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              Abstract 

Abstract 
 
Malaria remains a major global health problem with the burden of disease greatest in Sub-Saharan 

Africa. The strategies for malaria control differ throughout the world according to levels of 

endemicity and the magnitude of disease but the focus remains either to control malaria parasites or 

vectors. A high degree of drug resistance and the absence of malaria vaccines are a major hindrance 

to control of the disease. In such circumstances, vector control becomes an alternative and has 

remained the most effective means to prevent malaria transmission. Contemporary adult mosquito 

control is almost exclusively based on indoor application of chemical insecticides in the form of 

indoor residual spraying (IRS) of walls and ceilings and insecticide-impregnated bed nets. However, 

sustainable use of chemicals is undermined by problems of insecticide resistance in mosquito 

populations, environmental contamination and risks to human health. Biological control based on 

fungal pathogens has shown potential to complement existing vector control methods. The 

entomopathogenic fungi (EPF) Metarhizium anisopliae and Beauveria bassiana have demonstrated 

ability to infect, kill and reduce the survival of malaria vectors. However, the effect of EPF on the 

behaviour of malaria vectors has not been fully addressed. 

 

This thesis was designed to provide baseline information on mosquito-fungus interaction focusing on 

the efficacy of entomopathogenic fungus M. anisopliae ICIPE 30 on the important life-history 

behaviours of the African malaria vector Anopheles gambiae Giles sensu stricto under laboratory and 

semi-field conditions. The information is important to facilitate the further development of malaria 

vector control based on biological control agents. Host-seeking, sugar-feeding, mating and 

oviposition were the behaviours investigated. Since mosquito-fungus contact is crucial for infection 

with EPF, a paper sheet (28.6 × 14.3 cm) lined inside a plastic cylinder (9-cm diameter and 15-cm 

height) was developed as a cost effective method of infection. Moreover, 0.1 g (approx. 10
11

 conidia/

m
2
) of dry conidia and 6 hr exposure time sufficient for An. gambiae to pick up large numbers of 

conidia were established to cause high pathogenicity (Chapter 3). As the impact of EPF on insect 

behaviour was reported to occur at least three days post-exposure to fungal pathogen (Chapter 2), 

all experiments were conducted with a special focus on mosquitoes three days post-exposure to 

fungus. It is, however, important to mention that on average 50% of the mosquitoes died on the 

third day after fungal exposure (Chapter 3) and only those that survived were used for behavioural 

assays. 

 

The host-seeking capability of An. gambiae mosquitoes is an important parameter in the vectorial 

capacity equation. At short-range (1 m from host) assessment using a dual-choice olfactometer 

under semi-field conditions, infection with EPF strongly reduced the host-seeking response of 

mosquitoes, but did not impair their olfactory-based capability to discriminate between hosts 

(Chapter 4). At medium-range, using experimental cages (3 x 3 x 2 m) under laboratory conditions, 

fungal infection reduced the host-seeking response and feeding propensity of female An. gambiae 

mosquitoes (Chapter 7) whereas at long-range (7 m from host) inside a semi-field enclosure, 

infection with EPF sharply reduced the house-entry response and the hourly human-biting responses 

of host-seeking mosquitoes indoors and outdoors (Chapter 5). Plant sugar feeding is an important 

component in the biology of mosquitoes and is the main priority for both sexes at emergence. 

Infection with fungal pathogen strongly reduced the survival and sugar-feeding propensity of both 

sexes of the malaria vector An. gambiae but did not affect their potential to feed and digest meals 

(Chapter 6). Mating behaviour plays a key role in population growth. The activity takes place after 

sugar feeding and thereafter, the females search for their blood meal host. Infection with M. 

anisopliae strongly reduced multiple mating propensity and the mating performance of adult male 

An. gambiae mosquitoes in a large arena such as a screenhouse. Although this resulted in a reduction 

in the number of females inseminated, it facilitated the transfer of fungal conidia to conspecific 

healthy females during mating (Chapter 8). Finally, after blood meal intake, the females prepare to 
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lay eggs. Infection with M. anisopliae reduced the oviposition propensity of female An. gambiae 

mosquitoes although the number of eggs laid remained unaffected (Chapter 7). 

 

In conclusion, these findings demonstrate that the entomopathogenic fungus M. anisopliae alters the 

major life history behaviours of An. gambiae mosquitoes. This is possible because the fungus strongly 

impairs flight performance of mosquitoes that makes the insect less able to fly and engage in host-

seeking, sugar-feeding, mating and oviposition behaviours. The high mortalities observed in the early 

days of infection prior to conducting behavioural assays, mortalities observed while conducting 

behavioural assays and a reduction in behavioural response of M. anisopliae-infected mosquitoes 

collectively are likely to have a significant impact in suppressing a vector population. The 

susceptibility of male mosquitoes to fungal conidia opens a new strategy for mosquito vector control. 

