 & 4 0.003 X2=0.40, p=0.529 
No-blood female on Day 1 Male on Day 1 3 & 5 0.003 X2=2.20, p=0.138 
Blood female on Day 1 Male on Day 1 4 & 5 0.007 X2=3.00, p=0.084 
No-blood female on Day 1 & 5 No-blood female on Day 1 3 & 7 0.003 X2=26.04, p<0.001* 
Blood female on Day 1 & 5 Blood female on Day 1 4 & 8 0.008 X2=23.75, p<0.001* 
Male on Day 1 & 5 Male on Day 1 5 & 9 0.008 X2=40.49, p<0.001* 
Blood female on Day 1 & 5 No-blood female on Day 1 & 5 7 & 8 0.010 X2=0.42, p=0.518 
No-blood female on Day 1 & 5 Male on Day 1 & 5 7 & 9 0.010 X2=4.20, p=0.041 
Blood female on Day 1 & 5 Male on Day 1 & 5 8 & 9 0.010 X2=1.79, p=0.181 
No-blood female on Day 1, 5 & 9 Blood female on Day 1, 5 & 9 10 & 11 0.017 X2=3.48, p=0.062 
No-blood female on Day 1, 5 & 9 Male on Day 1, 5 & 9 10 & 12 0.017 X2=0.13, p=0.720 
Blood female on Day 1, 5 & 9 Male on Day 1, 5 & 9 11 & 12 0.017 X2=0.22, p=0.640 
Lantana camara, no prey Lippia kituensis, no prey 13 & 14 0.003 X2=0.754, p=0.385 
Lantana camara, no prey Parthenium hysterophoru, no prey 13 & 15 0.003 X2=18.72, p<0.001* 
Lantana camara, no prey Ricinus communis, no prey 13 & 16 0.003 X2=75.46, p<0.001* 
Lantana camara, no prey Hibiscus rosa-sinensis, no prey 13 & 17 0.003 X2=69.92, p<0.001* 
Lippia kituensis, no prey Parthenium hysterophorus, no prey 14 & 15 0.005 X2=11.91, p<0.001* 
Lippia kituensis, no prey Ricinus communis, no prey 14 & 16 0.005 X2=36.12, p<0.001* 
Lippia kituensis, no prey Hibiscus rosa-sinensis, no prey 14 & 17 0.005 X2=34.34, p<0.001* 
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Parthenium hysterophorus, no prey Ricinus communis, no prey 15 & 16 0.005 X2=33.69, p<0.001* 
Parthenium hysterophorus, no prey Hibiscus rosa-sinensis, no prey 15 & 17 0.005 X2=29.47, p<0.001* 
Ricinus communis, no prey Hibiscus rosa-sinensis, no prey 16 & 17 0.005 X2=0.02, p=0.879 
Lantana camara, no prey No-blood female on Day 1 13 & 3 0.002 X2=36.97, p<0.001* 
Lippia kituensis, no prey No-blood female on Day 1 14 & 3 0.003 X2=15.05, p<0.001* 
Parthenium hysterophoru, no prey No-blood female on Day 1 15 & 3 0.003 X2=7.51, p=0.006 
Ricinus communis, no prey No-blood female on Day 1 16 & 3 0.003 X2=28.46, p<0.001* 
No-blood female on Day 1 Hibiscus rosa-sinensis, no prey 17 & 3 0.003 X2=15.86, p<0.001* 
Lantana camara, no-blood female on Day 1 No-blood female on Day 1 18 & 3 0.003 X2=25.89, p<0.001* 
Lippia kituensis, no-blood female on Day 1 No-blood female on Day 1 19 & 3 0.003 X2=17.52, p<0.001* 
Parthenium hysterophorus, no-blood female on Day 1 No-blood female on Day 1 20 & 3 0.003 X2=23.33, p<0.001* 
Ricinus communis, no-blood female on Day 1 No-blood female on Day 1 21 & 3 0.003 X2=11.93, p<0.001* 
Hibiscus rosa-sinensis, no-blood female on Day 1 No-blood female on Day 1 22 & 3 0.003 X2=0.015, p=0.902 
Lantana camara, no-blood female on Day 1 Lippia kituensis, no-blood female on Day 1 18 & 19 0.005 X2=3.47, p=0.062 
Lantana camara, no-blood female on Day 1 Parthenium hysterophorus, no-blood female on Day 1 18 & 20 0.005 X2=1.54, p=0.215 
Lantana camara, no-blood female on Day 1 Ricinus communis, no-blood female on Day 1 18 & 21 0.005 X2=5.05, p=0.025 
Lantana camara, no-blood female on Day 1 Hibiscus rosa-sinensis, no-blood female on Day 1 18 & 22 0.005 X2=16.67, p<0.001* 
Lippia kituensis, no-blood female on Day 1 Parthenium hysterophorus, no-blood female on Day 1 19 & 20 0.006 X2=5.75, p=0.017 
Lippia kituensis, no-blood female on Day 1 Ricinus communis, no-blood female on Day 1 19 & 21 0.006 X2=8.95, p=0.003* 
Lippia kituensis, no-blood female on Day 1 Hibiscus rosa-sinensis, no-blood female on Day 1 19 & 22 0.006 X2=16.39, p<0.001* 
Parthenium hysterophorus, no-blood female on Day 1 Ricinus communis, no-blood female on Day 1 20 & 21 0.006 X2=1.04, p=0.307 
Parthenium hysterophorus, no-blood female on Day 1 Hibiscus rosa-sinensis, no-blood female on Day 1 20 & 22 0.006 X2=13.78, p<0.001* 
Ricinus communis, no-blood female on Day 1 Hibiscus rosa-sinensis, no-blood female on Day 1 21 & 22 0.006 X2=6.29, p=0.012 
5% sucrose, no prey 1% sucrose, no prey 31 & 32 0.008 X2=21.66, p<0.001* 
10% sucrose, but no prey 5% sucrose, no prey 32 & 33 0.007 X2=0.01, p=0.905 
20% sucrose, but no prey 10% sucrose, no prey 33 & 34 0.004 X2=0.26, p=0.610 
30% sucrose, but no prey 20% sucrose, no prey 34 & 35 0.005 X2=1.13, p=0.288 
40% sucrose, but no prey 30% sucrose, no prey 35 & 36 0.025 X2=0.52, p=0.472 
20% sucrose, no prey 20% fructose, no prey 34 & 38 0.003 X2=3.86, p=0.050 
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20% sucrose, no prey 20% glucose, no prey 34 & 37 0.004 X2=13.67, p<0.001* 
20% sucrose, no prey 20% maltose, no prey 34 & 39 0.004 X2=49.40, p<0.001* 
20% fructose, no prey 20% glucose, no prey 38 & 37 0.005 X2=3.40, p=0.065 
20% fructose, no prey 20% maltose, no prey 38 & 39 0.006 X2=19.06, p<0.001* 
20% glucose, no prey 20% maltose, no prey 37 & 39 0.006 X2=5.34, p=0.021 
5% frucotse, no prey 20% fructose, no prey 41 & 38 0.006 X2=0.93, p=0.334 
5% glucose, no prey 20% glucose, no prey 40 & 37 0.006 X2=0.01, p=0.905 
5% fructose, no prey 5% sucrose, but no prey 41 & 32 0.006 X2=0.62, p=0.433 
5% frucotse, no prey 5% glucose, no prey 41 & 40 0.006 X2=17.77, p<0.001* 
5% sucrose, but no prey 5% glucose, no prey 32 & 40 0.006 X2=24.93, p<0.001* 
5% fructose & 5% glucose blend, no prey 5% sucrose, no prey 42 & 32 0.010 X2=1.51, p=0.219 
10% fructose & 10% glucose blend, no prey 10% sucrose, no prey 43 & 33 0.017 X2=2.43, p=0.119 
20% fructose & 20% glucose blend, no prey 20% sucrose, no prey 44 & 34 0.005 X2=0.53, p=0.468 
Fructose+amino-acid blend, no prey 20% fructose, no prey 47 & 38 0.006 X2=1.39, p=0.238 
Glucose+amino-acid blend, no prey 20% glucose, no prey 46 & 37 0.006 X2=6.51, p=0.011 
Maltose+amino-acid blend, no prey 20% maltose, no prey 48 & 39 0.007 X2=12.85, p<0.001* 
Sucrose+amino-acid blend, no prey 20% sucrose, no prey 49 & 34 0.004 X2=7.28, p=0.007 
Fructose+amino-acid blend, no prey Glucose+amino-acid blend, no prey 47 & 46 0.007 X2=5.83, p=0.016 
Fructose+amino-acid blend, no prey Maltose+amino-acid blend, no prey 47 & 48 0.007 X2=2.98, p=0.084 
Sucrose+amino-acid blend, no prey Fructose+amino-acid blend, no prey 47 & 49 0.006 X2=1.18, p=0.278 
Glucose+amino-acid blend, no prey Maltose+amino-acid blend, no prey 46 & 48 0.007 X2=13.07, p<0.001* 
Sucrose+amino-acid blend, no prey Glucose+amino-acid blend, no prey 46 & 49 0.006 X2=2.79, p=0.095 
Sucrose+amino-acid blend, no prey Maltose+amino-acid blend, no prey 48 & 49 0.006 X2=9.72, p=0.002* 
Lantana camara, no prey 20% sucrose, no prey 13 & 34 0.003 X2=1.44, p=0.230 
Lantana camara, no prey 20% fructose, no prey 13 & 38 0.003 X2=0.69, p=0.406 
Lantana camara, no prey Sucrose+amino-acid blend, no prey 13 & 49 0.003 X2=0.65, p=0.422 
Lantana camara, no prey Full blend, no prey 13 & 51 0.003 X2=1.72, p=0.180 
Lantana camara, no prey Sugar-only L. camara blend, no prey 13 & 50 0.004 X2=2.57, p=0.109 
20% sucrose, no prey Full blend, no prey 51 & 34 0.003 X2=0.36, p=0.550 
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20% sucrose, no prey Sugar-only blend, no prey 50 & 34 0.004 X2=9.36, p=0.002* 
Full blend, no prey Sugar-only blend, no prey 51 & 50 0.006 X2=7.49, p=0.006 
Full blend & ate one no-blood females Full blend & ate one blood females 52 & 53 0.006 X2=5.794, p=0.016 
Full blend & ate one no-blood females Full blend, no prey 52 & 51 0.005 X2=2.60, p=0.107 
Full blend & ate one blood females Full blend, no prey 53 & 51 0.005 X2=0.03, p=0.870 
Full blend & ate two no-blood females Full blend, no prey 54 & 51 0.005 X2=3.39, p=0.066 
Full blend & ate two blood females Full blend, no prey 55 & 51 0.005 X2=0.69, p=0.406 
Full blend & ate two no-blood females Full blend & ate one no-blood females 54 & 52 0.006 X2=0.70, p=0.404 
Full blend & ate two blood females Full blend & ate one blood females 55 & 53 0.007 X2=1.76, p=0.185 
Full blend & ate two no-blood females Full blend & ate two blood females 55 & 54 0.007 X2=3.36, p=0.067 
Full blend & ate one no-blood females No-blood female on Day 1 52 & 3 0.003 X2=58.14, p<0.001* 
Full blend & ate one blood females Blood female on Day 1 53 & 4 0.007 X2=51.79, p<0.001* 
Full blend & ate two no-blood females No-blood female on Day 1 & 5 54 & 7 0.008 X2=18.32, p<0.001* 
Full blend & ate two blood females Blood female on Day 1 & 5 55 & 8 0.008 X2=30.10, p<0.001* 
Full blend & ate one blood females Lantana camara & ate one no-blood females 52 & 18 0.005 X2=22.04, p<0.001* 
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Table 7. Completion success of Evarcha culicivora hatchlings. Note: no hatchlings that ate only one prey completed the first instar. For each 

row, df=1. *Comparision significant by adjusted alpha for 0.05 (Bonferroni). When significant, Group 1 value for completion success larger. 

Group 1 Group 2 Rows in 
Table 4 

Adjusted 
alpha 

Test of 
Independence 

No-blood female on Day 1 & 5 No-blood female on Day 1 3 & 7 0.013 X2=23.72, p<0.001* 
Blood female on Day 1 & 5 Blood female on Day 1 4 & 8 0.013 X2=23.72, p<0.001* 
Male on Day 1 & 5 Male on Day 1 5 & 9 0.013 X2=7.92, p=0.005* 
No-blood female on Day 1, 5 & 9 No-blood female on Day 1 & 5 7 & 10 0.008 X2=15.31, p<0.001* 
Blood female on Day 1, 5 & 9 Blood female on Day 1 & 5 8 & 11 0.008 X2=5.43, p=0.020 
Male on Day 1, 5 & 9 Male on Day 1 & 5 9 & 12 0.008 X2=27.02, p<0.001* 
No-blood female on Day 1 & 5 Blood female on Day 1 & 5 7 & 8 0.007 X2=0.00, p=1.000 
No-blood female on Day 1 & 5 Male on Day 1 & 5 7 & 9 0.007 X2=6.94, p=0.008 
Blood female on Day 1 & 5 Male on Day 1 & 5 8 & 9 0.007 X2=6.94, p=0.008 
No-blood female on Day 1, 5 & 9 Blood female on Day 1, 5 & 9 10 & 11 0.010 X2=3.36, p=0.067 
No-blood female on Day 1, 5 & 9 Male on Day 1, 5 & 9 10 & 12 0.010 X2=3.36, p=0.067 
Blood female on Day 1, 5 & 9 Male on Day 1, 5 & 9 11 & 12 0.010 X2=0.00, p=1.000 
Lantana camara, no prey Lippia kituensis, no prey 13 & 14 0.010 X2=3.17, p=0.075 
Lantana camara, no-blood female on Day 1 Lantana camara, no prey 18 & 13 0.013 X2=0.03, p=0.853 
Lippia kituensis, no-blood female on Day 1 Lippia kituensis, no prey 19 & 14 0.025 X2=2.03, p=0.155 
Lantana camara, no-blood female on Day 1 & 5 Lippia kituensis, no-blood female on Day 1 & 5 23 & 25 0.008 X2=0.35, p=0.550 
Lantana camara, blood female on Day 1 & 5 Lippia kituensis, blood female on Day 1 & 5 24 & 26 0.008 X2=1.07, p=0.301 
Lantana camara, no-blood female on Day 1 & 5 Parthenium hysterophorus, no-blood female on Day 1 & 

5 
23 & 27 0.008 X2=16.70, p<0.001* 

Lantana camara, no-blood female on Day 1 & 5 Ricinus communis, no-blood female on Day 1 & 5 23 & 29 0.008 X2=26.45, p<0.001* 
Lippia kituensis, no-blood female on Day 1 & 5 Parthenium hysterophorus, no-blood female on Day 1 & 

5 
25 & 27 0.010 X2=13.87, p<0.001* 

Lippia kituensis, no-blood female on Day 1 & 5 Ricinus communis, no-blood female on Day 1 & 5 25 & 29 0.010 X2=23.25, p<0.001* 
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Lantana camara, blood female on Day 1 & 5 Parthenium hysterophorus, blood female on Day 1 & 5 24 & 28 0.008 X2=9.93, p=0.002* 
Lantana camara, blood female on Day 1 & 5 Ricinus communis, blood female on Day 1 & 5 24 & 30 0.008 X2=3.75, p=0.053 
Lippia kituensis, blood female on Day 1 & 5 Parthenium hysterophorus, blood female on Day 1 & 5 26 & 28 0.010 X2=15.02, p<0.001* 
Lippia kituensis, blood female on Day 1 & 5 Ricinus communis, blood female on Day 1 & 5 26 & 30 0.010 X2=7.68, p=0.006* 
Parthenium hysterophorus, no-blood female on 
Day 1 & 5 

Ricinus communis, no-blood female on Day 1 & 5 27 & 29 0.010 X2=1.71, p=0.190 

Parthenium hysterophorus, blood female on Day 
1 & 5 

Ricinus communis, blood female on Day 1 & 5 28 & 30 0.010 X2=1.76, p=0.184 

Lantana camara, no prey 20% sucrose, no prey 13 & 34 0.013 X2=9.29, p=0.002* 
Lantana camara, no prey Full blend, no prey 13 & 51 0.013 X2=9.29, p=0.002* 
Full blend & ate two no-blood females Full blend & ate one no-blood females 54 & 52 0.017 X2=25.71, p<0.001* 
Full blend & ate two blood females Full blend & ate one blood females 55 & 53 0.017 X2=20.00, p<0.001* 
Full blend & ate two no-blood females Full blend & ate two blood females 54 & 55 0.010 X2=0.61, p=0.436 
Lantana camara & ate two no-blood females Full blend & ate two no-blood females 54 & 23 0.008 X2=11.88, p<0.001* 
Lantana camara & ate two blood females Full blend & ate two blood females 55 & 24 0.008 X2=11.43, p<0.001* 
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Table 8. Comparison of completion times for Evarcha culicivora hatchlings that were successful at completing first instar. Prey-only feeding 

regimes. For each row, df=1. *Comparision significant by adjusted alpha for 0.05 (Bonferroni). When significant, Group 1 value for completion 

time smaller 

Group 1 Group 2 Rows in 
Table 4 

Adjuste
d alpha 

Mantel-Cox test 

No-blood female on Day 1 & 5 No-blood female on Day 1, 5 & 9 7 & 10 0.003 X2=0.71, p=0.401 
Blood female on Day 1 & 5 Blood female on Day 1, 5 & 9 8 & 11 0.004 X2=0.15, p=0.696 
Male on Day 1 & 5 Male on Day 1, 5 & 9 9 & 12 0.01 X2=4.22, p=0.040 
No-blood female on Day 1 & 5 Blood female on Day 1 & 5 7 & 8 0.003 X2=1.31, p=0.253 
No-blood female on Day 1 & 5 Male on Day 1 & 5 7 & 9 0.004 X2=5.76, p=0.016 
Blood female on Day 1 & 5 Male on Day 1 & 5 8 & 9 0.005 X2=0.48, p=0.490 
No-blood female on Day 1, 5 & 9 Blood female on Day 1, 5 & 9 10 & 11 0.004 X2=5.45, p=0.020 
No-blood female on Day 1, 5 & 9 Male on Day 1, 5 & 9 10 & 12 0.006 X2=0.25, p=0.620 
Blood female on Day 1, 5 & 9 Male on Day 1, 5 & 9 11 & 12 0.006 X2=7.20, p=0.007* 
Lantana camara, no prey Lippia kituensis, no prey 13 & 14 0.007 X2=6.10, p=0.014 
Lantana camara, no-blood female on Day 1 Lantana camara, no prey 18 & 13 0.007 X2=0.00, p=0.997 
Lippia kituensis, no-blood female on Day 1 Lippia kituensis, no prey 19 & 14 0.007 X2=0.02, p=0.88 
Lantana camara, no-blood female on Day 1 Lippia kituensis, no-blood female on Day 1 18 & 19 0.007 X2=2.06, p=0.15 
No-blood female on Day 1 & 5 Lantana camara, no-blood female on Day 1 18 & 7 0.004 X2=16.06, p<0.001* 
No-blood female on Day 1 & 5 Lippia kituensis, no-blood female on Day 1 19 & 7 0.004 X2=9.20, p=0.002* 
Lantana camara, no-blood female on Day 1 & Day 5 Lantana camara, no-blood female on Day 1 18 & 23 0.004 X2=20.79, p<0.001* 
Lippia kituensis, no-blood female on Day 1 & Day 5 Lippia kituensis, no-blood female on Day 1 19 & 25 0.005 X2=14.96, p<0.001* 
Lantana camara, no-blood female on Day 1 & Day 5 No-blood female on Day 1 & 5 23 & 7 0.003 X2=29.43, p<0.001* 
Lippia kituensis, no-blood female on Day 1 & Day 5 No-blood female on Day 1 & 5 25 & 7 0.003 X2=25.57, p<0.001* 
Parthenium hysterophorus, no-blood female on Day 1 & 5 No-blood female on Day 1 & 5 27 & 7 0.003 X2=11.22, p<0.001* 
Ricinus communis, no-blood female on Day 1 & 5 No-blood female on Day 1 & 5 29 & 7 0.003 X2=9.47, p=0.002* 
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Lantana camara, blood female on Day 1 & Day 5 blood female on Day 1 & 5 24 & 8 0.003 X2=0.25, p=0.614 
Lippia kituensis, blood female on Day 1 & Day 5 blood female on Day 1 & 5 26 & 8 0.004 X2=0.73, p=0.392 
Parthenium hysterophorus, blood female on Day 1 & 5 blood female on Day 1 & 5 28 & 8 0.004 X2=1.97, p=0.161 
Ricinus communis, blood female on Day 1 & 5 blood female on Day 1 & 5 30 & 8 0.004 X2=0.03, p=0.871 
Lantana camara, no-blood female on Day 1 & Day 5 No-blood female on Day 1, 5 & 9 23 & 10 0.003 X2=17.33, p<0.001* 
Lippia kituensis, no-blood female on Day 1 & Day 5 No-blood female on Day 1, 5 & 9 25 & 10 0.004 X2=37.06, p<0.001* 
Parthenium hysterophorus, no-blood female on Day 1 & 5 No-blood female on Day 1, 5 & 9 27 & 10 0.004 X2=6.44 p=0.011 
Ricinus communis, no-blood female on Day 1 & 5 No-blood female on Day 1, 5 & 9 29 & 10 0.004 X2=2.00, p=0.157 
Lantana camara, blood female on Day 1 & Day 5 Blood female on Day 1, 5 & 9 24 & 11 0.004 X2=1.82, p=0.178 
Lippia kituensis, blood female on Day 1 & Day 5 Blood female on Day 1, 5 & 9 26 & 11 0.004 X2=9.56e-01, 