Overall, this thesis has demonstrated that EPF may be a good complement to other mosquito vector 

control tools for the reduction of mosquito bites, and transmission of malaria and other mosquito-

borne diseases.  
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Malaria burden 
 
Malaria remains a common and life-threatening disease in many tropical and subtropical areas, 

exerting an unacceptable toll on the health and economic welfare of the world’s poorest 

communities (Breman et al. 2007, WHO 2011). The disease is currently endemic in over 100 

countries with the burden of disease being greatest in Africa (Figure 1). The most vulnerable are 

children under the age of five due to their lower level of malaria immunity (WHO 2006a) and 

pregnant women due to adherence of Plasmodium falciparum to chondroitin sulphate A in the 

human placenta (Fried and Duffy 1996). Each year, at least 600,000 deaths from the direct effects of 

the disease occur on the continent (WHO 2011) and it is therefore regarded as the leading cause of 

morbidity and mortality in the sub-Saharan region (Day 2005). Even though the existence and the use 

of affordable interventions in malaria-affected areas has resulted in a 25% decline of malaria cases 

and deaths (WHO 2011), the burden of the disease still persists.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Malaria parasites 
 
Malaria is caused by protozoan parasites of the genus Plasmodium and is transmitted through bites 

of mosquitoes belonging to the genus Anopheles. Five species of malaria parasites namely 

Plasmodium falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi infect people (Bell et al. 2006, 

Cox-Singh et al. 2008, Krief et al. 2010). Of these, P. falciparum is the most common but most 

dominant in sub-Saharan Africa, clinically severe and life threatening. Plasmodium vivax is the second 

most significant species and is prevalent in Southeast Asia and Latin America. Plasmodium ovale is 

common in Africa but scanty in numerous islands in the western Pacific and on the Asian mainland 

while P. malariae shares geographical coverage with P. falciparum although it is less common and 

irregular in prevalence (Collins and Jeffery 2005). Primarily, P. knowlesi causes malaria in monkeys 

but has recently been reported to infect humans in Southeast Asia (Singh et al. 2004, Luchavez et al. 

2008, Figtree et al. 2010). Overall, the Plasmodium species are not evenly distributed globally and 

their relative importance varies between and within different malaria regions (Beier 1998). As a 

result, the risk of contracting malaria varies from country to country and even between areas in a 

country. Knowledge on global distribution of malaria parasites and on the biology and ecology of the 

principal disease vectors is therefore essential to the development of an integrated vector control 

approach.  

  

 
  Figure 1. Global distribution of malaria (Bell et al. 2006) 



14 

General introduction 

Malaria vectors 
 
Malaria parasites are transmitted between humans by female mosquitoes of the genus Anopheles 

(Diptera: Culicidae). Of over 400 different Anopheles species described worldwide except in the 

Antarctica (Figure 2), only about 60 are vectors of malaria (White 1985, Walker 2002, Besansky et al. 

2004). Each species has a different behavioural pattern and occurs in a different region of the world. 

The Anopheles gambiae complex comprised of seven sibling species: Anopheles gambiae sensu 

stricto, An. arabiensis, An. melas, An. merus, An. bwambae, An. quadriannulatus species A and An. 

quadriannulatus species B (yet to be assigned a scientific name) are predominant in sub-Saharan 

Africa and belong to the world’s most efficient vectors of human malaria (Mattingly 1977, White 

1985, Hunt et al. 1998, Coetzee 2004). Of these, An. gambiae and the none An. gambiae complex 

species, An. funestus, are the most important since they exhibit anthropophilic (preference for a 

human blood meal), endophagic (indoor biting) and endophilic (indoor resting) behaviours whose 

interaction with humans influences the risk of malaria infection and transmission (Costantini et al. 

1999, Takken and Knols 1999). In addition, the vectors display high vector competence and high 

survival rates (Day 2005). The less efficient vectors, such as An. culicifacies, An. stephensi and An. 

minimus are dominant in Asia, An. darlingi in South America and An. freeborni in North America. 

 

Malaria control 
 
Strategies for malaria control differ throughout the world according to levels of endemicity, the 

magnitude of disease, and the malaria vector potential of Anopheles mosquitoes (Walker 2002). The 

World Health Organization (WHO) has prioritised and pioneered the control of malaria since its 

inception in 1948. In its efforts, WHO characterised four basic approaches to fight the disease: 1) 

provision of early diagnosis and prompt treatment for the disease, 2) planning and implementation 

of selective and sustainable preventive measures, including vector control, 3) early detection for the 

prevention or containment of epidemics and 4) strengthening of local research capacities to promote 

regular assessment of countries' malaria situations, in particular the ecological, social and economic 

determinants of the disease (WHO 1993, WHO 2006a). All these approaches are tailored to either 

control malaria parasites or vectors. However, it remains elusive to single out a successful approach 

but there is every indication that integrated approaches will be needed for effective and sustainable 

control. Simply having a new antimalarial drug, an effective malaria vaccine, or a new way to kill 

mosquitoes is still a long way and many years from the achievement of effective malaria control 

(Beier 1998). The reasons for this are manifold, but the high degree of drug resistance and resistance 

against insecticides, together with the environmental variability of malaria epidemiology call for a 

complex disease situation that requires an integrated approach for its control (Alonso et al. 2011). 

 

Antimalarial drugs 
 

Timely and accurate diagnosis of malaria by use of rapid diagnostic test (RDTs) kits and microscopic 

examination of the thin and thick smear of finger-prick stained with Giemsa is the key to effective 

disease management (Cooke et al. 1999, McCutchan et al. 2008, Pöschl et al. 2010). For a long time, 

several anti-malarial drugs such as quinine and chloroquine have been used as prophylaxis and for 

the treatment of uncomplicated and severe cases of malaria. However, with emergence of resistance 

to drugs such as chloroquine, fears of toxicity and decreased efficacy for sulfadoxine/pyrimithamine, 

several countries have adopted the use of artemisinin-based combination therapy (ACT) in the 

treatment of uncomplicated malaria since 2001 (WHO 2009) and artesunate derivatives for severe 

malaria (Dondorp et al. 2005). Although these new combination therapies are proven to provide 

effective treatment and/or prevention, other new medications have to be developed and the existing 

ones improved, to be prepared for the emergence of resistance with the continuous use of 
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prescribed antimalarial drugs. The first case of drug tolerance against artemisinine has already been 

reported from Southeast Asia (WHO 2008, WHO 2010). 

 

Malaria vaccines 
 

Malaria vaccines could be one of the most cost-effective interventions to reduce the burden of 

disease, particularly in Africa. For a long time, development of malaria vaccines at global level has 

been the subject of much research (Cohen 1982). Since then, much research has been devoted in the 

search and development of a malaria vaccine, of which some have reached the state of clinical trials. 

Recently, studies with the candidate vaccine RTS,S in Mozambique have provided the first evidence 

that vaccines can be developed that provide a reasonable degree of protection in infants and small 

children (Sacarlal et al. 2008). Despite considerable progress with the RTS,S vaccine, which currently 

undergoes phase III clinical trials in Africa, its full deployment remains a distant goal (Bojang et al. 

2001, Richie and Saul 2002, Crompton et al. 2010). 

 

Vector control 
 

In the absence of effective treatment and vaccines against various vector-borne diseases, vector 

control remains the most generally effective measure to prevent malaria transmission (WHO 2006b). 

The approach aims to prevent human-vector contact, reduce vector population densities and life 

span of mosquitoes by targeting the larval or adult stages of Anopheles. The current vector control 

strategies include environmental management, larval control, personal protection measures, indoor 

spraying of insecticides and biological control. 

 

Various human activities such as agriculture, irrigation and construction can generate larval breeding 

sites (WHO 1982). Therefore, environmental modification is essential to reduce the burden of 

malaria over a long term. The interventions focus on preventing the creation of vector breeding 

areas, changing natural habitats, or improving human habitation to reduce the abundance of 

mosquitoes while creating minimal adverse environmental and social impacts. This approach is 

mostly applicable in urban and peri-urban areas and its success requires community participation 

and to a greater extent intersectoral collaboration (Mukabana et al. 2006). 

 

The larval control approach can be adequate on the condition that breeding sites can be mapped and 

characterised, especially in urban and peri-urban areas. Therefore, environmental management, 

community participation and suitable chemical and biological control agents are important for larval 

control (Walker and Lynch 2007). Chemical larvicides such as Temephos and aquatain (Bukhari et al. 

2011b) and insect growth regulators such as methoprene are effective in suppressing larval 

populations (WHO 1997). Biological control agents such as the bacteria Bacillus thuringiensis 

israelensis (Bti) and B. sphaericus (Fillinger et al. 2003, Fillinger and Lindsay 2006, Geissbühler et al. 

2009) and entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana (Lacey et al. 

1988, Bukhari et al. 2011a) have been used successfully to control mosquito larvae. In addition, 

predators such as the larvivorous fish Gambusia affinis have been used to control mosquitoes for 

over 100 years (Bay 1967). However, larval control is not extensively used to prevent malaria 

transmission since the process is considered to be labour intensive and contributes less to reduction 

of vectorial capacity (Walker 2002). 

Vector control in Africa is almost exclusively based on indoor application of chemical insecticides in 

the form of insecticide treated bed nets (ITNs) or indoor residual spraying (IRS) of walls and ceilings 

(Maxwell et al. 2002, Lengeler 2004, Mabaso et al. 2004). The use of ITNs is the most promising 

amongst other personal protection measures in reducing malaria morbidity and mortality at 

community and individual levels (Lengeler 2004), and also reduces vector populations (Killeen and 
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Smith 2007). The more effective and desirable long lasting insecticidal nets (LLINs) are widely in use 

and are being adopted to replace the use of ITNs (WHO 2009). In addition, other personal protection 

measures include wearing protective clothing, use of repellents and improved housing. Indoor 

residual spraying (IRS) is the most powerful way to rapidly reduce malaria transmission by reducing 

the survival of malaria vectors entering houses or sleeping units (WHO 2009). 