p=0.998 
Parthenium hysterophorus, blood female on Day 1 & 5 Blood female on Day 1, 5 & 9 28 & 11 0.004 X2=0.47, p=0.494 
Ricinus communis, blood female on Day 1 & 5 Blood female on Day 1, 5 & 9 30 & 11 0.004 X2=0.17, p=0.681 
Lantana camara, no-blood female on Day 1 & Day 5 Lantana camara, no prey 23 & 13 0.004 X2=41.870, 

p<0.001* 
Lantana camara, blood female on Day 1 & Day 5 Lantana camara, no prey 24 & 13 0.005 X2=20.360, 

p<0.001* 
Lippia kituensis, no-blood female on Day 1 & Day 5 Lippia kituensis, no prey 25 & 14 0.005 X2=55.940, 

p<0.001* 
Lippia kituensis, blood female on Day 1 & Day 5 Lippia kituensis, no prey 26 & 14 0.005 X2=56.930, 

p<0.001* 
Lantana camara, no-blood female on Day 1 & Day 5 Lantana camara, blood female on Day 1 & 

Day 5 
23 & 24 0.003 X2=11.71, p<0.001* 

Lippia kituensis, no-blood female on Day 1 & Day 5 Lippia kituensis, blood female on Day 1 & 
Day 5 

25 & 26 0.004 X2=24.10, p<0.001* 

Parthenium hysterophorus, no-blood female on Day 1 & 5 Parthenium hysterophorus, blood female on 
Day 1 & 5 

27 & 28 0.005 X2=0.78, p=0.38 

Ricinus communis, no-blood female on Day 1 & 5 Ricinus communis, blood female on Day 1 & 
5 

29 & 30 0.005 X2=0.51, p=0.47 
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Lantana camara, no-blood female on Day 1 & 5 Lippia kituensis, no-blood female on Day 1 & 
5 

23 & 25 0.003 X2=6.115, p=0.013 

Lantana camara, blood female on Day 1 & 5 Lippia kituensis, blood female on Day 1 & 5 24 & 26 0.004 X2=0.61, p=0.434 
Lantana camara, no-blood female on Day 1 & 5 Parthenium hysterophorus, no-blood female 

on Day 1 & 5 
23 & 27 0.004 X2=0.09, p=0.764 

Lantana camara, blood female on Day 1 & 5 Parthenium hysterophorus, blood female on 
Day 1 & 5 

24 & 28 0.004 X2=2.98, p=0.084 

Lantana camara, no-blood female on Day 1 & 5 Ricinus communis, no-blood female on Day 1 
& 5 

23 & 29 0.004 X2=0.40, p=0.526 

Lantana camara, blood female on Day 1 & 5 Ricinus communis, blood female on Day 1 & 
5 

24 & 30 0.004 X2=0.50, p=0.479 

Lippia kituensis, no-blood female n Day 1 & 5 Parthenium hysterophorus, no-blood female 
on Day 1 & 5 

25 & 27 0.004 X2=2.63, p=0.105 

Lippia kituensis, blood female on Day 1 & 5 Parthenium hysterophorus, blood female on 
Day 1 & 5 

26 & 28 0.004 X2=1.39, p=0.238 

Lippia kituensis, no-blood female on Day 1 & 5 Ricinus communis, no-blood female on Day 1 
& 5 

25 & 29 0.004 X2=2.21, p=0.137 

Lippia kituensis, blood female on Day 1 & 5 Ricinus communis, blood female on Day 1 & 
5 

26 & 30 0.004 X2=0.17, p=0.679 

Parthenium hysterophorus, no-blood female on Day 1 & 5 Ricinus communis, no-blood female on Day 1 
& 5 

27 & 29 0.005 X2=0.35, p=0.556 

Parthenium hysterophorus, blood female on Day 1 & 5 Ricinus communis, blood female on Day 1 & 
5 

28 & 30 0.005 X2=1.57, p=0.210 

Full blend & ate two no-blood females No-blood female on Day 1 & 5 54 & 23 0.004 X2=2.01, p=0.157 
Full blend & ate two blood females Blood female on Day 1 & 5 55 & 24 0.005 X2=0.01, p=0.934 
Full blend & ate two no-blood females Lantana camara, no-blood female on Day 1 

& 5 
54 & 7 0.005 X2=25.09, p<0.001* 

Full blend & ate two blood females Lantana camara, blood female on Day 1 & 5 55 & 8 0.005 X2=0.00, p=0.947 
Full blend & ate two no-blood females Full blend & ate two blood females 54 & 55 0.010 X2=2.35, p=0.126 
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CT7. No-blood female on Day 1 & Day 5
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CT8. Blood female on Day 1 & Day 5
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CT9. Male on Day 1 & Day 5
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CT10. No-blood female on Day 1, 5 & 9
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CT11. Blood female on Day 1, 5 & 9
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CT12. Male on Day 1 & Day 5
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CT13. Lantana camara, no prey
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CT14. Lippia kituensis, no prey
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CT18. Lantana camara, no-blood female on Day 1



	 129	

 

0 5 10 15 20 25 30 35 40 45 50 55 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Days

P
ro

po
rti

on
 o

f C
om

pl
et

io
n 

Ti
m

e 

CT19. Lippia kituensis, no-blood female on Day 1
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CT23. Lantana camara, no-blood female on Day 1 & Day 5
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CT24. Lantana camara, blood female on Day 1 & Day 5
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CT25. Lippia kituensis, no-blood female on Day 1 & Day 5
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CT26. Lippia kituensis, blood female on Day 1 & Day 5
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CT27. Parthenium hysterophorus, no-blood female on Day 1 & 5
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CT28. Parthenium hysterophorus, blood female on Day 1 & 5
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CT29. Ricinus communis, no-blood female on Day 1 & 5
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CT30. Ricinus communis, blood female on Day 1 & 5
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Fig 1. The completion time (CT) before successful hatchlings became 2nd-instar 

juveniles was calculated by days. See Table 4. 
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CT54. Full blend & ate two no-blood females
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CT55. Full blend & ate two blood females
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L1. Water-only control for prey & plants (C1) 
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L2. Water-only control for artificial nectar (C2)
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L3. No-blood female on Day 1



	 134	

	

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Days

P
ro

po
rti

on
 S

ur
vi

vi
ng

L4. Blood female on Day 1
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L5. Male on Day 1
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L6. No-blood female on Day 5
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L7. No-blood female on Day 1 & Day 5
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L8. Blood female on Day 1 & Day 5
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L9. Male on Day 1 & Day 5
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L10. No-blood female on Day 1, 5 & 9
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L11. Blood female on Day 1, 5 & 9
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L12. Male on Day 1, 5 & 9
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L13. Lantana camara, no prey
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L14. Lippia kituensis, no prey
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L15. Parthenium hysterophorus, no prey 
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L16. Ricinus communis, no prey
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L17. Hibiscus rosa-sinensis, no prey 
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L18. Lantana camara, no-blood female on Day 1
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L19. Lippia kituensis, no-blood female on Day 1
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L20. Parthenium hysterophorus, no-blood female on Day 1
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L21. Ricinus communis, no-blood female on Day 1
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L22. Hibiscus rosa-sinensis, no-blood female on Day 1
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L27. Parthenium hysterophorus, no-blood female on Day 1 & 5
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L28. Parthenium hysterophorus, blood female on Day 1 & 5
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L29. Ricinus communis, no-blood female on Day 1 & 5
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L30. Ricinus communis, blood female on Day 1 & 5
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L31. 1% sucrose, no prey
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L32. 5% sucrose, no prey
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L33. 10% sucrose, no prey
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L34. 20% sucrose, no prey
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L35. 30% sucrose, no prey
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L36. 40% sucrose, no prey
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L37. 20% glucose, no prey
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L38. 20% fructose, no prey
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L39. 20% maltose, no prey
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L40. 5% glucose, no prey
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L41. 5% fructose, no prey
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L42. 5% glucose-fructose blend, but no prey
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L43. 10% glucose-fructose blend, but no prey
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L44. 20% glucose-fructose blend, but no prey
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L45. 4% amino-acid blend (Glu, Gly, Pro, Ser) but no prey
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L46. 20% glucose+amino-acid blend, but no prey
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L47. 20% fructose+amino-acid blend, but no prey
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L48. 20% maltose+amino-acid blend, but no prey
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L49. 20% sucrose+amino-acid blend, but no prey
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L50. Sugar-only L. camara blend, but no prey
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L51. Full L. camara blend, but no prey
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L52. Full blend & ate one no-blood female
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L53. Full blend & ate one blood female
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L54. Full blend & ate two no-blood females
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L55. Full blend & ate two blood females
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Fig. 2. The longevity (L) of hatchlings did not complete the first instar but died were 

calculated by days. See table 4. 
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CHAPTER FOUR: DISCUSSION 

The potential relevance of Evarcha culicivora to efforts in the context of malaria 

 
Even people who dislike spiders tend to like knowing there is a spider with an active 

preference for mosquitoes as prey. Mosquitoes can be a nuisance. They buzz, bite and 

keep us awake at night, but many of these insects are also notorious as vectors of 

some particularly serious human diseases, including filariasis, yellow fever, dengue, 

West-Nile fever and especially malaria (Becker et al. 2010). In human history, the 

impact of malaria has been enormous (Cox 2010), but malaria is still with us. It 

remains the vector-borne disease with the most severe impact on public health and 

regional economies (Collins & Paskewitz 1995; Kokwaro 2009). However, in the 

mid-20th century, the geographic range in which there is a high risk of malaria has 

become primarily tropical and subtropical regions (Packard 2007), and especially with 

Sub-Saharan Africa. The World Health Organization estimated that in 2015 about 

88% of malaria cases and 90% of malaria deaths in the world were in sub-Saharan 

These descriptive statistics are only a first step toward getting a perspective on the 

significance of malaria (Koram & Molyneux 2007). For a person suffering from a 

bout of malaria, the symptoms would be the primary perspective. These include 

severe headaches and profuse sweating, along with vomiting and, in especially serious 

instances, convulsions. The signature symptom of malaria is a characteristic cycling 

between fever and chills. However, understanding the public-health impact of malaria 

requires going beyond the symptoms. Malaria tends to be intertwined with other 

diseases and with poverty, forming an entangled web where each can be envisaged as 

a cause and an effect of the other (Bonds et al. 2010; Chase 2012). This makes the 

impact of malaria difficult to specify and quantify (Spielman & D’Antonio 2001). 
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Malaria is not unique to people. It is a disease caused by Plasmodium and 

related genera of single-cell parasites from the phylum Apicomplexa (Garnham 

1966). These parasites have a complex life cycle (Packard 2007), with multiple stages 

in a definitive host (the host in which it reproduces sexually as well as asexually) and 

multiple stages in an intermediate host (i.e., the host in which it reproduces only 

asexually). A wide variety of terrestrial vertebrates (reptiles, birds and mammals) 

serve as intermediate hosts for different malaria-parasite species (Collins & Paskcwitz 

1995; Gu et al. 2011) and, even human malaria might more accurately be 

characterized as five diseases instead of only one (Perez-Tris et al. 2005). People are 

normal intermediate hosts for Plasmodium falciparum, P. knowlesi, P. malariae, P. 

ovale and P. vivax), with P. vivax being the most widespread and P. falciparum being 

the most lethal.  Plasmodium falciparum is also the dominant human-malaria parasite 

in sub-Saharan Africa (Guerra et al. 2008). 

When referring to Plasmodium, it is often convenient simply to say that the 

definitive hosts (also called the ‘vectors’) are mosquitoes. However, to be more 

precise, we should say female mosquitoes because males subsist primarily on nectar, 

not blood (Clements 1999). Even the rule that definitive hosts are female mosquitoes 

has exceptions when it is lizard malaria (Schall 1990, 2000). 

The same basic pattern is followed in all Plasmodium life cycles (Fig. 1) 

(White et al. 2011). When a mosquito penetrates the skin of the intermediate host, a 

form of the parasite called sporozoites enters the host along with the mosquito’s 

saliva. The sporozoites then move into the blood stream and, when they reach the 

liver, they invade hepatocytes (i.e., liver cells). While inside a hepatocyte, a 

sporozoite turns into a schizont, a schizont being basically a bag of yet another 

version of the parasite, namely the merozoites. After about a week, the merozoites 
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burst out of the schozont and hepatocyte, and then enter the blood stream where they 

enter red blood cells (erythrocytes). 
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Fig 1. 	Life cycle of Plasmodium falciparum in the human body and the body of an 

anopheline mosquito. Drawing from White et al. (2014). The cycle begins with 

inoculation of motile sporozoites into the skin (A), after which the sporozoites travel 

to the liver (B). Each sporozoite, when it is in the liver, invades a hepatocyte and then 

multiplies inside a sack called a schizont.. After about a week, the schizont bursts, 

releasing into the bloodstream thousands of the next stage in the parasites life cycle, 

the merozoites. The merozoites move into the blood stream where they invade red 

blood cells and begin a cycle of asexual reproduction (C). Illness starts when total 

number of the asexual parasite in the circulation reaches roughly 100 million. 

Eventually some of the parasites in the blood stream develop into precursors of the 

gametes. These are called gametocytes. Gametocytes are taken with blood by a 

feeding anopheline mosquito (D) and then turn into gametes (eggs and sperm). Sexual 

reproduction occurs in the mosquito’s digestive tract, with the zygote transforming 

into a form called an ookinete and then an oocyst in the mosquito gut. When the 

oocyst bursts, sporozoites are released and the sporozoites migrate to the mosquito’s 

salivary glands. There they wait to be inoculated along with saliva into the 

intermediate host when the mosquito takes its next blood meal. The entire cycle can 
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take about a month. Estimated numbers of parasites are shown in boxes. A total 

burden of 1012 parasites corresponds to roughly 2% parasitaemia in an adult (White et 

al. 2014). 
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In the red blood cell, transformations continue. The merozoite turns into a 

trophozoite and then the trophozoite becomes a schizont (i.e., a bag of merozoites 

inside the red-blood cell). When the schizont and red blood cell rupture, hoards of 

merozoites enter the bloodstream and then infect more red blood cells. Cycles of 

merozoites synchronously destroying red blood cells and then infecting more red 

blood cells are responsible for the recurrent-fever cycle’s characteristic of malaria. 

These cycles of asexual reproduction typically reach a level corresponding to illness 

when the number of asexual parasites in the bloodstream reaches about 100 million. 

Eventually some of the merozoites develop into a different form of the 

parasite, the gametocyte and this is a step that connects the cycle back to the 

mosquito. There are male and female versions of gametocytes. Sexual reproduction 

occurs when gametocytes are in the blood ingested by a competent female mosquito. 

In the mosquito, gametocytes quickly become gametes (eggs from female 

gametocytes and sperm from male gametocytes) that form zygotes that turn into 

ookinetes. Ookinetes, being motile, penetrate the wall of the mosquito’s midgut where 

they form oocysts. Over time, oocysts enlarge and then burst open to release 

sporozoites and the sporozoites migrate to the mosquito salivary gland. Now the 

mosquito is armed with the infectious form of the parasite. The next time the 

mosquito takes a blood meal, the sporozoites are transferred to the intermediate host 

and a new life cycle begins. 

Historically, public health efforts to reduce malaria incidence have relied on 

targeting the vector more than on targeting the parasite, and this continues to be the 

case (Becker et al. 2010). The dominant means of vector control in sub-Sahara Africa 

is the use of insecticide-treated mosquito nets and practising indoor residual spraying 

with insecticides (Alonzo & Turner 2013). About 3.2 billion people are currently at 
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risk of contracting malaria (the World Malaria Report (2015) of the WHO Global 

Malaria Programme), which is nearly half of the world’s population. Progress being 

made when compared with figures from 15 years ago (Fig. 2), as it indicates that the 

risk level has dropped by 37%, and mortality rate has dropped by 60%. Put another 

way, millions of malaria deaths were averted by a massive international effort at 

malaria prevention and malaria treatment. 
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Fig 2. Projected changes in malaria incidence rates, by country, 2000-2015. 

Date source: World Malaria Report 2015. From 

http://gamapserver.who.int/mapLibrary/Files/Maps/WMR2015_ChangesInIncidence.

png (accessed 08/03/2016). 
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It may be easy to let the effectiveness of these measures suggest that mosquito 

predators, including E. culicivora, will make little difference. In 2007, the Bill and 

Melinda Gates Foundation announced that the eradication of malaria should be the 

goal (Roberts & Enserink 2007, Grabowsky 2008), and there has been considerable 

enthusiasm about actually meeting this goal in the foreseeable future. However, if the 

goal is the eradication of malaria instead of just a reduction and control, then there is 

still a long way to go, and it will be expensive (Mill et al. 2008; Moonen et al. 2010). 

There cause for skepticism about whether the world would bear the cost of eradication 

if control is working well enough (Hommel 2008). This suggests that dismissing the 

relevance of predators is premature. 

There is now considerable concern about ‘residual malaria’, this being an 

expression used for malaria transmission by mosquitoes that are not stopped by 

insecticide-treated mosquito nets and indoor spraying with insecticides (Govella & 

Ferguson 2010); Killeen 2013, 2014; Homan 2016). If eradication is the goal, then 

residual malaria cannot be ignored and, owing to natural selection, we should be 

prepared for what is now called ‘residual malaria’ becoming more prominent 

(Ferguson et al. 2010). 