 

Although ITNs and IRS are considered to be the most effective vector control interventions, their 

sustainable use is undermined by problems of insecticide resistance in mosquito populations. 

Growing concern to these problems has increased interest in the search for alternative approaches 

that rely less on chemicals to be integrated with the existing ones (Zaim and Guillet 2002). Biological 

control with the use of entomopathogens presents an alternative. At present, the principal biological 

control agents that have been successfully used against mosquitoes are predators, particularly fish, 

and the bacterial pathogens Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs) that 

attack the larval stages of the mosquito (Das and Amalraj 1997). Strategies under development 

include bacteria such as Wolbachia spp against adult mosquitoes (McMeniman et al. 2009) and 

entomopathogenic fungi in the genus Metarhizium and Beauveria against larvae and adult vectors 

(Blanford et al. 2005, Scholte et al. 2005, Knols and Thomas 2006, Thomas and Read 2007a). Other 

organisms showing promise include the nematodes Romanomermis culicivorax (Lacey and Lacey 

1990), viruses, parasitic protozoa and plant extracts (Scholte 2004, Howard 2010). Of the biological 

control agents, EPF are most likely to be available for use in integrated vector control programs in 

the near future. 

 

Entomopathogenic fungi 
 
Entomopathogenic fungi (EPF) are common natural enemies of arthropods worldwide. As a result, 

researchers have focused on their biology and ecology for understanding on their potential in host 

population regulation (Roy et al. 2006). Globally, there are over 100,000 species of EPF of which 

about 750 have been recognised as insect pathogens (Hajek and St Leger 1994). These species have 

been classified into eight taxonomic divisions namely Basidiomycota, Zygomycota, Ascomycota 

(formerly Deuteromycota), Glomeromycota, Neocallimastigomycota, Microsporidia, 

Blastocladiomycota and Chytridiomycota based on their morphological and sexual characteristics 

(Vega et al. 2009). Molecular techniques are being employed to re-assess classification to correct for 

possible short-comings encountered with classification based on sexual characteristics (Driver et al. 

2000). Within the group Ascomycota, fungi belonging to Sordariomycetes (Chapter 2) are typically 

opportunistic and have the widest host range. Two of their members Metarhizium anisopliae and 

Beauveria bassiana are the most used for insect pest control. Both species are soil-borne, 

cosmopolitan in distribution, host specific and relatively safe for humans and the environment 

(Roberts and St. Leger 2004, Zimmermann 2007b, a), characteristics that have triggered attention to 

develop them as biopesticides for the control of arthropod pests. Currently, over 150 fungus-based 

pest control products have been developed (de Faria and Wraight 2007) and successfully used for the 

control of spittle bugs in Brazil, forest pests in China (Li et al. 2010b) and locusts in West Africa (De 

Groote et al. 1999) amongst other pests. 

 

Fungal pathogens invade their host through the integument and cause death by production of toxins, 

destruction of vital tissues and depletion of host metabolites (Hajek and St Leger 1994). The infection 

pathway begins by the attachment of the conidium to the insect cuticle (Figure 3). Under humid 

conditions, the conidium germinates and forms an appresorium that penetrates through the insect 

cuticle aided by cuticle-degrading enzymes such as chitinases and proteases (St. Leger 1995). The 

fungus enters the haemocoel by overcoming the host response and immune defence reaction 

through production of toxins (e.g. destruxins for the case of M. anisopliae). The fungus spreads 

within the host by formation of hyphal bodies (blastospores) causing damage to host tissues besides 
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depleting nutrients. Eventually the host dies (Ferron 1978, Gillespie and Claydon 1989). The time 

from infection until death of the host varies depending on the host species, fungal species, fungal 

virulence and environmental conditions. Under humid conditions, fungal hyphae grow out of the 

dead insect and will eventually form new conidia. 

 

Because of their mode of action, the relatively 

slow death of infected target insects, fungal 

pathogens have been criticised for their potential 

to control pests and offer protection to humans 

against insect bites. However, the strategy of 

using fungal pathogens for malaria vector control 

poses some advantages over insecticides on the 

mosquito’s capacity to transmit malaria. Despite 

low virulence, fungi have the potential to kill 

mosquitoes before they can transmit malaria 

parasites (i.e. within 10 days) (Scholte et al. 

2005). Within this period, the females are likely 

to be able to mate and reproduce thus limiting 

risks for evolving resistance in the mosquitoes 

(Knols and Thomas 2006, Thomas and Read 

2007a). Moreover, fungi have demonstrated 

potential to block malaria parasite transmission 

inside the mosquito by preventing the 

development of Plasmodium parasites (Blanford 

et al. 2005). 

 

Despite the challenges facing EPF as biocontrol agents, fungal diseases in insects are common and 

widespread and virtually all insects are susceptible to fungal infections. A direct impact of EPF in 

infected pest or vector populations is the reduction of survival rate, which is a major contribution to 

population suppression (Zimmermann 1993). Indirectly, EPF inflict behavioural changes in the host. A 

comprehensive review on the impact of EPF on insect behaviour is presented in Chapter 2 of this 

thesis. Extensive information exists on behavioural changes in plant pests infected with fungus but 

this is still unexplored in disease vectors, particularly mosquitoes. However, before EPF are fully 

embraced as a potential method of vector control, further research is needed to assess their 

specificity, mode of action, and safety in human and environmental health. Methods of mass 

production procedures and delivery and formulation also need attention (Farenhorst et al. 2008, 

Farenhorst and Knols 2010, Mnyone et al. 2010a). 

 

Problem definition 
 
So far, our understanding of the dynamics of malaria vector populations in sub-Saharan Africa, their 

behaviour and ecology, and how these affect transmission of disease is still marginal (Takken and 

Knols 1999, Ng'habi et al. 2010). Thus, there is a need to exploit the behavioural patterns of malaria 

mosquitoes with respect to mating, host seeking, sugar feeding and oviposition (Figure 4) in order to 

reduce contact with human hosts. Therefore, the goal of my study was to investigate the impact of 

fungal infections on these behaviours. Mating as one of the aspects that characterises mosquito life 

history is least understood and understudied. But as sexual reproduction for population growth is 

dependent on it, this aspect should receive the highest attention when seeking new avenues for 

mosquito control. Mated female An. gambiae mosquitoes seek human hosts for a blood meal to 

complete egg development (Chambers and Klowden 2001). Interrupting mating is therefore likely to 

reduce host-seeking population of An. gambiae females and thereby reduce the chances for malaria 

Figure 3. Mode of action of 

entomopathogenic fungi on contact with the 

arthropod host (Thomas and Read 2007b)  
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parasite transmission. Studies in which female mosquitoes infected with fungi and allowed to mate 

with uninfected males, showed successful horizontal transmission of fungus inoculums between the 

sexes. This may contribute to the spread of fungus within target mosquito populations in the field 

(Scholte et al. 2004a). It is of interest to know if the same occurs by mating infected males with virgin 

females and if fungal infection affects the mating performance of males. 
 
Host-seeking is arguably the most important component of mosquito vectorial capacity (Zwiebel and 

Takken 2004) on which success of the other behaviours depends. Results from a laboratory study in 

which, female mosquitoes three days post-exposure to fungus Metarhizium anisopliae were blood-

fed in small cups revealed that fungal infection reduces (but does not eliminate) feeding propensity 

and fecundity (Scholte et al. 2006). However, it remains unknown whether this is also the case under 

more realistic conditions, where mosquitoes have to locate their blood host from a distance. 

Similarly, little is known to what extent the sugar feeding behaviour of mosquitoes is affected by 

fungal infection. Fungal effects on mosquito activity may lead to a considerable reduction in survival 

rate and reproduction in the vector population, and thus transmission of disease. Overall, a notable 

change in behavioural characters in the mosquitoes due to fungal infection is likely to be significant 

in campaigns aimed for the reduction of malaria infection and transmission. 

 

 

 

 

Justification  
 
Malaria as stated above, poses a heavy burden on societies with high morbidity and mortality 

throughout the tropical world. The transmission rates and risks of the disease can be reduced by 

vector control which at present is exclusively based on chemical insecticides (Alonso et al. 2011, 

WHO 2011). However, development of resistance to chemicals is of great concern for sustainable 

control efforts. Thus, alternative methods for vector control that can be integrated with the existing 

ones are required. Biological control is one such option and studies in the laboratory and under rural 

field conditions in Africa have demonstrated the effectiveness of the entomopathogenic fungus (EPF) 

Metarhizium anisopliae ICIPE-30 against adult An. gambiae mosquitoes (Scholte et al. 2003a, Scholte 

et al. 2003b, Scholte et al. 2005). Fungi are slow killing agents, an attribute that gives them an 

advantage over chemicals in terms of resistance development, and thus impose a reduced risk for 

Female
mosquitoes

Mating Host seeking

Oviposition Sugar Feeding

Reproductive behaviour Feeding Behaviour

Behaviour of malaria mosquitoes

Female
mosquitoes

Mating Host seeking

Oviposition Sugar Feeding

Reproductive behaviour Feeding Behaviour

Behaviour of malaria mosquitoes

Figure 4. Major life-history behaviours of female mosquitoes (Takken and Knols 1999)  
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resistance formation in malaria mosquitoes (Thomas and Read 2007a, Read et al. 2009, Knols et al. 