Other details about mosquitoes are important in the context of malaria. More 

than 3,500 mosquito species have been described, but only one genus, Anopheles, 

includes species that are competent vectors of human malaria (Clements 1999; 

Molina-Cruz et al. 2013). In this genus there are about 500 described species, but only 

about 70 species are known to be competent human-malaria vectors (Harbach 2004). 

Anopheles gambiae is currently the most notorious of these species (Spielman & 

D’Antonio 2001). However, instead of being a single species, An. gambiae is a 

species complex (Coetzee et al. 2000, 2013) in which constituent species tend to have 
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distinctly different behaviour and distinctly different relevance to human malaria, 

while at the same time being morphologically indistinguishable (Coluzzi et al. 1985). 

Molecular methods have become the standard for distinguishing between them 

(Fanello et al. 2002) and, when uncertain, the mosquito is referred to as An. gambiae 

sensu lato. 

Anopheles gambiae sensu stricto has special characteristics that make it the 

most notorious vectors of P. falciparum (Sinka et al. 2010), with two of these 

characteristics being olfactory anthropophily (McBride 2016) and a strong bias 

toward anthropophagy (Takken & Verhultst 2013). Evidence for olfactory 

anthropophagy, which come from trapping with odour baits and from olfactometer 

experiments in the laboratory, implies that this mosquito is highly proficient at 

detecting and finding the source of human odour (Takken & Knols 1999; Carey et al. 

2010). Strong anthropophagi means taking blood meals primarily from people and 

there have been many studies backing up this conclusion (White 1974; Githeko et al. 

1996; Antonio et al. 2002; Mwanganqi et al. 2003; Dabire et al. 2008) and yet there 

are also reports suggesting that, in some instances, An. gambiae s.s. takes frequent 

blood meals from domestic livestock and other non-human animals (Diatta et al. 

1998; Bøgh et al. 2001; Duchemin et al. 2001). These reports suggest that the level of 

zoophagy versus anthropophagy can be influenced by geographical variables, 

population density, host availability and other factors. 

Before the use of bed nets became widespread in Africa, the standard 

characterization of An. gambiae s.s had been that of a highly anthropohilic, 

anthrophagic and endophilic mosquito that was predisposed to feed late at night, when 

people are sleeping instead of being alert and ready to defend themselves against the 

mosquito (Githeko et al. 1996; Wanji et al. 2003, Pates & Curtis 2005). All of these 
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are characteristics that contribute to this mosquito’s effectiveness as a malaria vector, 

but there is more. Some blood-feeding mosquitoes are autogenous, meaning that they 

do not require a blood meal before producing their first batch of eggs, but An. 

gambiae s.s. is anautogenous, meaning it needs a blood meal for egg production, and 

An. gambiae s.s. also tends to take blood meals more than once in a single 

gonotrophic cycle (Scott & Takken 2012). Frequent blood meals correspond to 

frequent opportunities for infecting people with the malaria parasite. It is also 

important that An. gambiae s.s. has a lifespan long enough for the malaria parasite to 

undergo sexual reproduction and then load sporozoites into salivary glands in time for 

infecting people during a later feeding event (Spielman & D’Antonio 2001). When 

females lay their eggs, it tends to be in areas associated with human activity and the 

time for larval development tends to be short enough to support rapid arrival of new 

generations of blood-feeding adults (Betson et al. 2009; Minakawa et al. 2004). 

When malaria in sub-Sahara Africa is discussed, there is an understandable 

emphasis on An. gambiae s.s., but this does not mean that other malaria vectors are 

trivial. For example, the An. gambiae s.l. complex includes An. arabiensis, a species 

that is normally characterized as being primarily zoophagic (Pates et al. 2001). 

However, An. arabiensis is a highly competent vector of P. falciparum that also takes 

blood meals from people and tends to be common around human dwellings. In some 

localities, An. arabiensis is the primary vector of human malaria (e.g., Mwangangiel 

et al. 2013). Anopheles funestus is from a different species group and it, like An. 

gambiae s.s., is strongly anthropophagic and highly competent as a vector of P. 

falciparum In many instances, An. funestus is the dominant malaria vector (Cooke et 

al. 2015). Anopheles coustani, An. moucheti, An. nili, An. pharoensis, An. rivulorum, 

An. rufipes and other African species, although known to be competent malaria 
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vectors (Gillies et al. 1968; Faye et al. 1997; Antonio-Nkondjio et al. 2002; Awolola 

et al. 2002; Kwada et al. 2012; Stevenson et al. 2012), have often been, until recently, 

ignored when discussing malaria, but they are now being viewed more carefully in the 

context of residual malaria. Along with An. funestus, these species are particularly 

interesting in the context of residual malaria because their blood-feeding times span 

into early in the evening and early in the morning when people tend to be away from 

their bed nets (Kitau et al. 2012; Russell et al. 2010; Yohannes & Boelee 2012; 

Gatton et al. 2013; Bayoh et al. 2014; Moiroux et al. 2014; Soufoufara et al. 2014; 

Ototo et al. 2015). 

Mosquitoes begin their lives in water. The aquatic larvae hatch from the eggs 

and later turn into aquatic pupae from which the adults emerge as the flying insects 

that feed on blood if they are females and plant products if they are males (Clements 

1999). Despite being better known for taking blood meals, female mosquitoes often 

also take non-blood meals (Foster 1995; Gu et al. 2011). In most instances, this means 

nectar, but there are exceptions (Gary & Foster 2004; Junila et al. 2010). There are 

even reports of female mosquitoes feeding on caterpillars (George et al. 2014). 

Aquatic juveniles, flying adults, visiting animals for blood and visiting plants 

for sugar meals - this makes for many contexts in which predators might kill 

mosquitoes. However, when considering E. culicivora, we can probably ignore 

predation on the aquatic stages and we can probably ignore predation at night when 

the adult mosquito tends to feed from hosts and plants. This makes E. culicivora 

rather different from the predators that have been more often considered in the context 

of predation on mosquitoes. 

The predators that have been more often considered are species that target the 

larvae (Sabatinelli et al. 1991; Howard et al. 2007; Fischer et al. 2013), not the adults, 
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of the mosquito. Although less common, research on predators that target adult 

mosquitoes (e.g., Gonsalves et al. 2013) could be of particular interest. After all, 

malaria vectors, as well as the vectors of dengue, yellow fever and other mosquito-

borne diseases, are specifically adult mosquitoes – more specifically adult female 

mosquitoes, these being the individuals that take blood meals. Another consideration 

is that, by killing blood-carrying female mosquitoes of vector species, a predator is 

killing the individuals that might be or might soon become, infected with a disease 

agent and it is also killing the mosquitoes that might soon produce the eggs that will 

initiate the next generation of aquatic juveniles that mature to become more disease 

vectors. 

When there is an interest in the predators of adult mosquitoes, spiders in 

particular warrant careful consideration. Spiders are found in virtually all of the 

terrestrial habitats where adult mosquitoes occur and there are a lot of spider species 

to consider: over 46,000 species belonging to 114 families have been named and 

described (World Spider Catalog (http://www.wsc.nmbe.ch, accessed 12/03/2016). 

The common name ‘spider’ refers to the chelicerate species in the order Araneae and 

class Arachnida, and this is the seventh most diversified order of animals in general 

(Codington & Levi 1991). Among spiders, the Salticidae, with almost 6,000 described 

species is the largest family (Maddison 2015). Although there are salticids and other 

spiders that target aquatic prey, terrestrial prey is the norm (Jackson & Pollard 1996). 

Many spiders probably eat mosquitoes and some might eat especially many 

mosquitoes (Jackson & Cross 2015). However, E. culicivora, being a mosquito-

specialist, is different. Currently, E. culicivora and one other salticid species are the 

only predators for which there is substantial evidence of specialization on mosquitoes 

as prey. The other salticid is Paracyrba wanlessi, a species from Peninsular Malaysia 
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(Żabka & Kovac 1996), but it would be misleading to characterize P. wanlessi as 

being a spider that specializes on mosquitoes in Asia in the same way E. culicivora 

specializes on mosquitoes in Africa. 

For example, although both species express a strong, active preference for 

mosquitoes as prey (Jackson et al. 2014), these two species live in rather different 

habitats. Instead of being found primarily on or near human dwellings, P. wanlessi is 

most often found in the hollow internodes (culms) of bamboo (Kovac & Streit 1996; 

Żabka & Kovac 1996). Like E. culicivora, P. wanlessi is a terrestrial predator that 

targets adult mosquitoes with specialized prey capture behaviour, feature-detection 

mechanisms and prey-choice behaviour; however, unlike E. culicivora, P. wanlessi is 

also an aquatic predator that targets juvenile mosquitoes (i.e., larvae and pupae) with 

different specialized prey capture behaviour, feature-detection mechanisms and prey-

choice behaviour. It is important to appreciate what is going on here. Depending on 

what it encounters, a single individual of P. wanlessi can switch rapidly from 

expressing specialization on one type of prey (larvae and pupae in water) to 

expressing specialization on another very different type of prey (adult mosquitoes 

away from water). This is an example of a particular type of polyspecialization (West-

Eberhard 2003) in which a predator adopts a conditional strategy. Also known as 

‘predatory versatility’ (Curio 1976), this type of polyspecialization illustrates rather 

emphatically that specialization on a particular type of prey is qualitatively different 

from evidence of limitation to a particular type of prey. 

Setting aside specialized predation by P. wanlessi on aquatic juvenile 

mosquitoes, we might say that specialized predation on adult mosquitoes is a 

characteristic P. wanlessi shares with E. culicivora, but even this is misleading. It is 

too simplistic. The prey-choice and prey-capture behaviour of E. culicivora 



	 165	

demonstrates that this is a predator for which ‘adult mosquito’ is not a single prey 

category (Jackson & Cross 2015). For E. culicivora, the distinction that matters 

includes female mosquitoes vs. male mosquitoes, blood-carrying female mosquitoes 

vs. no-blood female mosquitoes, mosquitoes from the genus Anopheles vs. 

mosquitoes from other genera. However, there is no evidence suggesting that these 

distinctions are relevant to P. wanlessi. 

This illustrates why, for understanding predatory specialization, it is important 

to consider the predator’s own prey-classification system instead of formal scientific 

taxonomy (Nelson & Jackson 2011). Scientific taxonomy of a predator’s prey is 

important for understanding food webs, trophic niches and related topics in 

community ecology (Futuyma & Moreno 1988; Stouffer et al. 2007; Thompson et al. 

2012; Pekar & Toft 2105), but this is different from advancing our understanding of 

precisely how a predator might be specialized. The predator’s own perspective 

matters for this because specialization pertains to specific ways in which a predator 

has become well adapted at targeting particular types of prey. Evarcha culicivora and 

P. wanlessi are two predators that express specialization on prey that, on the basis of 

scientific taxonomy, are lumped together as a category (family Culicidae, common 

name ‘mosquito’). As far as it goes, we can call both of them ‘mosquito specialists’, 

but just saying that does not actually get us very far. 

In this thesis, my goal was to investigate the expression of specialization by E. 

culicivora more broadly. 

As a sideline, I participated in some research on preferences and natural diet 

(Appendix 1). Preferences as revealed by prey-choice behaviour are not data 

pertaining to a predator’s natural diet. Natural diet is something different and must be 

determined by other means (field data). It is of interest to determine how closely diet 
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converges with preferences, but it is rarely possible to determine this accurately. 

There was an unusual opportunity to do this for E. culicivora and the findings show, 

with a large sample size, that there is a remarkable convergence (Appendix 1). The 

prey-choice data also illustrate how just stating a preferred prey type is not adequate 

when characterizing E. culicivora. Instead, it needs to be understood that this predator 

has a preference profile, with hierarchies of preference. 

Specialization, however, pertains to more than prey-choice behaviour and my 

goal in this thesis was to investigate specialization by E. culicivora in another two 

contexts. 

In Chapter 2, my hypothesis was that E. culicivora has an innate specialized 

predisposition to time predatory activity to occur in the morning when its preferred 

prey, blood-carrying anthropophilic anopheline mosquitoes, are resting while 

digesting night-time blood meals. My results show that, under natural conditions, E. 

culicivora tends to be active as a predator primarily in the early morning when it can 

find resting female anthropophilic mosquitoes that fed on blood the previous night. I 

also found that E. culicivora is innately predisposed to express stronger preference in 

the morning than in the afternoon for blood-carrying mosquitoes. This is the first 

study to show specialized adaptive timing of predation by a mosquito-specialist 

predator. 

In Chapter 3, I investigated specialization in the context of the nutritional 

ecology of E. culicivora hatchlings, having decided to focus on hatchlings because 

this is the first active, feeding stage in the spider’s life cycle and, therefore, a stage 

when nutritional needs can be expected to be especially pronounced. I determined 

how different prey-only feeding regimes affected completion success, completion 
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time and longevity. I also investigated how access to plant-derived nutrients either 

alone or in conjunction with prey affected the hatchling’s performance. 

That E. culicivora appears to be a mosquito-eating specialist and also a plant-

feeding specialist is of particular interest. Feeding on plant-derived nutrients is 

probably not what most people think about when and if they think about spiders. The 

tradition has been to characterize spiders as strictly predators. Yet there is a growing 

awareness that feeding on plant products may be common among spiders (Nyffeler 

2016). 

Evarcha culicivora is known to be attracted to the odour of two plant species 

Lantana camara and Ricinus communis in olfactometer experiments (Cross & 

Jackson 2009), and there is unpublished evidence of attraction to a wider range of 

plant species, including especially Lippia kituensis (R.R. Jackson, personal 

communication). We also know that E. culicivora juveniles in particular frequently 

ingest fructose (plant sugar) in the field and the laboratory (Kuja et al. 2012). 

However, Chapter 3 is the first report from research in which E. culicivora was reared 

on diets that included plants or artificial nectar, with or without prey also being 

available. 

I found effects from plants and artificial nectar when provided alone and when 

provided in addition to prey. I also found that the plant species mattered, with 

Lantana and Lippia being the most beneficial. It appears to be accurate to characterize 

E. culicivora as a specialist at using these plants, as well as being a specialist at 

preying on mosquitoes. It was specifically metabolic specialization that was of 

interest in Chapter 3, but attraction to particular plant species in olfactometer 

experiments and frequent finding of E. culicivora on particular plant species in the 
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field suggests that, as with specialization on particular kinds of prey, E. culicivora’s 

mode of specialization on plants is broader than just metabolic. 
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Abstract 

On the basis of 1,115 records of Evarcha culicivora feeding in the field, we can 

characterize this East African jumping spider (Salticidae) as being distinctively 

stenophagic. We can also, on the basis of laboratory prey-choice experiments, 

characterize E. culicivora as having a specialized prey-classification system and a 

hierarchy of innate preferences for various categories of mosquitoes and other 

arthropods. Prey from the field belonged to 11 arthropod orders, but 94.5% of the 

prey records were dipterans. Mosquitoes were the dominant prey (80.2% of the 

records), with the majority (82.9 %) of the mosquitoes being females, and thereafter 

midges were the most common prey (9.2% of the records). Preference profiles that 

were determined from experiments showed strong convergence with natural diet in 

some, but not all, instances. In experiments, E. culicivora adults appeared to 

distinguish between six prey categories and juveniles between seven, with blood-

carrying anopheline female mosquitoes being ranked highest in preference. For adults, 

this was followed by blood-carrying culicine female mosquitoes and then anopheline 

female mosquitoes not carrying blood, but these two preferences were reversed for 

juveniles. Moreover, for juveniles, but not for adults, anopheline male mosquitoes 

seem to be a distinct prey category ranked in preference after blood-carrying culicine 

females and, for both adults and juveniles, preference for midges is evident when the 

alternatives are not mosquitoes. These findings illustrate the importance of going 

beyond simply specifying preferred prey categories when characterizing predators as 

‘specialized’ and a need to make clear conceptual distinctions between a predator’s 

natural diet, the prey categories that are relevant to the predator, and the predator’s 

prey-choice behaviour. 
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Keywords: Specialization, preference, stenophagy, spider, Salticidae, Evarcha 

culicivora, Anopheles gambiae 

1.0. Introduction 

Making a clear distinction between preference and natural diet is important when 

discussing predatory specialization [1] because, although natural diet is simply what a 

predator eats in the field, preference is an inherent product of a predator’s perceptual 

processes, decision-making capacities and motivation. A combination of laboratory 

experiments and field sampling is necessary for determining the extent to which 

preferences and natural diet converge but, in research on many predators, this 

combination is often unrealistic. However, Evarcha culicivora, the predator we 

consider here, is an exception because a long-term research programme on this 

jumping spider (family Salticidae) from East Africa has allowed for large data sets 

from the field pertaining to natural diet and large data sets from laboratory prey-

choice experiments pertaining to preferences. 

Spiders are usually characterized as being ‘generalist predators’ (e.g. [2–4]) 

but often, when reading the literature on spiders and other predators, it is difficult to 

discern whether ‘generalist’ refers to euryphagy (i.e. inclusion of a wide range of prey 

in the predator’s natural diet), indiscriminate feeding (i.e. the absence of pronounced 

prey-choice behaviour) or some combination of the two (see [1]). It is particularly 

misleading when the expression ‘generalist predator’ is used for characterizing the 

prey-choice behaviour of salticid spiders. The majority of well-designed experimental 

studies on salticids have revealed distinct preferences, the most notable examples 

coming from salticids that target ants as preferred prey [5] and from other salticids 

that target spiders as preferred prey [6]. It is also premature to use ‘generalist’ as a 

synonym for ‘euryphagy’, and then apply it to salticids as a group because tabulated 
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data pertaining to natural diet are scarce for this large spider family of almost 6,000 

described species [7]. 

It is relevant to our research that E. culicivora is a salticid because salticids 

can be unusually cooperative subjects in prey-choice experiments owing to their 

unique, complex eyes and their ability to see prey in remarkably fine detail [8,9]. For 

example, even when distant from its prey, a salticid can initiate distinctive predatory 

behaviour which a scientist may record and use as evidence of a salticid’s decisions 

[10]. Moreover, in research on salticids, prey-choice experiments can be designed to 

avoid the risk of experimental outcome being influenced by uncontrolled prey 

behaviour. Many salticids [10], including E. culicivora (table 1), are known to 

respond to lures (dead prey mounted in life-like posture on cork discs) or even to 

virtual prey generated by computer animation software (e.g. [14]), with these 

responses corresponding well to how they respond to living, active prey. 

Evarcha culicivora’s predatory strategy is strikingly unusual. This spider feeds 

indirectly on vertebrate blood by actively choosing blood-carrying female mosquitoes 

as its preferred prey [11] and, by actively choosing Anopheles as its preferred 

mosquitoes [15], it singles out the particular mosquito genus to which all human 

malaria vectors belong [16]. Vision is not the only sensory modality that matters to E. 

culicivora, with olfaction in particular having various [1], and sometimes surprising 

(e.g. [17]), roles in this species’ biology. However, vision-based prey-choice 

behaviour by E. culicivora has been the most thoroughly investigated and, regardless 

of whether living prey, lures or virtual prey were used, all earlier studies have 

confirmed this salticid’s distinctive preference for blood-carrying mosquitoes (table 

1). 
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In the most comprehensive study of E. culicivora’s preferences to date [12], 

lures were made from a non-biting midge species, Clinotanypus claripennis 

(Chironomidae), and from both sexes of two mosquito species, Anopheles gambiae 

s.s. and Culex quiquefasciatus. For both mosquito species, a distinction was made 

between females that carried blood and females that did not carry blood. For 

ascertaining the strengths of E. culicivora’s different preferences, three testing 

protocols (simultaneous, alternate-day and alternative-prey) were used (table 2) and, 

for each protocol, individuals were subjected to pre-trial fasts of different durations. 

In simultaneous testing, E. culicivora was given the choice between two lures at the 

same time, with each lure being made from a different kind of prey. In alternate-day 

testing, E. culicivora was shown a single lure of one type on one day and a single lure 

of another type on the next day, with only those test pairs in which E. culicivora chose 

one prey, but not the other, being used as data for determining preference. In 

alternative-prey testing, E. culicivora was again shown a lure of one type on one day 

and a lure of another type on the next day. However, in these tests, the spider was 

shown a lure whilst feeding on the other prey type, with a ‘choice’ being recorded 

only if the spider dropped the prey it was eating while approaching the lure. The prey 

type that the spider ate on the first day was used as a lure on the second day. 

Irrespective of whether test spiders were adults or juveniles, Nelson and 

Jackson [12] found a primary preference for blood-carrying female mosquitoes, but 

preference for blood meals was expressed more strongly by adults than by juveniles. 

In addition, adults and juveniles chose female mosquitoes in preference to male 

mosquitoes (also see [18]) and anopheline mosquitoes in preference to culicine 

mosquitoes (also see [14,15,19]), but juveniles expressed a stronger preference than 

adults for anophelines (table 2). These findings illustrate that, when characterizing 
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predators as ‘specialized’, it is important to consider preference profiles instead of 

simply specifying a preferred prey category. 

Yet our understanding of E. culicivora’s preference profile has remained 

incomplete. In previous research, only a limited number of non-mosquito prey species 

were used and at least one of the prey individuals was always a mosquito (tables 1 and 

2). For example, the only non-mosquito prey species used by Nelson and Jackson [12] 

and by Jackson and Nelson [13] was C. claripennis, a chironomid midge, whereas a 

different chironomid midge, Nilodorum brevibucca, was the only non-mosquito prey 

species that Nelson and Jackson [15] used for making lures. Experiments using virtual 

prey by Nelson and Jackson [15] and by Dolev and Nelson [14,19] have been based 

primarily on the way the resting postures of anophelines and culicines differ [20], 

although Dolev and Nelson [14,19] also used virtual house flies (Musca domestica). 

Jackson et al. [11] used a wider range of non-mosquito prey (aphids, caterpillars, fruit 

flies and spiders, as well as six midge species) but the lures were always stationary 

and presented simultaneously and, in that study, the pre-trial fast was always 7 days 

(table 1). 

One of our goals has been to considerably extend previous research on the 

prey-choice behaviour of E. culicivora by using a wider range of non-mosquito 

species and also, for the first time, including experiments in which non-mosquito 

species are paired with other non-mosquito species. Being interested in specifically 

innate preferences, we endeavoured to standardize test spiders’ prior experience with 

prey. Another goal has been to link our prey-choice experiments more closely than 

has been the case in the past to an understanding of this predator’s natural diet. When 

selecting the prey to use in our experiments, we were guided by having more than 

1,000 records of prey eaten by E. culicivora in the field. This large sample of prey 
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from the field, combined with a wide range of experiments designed specifically for 

gaining insight into how E. culicivora innately categorizes prey, has given us an 

unprecedented opportunity to determine the extent to which a predator’s natural diet 

corresponds with its innate preferences. 

2.0. Material and methods 

2.1. Prey records from the field 

Our field site was the town of Mbita Point in western Kenya, including the Thomas 

Odhiambo Campus of the International Centre of Insect Physiology and Ecology 

(elevation 1200 m above sea level, latitude 0◦25’S–0◦30’S, longitude 34◦10’E). We 

accumulated records of prey in the field by adopting a simple, informal method. 

When we and other personnel from our Mbita Point laboratory saw an individual of E. 

culicivora (the ‘predator’) in the field that was the act of feeding, we put this predator, 

along with its prey, in a plastic vial and then we separated the predator from its prey 

by shaking the vial or, by using a soft brush, prodding the predator until it released the 

prey. In the laboratory we identified the prey and also recorded whether the predator 

was an adult female, an adult male or a juvenile. We used forceps to press on the 

abdomen of any female mosquito taken from E. culicivora and, whenever red or 

reddish brown fluid was noticeable, we recorded that the female mosquito was 

carrying blood. Besides using our new prey records from 2002–2015, we include the 

202 records from work in 1994, 1995, 1997, 1998 and 2001 [21] which were collected 

using the same procedure. 
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2.2. Laboratory procedures 

On the whole, our apparatus, experimental procedures and laboratory rearing protocol 

corresponded to the methods used by Nelson and Jackson [12], except that the 

specific prey pairings used by Nelson and Jackson [12] differed from the prey 

pairings we used here. Although some of the particular pairings of prey types had 

been used previously [11], the apparatus and testing procedures used here (and by 

Nelson and Jackson [12]) were considerably different (see table 1). 

Our test spiders were adult females (4.5–5.0 mm in body length) as well as 

mid-size juveniles (3.0 mm). We decided not to use adult males because, although no 

male-female differences in E. culicivora’s preference were detected in the previous 

research (table 1), there is a tendency for salticid males to be less responsive to prey 

than salticid females [22]. We adopted 3.0 mm as the standard body length for 

juvenile test spiders because, in earlier experiments ([12]; table 2), juvenile-adult 

divergence in preference was evident only when juveniles were 3.5 mm or less in 

body length. We decided not to use juveniles that were smaller than 3.0 mm because 

we wanted to avoid a large juvenile-adult size disparity. All test spiders came from 

laboratory cultures and the body length of each test spider was accurate to the nearest 

0.5 mm. 

The standard rearing diet in the laboratory was blood-carrying female 

mosquitoes (Anopheles gambiae sensu stricto) and midges (Nilodorum brevibucca), 

with both prey types being provided ad libitum every Monday, Wednesday and 

Friday. As it was our goal to detect E. culicivora’s innate preference profile, we used 

test spiders that had been on this standard diet in most of the prey-choice experiments. 

The only exception pertained to determining whether experience with a non-preferred 

prey might alter test-spider preference. For this, some of the test spiders in one subset 
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of prey-choice experiments in the ‘complete series’ (see below) were on an alternative 

rearing diet (‘spider-only’) in which the only food they received was oecobiid spiders. 

Findings from other experiments in our present study showed no evidence of test 

spiders on the standard diet expressing any preference for oecobiid spiders. To 

minimize rearing time, we only used juveniles as test spiders for the spider-only diet. 

 

Lures 

In all experiments, we used lures instead of living prey (table 3), with the body length 

of each lure being accurate to the nearest 0.5 mm. The mosquitoes that we used for 

making lures were Anopheles gambiae sensu stricto and Culex quinquefasciatus 

(henceforth referred to simply as Anopheles and Culex). For both mosquito species, 

there were three types (males, blood female and no-blood female), making a total of 

six mosquito types used in experiments. ‘Blood females’ received a blood meal 4 h 

before being fed to the spiders that were maintained on the standard diet or before 

being used for making lures. ‘No-blood females’ received no blood meals, but all 

mosquito types had unrestricted access to glucose (6% solution). 

Besides the six mosquito types, we used 29 non-mosquito prey species as lures 

(table 3), making a total of 35 prey types. Using these lures, we carried out three 

series of experiments (‘complete’, ‘mosquito’ and ‘non-mosquito’) and, for all 

experiments, we adopted a simultaneous-presentation testing protocol (see [12]). In 

the complete series, we used nine of the non-mosquito prey species as well as the six 

mosquito types, with each of the nine-non-mosquito species being paired with each 

other and also with each mosquito type. Data from pairing most of the different 

mosquito types were already available from an earlier study [12] and, after presenting 

our new findings from the complete series, we added these earlier findings to derive a 
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fuller profile of E. culicivora’s preferences. For this, we only used the data in Nelson 

and Jackson [12] from simultaneous-presentation testing. However, we provide data 

here for two important cells (see table 2) that were missing from the earlier study 

(blood Anopheles females paired with Culex males and blood Culex females paired 

with Anopheles males). 

In the mosquito series, we used blood and no-blood female Anopheles, with 

both mosquito types being paired with the 20 non-mosquito prey species that were not 

used in the complete series and had not been used in any of the previous studies (table 

1). In the non-mosquito series, where we used six midge species and four spider 

species, we paired each midge species with each other midge species and paired each 

spider species with each other spider species. The six midge species had been paired 

with mosquitoes in previous experiments [11], but not with each other, and they were 

used as stationary lures in that study but as moving lures here. 

Each individual used for making a lure had been preserved in 80% ethanol. To 

make lures, we positioned the prey item in lifelike posture on the centre of a cork disc 

(thickness 2 mm, diameter slightly more than the body length of the prey). For 

preservation, the prey item and the cork disc were then sprayed with a transparent 

plastic adhesive (Crystal Clear Lacquer, Atsco Australia Pty). Further information 

about making lures can be found elsewhere [1,11]. 

 

2.3. Experimental procedures 

As our experimental apparatus (figure 1) and basic testing procedures were as 

described by Nelson and Jackson [12], only essential details will be summarized here. 

An arena (140 mm × 115 mm, 35 mm high) made from transparent glass sat centred 

on top of a plastic stand (190 mm × 165 mm, 150 mm high). There was an 
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‘introduction hole’ (diameter: 8 mm) in the arena floor and a matching hole in the 

plastic stand. A rubber bung in the introduction hole could be removed temporarily to 

let the test spider enter the arena. The introduction hole was situated with its closer 

side 10 mm from one of the narrow ends of the arena and, outside the opposite narrow 

end of the arena, there was a ‘left lure hole’ and a ‘right lure hole’ (diameter of each, 

5 mm). A lure of one type was centred on top of the right hole and a lure of another 

type was centred on the top of the left hole, with the side for each lure being decided 

at random for every trial. The lure stayed in place because the diameter of the hole in 

the stand was less than the diameter of cork disc that held the prey item. With this 

arrangement, a test spider inside the arena could see, but not contact or smell, the 

lures. 

A metal prong attached to a camera cable-release cord was connected to the 

underside of each of the two cork discs. When we pressed the cable-release, the two 

lures moved in unison 5 mm upward and then, when we released the cable 0.5 s later, 

the lures moved back to the floor. As soon as the test spider entered the arena, we 

began a procedure of using the cable-release device for moving the pair of lures up 

and down once every 30 s. 

There were two circles made from thin copper wire (diameter, 36 mm), with 

the lure hole on the left being at the centre of one circle and with the lure hole on the 

right being at the centre of the other circle. Part of each wire circle extended under the 

arena, with this part being defined as the ‘choice area’ for the particular lure inside 

that circle. Owing to the glass being transparent, the choice areas were visible to the 

experimenter when the arena was viewed from above. A trial began after the test 

spider entered the arena, after which it was allowed 15 min to choose a lure by 

entering one of the two choice areas. 
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As in earlier experiments [12], one of our criteria for recording a ‘choice’ was 

that we saw the test spider enter the choice area with its gaze fixated on a lure. We 

used the term ‘fixation’ for instances in which the corneal lenses of a salticid’s large 

forward-facing principal eyes (see [9]) were held oriented toward a lure (see [8]). 

There were rare occasions when the 15-min test period ended with the test spider still 

outside the choice area, but with its gaze fixated on a lure and, on these occasions, we 

extended the test period until the test spider either made a choice or turned away. 

As a step toward being more confident that test spiders were actively choosing 

between the two lures in our experiments, we adopted another two criteria which had 

not been used in previous experiments (table 1). One of these criteria was that the test 

spider had to fixate its gaze at least once on each lure and then maintain continuous 

fixation on this lure for at least 10 s. The other new criterion was that, while at least 

20 mm away from the nearest perimeter of the corresponding choice area, the test 

spider had to fixate its gaze on the lure that it chose and then maintain continuous 

fixation on this lure until it had walked inside that choice area. 

As another prerequisite for a successful trial, we confirmed that the test spider 

had probably been motivated to capture prey when it chose a lure. Immediately after 

making its choice, the test spider was transferred to a cylindrical plastic rearing cage 

(diameter 55 mm, height 100 mm); 30 min later, three midges (N. brevibucca) were 

put in the cage with the spider. Whenever a test spider failed to capture one of the 

midges during a 60-min interval, we ignored the data from the trial in which this test 

spider had been used and we did not use this test spider again. 

Nelson and Jackson [15] had adopted a similar, but stricter, criterion for 

accepting trials as successful. The day after an experimental trial using two lures or 

two virtual prey, a live prey trial was initiated using the same two prey types. The data 
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for an experimental trial were only accepted if the test spider had made the same 

choice when tested with living prey as it had with lures or virtual prey. The variety of 

prey we used in the present study meant that adopting this stricter criterion would 

have been prohibitively difficult. 

All testing was carried out between 0800 and 1400 hours (laboratory 

photoperiod 12L:12D, lights on at 0700 hours) and no test spider or lure was used 

more than once. In addition to ambient lighting from fluorescent ceiling lamps, the 

apparatus was lit from 400 mm overhead by a 100-W incandescent lamp. Between 

trials, the apparatus was washed with 80% ethanol followed by distilled water and 

then dried. 

In the present study, where our objective was to detect variation in preference 

strength across a much wider range of prey types than had been considered in the past, 

it was not realistic to adopt all of the experimental protocols and pre-trial fasting 

durations used by Nelson and Jackson [12]. As a compromise, we used only 

simultaneous-presentation testing, this being the testing protocol that, in the earlier 

study, appeared to be the most effective for detecting preferences and, as each trial 

was on a single day instead of two days, it was the simplest method to use. As another 

compromise, only two fasting durations (7-day and 1-day) were used, as these 

appeared to be, in the previous study [12], the most effective for discriminating 

between preference strengths. 

For each pair of two prey types in the complete series, we first used test 

spiders that had fasted for 7 days and then, whenever findings were not significant 

after a 7-day fast, we carried out another experiment using the same pair of prey 

types, but this time with test spiders that had fasted for only 1 day. We used only 7-

day fasting for the mosquito series, where the mosquitoes were always Anopheles 
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females. The rationale for this decision was that, based on findings from the complete 

series and from earlier research (table 1), we expected to find a strong preference for 

female Anopheles mosquitoes. We used only 1-day fasting in the non-mosquito series 

because, for this series, our objective was only to detect whether a preference was 

present (i.e. as our objective here did not include measuring the strengths of 

preferences, we used the fasting duration that was most effective at detecting even a 

weak preference). For each experiment, we continued testing until we had a specified 

number of successful trials (30 for each experiment in the complete series; 25 for each 

experiment in the mosquito and non-mosquito series). Data were then analyzed using 

chi-square tests of goodness of fit (null hypothesis: equal likelihood of choosing each 

prey type). 

We use the expression ‘strong preference’ when, for a given prey pair in the 

complete series, significantly more test spiders chose one instead of the other after a 

7-day fast. We use the expression ‘weak preference’ when, for a given pair in the 

complete series, significantly more test spiders chose one instead of the other after a 

1-day fast, but not after the 7-day fast. We use the expression ‘no preference’ for 

instances in which there was no significant tendency to choose one prey type instead 

of the other after the 7-day or after the 1-day fast. 

Wanting a sharp distinction between weak and strong preference, we decided 

to set alpha at 0.01, with this decision also being influenced by there being especially 

many prey-choice experiments in this study. However, instances of an experimental 

outcome being NS with alpha set at 0.01 when it would have been significant if alpha 

had instead been 0.05 were rare and, when it did happen, the consequences of alpha 

being 0.01 instead of 0.05 were only that preference strength was recorded as weak 
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instead of strong (i.e. it never entailed a change from preference present to nil 

preference). 

3.0. Results 

3.1. Prey records from the field 

We accumulated 1,115 records of E. culicivora feeding on prey in the field (tables 4 

and 5) and there was no striking variation related to whether the E. culicivora 

individuals were adult females, adult males or juveniles. Mosquitoes accounted for 

80.2% of the 1,115 records, with midges being the second most common prey type 

(9.2%). After midges, the next most common prey type (5.0% of the 1,115 records) 

was ‘other dipterans’ (i.e. non-mosquito and non-midge species from the order 

Diptera). 

Prey belonged to 11 arthropod orders (tables 4 and 5). The prey from the order 

Hemiptera included aphids and leafhoppers, these being insects that used to be 

assigned to the order Homoptera. The prey from the order Hymenoptera were two 

winged ants. Ranked by prevalence in the records, the total prey were Diptera 

(94.5%), Araneae (2.1%), Ephemeroptera (1.0%), Hemiptera (including Homoptera; 

1.0%), Lepidoptera (0.4%), Mantodea (0.3%), Blattodea (0.2%), Hymenoptera 

(0.2%), Orthoptera (0.2%) and Psocoptera (0.2%). The majority of the 103 midges 

were chironomids (76.7%). About half (52.2%) of the 23 spiders in the prey records 

were salticids and seven of the 12 salticids were conspecific individuals (5 juveniles 

being eaten by adults and 2 adults being eaten by opposite-sex conspecific adults). 

The majority of the 895 mosquitoes in the field records (table 5) were adult 

females (82.9%). Of the 895 mosquitoes, 33.1% were anophelines (genus Anopheles), 

35.3% were culicines and 31.6% could not be identified to subfamily. Of the 316 

culicines, 54.4% were Culex and 45.6% were Aedes. There was a remarkable 
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consistency in the percentages of mosquitoes that were females: 86.8% of 296 

Anopheles, 84.3% of 172 Culex, 74.3% of 144 Aedes and 82.3% of the 283 

mosquitoes that could not be identified to subfamily. We confirmed that 13.5% of the 

742 female mosquitoes were carrying blood. The percentage of females for which 

blood was detected was: 11.3% of 257 Anopheles females, 25.5% of 145 Culex 

females, 14.0% of 107 Aedes females and 8.2% of 233 female mosquitoes that could 

not be identified to subfamily. 

All dipterans were adults and all lepidopterans were larvae. The mayflies and 

barklice were adults. All of the aphids were probably adults, but the other hemipterans 

were juveniles. All mantises, cockroaches and crickets were juveniles. Oecobiid 

spiders were a mixture of adults and juveniles, two conspecific individuals were 

adults, and all other spiders were juveniles. 

 

3.2. Choice between mosquito and non-mosquito prey 

Adult female and juvenile test spiders from the complete series expressed a consistent 

strong preference for blood female mosquitoes (Anopheles and Culex) regardless of 

which of the nine non-mosquito prey species was used (tables 6 and 7). Juvenile test 

spiders also expressed a consistent strong preference for no-blood Anopheles females 

regardless of which of the nine alternative prey species was used. Adults differed 

from juveniles by expressing only a weak preference for no-blood Anopheles females 

when the alternative was a midge, but resembled juveniles by expressing a strong 

preference when the alternative was any other non-mosquito species. 

Findings from the complete series were more complex when other mosquitoes 

were paired with non-mosquito prey (tables 6 and 7), where ‘other mosquitoes’ refers 

to no-blood Culex females, Culex males and Anopheles males. Adults and juveniles 
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did not express a preference when no-blood Culex females or Culex males were 

paired with midges (tables 6 and 7). However, there was a juvenile-adult difference 

when an Anopheles male was paired with a midge: adult test spiders expressed no 

preference for the mosquito but juveniles expressed a weak preference for the 

mosquito. Juveniles and adults expressed weak preferences for a no-blood Culex 

female, a Culex male or an Anopheles male when the alternative was a vinegar fly or a 

mayfly and they expressed strong preferences when the alternative was a fruit fly, 

cricket, caterpillar, aphid or oecobiid spider. 

In the mosquito series (table 8), we paired an Anopheles blood or no-blood 

female mosquito with one of 15 non-mosquito prey species that had not been used in 

the complete series (table 7) or in any previously published experiments (table 1). For 

this series, we found that the number of adult and juvenile test spiders that chose the 

mosquito was always significantly larger than the number that chose the non-

mosquito prey. As the pre-trial fast duration was always 7 days, our findings from the 

mosquito series corresponded to the definition that we used in the complete series for 

‘strong preference’. 