2010). Additionally, EPF have demonstrated potential against malaria vectors that have developed 

resistance to insecticides (Farenhorst et al. 2009, Howard et al. 2010a, Kikankie et al. 2010) and 

expresses synergistic effects when used in combination with conventional insecticides (Farenhorst et 

al. 2010). Although biological control has reached an advanced development for many insect pest 

species, it is still at its infancy for disease vectors particularly mosquitoes. Under development are 

the mass production procedures and formulation and delivery methods of candidate biocontrol 

agents. However, the behavioural and ecological consequence of fungal infections in mosquitoes, 

that is how the fungus alters their behaviour, ecology and fitness, has not been fully addressed. This 

is important when a large community setting is to be targeted to evaluate the potential public health 

benefits of the fungus control approach. Therefore, the current thesis research aimed to investigate 

the efficacy of M. anisopliae ICIPE 30 on important life-history behaviours of mosquitoes to facilitate 

the further development of malaria vector control based on biological control agent. At later stages, 

the findings may be further incorporated in disease transmission models to gauge their full impact on 

the Entomological Inoculation Rate (EIR), a measure of malaria risk (Hancock et al. 2009). 

 

Objectives of the study 
 

General objective 
 

The principle goal of the study is to provide baseline information on mosquito-fungus interaction, 

focusing on the effects of entomopathogenic fungi (EPF) on the major life-history behaviours of the 

African malaria vector Anopheles gambiae under controlled and semi-natural situations.  

 

Specific objectives 
 

The specific objectives were to 

1. Establish a method that successfully infects mosquitoes with spores of 

entomopathogenic fungi in the laboratory;  

2. Assess the host-seeking response and olfactory discrimination capability of Anopheles 

gambiae mosquitoes on infection with entomopathogenic fungi;  

3. Determine the house entry and the outdoor and the indoor hourly human-biting 

responses of An. gambiae infected with entomopathogenic fungi; 

4. Determine the effects of fungal infection on food uptake and survival of An. gambiae 

mosquitoes fed on plant sugars; 

5. Assess the host-seeking behaviour and fecundity of the malaria mosquito An. gambiae 

on infection with entomopathogenic fungi; 

6. Determine the effects of fungal infection on the mating performance of An. gambiae and 

the probability of horizontal transmission;  

 

The outline of the thesis is as follow: 

In Chapter 2 a review of mosquito-fungus interactions, focusing on behavioural effects of fungal 

pathogens on insects is presented. The review gathered published information on how various insect 

behaviours are affected by infection with EPF and highlighted if the observed behavioural changes 

impose direct effects on the efficacy of EPF as biological control agents.  

 

Chapter 3: Contact between fungal conidia and insects are essential for their infection with EPF. 

Besides, understanding the factors that affect fungal pathogenicity is necessary in developing them 

as microbial control agents. This chapter describes experiments that aimed to identify a standard 
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method of infecting mosquitoes with fungal conidia and establish the conidial formulation, dosage 

and exposure time to enhance pathogenicity.  

 

Chapter 4: Malaria vectors locate their human hosts through olfactory cues. Olfaction enables 

mosquitoes to further differentiate odours from different human individuals. This chapter describes 

experiments conducted to study if fungal infection affects mosquito host-seeking responses.  

 

Chapter 5: The success of malaria vectors in transmitting the disease is influenced by their host-

seeking capability to locate and bite human hosts indoors and outdoors. For malaria control, it is 

essential to interrupt the host-seeking capability and this chapter describes experiments employed to 

test the potency of EPF on the house-entry and the indoor and the outdoor human-biting responses 

of An. gambiae.  

 

Chapter 6: Prior to host-seeking, survival of both sexes of mosquitoes is linked to the plant 

community. Therefore control measures sought for at this stage could target both sexes. This chapter 

describes experiments conducted to study the effects of EPF on feeding capability and survival rates 

of An. gambiae mosquitoes exposed to plant sugars.  

 

Chapter 7: This chapter describes experiments that aimed to examine the effects of fungal infection 

on the host-seeking behaviour, feeding (blood) propensity and the oviposition rate of An. gambiae 

mosquitoes. The behavioural traits are crucial in disease transmission and vector population build-

up.  

 

Chapter 8: Mating behaviour is paramount in enhancing the reproductive success of the mosquito 

population. The activity often occurs prior to host-seeking, and thus its interference would 

substantially suppress mosquito populations. This chapter depicts experiments aimed at examining 

the effects of EPF on the mating performance of male mosquitoes and the likelihood of transferring 

fungal conidia to conspecific healthy females during mating.  

 

Chapter 9: This chapter is the summarizing discussion of the results from the experimental chapters. 