 

3.3. Choice between non-mosquito species 

Adult and juvenile test spiders expressed no preference when different midge species 

were paired with each other in the complete series (tables 6 and 7) and in the non-

mosquito series (table 9). However, adult and juvenile test spiders expressed a weak 

preference in the complete series for midges when the alternative was a vinegar fly or 

mayfly and a strong preference for midges when the alternative was a fruit fly, 

cricket, caterpillar, aphid or oecobiid spider. 



	 196	

Adult and juvenile test spiders in the complete series (tables 6 and 7) 

expressed no preference when vinegar flies were paired with mayflies or fruit flies but 

they expressed a strong preference when vinegar flies were paired with crickets, 

caterpillars, aphids or oecobiid spiders. Adult and juvenile test spiders also expressed 

no preference when mayflies were paired with fruit flies, but they expressed a weak 

preference for mayflies when the alternative was a cricket and they expressed a strong 

preference for mayflies when the alternative was a caterpillar, aphid or oecobiid 

spider. Adult and juvenile test spiders also expressed a strong preference for fruit flies 

when the alternative was a caterpillar, aphid or oecobiid spider; however, adults 

expressed a strong preference, and juveniles only a weak preference, for fruit flies 

when the alternative was a cricket. When crickets, caterpillars, aphids and oecobiid 

spiders were paired with each other, no preferences were expressed by adult or 

juvenile test spiders. Moreover, in the non-mosquito series, adult and juvenile test 

spiders expressed no preferences when the different spider species were paired with 

each other (table 9). 

 

3.4. Effect of rearing diet on prey-choice behaviour 

When juvenile test spiders in the complete series were reared on a spider-only diet 

(table 6), their preferences were never significantly different (chi-square tests of 

independence) from the preferences of juvenile spiders that had been on the standard 

diet: blood Anopheles females paired with ghost midges (χ² = 1.02, p = 0.313), blood 

Anopheles females paired with oecobiid spiders (χ² = 2.07, p = 0.150), no-blood 

Anopheles females paired with ghost midges (χ² = 0.13, p = 0.718), no-blood 

Anopheles females paired with oecobiid spiders (χ² = 2.96, p = 0.085), Anopheles 

males paired with ghost midges (7-day fast: χ² = 0.27, p = 0.605; 1-day fast: χ² = 0.22, 
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p = 0.640), Anopheles males paired with oecobiid spiders (χ² = 1.07, p = 0.301), ghost 

midges paired with oecobiid spiders (χ² = 0.16, p = 0.688), vinegar flies paired with 

oecobiid spiders (χ² = 4.04, p = 0.044) or caterpillars paired with oecobiid spiders (7-

day fast: χ² = 0.07, p = 0.795; 1-day fast: χ² = 0, p = 1). 

 

3.5. Preference indexes 

Using our new data (table 7) combined with the data in Nelson and Jackson [12] from 

pairing mosquito types, we calculated a preference index (table 10) for each of the 15 

prey types from the complete series. Our new data include blood Anopheles females 

paired with Culex males and blood Culex females paired with Anopheles males (table 

6), these being the cells missing from Nelson and Jackson [12]. The resulting indexes 

ranged from 0 for prey that was never preferred to another prey and 28 for a prey that 

was strongly preferred to all other prey. 

Irrespective of whether test spiders were juveniles or adults, and irrespective 

of diet (table 10), the preference indexes of crickets, caterpillars, aphids and oecobiid 

spiders were 0, the indexes of vinegar flies, mayflies and fruit flies were clustered at 7 

and 8, and the indexes of no-blood Culex females, Culex males and midges were 

clustered at 12. Blood Anopheles females had the highest preference indexes (27 for 

juveniles and 28 for adults). 

There were, however, distinct juvenile-adult differences when the prey was a 

no-blood Anopheles female, an Anopheles male or a blood Culex female. Anopheles 

males had a preference index of 17 when test spiders were juveniles but only 12 when 

test spiders were adults. No-blood Anopheles females had a preference index of 25 

when test spiders were juveniles, but only 19 when test spiders were adults. The 
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preference index of blood Culex females was 26 when test spiders were adults, but 

only 22 when test spiders were juveniles. 

4.0. Discussion 

4.1. Evarcha culicivora’s natural diet 

Determining a spider’s natural diet can be a daunting task, but perhaps less so when 

the spider lives in a web because identifiable prey can often be found in the web, with 

some web-building spiders wrapping their prey in silk and then leaving it in the web 

as a larder to feed from at a later time ([24–27]; for a cautionary note, see [28]). 

Salticids are less accommodating because, barring a few exceptions [29], these are 

predators that find, capture and eat their prey without using a web [30]. In the field, 

prey can be collected and identified whenever a salticid is encountered in the act of 

feeding, but determining natural diet in this way is a slow, laborious process. 

Understandably, the sample sizes in salticid prey records may often be too 

small for robust conclusions about natural diet, but it can be hard to say how small is 

too small. However, even when we made an admittedly arbitrary decision to accept 20 

clearly specified prey records as a minimum, we found only a few published records 

for salticids other than E. culicivora (table 11). The prey records for E. culicivora 

(1,115) are more than 10 times larger than records for any of these other salticid 

species, but records for E. culicivora were accumulated over a span of 19 years in the 

course of doing intensive research on this particular species. Moreover, this species is 

from a field site almost on the equator where all life-cycle stages are active and 

abundant year round. For most salticid species, it would seem unrealistic to expect 

prey records of comparable size. 

From our prey records, we can safely conclude that E. culicivora lives up to its 

species’ name. It certainly eats mosquitoes. It also appears to have a narrow natural 
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diet which suggests that, for this predator, ‘stenophagy’ is an appropriate expression. 

However, it might be prudent to consider what we achieve and what we imply when 

we characterize E. culicivora’s natural diet in this way. 

The taxonomic resolution we adopt will influence our use of the terms 

‘monophagy’, ‘stenophagy’ and ‘euryphagy’. For example, if we use phyla as our 

level of taxonomic resolution, then we would conclude that E. culicivora’s natural 

diet is an instance of monophagy because we would then say this spider eats a single 

type of prey, in this case arthropods. However, if we use orders or families as our 

level of taxonomic resolution, then characterizing E. culicivora’s natural diet as being 

a distinctive example of stenophagy becomes more interesting. Almost 95% of the 

prey in our records came from one insect order (Diptera) and 80% came from a single 

dipteran family, the Culicidae, these being the insects people call ‘mosquitoes’. A 

natural diet biased strongly toward a single insect family may be unusual for spiders 

or for predators in general, but this is conjecture, not simply a fact. Moreover, 

stenophagy is not a synonym for specialization and natural diet is conceptually 

distinct from preference [10]. 

 

4.2. Alignment between Evarcha culicivora’s natural diet and preferences 

Although preference cannot be determined on the basis of natural diet alone, we found 

striking instances of alignment between the two for E. culicivora. In particular, female 

mosquitoes dominated the prey records from the field (66.5% of the 1,115 records) 

and, in prey-choice experiments, the highest preference indexes derived from the 

complete series were for female mosquitoes (tables 5 and 7). Male mosquitoes (13.7% 

of 1,115) and midges (9.2%) were the next most prevalent prey types in the prey 
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records and, in experiments, the preference indexes for these prey types were higher 

than the preference indexes for non-mosquito or non-midge prey (table 10). 

All non-mosquito and non-midge prey types were scarce in our field records. 

Only 3.4% of the prey were non-dipteran insects and spiders accounted for only 2.1% 

of the prey records (table 5). Insects other than dipterans and other than mayflies (i.e. 

the next most common prey type) accounted for only 2.4% of the records. Data on 

prey choice from the complete series revealed no evidence of crickets, caterpillars, 

aphids or oecobiid spiders being preferred to any other prey. As there was also no 

expression of preference in the non-mosquito series when different spider species 

were paired with each other (table 9), we propose that E. culicivora expresses no 

preference for spiders in general. However, there were instances of preference being 

expressed for fruit flies and for vinegar flies, these being prey we chose as proxies for 

‘other dipterans’ in the complete series. There were also instances in the complete 

series of E. culicivora expressing preference for mayflies. Yet mayflies and ‘other 

dipterans’ were scarce in the field records. 

In our non-mosquito series of prey-choice experiments (table 9), as well as in 

the complete series (table 7), there was no evidence to suggest that E. culicivora 

distinguishes between different kinds of midges, but there was evidence that E. 

culicivora distinguishes between different kinds of mosquitoes. Previous research has 

revealed that E. culicivora has a preference for anophelines [12,15] when the 

alternatives are culicines, as well as for blood female mosquitoes when the 

alternatives are no-blood female mosquitoes [11–13]. However, anophelines were not 

markedly more common than culicines in our field prey records. Moreover, blood 

females were less, not more, common than no-blood female mosquitoes in our prey 

records (table 5). 
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Although there were instances of ‘preference’ not being in close alignment to 

natural diet, misalignment would not surprise us. The definition of ‘preference’ does 

not somehow demand alignment. However, the extent to which E. culicivora’s 

preferences for particular mosquitoes really are misaligned with prey eaten in the field 

is uncertain because we were limited in our capacity to identify prey that we removed 

from feeding individuals, especially when the prey was a soft-bodied mosquito that 

the spider had already begun to crush with its chelicerae. This meant there often were 

times when we could not determine whether a mosquito was an anopheline or a 

culicine (table 5) and, owing to the mosquito and the predator actively digesting blood 

that might have been present, our methods (i.e. simply pressing on the mosquito’s 

abdomen and recording whether there were signs of liquid blood) may have seriously 

underestimated the numbers of female mosquitoes that had been carrying blood when 

captured. 

 

4.3. Prey categorization by Evarcha culicivora 

In the complete series, we used 15 prey types chosen on the basis of findings from 

earlier prey-choice experiments (table 1) as well as on the basis of our records of E. 

culicivora’s prey in the field. Besides giving us evidence of preferences, these data 

can be used for proposing which types of prey were treated by E. culicivora as being 

members of different categories. The rationale for these hypotheses is that the 

expression of preference is evidence that E. culicivora has the capacity and 

motivation to discriminate between the two types of prey being considered in an 

experiment. In all instances, we simply looked for instances of a preference, leaving 

aside the distinction between strong and weak preference. There was no comparable 

evidence of capacity and motivation when test spiders failed to choose one prey type 
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significantly more often than another (i.e. when we recorded experimental outcomes 

as instances of ‘nil preference’). Moreover, whenever a preference was expressed for 

a member of a particular category, and whenever this member was paired with any 

member of any other category, the direction of preference (i.e. which of the two prey 

types was chosen significantly more often) was consistent in each instance. We also 

found no evidence of a preference whenever a member of one category was paired 

with another member of the same category. 

Using this procedure, we identified seven categories for juveniles and six for 

adults (table 12), with blood Anopheles females, blood Culex females and no-blood 

Anopheles females being distinct categories for all our test spiders. For juveniles, 

Anopheles males were also a distinct category, but adults treated Anopheles males as 

members of a group that also included midges and Culex males. Another three 

categories for juveniles and adult females included more than one constituent prey 

type and these were the categories with the lowest preference indexes (tables 10 and 

12). 

The categories we determined from the complete series were remarkably 

coherent. Moreover, we discerned these categories regardless of whether test spiders 

had been on a standard diet or on a ‘spider-only’ rearing diet. On this basis, we can 

characterize these categories as being ‘innate’, but ‘innate’ does not mean ‘inflexible’. 

Although beyond the scope of our present study, operant conditioning and other 

environmental shaping would be expected to influence prey categorization by E. 

culicivora. Furthermore, we have not addressed questions about the origins and 

adaptive significance of the way E. culicivora categorizes prey, as this was also 

beyond the scope of our study. 
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4.4. Evarcha culicivora’s own prey-classification system 

When categorizing prey, it may be tempting to rely on formal scientific taxonomy, 

which is appropriate when considering food webs and other topics in community 

ecology [46–49]. It is also common practice to use scientific taxonomy when 

sampling the relative availability of different kinds of prey in a predator’s habitat and 

when comparing these samples with records of the prey actually eaten by the predator. 

Significant disparities, when found, indicate that the predator’s natural diet is biased 

toward a subset of available potential prey, and ‘ecological selectivity’ is a convenient 

expression for these disparities. 

Although determining ecological selectivity was not an objective in our study, 

we are confident that sampling for potential prey in E. culicivora’s habitat would 

reveal that midges, known locally as ‘lake flies’, vastly outnumber mosquitoes along 

the shores of Lake Victoria [50,51]. Yet it is important to emphasize that, when we 

conclude that E. culicivora has a strong preference for mosquitoes as prey, it is not on 

the basis of ecological selectivity. Understanding predatory specialization has been 

our primary goal, and an understanding of predatory specialization depends on 

considering the different ways in which a predator experiences and classifies its prey 

[1,10]. 

Unlike scientists, non-human predators do not rely on Latin names from 

formal taxonomy when they classify their prey. It is the predator’s own prey-

classification system, and not evidence from ecological selectivity, which highlight 

one of the most interesting discoveries about E. culicivora’s categorization of prey. 

This is a predator that does a lot of classifying. The insects that scientists 

assign to the family Culicidae are not being experienced by this spider as a single prey 

category. Instead, the distinctions that matter to E. culicivora include whether the 
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mosquito is an anopheline or a culicine, whether it is a male or a female and whether 

it is a female that is or is not carrying blood. Moreover, the juveniles of E. culicivora 

adopt an Anopheles-specific prey-capture method ([52]; see also [1]) and stronger 

preferences have been expressed by juveniles than by adults for anophelines ([12]; 

table 12). 

Paracyrba wanlessi is another salticid that specializes at preying on 

mosquitoes, but it does not classify its prey in the same way as E. culicivora [1]. For 

P. wanlessi, the distinctions that matter are whether a mosquito is an adult or juvenile 

and whether the prey is in or away from water [53], but there is no evidence of these 

categories being relevant to E. culicivora. Although E. culicivora and P. wanlessi can 

both be said to be salticid species that “prefer mosquitoes” as prey, this simplistic 

statement hides major differences in how these two predators classify their prey. 

Furthermore, there is no evidence that19 other salticid species, also from East 

Africa, resemble E. culicivora by discriminating between blood meals (blood-carrying 

An. gambiae s.s. females) and non-blood meals (lake flies or An. gambiae s.s. males) 

[13]. Yet we need to be open to the logical possibility of finding pronounced 

ecological selectivity toward mosquitoes by predators that express no preference for 

mosquitoes. Many insectivorous predators, including many salticids, may experience 

mosquitoes not as a distinct prey category and instead as just another “bug” (see 

[8,54,55]). It is at least a logical possibility that some of these predators eat 

disproportionately more anopheline than culicine mosquitoes, female than male 

mosquitoes or blood-carrying than bloodless mosquitoes, without any of these being 

distinct categories within a prey-classification system adopted by these predators. 
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Figure 1. Prey-choice apparatus used for determining the preference profile of 

Evarcha culicivora. Rectangular glass arena with glass lid, sitting on top of Plexiglas 

stand. Test spider entered arena through the introduction hole. Two lures presented 

simultaneously, with one being in the left lure position and the other in the right lure 

position. Movement of lures controlled by using a camera release cord and metal 

prong. A wire circle surrounded each lure and extended underneath the arena, with the 

‘choice area’ being the semicircular region within the arena. 
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Table 1. Summary of experiments demonstrating that Evarcha culicivora expresses preference for indirect blood meals. Unless otherwise stated, 
‘adult’ test spiders were males and females. For each pair of prey, significantly more test spiders chose prey 1 (blood-carrying female mosquito) 
instead of prey 2 (not carrying blood). Ae.: Aedes. An.: Anopheles. Cx.: Culex. 
 
prey 1 (blood) prey 2 (no blood) test spiders stimuli study 
Ae. aegypti Ae. aegypti female adults and juveniles stationary lures [11] 
Ae. aegypti Ae. aegypti male adults and juveniles stationary lures [11] 
Cx. quinquefasciatus Cx. quinquefasciatus female adults and juveniles stationary lures [11] 
Cx. quinquefasciatus Cx. quinquefasciatus male adults and juveniles stationary lures [11] 
An. funestus An. funestus male adults and juveniles stationary lures [11] 
An. gambiae An. gambiae female adults and juveniles stationary lures [11] 
An. gambiae An. gambiae male adults and juveniles stationary lures [11] 
An. gambiae An. gambiae male adult females moving lures [12] 
An. gambiae An. gambiae male adult females living prey [13] 
An. gambiae ghost midge: Chaoborus sp. adults stationary lures [11] 
An. gambiae ghost midge: Chaoborus sp. adult females and juveniles moving lures present study 
An. gambiae chironomid midge: Ablabesmyia nilotica adults stationary lures [11] 
An. gambiae chironomid midge: Chironomus imicola adults stationary lures [11] 
An. gambiae chironomid midge: Clinotanypus claripennis adults stationary lures [11] 
An. gambiae chironomid midge: Clinotanypus claripennis adult females and juveniles moving lures [12] 
An. gambiae chironomid midge: Clinotanypus claripennis adult females living prey [13] 
An. gambiae chironomid midge: Conochironomus acutistus adults stationary lures [11] 
An. gambiae chironomid midge: Nilodorum brevibucca adults and juveniles stationary lures [11] 
An. gambiae chironomid midge: Nilodorum brevibucca adult females and juveniles moving lures present study 
An. gambiae aphid: Brevicoryne brassicae adults and juveniles stationary lures [11] 
An. gambiae aphid: Brevicoryne brassicae adult females and juveniles moving lures present study 
An. gambiae caterpillar Chilo parttelus adults stationary lures [11] 
An. gambiae caterpillar: Chilo parttelus adult females and juveniles moving lures present study 
An. gambiae fruit fly: Ceratitis capitata adults stationary lures [11] 
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An. gambiae fruit fly: Ceratitis capitata adult females and juveniles moving lures present study 
An. gambiae nephilid spider: Nephilengys adults and juveniles stationary lures [11] 
An. gambiae nephilid spider: Nephilengys adult females and juveniles moving lures present study 
An. gambiae oecobiid spider:Oecobius amboseli adults stationary lures [11] 
An. gambiae oecobiid spider: Oecobius amboseli adult females and juveniles moving lures present study 
An. gambiae assassin bug: Nagusta adult females and juveniles moving lures present study 
An. gambiae barklouse; Ectopsocus californicus adult females and juveniles moving lures present study 
An. gambiae brown rice hopper: Nilaparvuta lugens adult females and juveniles moving lures present study 
An. gambiae cricket adult females and juveniles moving lures present study 
An. gambiae cockroach adult females and juveniles moving lures present study 
An. gambiae green leaf hopper: Nephotettix nigropictus adult females and juveniles moving lures present study 
An. gambiae house fly: Musca domestica adult females and juveniles moving lures present study 
An. gambiae mantis adult females and juveniles moving lures present study 
An. gambiae mayfly adult females and juveniles moving lures present study 
An. gambiae moth fly adult females and juveniles moving lures present study 
An. gambiae vinegar fly: Drosophila melanogaster adult females and juveniles moving lures present study 
An. gambiae whitefly adult females and juveniles moving lures present study 
An. gambiae clubionid spider: Clubiona adult females and juveniles moving lures present study 
An. gambiae hersiliid spider: Hersilia caudata Audouin adult females and juveniles moving lures present study 
An. gambiae jumping spider: Natta horizontalis adult females and juveniles moving lures present study 
An. gambiae wolf spider: Pardosa messingerae adult females and juveniles moving lures present study 
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Table 2. Preference strengths of Evarcha culicivora with respect to specific pairs of prey. Determined from data of Nelson and Jackson [12]. 
Mosquitoes used: Anopheles gambiae s.s. and Culex quinquefasciatus (shortened to Anopheles and Culex). Female (f) and male (m) mosquitoes 
used. Midge (Chironomidae): Clinotanypus claripenni. Strong preference for prey 1: significantly more test spiders chose prey 1 than chose prey 
2 after a 14-day pre-trial fast. Medium preference for prey 1: significantly more test spiders chose prey 1 than chose prey 2 after a 7-day fast, but 
not after longer fast. Weak preference for prey 1: no significant choice after longer fasts, but significantly more test spiders chose prey 1 than 
chose prey 2 after a 1-day fast. One exception, indicated by minus sign in front of w: after 1-day fast, significantly more test spiders chose prey 2 
than chose prey 1. Nil preference: no significant choice detected after 1-day, 7-day or 14-day fasts. 
 

prey 1 prey 2 
adult test spider juvenile test spider 
simultaneous 
presentation 

alternate 
day 

alternate 
prey 

simultaneous 
presentation 

alternate 
day 

alternate 
prey 

blood Anopheles 
(f) 

blood Culex (f) weak1 weak nil medium1 weak nil 
no-blood Anopheles (f) strong medium weak medium medium nil 
no-blood Culex (f) strong medium weak medium medium nil 
Anopheles (m) strong medium weak medium medium nil 
Culex (m) - - - - - - 
midge strong medium nil medium medium nil 

blood Culex 
(f) 

no-blood Anopheles (f) strong medium weak -weak2 nil nil 
no-blood Culex (f) strong medium weak medium weak nil 
Anopheles (m) - - - - - - 
Culex (m) strong medium weak medium weak nil 
midge strong medium weak medium weak nil 

no-blood Anopheles 
(f) 

no-blood Culex (f) weak3 weak nil medium3 medium nil 
Anopheles (m) weak weak nil medium weak nil 
Culex (m) weak weak nil medium weak nil 
midge weak3 weak nil medium3 weak nil 

no-blood Culex 
(f) 

Anopheles (m) nil nil nil nil nil nil 
Culex (m) nil nil nil nil nil nil 
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midge nil nil nil nil nil nil 
Anopheles (m) Culex (m) nil nil nil medium weak nil 
 midge nil nil nil weak nil nil 
Culex (m) midge nil nil nil nil nil nil 

1corresponds to preference found by Nelson and Jackson [15] when using lures and when using virtual prey 
2in this instance, preference for prey 2 (i.e., juvenile’s preference for Anopheles over-rides preference for blood) 
3corresponds to preference found by Nelson and Jackson [15] when using lures 
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Table 3. Arthropods used as lures in present study. 
 
common name genus, species family order body 

length 
assassin bug2,4 Nagusta Reduviidae Hemiptera 4.0 mm 
aphid2,3 Brevicoryne brassicae Aphidae Homoptera 3.0 mm 
barklouse2,4 unidentified unidentified Psocoptera 3.0 mm 
brown rice hopper1,4 Nilaparvuta lugens Delphacidae Homoptera 3.0 mm 
caterpillar1,3 Chilo parttelus Crambidae Lepidoptera 4.5 mm 
chironomid midge2,5 Ablabesmyia nilotica Chironomidae Diptera 4.0 mm 
chironomid midge2,5 Chironomus imicola Chironomidae Diptera 5.0 mm 
chironomid midge2,5 Clinotanypus claripennis Chironomidae Diptera 5.0 mm 
chironomid midge2,5 Conochironomus acutistus Chironomidae Diptera 5.0 mm 
chironomid midge2,3,5 Nilodorum brevibucca Chironomidae Diptera 4.5 mm 
clubionid spider2,4 Clubiona Culbionidae Araneae 4.0 mm 
cockroach2,4 unidentified Blatellidae Blattodea 4.0 mm 
cricket1,3 Acheta domesticus Gryllidae Orthoptera 4.0 mm 
fruit fly1,3 Ceratitis capitata Tephritidae Diptera 4.5 mm 
ghost midge2,3,5 Chaoborus sp. Chaoboridae Diptera 4.5 mm 
green leaf hopper1,4 Nephotettix nigropictus Cicadellidae Homoptera 4.0 mm 
hersiliid spider2,4 Hersilia caudata Hersiliidae Araneae 3.0 mm 
house fly1,4 Musca domestica Muscidae Diptera 6.0 mm 
jumping spider2,4,5 Natta horizontalis Salticidae Araneae 3.0 mm 
long-legged fly2,4 unidentified Dolichopodidae Diptera 5.0 mm 
mantis2,4 unidentified Mantidae Mantodea 4.5 mm 
mayfly2,3 unidentified Baetidae Ephemeroptera 4.5 mm 
moth fly2,4 unidentified Psychodidae Diptera 3.0 mm 
mosquito1,3,4 Anopheles gambiae s.s. Culicidae Diptera 4.5 mm 
mosquito1,3 Culex quinquefasciatus Culicidae Diptera 4.5 mm 
nephilid spider1,4,5 Nephilengys Nephilididae Araneae 4.0 mm 



	 219	

oecobiid spider2,3,5 Oecobius amboseli Oecobidae Araneae 3.0 mm 
vinegar fly1,3 Drosophila melanogaster Drosophilidae Diptera 3.0 mm 
whitefly2,4 unidentified Aleyrodidae Homoptera 2.0 mm 
wolf spider2,4,5 Pardosa messingerae Lycosidae Araneae 3.0 mm 

1from stock cultures (see [11,23]) 
2collected as needed from Mbita Point field site 
3used in complete series 
4used in mosquito series 
5used in non-mosquito series 
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Table 4. Records of prey on which adult females, adult males and juveniles of Evarcha culicivora were found feeding in the field. Each prey 
type listed, when possible, by common name, genus, species, order and family. Sex of mosquitoes and whether female mosquitoes were carrying 
blood indicated. Blood female: there was evidence that these mosquitoes were carrying blood. No-blood female: there was no evidence that these 
mosquitoes were carrying blood. 
order description genus, species family records for 

adult 
females1 

records for 
adult 
males2 

records for 
juveniles3 

all records4 

Diptera blood female anopheline mosquito Anopheles Culicidae 12 (2.7%) 9 (2.6%) 8 (2.4%) 29 (2.6%) 
Diptera blood female culicine mosquito Culex Culicidae 19 (4.3%) 13 (3.8%) 5 (1.5%) 37 (3.3%) 
Diptera blood female culicine mosquito Aedes Culicidae 6 (1.3%) 5 (1.5%) 4 (1.2%) 15 (1.3%) 
Diptera unidentified blood female mosquito unidentified Culicidae 4 (0.9%) 7 (2.0%) 8 (2.4%) 19 (1.7%) 
Diptera no-blood female anopheline 

mosquito 
Anopheles Culicidae 91 (20.4%) 61 (17.8%) 76 (23.2%) 228 (20.4%) 

Diptera no-blood female culicine mosquito Culex Culicidae 49 (11.0%) 31 (9.1%) 28 (8.5%) 108 (9.7%) 
Diptera no-blood female culicine mosquito Aedes Culicidae 46 (10.3%) 17 (5.0%) 29 (8.8%) 92 (8.3%) 
Diptera unidentified no-blood female 

mosquito 
unidentified Culicidae 78 (17.5%) 68 (19.9%) 68 (20.7%) 214 (19.2%) 

Diptera male anopheline mosquito Anopheles Culicidae 22 (4.9%) 9 (2.6%) 8 (2.4%) 39 (3.5%) 
Diptera male culicine mosquito Culex Culicidae 11 (2.5%) 4 (1.2%) 12 (3.7%) 27 (2.4%) 
Diptera male culicine mosquito Aedes Culicidae 10 (2.2%) 17 (5.0%) 10 (3.0%) 37 (3.3%) 
Diptera unidentified male mosquito unidentified Culicidae 23 (5.2%) 14 (4.1%) 13 (4.0%) 50 (4.5%) 
Diptera ghost midge Chaoborus Chaoboridae 13 (2.9%) 8 (2.3%) 3 (0.9%) 24 (2.2%) 
Diptera chironomid midge unidentified Chironomidae 22 (4.9%) 33 (9.6%) 24 (7.3%) 79 (7.1%) 
Diptera moth fly unidentified Psychodidae 3 (0.7%) 4 (1.2%) 5 (1.5%) 12 (1.1%) 
Diptera long-legged fly unidentified Dolichopodidae 2 (0.4%) 1 (0.3%) 1 (0.3%) 4 (0.4%) 
Diptera unidentified fly unidentified unidentified 8 (1.8%) 22 (6.4%) 10 (3.0%) 40 (3.6%) 
Araneae conspecific juvenile Evarcha culicivora Salticidae 2 (0.4%) 3 (0.9%) 0 5 (0.4%) 
Araneae opposite-sex conspecific adult Evarcha culicivora Salticidae 1 (0.2%) 1 (0.3%) 0 2 (0.2%) 
Araneae jumping spider Natta Salticidae 1 (0.2%) 0 1 (0.3%) 2 (0.2%) 
Araneae unidentified jumping spider unidentified Salticidae 2 (0.4%) 1 (0.3%) 0 3 (0.3%) 
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Araneae oecobiid spider Oecobius amboseli Oecobiidae 0 1 (0.3%) 3 (0.9%) 4 (0.4%) 
Araneae wolf spider unidentified Lycosidae 1 (0.2%) 2 (0.6%) 1 (0.3%) 4 (0.4%) 
Araneae unidentified non-salticid spider unidentified unidentified 1 (0.2%) 1 (0.3%) 1 (0.3%) 3 (0.3%) 
Ephemeroptera mayfly unidentified Baetidae 5 (1.1%) 4 (1.2%) 2 (0.6%) 11 (1.0%) 
Hemiptera leafhopper unidentified Cicadellidae 2 (0.4%) 1 (0.3%) 1 (0.3%) 4 (0.4%) 
Hemiptera big-eyed bug Geocoris Geocoridae 1 (0.2%) 0 1 (0.3%) 2 (0.2%) 
Hemiptera mirid bug unidentified Miridae 1 (0.2%) 0 1 (0.3%) 2 (0.2%) 
Hemiptera aphid unidentified Aphidae 2 (0.4%) 1 (0.3%) 0 3 (0.3%) 
Lepidoptera caterpillar unidentified unidentified 1 (0.2%) 0 4 (1.2%) 5 (0.4%) 
Mantodea mantis unidentified Mantidae 1 (0.2%) 2 (0.6%) 0 3 (0.3%) 
Blattodea cockroach unidentified Blatellidae 1 (0.2%) 0 1 (0.3%) 2 (0.2%) 
Hymenoptera winged ant unidentified Formicidae 1 (0.2%) 1 (0.3%) 0 2 (0.2%) 
Orthoptera cricket unidentified Gryllidae 2 (0.4%) 0 0 2 (0.2%) 
Psocoptera barklouse unidentified unidentified 1 (0.2%) 1 (0.3%) 0 2 (0.2%) 

1Total 445 
2Total 342 
3Total 328 
4Total 1,115 
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Table 5. Analysis of field records (see table 4) of prey on which Evarcha culicivora was found feeding. 
 
prey records for adult 

females 
records for adult 
males 

records for 
juveniles 

total for all E. 
culicivora 

mosquitoes 371 (83.4%) 255 (74.6%) 269 (82.0%) 895 (80.3%) 
female mosquito 305 (68.5%) 211 (61.7%) 226 (68.9%) 742 (66.5%) 
blood female mosquito 41 (9.2%) 34 (9.9%) 25 (7.6%) 100 (9.0%) 
no-blood female mosquito 264 (59.3%) 177 (51.8%) 201 (61.3%) 642 (57.6%) 
male mosquitoes 66 (14.8%) 44 (12.9%) 43 (13.1 %) 153 (13.7%) 
Anopheles 125 (28.1%) 79 (23.1%) 92 (28.0%) 296 (26.5%) 
Culex 79 (17.8%) 48 (14.0%) 45 (13.7%) 172 (15.4%) 
Aedes 62 (13.9%) 39 (11.4%) 43 (13.1%) 144 (12.9%) 
culicine mosquitoes 141 (31.7%) 87 (25.4%) 88 (26.8%) 316 (28.3%) 
unidentified mosquitoes 105 (23.6%) 89 (26.0%) 89 (27.1%) 283 (25.4%) 
Anopheles females 103 (23.1%) 70 (20.5%) 84 (25.6%) 257 (23.0%) 
Culex females 68 (15.3%) 44 (12.9%) 33 (10.1%) 145 (13.0%) 
Aedes females 52 (11.7%) 22 (6.4%) 33 (10.1%) 107 (9.6%) 
culicine females 120 (27.0%) 66 (19.3%) 66 (20.1%) 252 (22.6%) 
unidentified female mosquitoes 82 (18.4%) 75 (21.9%) 76 (23.2%) 233 (20.9%) 
midges 35 (7.9%) 41 (12.0%) 27 (8.2%) 103 (9.2%) 
non-mosquito dipterans 48 (10.8%) 68 (19.9%) 43 (13.1%) 159 (14.3%) 
Diptera 419 (94.2%) 323 (94.4%) 312 (95.1%) 1054 (94.5%) 
non-mosquito and non-midge Diptera 13 (2.9%) 27 (7.9%) 16 (4.9%) 56 (5.0%) 
non-mosquito and non-midge Diptera + mayflies 18 (4.0%) 31 (9.1/%) 18 (5.5%) 67 (6.0%) 
insects 437 (98.2%) 333 (97.4%) 322 (98.2%) 1092 (97.9%) 
non-dipteran insects 18 (4.0%) 10 (2.9%) 10 (3.0%) 38 (3.4%) 
non-dipteran insects and non-mayfly insects 13 (2.9%) 6 (1.8%) 8 (2.4%) 27 (2.4%) 
spiders 8 (1.8%) 9 (2.6%) 6 (1.8%) 23 (2.1%) 
non-mosquito and non-midge prey 39 (8.8%) 46 (13.5%) 32 (9.8%) 117 (10.5%) 
total number of records 445 (39.9%) 342 (30.7%) 328 (29.4%) 1,115 
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Table 6. Findings for adult females and juveniles of Evarcha culicivora (‘test spiders’) in the complete series of prey-choice experiments (see 
text). For each experiment (row), simultaneous presentation testing was used. n = 30 test spiders for each row. See table 3 for details pertaining 
to prey and text for methods. Chironomid midge: Nilodorum brevibucca. Experiments with 1-day pre-trial fasts carried out only when findings 
were NS after 7-day fast. Data analysis: test of goodness of fit (null hypothesis: as likely to choose prey 2 as to choose prey 1). 
 
prey 1 prey 2 diet fast adult female test spiders juvenile test spiders 
    chose 