It discusses the implications of behavioural changes observed due to fungal infection and the 

possibility of using EPF for the control of malaria vectors. Suggestions for future work and the 

conclusions of the current research are highlighted. 
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Abstract 
 
Several species of fungi are known to infect and cause mortality in insects. Entomopathogenic fungi 

(EPF) infect the host through the cuticle and proliferate in the haemolymph. Infection depends on 

virulence of the pathogen, susceptibility of the host and environmental factors. The infection process 

can give rise to behavioural changes in the host, which in turn may affect the performance of EPF as 

biological control agents. This paper presents a review of available information on the effects of EPF 

on insect behaviour and discusses the implications for biological control. 
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Introduction  
 
Fungal diseases in insects are common and widespread and can cause spectacular epizootics, 

resulting in the decimation of insect populations. Many entomopathogenic fungal species may 

therefore be considered as an important factor regulating natural insect pest populations (Carruthers 

and Soper 1987, Bidochka et al. 2000). Subsequently, they hold potential as microbial control agents 

of insect pests and disease vectors. The host range of entomopathogenic fungi (EPF) varies between 

species and between isolates of the same species. So far, at least 90 genera and more than 700 

species of EPF have been identified (Roberts and Humber 1981, Hajek and St Leger 1994, Hajek 

1997). Of these, approximately 10 species (Table 1) are currently being utilised for insect control 

(Hajek and St Leger 1994, Bidochka et al. 2000) and more than 170 fungus-based biopesticides have 

been developed and commercially available for pest control, although some of them have been 

withdrawn from the market (de Faria and Wraight 2007).  

 

Entomopathogenic fungal species are distributed in eight phyla namely Basidiomycota, Ascomycota 

(formerly Deuteromycota), Glomeromycota, Zygomycota, Blastocladiomycota, 

Neocallimastigomycota, Chytridiomycota and Microsporidia (Vega et al. 2009). The majority of the  

EPF currently under research either belong to the class Zygomycetes and order Entomopthorales in 

the Zygomycota or the class Sordariomycetes and order Hypocreales in the Ascomycota (Shah and 

Pell 2003, Furlong and Pell 2005, Roy et al. 2006, Keller 2008) and are pathogenic to terrestrial  and 

aquatic insects. The important EPF in the order Hypocreales are Beauveria, Metarhizium, Nomuraea, 

Cordyceps and Lecanicillium and in the order Entomophthorales Entomophthora, Zoophthora, 

Pandora and Entomophaga. Fungi that exclusively attack aquatic insects generally belong to the 

Chytridiomycota (Butt and Goettel 2000).  

 

Entomopathogenic fungi attack their host by direct penetration of the cuticle and do not need to be 

ingested like viruses, bacteria and microsporidia (Gillespie and Claydon 1989, St. Leger 1995). They 

are therefore amenable for control of piercing-sucking insects (Homoptera and Heteroptera) as 

opposed to bacteria, viruses or microsporidia. Moreover, conidia of EPF can be transmitted 

horizontally.  

 

A substantial number of entomopathogenic fungus-based biopesticides have been developed 

worldwide for the control of insect pests and disease vectors (de Faria and Wraight 2007). In addition 

to mortality, the infection by EPF can induce changes in the host which include feeding, reproduction 

potential and survival. For instance, reduction in food consumption, blood meal intake (Moore et al. 

1992, Ekesi and Maniania 2000, Scholte et al. 2006, Ondiaka et al. 2008a), mating performance and 

fecundity (Scholte et al. 2006, Dimbi et al. 2009) has been reported in a number of insects as fungal 

infection develops. Generally, the survival of fungus-infected insects is reduced in case of virulent 

isolate or highly susceptible host (Hajek and St Leger 1994). On the other hand, the survival can be 

longer in case of suboptimal concentration of the inoculum or lack of susceptibility of the host to 

fungal infection (Zimmermann 1993), which may result in compromising the insect’s behaviour. The 

extent to which the behaviour is affected remains elusive. The purpose of this review is therefore to 

assemble available information on the most important EPF that impact behavioural changes in 

insects. These fungi belong to the genera Pandora (Erynia), Entomophaga, Zoophthora, 

Entomophthora, Lecanicillium, Metarhizium and Beauveria (Table 1). We have highlighted the 

behavioural changes caused by these fungal pathogens in various insect species with a summary 

presented in Table 2. The implication of the behavioural changes on the performance of fungal 

pathogens in reducing pest and vector populations is further discussed.  
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1. Zygomycota 
 

Members of this phylum possess a great potential as biological control agents due to their ability to 

cause epizootics, resulting in the natural regulation of insect populations. Intensive studies have 

been carried out with the aim of understanding disease distribution, epidemiology and management 

in crops (Pell et al. 2001). The fungi are obligate pathogens and do not produce toxins for the 

progression of an infection. They exhibit parasitic relationships with their insect hosts through which 

they keep the host alive until all resources are exhausted. Further, they are widely distributed and 

express specificity to the host insects (Roy et al. 2006). Five genera in the order Entomophthorales 

have been reported to trigger behavioural changes in several insect orders. 