prey 1 
test of goodness of 
fit 

chose 
prey 1 

test of goodness of 
fit 

blood Anopheles female Culex male standard 7-day 30 χ2 = 30.00, p<0.001 28 χ2 = 22.53, p<0.001 
blood Anopheles female ghost midge standard 7-day 28 χ2 = 22.53, p<0.001 29 χ2 = 26.13, p<0.001 
blood Anopheles female ghost midge spider-only 7-day - - 30 χ2 = 30.00, p<0.001 
blood Anopheles female chironomid midge standard 7-day 24 χ2 = 10.80, p = 0.001 27 χ2 = 19.20, p<0.001 
blood Anopheles female vinegar fly standard 7-day 29 χ2 = 26.13, p<0.001 24 χ2 = 10.80, p = 0.001 
blood Anopheles female mayfly standard 7-day 25 χ2 = 13.33, p<0.001 27 χ2 = 19.20, p<0.001 
blood Anopheles female fruit fly standard 7-day 28 χ2 = 22.53, p<0.001 29 χ2 = 26.13, p<0.001 
blood Anopheles female cricket standard 7-day 27 χ2 = 19.20, p<0.001 30 χ2 = 30.00, p<0.001 
blood Anopheles female caterpillar standard 7-day 25 χ2 = 13.33, p<0.001 28 χ2 = 22.53, p<0.001 
blood Anopheles female aphid standard 7-day 27 χ2 = 19.20, p<0.001 27 χ2 = 19.20, p<0.001 
blood Anopheles female oecobiid spider standard 7-day 29 χ2 = 26.13, p<0.001 28 χ2 = 22.53, p<0.001 
blood Anopheles female oecobiid spider spider-only 7-day - - 30 χ2 = 30.00, p<0.001 
blood Culex female Anopheles male standard 7-day 25 χ2 = 13.33, p<0.001 12 χ2 = 1.20, p = 0.273 
blood Culex female Anopheles male standard 1-day - - 7 χ2 = 8.531, p = 0.003 
blood Culex female ghost midge standard 7-day 29 χ2 = 26.13, p<0.001 30 χ2 = 30.00, p<0.001 
blood Culex female chironomid midge standard 7-day 26 χ2 = 16.13, p<0.001 30 χ2 = 30.00, p<0.001 
blood Culex female vinegar fly standard 7-day 27 χ2 = 19.20, p<0.001 28 χ2 = 22.53, p<0.001 
blood Culex female mayfly standard 7-day 30 χ2 = 30.00, p<0.001 29 χ2 = 26.13, p<0.001 
blood Culex female fruit fly standard 7-day 27 χ2 = 19.20, p<0.001 30 χ2 = 30.00, p<0.001 
blood Culex female cricket standard 7-day 30 χ2 = 30.00, p<0.001 26 χ2 = 16.13, p<0.001 
blood Culex female caterpillar standard 7-day 25 χ2 = 13.33, p<0.001 26 χ2 = 16.13, p<0.001 
blood Culex female aphid standard 7-day 30 χ2 = 30.00, p<0.001 30 χ2 = 30.00, p<0.001 
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blood Culex female oecobiid spider standard 7-day 28 χ2 = 22.53, p<0.001 25 χ2 = 13.33, p<0.001 
no-blood Anopheles female ghost midge standard 7-day 21 χ2 = 4.80, p = 0.028 25 χ2 = 13.33, p<0.001 
no-blood Anopheles female ghost midge standard 1-day 27 χ2 = 19.20, p<0.001 - - 
no-blood Anopheles female ghost midge spider-only 7-day - - 26 χ2 = 16.13, p<0.001 
no-blood Anopheles female chironomid midge standard 7-day 17 χ2 = 0.53, p = 0.465 24 χ2 = 10.80, p = 0.001 
no-blood Anopheles female chironomid midge standard 1-day 26 χ2 = 16.13, p<0.001 - - 
no-blood Anopheles female vinegar fly standard 7-day 25 χ2 = 13.33, p<0.001 28 χ2 = 22.53, p<0.001 
no-blood Anopheles female mayfly standard 7-day 26 χ2 = 16.13, p<0.001 26 χ2 = 16.13, p<0.001 
no-blood Anopheles female fruit fly standard 7-day 26 χ2 = 16.13, p<0.001 29 χ2 = 26.13, p<0.001 
no-blood Anopheles female cricket standard 7-day 30 χ2 = 30.00, p<0.001 27 χ2 = 19.20, p<0.001 
no-blood Anopheles female caterpillar standard 7-day 30 χ2 = 30.00, p<0.001 26 χ2 = 16.13, p<0.001 
no-blood Anopheles female aphid standard 7-day 27 χ2 = 19.20, p<0.001 28 χ2 = 22.53, p<0.001 
no-blood Anopheles female oecobiid spider standard 7-day 25 χ2 = 13.33, p<0.001 29 χ2 = 26.13, p<0.001 
no-blood Anopheles female oecobiid spider spider-only 7-day - - 25 χ2 = 13.33, p<0.001 
no-blood Culex female ghost midge standard 7-day 15 χ2 = 0.00, p = 1 16 χ2 = 0.13, p = 0.715 
no-blood Culex female ghost midge standard 1-day 17 χ2 = 0.53, p = 0.465 14 χ2 = 0.13, p = 0.715 
no-blood Culex female chironomid midge standard 7-day 14 χ2 = 0.13, p = 0.715 15 χ2 = 0.00, p = 1 
no-blood Culex female chironomid midge standard 1-day 12 χ2 = 1.20, p = 0.273 15 χ2 = 0.00, p = 1 
no-blood Culex female vinegar fly standard 7-day 15 χ2 =0.00, p = 1 16 χ2 = 0.13, p = 0.715 
no-blood Culex female vinegar fly standard 1-day 26 χ2 = 16.13, p<0.001 29 χ2 = 26.13, p<0.001 
no-blood Culex female mayfly standard 7-day 22 χ2 = 6.53, p = 0.011 12 χ2 = 1.20, p = 0.273 
no-blood Culex female mayfly standard 1-day 25 χ2 = 13.33, p<0.001 28 χ2 = 22.53, p<0.001 
no-blood Culex female fruit fly standard 7-day 30 χ2 = 30.00, p<0.001 29 χ2 = 26.13, p<0.001 
no-blood Culex female cricket standard 7-day 25 χ2 = 13.33, p<0.001 24 χ2 = 10.80, p = 0.001 
no-blood Culex female caterpillar standard 7-day 30 χ2 = 30.00, p<0.001 25 χ2 = 13.33, p<0.001 
no-blood Culex female aphid standard 7-day 24 χ2 = 10.80, p = 0.001 28 χ2 = 22.53, p<0.001 
no-blood Culex female oecobiid spider standard 7-day 30 χ2 = 30.00, p<0.001 30 χ2 = 30.00, p<0.001 
Anopheles male ghost midge standard 7-day 19 χ2 = 2.13, p = 0.144 15 χ2 = 0.00, p = 1 
Anopheles male ghost midge standard 1-day 10 χ2 = 3.33, p = 0.068 27 χ2 = 19.20, p<0.001 
Anopheles male ghost midge spider-only 7-day - - 13 χ2 = 0.53, p = 0.465 
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Anopheles male ghost midge spider-only 1-day - - 28 χ2 = 22.53, p<0.001 
Anopheles male chironomid midge standard 7-day 13 χ2 = 0.53, p = 0.465 21 χ2 = 4.80, p = 0.028 
Anopheles male chironomid midge standard 1-day 11 χ2 = 2.13, p = 0.144 29 χ2 = 26.13, p<0.001 
Anopheles male vinegar fly standard 7-day 14 χ2 = 0.13, p = 0.715 16 χ2 = 0.13, p = 0.715 
Anopheles male vinegar fly standard 1-day 24 χ2 = 10.80, p = 0.001 26 χ2 = 16.13, p<0.001 
Anopheles male mayfly standard 7-day 17 χ2 = 0.53, p = 0.465 15 χ2 = 0.00, p = 1 
Anopheles male mayfly standard 1-day 28 χ2 = 22.53, p<0.001 28 χ2 = 22.53, p<0.001 
Anopheles male fruit fly standard 7-day 23 χ2 = 8.53, p = 0.003 27 χ2 = 19.20, p<0.001 
Anopheles male cricket standard 7-day 26 χ2 = 16.13, p<0.001 26 χ2 = 16.13, p<0.001 
Anopheles male caterpillar standard 7-day 25 χ2 = 13.33, p<0.001 28 χ2 = 22.53, p<0.001 
Anopheles male aphid standard 7-day 30 χ2 = 30.00, p<0.001 25 χ2 = 13.33, p<0.001 
Anopheles male oecobiid spider standard 7-day 25 χ2 = 13.33, p<0.001 29 χ2 = 26.13, p<0.001 
Anopheles male oecobiid spider spider-only 7-day - - 27 χ2 = 19.20, p<0.001 
Culex male ghost midge standard 7-day 20 χ2 = 3.33, p = 0.068 15 χ2 = 0.00, p = 1 
Culex male ghost midge standard 1-day 12 χ2 = 1.20, p = 0.273 15 χ2 = 0.00, p = 1 
Culex male chironomid midge standard 7-day 15 χ2 = 0.00, p = 1 11 χ2 = 2.13, p = 0.144 
Culex male chironomid midge standard 1-day 16 χ2 = 0.13, p = 0.715 18 χ2 = 1.20, p = 0.273 
Culex male vinegar fly standard 7-day 15 χ2 = 0.00, p = 1 22 χ2 = 6.53, p = 0.011 
Culex male vinegar fly standard 1-day 24 χ2 = 10.80, p = 0.001 15 χ2 = 0.00, p = 1 
Culex male mayfly standard 7-day 14 χ2 = 0.13, p = 0.715 21 χ2 = 4.80, p = 0.028 
Culex male mayfly standard 1-day 28 χ2 = 22.53, p<0.001 24 χ2 = 10.80, p = 0.001 
Culex male fruit fly standard 7-day 24 χ2 = 10.80, p = 0.001 29 χ2 = 26.13, p<0.001 
Culex male cricket standard 7 day 27 χ2 = 19.20, p<0.001 24 χ2 = 10.80, p = 0.001 
Culex male caterpillar standard 7-day 29 χ2 = 26.13, p<0.001 28 χ2 = 22.53, p<0.001 
Culex male aphid standard 7-day 24 χ2 = 10.80, p = 0.001 25 χ2 = 13.33, p<0.001 
Culex male oecobiid spider standard 7-day 30 χ2 = 30.00, p<0.001 24 χ2 = 10.80, p = 0.001 
ghost midge chironomid midge standard 7-day 16 χ2 = 0.13, p = 0.715 16 χ2 = 0.13, p = 0.715 
ghost midge chironomid midge standard 1 day 12 χ2 = 1.20, p = 0.273 26 χ2 = 16.13, p<0.001 
ghost midge vinegar fly standard 7-day 12 χ2 = 1.20, p = 0.273 16 χ2 = 0.13, p = 0.715 
ghost midge vinegar fly standard 1-day 24 χ2 = 10.80, p = 0.001 27 χ2 = 19.20, p<0.001 
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ghost midge mayfly standard 7-day 14 χ2 = 0.13, p = 0.715 12 χ2 = 1.20, p = 0.273 
ghost midge mayfly standard 1-day 29 χ2 = 26.13, p<0.001 29 χ2 = 26.13, p<0.001 
ghost midge fruit fly standard 7-day 23 χ2 = 8.53, p = 0.003 27 χ2 = 19.20, p<0.001 
ghost midge cricket standard 7 day 28 χ2 = 22.53, p<0.001 26 χ2 = 16.13, p<0.001 
ghost midge caterpillar standard 7 day 27 χ2 = 19.20, p<0.001 27 χ2 = 19.20, p<0.001 
ghost midge aphid standard 7 day 30 χ2 = 30.00, p<0.001 29 χ2 = 26.13, p<0.001 
ghost midge oecobiid spider standard 7-day 28 χ2 = 22.53, p<0.001 26 χ2 = 16.13, p<0.001 
ghost midge oecobiid spider spider-only 7-day - - 27 χ2 = 19.20, p<0.001 
chironomid midge vinegar fly standard 7-day 13 χ2 = 0.53, p = 0.465 13 χ2 = 0.53, p = 0.465 
chironomid midge vinegar fly standard 1-day 23 χ2 = 8.53, p = 0.003 27 χ2 = 19.20, p<0.001 
chironomid midge mayfly standard 7-day 15 χ2 = 0.00, p = 1 12 χ2 = 1.20, p = 0.273 
chironomid midge mayfly standard 1-day 25 χ2 = 13.33, p<0.001 26 χ2 = 16.13, p<0.001 
chironomid midge fruit fly standard 7-day 27 χ2 = 19.20, p<0.001 27 χ2 = 19.20, p<0.001 
chironomid midge cricket standard 7-day 26 χ2 = 16.13, p<0.001 29 χ2 = 26.13, p<0.001 
chironomid midge caterpillar standard 7-day 28 χ2 = 22.53, p<0.001 30 χ2 = 30.00, p<0.001 
chironomid midge aphid standard 7-day 29 χ2 = 26.13, p<0.001 26 χ2 = 16.13, p<0.001 
chironomid midge oecobiid spider standard 7-day 27 χ2 = 19.20, p<0.001 28 χ2 = 22.53, p<0.001 
vinegar fly mayfly standard 7-day 12 χ2 = 1.20, p = 0.273 16 χ2 = 0.13, p = 0.715 
vinegar fly mayfly standard 1-day 13 χ2 = 0.53, p = 0.465 17 χ2 = 0.53, p = 0.465 
vinegar fly fruit fly standard 7-day 18 χ2 = 1.20, p = 0.273 16 χ2 = 0.13, p = 0.715 
vinegar fly fruit fly standard 1-day 15 χ2 = 0.00, p = 1 13 χ2 = 0.53, p = 0.465 
vinegar fly cricket standard 7-day 29 χ2 = 26.13, p<0.001 27 χ2 = 19.20, p<0.001 
vinegar fly caterpillar standard 7-day 26 χ2 = 16.13, p<0.001 26 χ2 = 16.13, p<0.001 
vinegar fly aphid standard 7-day 25 χ2 = 13.33, p<0.001 26 χ2 = 16.13, p<0.001 
vinegar fly oecobiid spider standard 7-day 23 χ2 = 8.53, p = 0.003 29 χ2 = 26.13, p<0.001 
vinegar fly oecobiid spider spider-only 7-day - - 24 χ2 = 10.80, p = 0.001 
mayfly fruit fly standard 7-day 15 χ2 = 0.00, p = 1 13 χ2 = 0.53, p = 0.465 
mayfly fruit fly standard 1-day 10 χ2 = 3.33, p = 0.068 18 χ2 = 1.20, p = 0.273 
mayfly cricket standard 7-day 15 χ2 = 0.00, p = 1 20 χ2 = 3.33, p = 0.068 
mayfly cricket standard 1-day 29 χ2 = 26.13, p<0.001 30 χ2 = 30.00, p<0.001 
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mayfly caterpillar standard 7-day 30 χ2 = 30.00, p<0.001 28 χ2 = 22.53, p<0.001 
mayfly aphid standard 7-day 27 χ2 = 19.20, p<0.001 27 χ2 = 19.20, p<0.001 
mayfly oecobiid spider standard 7-day 28 χ2 = 22.53, p<0.001 25 χ2 = 13.33, p<0.001 
fruit fly cricket standard 7-day 25 χ2 = 13.33, p<0.001 17 χ2 = 0.53, p = 0.465 
fruit fly cricket standard 1-day - - 25 χ2 = 13.33, p<0.001 
fruit fly caterpillar standard 7-day 27 χ2 = 19.20, p<0.001 28 χ2 = 22.53, p<0.001 
fruit fly aphid standard 7-day 26 χ2 = 16.13, p<0.001 29 χ2 = 26.13, p<0.001 
fruit fly oecobiid spider standard 7-day 29 χ2 = 26.13, p<0.001 26 χ2 = 16.13, p<0.001 
cricket caterpillar standard 7-day 21 χ2 = 4.80, p = 0.028 15 χ2 = 0.00, p = 1 
cricket caterpillar standard 1-day 14 χ2 = 0.13, p = 0.715 17 χ2 = 0.53, p = 0.465 
cricket aphid standard 7-day 14 χ2 = 0.13, p = 0.715 16 χ2 = 0.13, p = 0.715 
cricket aphid standard 1-day 15 χ2 = 0.00, p = 1 12 χ2 = 1.20, p = 0.273 
cricket oecobiid spider standard 7-day 13 χ2 = 0.53, p = 0.465 10 χ2 = 3.33, p = 0.068 
cricket oecobiid spider standard 1-day 15 χ2 = 0.00, p = 1 16 χ2 = 0.13, p = 0.715 
caterpillar aphid standard 7-day 16 χ2 = 0.13, p = 0.715 14 χ2 = 0.13, p = 0.715 
caterpillar aphid standard 1-day 15 χ2 = 0.00, p = 1 14 χ2 = 0.13, p = 0.715 
caterpillar oecobiid spider standard 7-day 11 χ2 = 2.13, p = 0.144 17 χ2 = 0.53, p = 0.465 
caterpillar oecobiid spider standard 1-day 12 χ2 = 1.20, p = 0.273 12 χ2 = 1.20, p = 0.273 
caterpillar oecobiid spider spider-only 7-day - - 16 χ2 = 0.13, p = 0.715 
caterpillar oecobiid spider spider-only 1-day - - 12 χ2 = 1.20, p = 0.273 
aphid oecobiid spider standard 7-day 14 χ2 = 0.13, p = 0.715 15 χ2 = 0.00, p = 1 
aphid oecobiid spider standard 1-day 16 χ2 = 0.13, p = 0.715 16 χ2 = 0.13, p = 0.715 

1number that chose prey 2 (Anopheles male) significantly more than number that chose prey 1 (blood Culex female) 
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Table 7. Preference strengths of Evarcha culicivora determined from complete series of simultaneous-presentation prey-choice experiments 
(table 6). Column 1: prey 1. Headings for each other column: prey 2. Strong preference for prey 1 (s): significantly more test spiders chose prey 
1 than chose prey 2 after a 7-day fast. Weak preference for prey 1 (w): no significant choice after 7-day fast, but significantly more test spiders 
chose prey 1 than chose prey 2 after a 1-day pre-trial fast. Nil preference (n): no significant choice after 7-day and 1-day fasts. Strength of 
preference by adult test spiders indicated first, followed by strength of preference by juvenile test spiders. For details about prey, see table 3. 
Minus sign in front of w (2 instances, both with blood female Culex as prey 1): significantly more test spiders chose prey 2 after 1-day fast 
(contributes to preference index for prey 2 instead for prey 1: see table 10); otherwise s & w mean preference for prey 1. For Nelson and Jackson 
[12] data, juveniles 2.0 mm in body length; 3.0 mm in all other instances. 
 
 blood 

Culex 
femal
e 

no-blood 
Anophele
s female 

no-
blood 
Culex 
femal
e 

Anophel
es male 

Culex 
male 

ghos
t 
midg
e 

chironomi
d midge 

 

vinega
r fly 

mayfly fruit 
fly 

cricket 

 

caterpill
ar 

 

aphi
d 

 

oecobii
d spider 

blood 
female 
Anopheles 

w1, s1 s1, s1 s1, s1 s1, s1 s, s s, s s2, s2 s, s s, s s, s s, s s, s s, s s, s 

blood 
Culex 
female 

- s1, -w1 s1, s1 s, -w s1,s1 s, s s2, s2 s, s s, s s, s s, s s, s s, s s, s 

no-blood 
Anopheles 
female 

 - w1, s1 w1, s1 w1, s1 w, s w2, s2 s, s s, s s, s s, s s, s s, s s, s 

no-blood 
Culex 
female 

  - n1, n1 n1, n1 n, n n2, n2 w, w w, w s, s s, s s, s s, s s, s 
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Anopheles 
male 

   - n1, s1 n, w n2, w2 w, w w, w s, s s, s s, s s, s s, s 

Culex 
male 

    - n, n n2, n2 w, w w, w s, s s, s s, s s, s s, s 

ghost 
midge 

     - n, n w, w w, w s, s s, s s, s s, s s, s 

chironomi
d midge 

      - w, w w, w s, s s, s s, s s, s s, s 

vinegar fly      - -  n, n n, n s, s s, s s, s s, s 

mayfly          n, n w, w s, s s, s s, s 

fruit fly          - s, w s, s s, s s, s 

cricket      - -    - n, n n, n n, n 

caterpillar      - -    - - n, n n, n 

aphid      - -    - - - n, n 
1from Nelson and Jackson [12]. s in this table corresponds to medium in table 2. 
2same for another chironomid midge, Clinotanypus claripennis, in Nelson and Jackson [12]. 
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Table 8. Findings for adult females and juveniles of Evarcha culicivora (‘test 
spiders’) in mosquito series of simultaneous-presentation prey-choice experiments. 
For each experiment (row), 25 test spiders chose one of the two prey (i.e., n = 25 for 
each row). Blood: blood Anopheles female. No-blood: no-blood Anopheles female. 
See table 3 for details pertaining to prey. For all experiments, there was a pre-trial fast 
of 7 days. Data analysis: tests of goodness of fit (null hypothesis: as likely to choose 
prey 2 as to choose prey 1). 
 
prey 1 prey 2 adult female  test spiders juvenile test spiders 
  chose 

prey 1 
test of goodness of 
fit 

chose 
prey 1 

test of goodness of 
fit 

blood assassin bug 24 χ2 = 21.16, p<0.001 25 χ2 = 25.00, p<0.001 
blood barklouse 20 χ2 = 9.00, p = 0.003 20 χ2 = 9.00, p = 0.003 
blood brown rice hopper 25 χ2 = 25.00, p<0.001 22 χ2 = 14.44, p<0.001 
blood clubionid spider 25 χ2 = 25.00, p<0.001 24 χ2 = 21.16, p<0.001 
blood cockroach 23 χ2 = 17.64, p<0.001 20 χ2 = 9.00, p = 0.003 
blood green leaf hopper 22 χ2 = 14.44, p<0.001 24 χ2 = 21.16, p<0.001 
blood hersiliid spider 25 χ2 = 25.00, p<0.001 25 χ2 = 25.00, p<0.001 
blood house fly 22 χ2 = 14.44, p<0.001 23 χ2 = 17.64, p<0.001 
blood jumping spider 23 χ2 = 17.64, p<0.001 25 χ2 = 25.00, p<0.001 
blood long-legged fly 21 χ2 = 11.56, p<0.001 21 χ2 = 11.56, p<0.001 
blood mantis 25 χ2 = 25.00, p<0.001 24 χ2 = 21.16, p<0.001 
blood moth fly 23 χ2 = 17.64, p<0.001 23 χ2 = 17.64, p<0.001 
blood nephilid spider 23 χ2 = 17.64, p<0.001 25 χ2 = 25.00, p<0.001 
blood whitefly 19 χ2 = 6.76, p = 0.009 25 χ2 = 25.00, p<0.001 
blood wolf spider 22 χ2 = 14.44, p<0.001 24 χ2 = 21.16, p<0.001 
no-blood assassin bug 24 χ2 = 21.16, p<0.001 22 χ2 = 14.44, p<0.001 
no-blood barklouse 20 χ2 = 9.00, p = 0.003 23 χ2 = 17.64, p<0.001 
no-blood brown rice hopper 19 χ2 = 6.76, p = 0.009 21 χ2 = 11.56, p<0.001 
no-blood clubionid spider 24 χ2 = 21.16, p<0.001 25 χ2 = 25.00, p<0.001 
no-blood cockroach 25 χ2 = 25.00, p<0.001 25 χ2 = 25.00, p<0.001 
no-blood green leaf hopper 21 χ2 = 11.56, p<0.001 22 χ2 = 14.44, p<0.001 
no-blood hersiliid spider 21 χ2 = 11.56, p<0.001 24 χ2 = 21.16, p<0.001 
no-blood house fly 23 χ2 = 17.64, p<0.001 23 χ2 = 17.64, p<0.001 
no-blood jumping spider 23 χ2 = 17.64, p<0.001 25 χ2 = 25.00, p<0.001 
no-blood long-legged fly 20 χ2 = 9.00, p = 0.003 21 χ2 = 11.56, p<0.001 
no-blood mantis 23 χ2 = 17.64, p<0.001 24 χ2 = 21.16, p<0.001 
no-blood moth fly 24 χ2 = 21.16, p<0.001 21 χ2 = 11.56, p<0.001 
no-blood nephilid spider 22 χ2 = 14.44, p<0.001 24 χ2 = 21.16, p<0.001 
no-blood whitefly 20 χ2 = 9.00, p = 0.003 21 χ2 = 11.56, p<0.001 
no-blood wolf spider 21 χ2 = 11.56, p<0.001 25 χ2 = 25.00, p<0.001 
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Table 9. Findings for Evarcha culicivora (‘test spiders’) in the non-mosquito series of prey-choice experiments (see text). For each experiment 
(row), simultaneous presentation testing was used and 25 spiders chose one of the two prey (i.e., n = 25 for each row) for each row. For details 
concerning prey, see table 3. For all experiments, there was a pre-trial fast of 1 day. Data analysis: tests of goodness of fit (null hypothesis: as 
likely to choose prey 2 as to choose prey 1). 
 
prey 1 prey 2 adult female test spiders juvenile test spiders 
  chose 

prey 1 
test of goodness of 
fit 

chose 
prey 1 

test of goodness of 
fit 

Chaoborus sp. Ablabesmyia nilotica 11 χ2 = 0.36, p = 0.549 10 χ2 = 1.00, p = 0.317 
Chaoborus sp. Chironomus imicola 14 χ2 = 0.36, p = 0.549 12 χ2 = 0.04, p = 0.841 
Chaoborus sp. Clinotanypus claripennis 11 χ2 = 0.36, p = 0.549 13 χ2 = 0.04, p = 0.841 
Chaoborus sp. Conochironomus acutistus 14 χ2 = 0.36, p = 0.549 14 χ2 = 0.36, p = 0.549 
Nilodorum brevibucca Ablabesmyia nilotica 15 χ2 = 1.00, p = 0.317 15 χ2 = 1.00, p = 0.317 
Nilodorum brevibucca Chironomus imicola 10 χ2 = 1.00, p = 0.317 9 χ2 = 1.96, p = 0.162 
Nilodorum brevibucca Clinotanypus claripennis 15 χ2 = 1.00, p = 0.317 14 χ2 = 0.36, p = 0.549 
Nilodorum brevibucca Conochironomus acutistus 16 χ2 = 1.96, p = 0.162 13 χ2 = 0.04, p = 0.841 
Ablabesmyia nilotica Chironomus imicola 12 χ2 = 0.04, p = 0.841 14 χ2 = 0.36, p = 0.549 
Ablabesmyia nilotica Clinotanypus claripennis 12 χ2 = 0.04, p = 0.841 8 χ2 = 3.24, p = 0.072 
Ablabesmyia nilotica Conochironomus acutistus 14 χ2 = 0.36, p = 0.549 11 χ2 = 0.36, p = 0.549 
Chironomus imicola Clinotanypus claripennis 12 χ2 = 0.04, p = 0.841 9 χ2 = 1.96, p = 0.162 
Chironomus imicola Conochironomus acutistus 9 χ2 = 1.96, p = 0.162 11 χ2 = 0.36, p = 0.549 
Clinotanypus claripennis Conochironomus acutistus 11 χ2 = 0.36, p = 0.549 13 χ2 = 0.04, p = 0.841 
oecobiid spider wolf spider 13 χ2 = 0.04, p = 0.841 12 χ2 = 0.04, p = 0.841 
oecobiid spider jumping spider 14 χ2 = 0.36, p = 0.549 9 χ2 = 1.96, p = 0.162 
oecobiid spider nephilid spider 16 χ2 = 1.96, p = 0.162 13 χ2 = 0.04, p = 0.841 
wolf spider nephilid spider 10 χ2 = 1.00, p = 0.317 9 χ2 = 1.96, p = 0.162 
wolf spider jumping spider 13 χ2 = 0.04, p = 0.841 13 χ2 = 0.04, p = 0.841 
jumping spider nephilid spider 15 χ2 = 1.00, p = 0.317 12 χ2 = 0.04, p = 0.841 
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Table 10. Preference indexes for 15 prey categories used in complete series of simultaneous-
presentation prey-choice experiments (see text & table 7). For each pairing with another prey 
type, each prey category given a score of 0 when no preference was expressed (NS after 7-
day & 1-day prey-trial fast), 1 when only a weak preference was expressed (significantly 
more test spiders chose this prey type after a 1-day, but not 7-day, fast) and 2 when a strong 
preference was expressed (significantly more chose this prey type after 7-day fast). 
Preference index for prey category: sum of scores for that prey category paired with each 
other category. 
 
preference 
index 

juvenile test spider adult test spider 

28 blood Anopheles female - 
27 - blood Anopheles female 
26 - blood Culex female 
25 no-blood Anopheles female - 
24 - - 
23 - - 
22 blood Culex - 
21 - - 
20 - - 
19 - no-blood Anopheles female 
18 - - 

17 Anopheles male - 
16 - - 

15 - - 
14 - - 
13 - - 

12 no-blood Culex female; Culex 
male, ghost midge & chironomid 
midge 

no-blood Culex female, Anopheles 
male, Culex male, ghost midge & 
chironomid midge 

11   

10 - - 

9 - - 

8 vinegar fly vinegar & fruit fly 

7 mayfly & fruit fly mayfly 
6 - - 
5 - - 

4 - - 

3 - - 

2 - - 
1 - - 
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0 cricket, caterpillar, aphid, spider cricket, caterpillar, aphid, spider 
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Table 11. Sample sizes in studies on the prey of salticids in the field. 
 
salticid species number of 

records of prey 
source 

Aelurillus m-nigram 58 [31] 
Aelurillus muganicus 64 [32] 
Cyrba algerina 59 [33] 
Heliophanus dunni 50 [34] 
Menemerus semilimbatus 96 [35] 
Menemerus taeniatus 62 [36] 
Mexcala elegans 64 [37] 
Phidippus johnsoni 33 [38] 
Phidippus audax 21 [39] 
Portia fimbriata 24 [40] 
Portia fimbriata 61 [41] 
Paracyrba wanlessi 84 [42] 
Salticus tricinctus 40 [43] 
Salticus austinensis 46 [44] 
Siler cupreus 24 [45] 
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Table 12. Prey categories for Evarcha culicivora juveniles and adult E. culicivora females, 
determined from complete series of simultaneous-presentation prey-choice experiments. See 
text for category-derivation procedure and table 3 for details pertaining to prey. When 
applicable, preference index listed for each category (see table 10). Each category given a 
letter code followed by listing of constituent prey types. Categories a, b, c, f and g applicable 
to juvenile and adult female test spiders. For juveniles, but not for adult females, d and e are 
distinct categories. Category de for adult females is inclusive of prey in categories d and e of 
juveniles. NA: not applicable. 
prey category juvenile 

preference index 
adult female 
preference 
index 

a. blood Anopheles 28 27 

b. blood Culex female 22 26 
c. no-blood Anopheles female 25 19 

d. Anopheles male (17) 17 NA 
e. no-blood Culex female, Culex male, ghost midge, 
chironomid midge (12) 

12 NA 

de. Anopheles male, no-blood Culex female, Culex 
male, ghost midge, chironomid midge (12) 

NA 12 

f. vinegar fly, fruit fly, mayfly (7-8) 7-8 7-8 
g. cricket, caterpillar, aphid, spider (0) 0 0 
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APPENDIX TWO: ADJUSTING FOR REPEATED USE OF DATA SETS 

 
 
Number of comparisons (K) made using data from different groups (data sets) in Chapter 3. 

For Bonferroni adjustments of alpha (i.e., the threshold p-value for judging a difference 

between two groups to be “significant”), p<0.05/K corresponds to an alpha of p<0.05. For 

more information about Bonferroni adjustments, see: Sokal & Rohlf 1995, Hardin et al. 

1996). Rows here correspond to rows in Table 4. 

 
Row Group K for 

longevity 
K for 
completion 
success 

K for 
completion 
time 

1 Water-only control for prey & 
plants (C1) 

8 - - 

2 Water-only control for artificial 
nectar (C2) 

5 - - 

3 No-blood female on Day 1 15 - - 
4 Blood female on Day 1 4 - - 
5 Male on Day 1 4 - - 
6 No-blood female on Day 5 1 - - 
7 No-blood female on Day 1 & Day 5 3 4 10 
8 Blood female on Day 1 & Day 5 3 4 8 
9 Male on Day 1 & Day 5 3 4 3 
10 No-blood female on Day 1, 5 & 9 2 3 7 
11 Blood female on Day 1, 5 & 9 2 3 7 
12 Male on Day 1, 5 & 9 2 3 3 
13 Lantana camara, no prey 11 4 4 
14 Lippia kituensis, no prey 6 2 4 
15 Parthenium hysterophorus, no prey 6 - - 
16 Ricinus communis, no prey 6 - - 
17 Hibiscus rosa-sinensis, no prey 6 - - 
18 Lantana camara, no-blood female 

on Day 1 
6 1 4 

19 Lippia kituensis, no-blood female 
on Day 1 

5 1 4 

20 Parthenium hysterophorus, no-
blood female on Day 1 

5 - - 

21 Ricinus communis, no-blood female 
on Day 1 

5 - - 

22 Hibiscus rosa-sinensis, no-blood 
female on Day 1 

5 - - 
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23 Lantana camara, no-blood female 
on Day 1 & Day 5 

- 4 9 

24 Lantana camara, blood female on 
Day 1 & Day 5 

- 4 8 

25 Lippia kituensis, no-blood female 
on Day 1 & Day 5 

- 3 8 

26 Lippia kituensis, blood female on 
Day 1 & Day 5 

- 3 7 

27 Parthenium hysterophorus, no-
blood female on Day 1 & 5 

- 3 6 

28 Parthenium hysterophorus, blood 
female on Day 1 & 5 

- 3 6 

29 Ricinus communis, no-blood female 
on Day 1 & 5 

- 3 6 

30 Ricinus communis, blood female on 
Day 1 & 5 

- 3 6 

31 1% sucrose, no prey 2 - - 
32 5% sucrose, no prey 5 - - 
33 10% sucrose, no prey 3 - - 
34 20% sucrose, no prey 10 - - 
35 30% sucrose, no prey 2 - - 
36 40% sucrose, no prey 1 - - 
37 20% glucose, no prey 5 - - 
38 20% fructose, no prey 6 - - 
39 20% maltose, no prey 4 - - 
40 5% glucose, no prey 4 - - 
41 5% fructose, no prey 4 - - 
42 5% glucose-fructose blend, but no 

prey 
1 - - 

43 10% glucose-fructose blend, but no 
prey 

1 - - 

44 20% glucose-fructose blend, but no 
prey 

1 - - 

45 4% amino-acid blend 
(Glu,Gly,Pro,Ser) but no prey 

1 - - 

46 20% glucose+amino-acid blend, but 
no prey 

4 - - 

47 20% fructose+amino-acid blend, but 
no prey 

4 - - 

48 20% maltose+amino-acid blend, but 
no prey 

4 - - 

49 20% sucrose+amino-acid blend, but 
no prey 

5 - - 

50 Sugar-only blend, but no prey 3 - - 
51 Full blend, but no prey 7 - - 
52 Full blend & ate one no-blood 

female 
5 - - 

53 Full blend & ate one blood female 4 - - 
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54 Full blend & ate two no-blood 
females 

4 3 3 

55 Full blend & ate two blood females 4 3 3 
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APPENDIX THREE: CONFERENCES SLIDES 

 
 
 
These are slides that were prepared for presentations at scientific conferences. The idea is that 

these are here for people who might want to have a quick look to get a general understanding 

of my research Chapters 2 & 3. 
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Adaptive foraging periodicity by a 
mosquito-specialist predator 

CHAN DENG 
SUPERVISOR: ROBERT JACKSON 

CO SUPERVISOR: XIMENA NELSON 

Objective & Specific Aims 
To understand a complex system of predatory 
specialization. 
 
Using spiders that feed indirectly on vertebrate blood by 

choosing blood-carrying Anopheles mosquitoes (malaria 

vectors) as preferred prey. 
 

 

 

 

 

 

�
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Credit:(R.(Jackson.((
Evarcha'culicivora'male(�

Credit:(R.(Jackson.((
Evarcha'culicivora(female(�
�

Credit: H. Smid. 
Anopheles gambiae s.s.�
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What is predatory specialization?�

A predator being especially well adapted with 
respect to specific types of prey �

Broader interest �
Understanding specific ways predators can specialize�

The ways E. culicivora is known to be specialized 
include: 
 
•  A special way small juveniles capture Anopheles  
•  Anopheles specific feature detection system  
•  Finely tuned mosquito related prey-choice behaviour 

Credit: X. Nelson. 
Apparatus for virtual-prey testing 
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Hypothesis: E. culicivora has an innate activity pattern 

that facilitates being particularly effective as a predator 

of night-feeding anthropophilic mosquitoes  
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Hypothesis 1: Under natural conditions, E. culicivora 
tends to be active as a predator primarily in the early 
morning when this particular type of prey is available for 
E. culicivora 
 

Hypothesis 2: E. culicivora is innately predisposed 

to be more responsive in the morning than in the 

afternoon to vision-based and odour-based cues 

from its preferred prey 

 

Hypothesis 3: E. culicivora is innately predisposed 

to express stronger preference in the morning than 

in the afternoon for blood-carrying mosquitoes  
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r2=0.808; y=81.12- 4.49x

Figure 2. Simple linear regression analysis. Relationship between the different 
times of day (0700-1800 h) changes in the feeding rate of spiders.  

Question: Whether peak responsiveness in the 
morning was specific to predation instead of being a 
general feature of E. culicivora’s activity pattern? 
 
living mates vs.. living prey 
 �
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Hypothesis 2: E. culicivora is innately predisposed 

to be more responsive in the morning than in the 

afternoon to vision-based and odour-based cues 

from its preferred prey 

 

Hypothesis 3: E. culicivora is innately predisposed 

to express stronger preference in the morning than 

in the afternoon for blood-carrying mosquitoes  
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Odour Choice�Mount Choice�
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Mount test �

McNemar test: χ² =13.07, P<0.001 �
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No Response

[40][30]

Test of independence: χ² = 7.80, P = 0.005 �

S�

93%$of$28$�

62%$of$26�

NS 
�

Mount test �

Question: Is it that this predator more active and 

responsive in general during the morning or is it that 

peak seen in the early morning is specific to predation 

on blood-carrying mosquitoes?�
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No-Odour Control

No Response

P<0.001&�
NS�

S�

Prof. Robert Jackson 
 
Prof. Ximena Nelson 
 
Dr. Fiona Cross 
 
Spider team: Aynsley Macnab, Yinnon Dolev, Stephene 
Aluoch, Maurice(Awayo(, David(Omondi(  
 
Insectary 
 
�
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Effects of prey and nectar meals on the 
capacity of a mosquito-specialist predator to 
complete the first active stage in its life cycle 

  

DENG CHAN 
SUPERVISOR: ROBERT JACKSON 

CO SUPERVISOR: XIMENA NELSON 

Objective & Specific Aims 
•  My research is a part of a larger research programme 

for which the central aim is to understand a complex 
system of adaptation. The system includes, besides 
people and the malaria parasite (Plasmodium), 
mosquitoes (especially Anopheles gambiae), certain 
plant species (e.g., Lantana camara) and Evarcha 
culicivora, a jumping spider (Salticidae) that feeds 
indirectly on blood by choosing blood-carrying 
Anopheles females as prey. �
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Credit:(R.(Jackson.((
Evarcha'culicivora'male(�

Credit:(R.(Jackson.((
Evarcha'culicivora(female(�
�

Credit:(R.(Jackson.((
Evarcha'culicivora(juvenile�
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Credit: Hans Smid 
Anopheles gambiae s.s.�

Ricinus communis �

Lantana camara � Hibiscus stramonium� Lippia kituensis�

Parthenium hysterophorus�
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•  The spider and the mosquito both are also known to feed 
on nectar and both are attracted to the odour of particular 
plant species, but we do not understand in detail the ways 
in which, or the level to which, the spider and the 
mosquito are adapted to specific plant species.  

 
•  As a step toward filling this gap, I am focusing my PhD 

research on two specific hypotheses:  
 

Objective & Specific Aims 

Hypothesis 1: E. culicivora has a plant-related activity budget 
that facilitates being particularly effective as a predator of An. 
gambiae. 
 
Hypothesis 2: E. culicivora is metabolically adapted to 
particular plant species.  
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Hypothesis: E. culicivora is metabolically adapted to 
particular plant species.  
                                                specific hypothesis                                                            
                                                              
Plant-derived nutrients, acquired independently of predation; 
make an important contribution to the performance of 1st instar 
spiders.  
 
Understanding the effect of nutrients on the performance of the 
1st-instar spiders requires a thorough understanding of the 
effects of different feeding regimes.  
 
 
�

Feeding regimes included:�
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N"~"4000�

First step: 
 

 
How different feeding regimes with prey-only influence 
the capacity of newly emerged juveniles of E. culicivora 
to complete the 1st instar? 
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Hypothesis: Feeding on a single blood female 
mosquito suffices for newly emerged juveniles 
to complete the 1st instar.  
 
 
Does the type of mosquito matter? 
 

 
Digestive tract may not developed well enough 
on day 1 for processing this prey. 

Creator: Design Unit 
Rights:   Australian Museum�

Answer: NO 
�

Group 1st moult rate 

2 M 23% 

2 NBF 57% 

2 BF 57% 

!

Group 1st moult rate 

3M 78% 

3NBF 92% 

3BF 80% 

!

NBF- 
 
   BF- 
 
    M-�
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First step: 
 
The effects of plant nutrients. Does the plant species matter?  
 
                                                    plant only 
 
Hypothesis: for E.culicivora, access to nutrients from plants can, 
in the absence of prey, suffice for enabling the spider to complete 
the first instar.  
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Second step: 
                                              
Hypothesis: Plant nutrients can be important because, by 
feeding on plant nutrients, the spider can stay alive, thereby 
increasing its chance of acquiring prey-meals in time to 
complete the 1st-instar.  
 
                                                     
�

n� Moult&rate&
before&15&days�

Moult&rate&&
a1er&15&days�

Mimic%Lantana%Nectar� 30� 0� 0�

Mimic%Lantana%Nectar%15%days
+%unlimited%prey�
�

84� 0� �6%�
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Third step: 
 
Hypothesis: an optimal diet for 1st instar spiders is a 
combination of prey and plant nutrients.  
 
�

Group 1st moult rate 
1NBF+Lantana 23% 
1NBF+Lippia 23% 
1NBF+Parthenium 3% 
1NBF+Ricinus 3% 
1NBF+Hibiscus 3% 
!

Group 1st moult rate 
2NBF+Lantana 97% 
2BF+Lantana 90% 
2NBF+Lippia 93% 
2BF+Lippia 97% 
2NBF+Parthenium 50% 
2BF+Parthenium 53% 
2NBF+Ricinus 43% 
2BF+Ricinus 70% 
2NBF 57% 
3NBF 92% 
!

NBF$%
%
%%%BF$�
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Next step: 
 
To investigate what specific nutrients of plants 
matter? (e.g., sugar, amino acid, mimic Lantana 
nectar?) 
 
 
 

Prof. Robert Jackson 
 
Dr. Ximena Nelson 
 
Dr. Fiona Cross 
 
Spider team: Aynsley, Yinnon, Amber, Stephene, Ayaowo, 
Omondi, Jane, Kevin 
 
Insectary 
 
My friends 
�
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