 

1.1 Pandora (=Erynia) 

 

Aphids (Homoptera: Aphididae) are insect pests of many crops and important vectors of plant 

diseases. Despite several EPF being effective against aphids, the fungus Erynia neoaphidis 

(Remaudière and Hennebert), re-classified as Pandora (Erynia) neoaphidis (Remaudière and 

Hennebert) Humber, is the most specific to aphids (Baverstock et al. 2005). The fungus causes 

spectacular epizootics in pea aphid Acyrthosiphon pisum (Harris) populations (Dean and Wilding 

1971, Feng et al. 1992, Barta and Cagáň 2006). Infected aphids exhibit modifications in their feeding 

(perching), mating and oviposition behaviours. Jensen et al. (2001) observed that P. neoaphidis-

infected pea aphids crawl to the undersides of alfalfa leaves or move off the plants to the 

surrounding habitat. In contrast, Roy et al. (1999) observed that infected pea aphids settle on the 

upper surfaces of plant leaves and hardly move away from the plant. When the insects drop off the 

plant, they take more time to climb back to the plant. On the other hand, the less mobile wheat 

aphid Sitobion avenae (Fabricius) re-locates and remains stationery in upper sections of the plant 

(Roy et al. 2002). The re-location or further moving off the plant may be a strategy to increase fitness 

of the infected ones and to prevent conspecifics from fungal infections (Jensen et al. 2001, Roy et al. 

2006) or a fungal-induced modification to increase the within-plant dispersal and transmission of the 

fungus. Aphids are highly sensitive to alarm pheromones since these are important for their 

movement away from predators. Aphids infected by P. neoaphidis become less sensitive to alarm 

pheromone or, if they do respond, then the ability to detect the pheromone is reduced (Roy et al. 

1999, Baverstock et al. 2005). In other instances, production of the alarm pheromone is increased in 

P. neoaphidis–infected individuals although they remain less sensitive to alarm pheromone emitted 

by other, healthy, conspecifics (Roy et al. 2005). The modified behaviour associated with response to 

alarm pheromone impacts negatively on reproductive success in aphid populations. Pandora 

neoaphidis has also been reported to reduce the frequency with which the hymenopterous 

parasitoid Aphidius rhopalosiphi (De Stefani-Peres) oviposits in Metopolophium dirhodum infected 

(Walker) nymphs (Brobyn et al. 1988). 

 

1.2 Entomophaga 

 

Entomophaga aulicae (Reichardt in Bail) Batko is considered a complex of species but two species 

namely E. aulicae and E. maimaiga (Hajek et al. 1990, Hajek et al. 1991) are important pathogens of 

many species of Lepidoptera (Hajek and Eastburn 2003). Healthy arctiid caterpillars Chionarctia nivea 

(Ménétriés) forage on the ground and feed on leaves of small herbaceous plants. Similarly, gypsy 

moth Lymantria dispar (Linnaeus) larvae forage both belowground and aboveground depending on 

the larval stage. This foraging behaviour changes whereby E. maimaiga-infected larvae (Hajek 1989, 

Hajek and Soper 1991, Hajek 2001) and E. aulicae-infected caterpillars (Yamazaki et al. 2004) crawl 

up high into grasses, herbs, tree canopies and tree trunks. This is often described as behavioural 

fever response that allows the host to eliminate the fungus by heat therapy from the sun (Karban 

1998). In addition, the response facilitates dispersal and transmission of conidia to other 
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lepidopteran larvae by wind. In larvae of the spruce budworm, Choristoneura fumiferana (Clemens), 

and of the forest tent caterpillar, Malacosoma disstria (Hubner), infection with E. aulicae caused 

reduction in feeding activity during late days of infection (Tyrrell 1990). 

 

1.3 Zoophthora 

 

The species Zoophthora radicans (Brefeld) Batko is widely distributed and arguably pathogenic to 

many insect pests, especially lepidopteran and homopteran species (Wraight et al. 2003). Infection 

by Z. radicans has been reported to induce behavioural changes in some lepidopteran larvae. For 

example, in the diamondback moth, Plutella xylostella (Linnaeus), the sexual attractiveness was 

altered due to a reduction in release of sex pheromones by infected females (Reddy et al. 1998); 

however, feeding capacity was not affected (Furlong et al. 1997). In advanced stages of infection 

(three days after infection), the males completely fail to become attracted to the females and die on 

day four. In this case, reproductive fitness of the insect is compromised although not beneficial to the 

fungus, which requires three to four days to colonise the host (Furlong et al. 1995).  

 

1.4 Entomophthora 

 

The genus Entomophthora primarily infects dipteran insects such as adult mosquitoes (Culicidae); 

midges (Chironomidae); blackflies (Simuliidae); dance flies (Empididae) and others. The fungal 

infections are host specific and are therefore rarely transmitted from one species to another (Brobyn 

and Wilding 1983). When transmission occurs, the infection rate is very low (Steinkraus and Kramer 

1987). The species is highly pathogenic to dung flies and house flies. During the summer months in 

Europe and America large numbers of the housefly, Musca domestica (Linnaeus), the yellow dungfly, 

Scatophaga stercoraria (Linnaeus), and the carrot flies, Psila rosae (Fabricius), generally succumb to 

infection by Entomophthora muscae (Cohn) Fresenius (Mullens et al. 1987). Perching behaviour in 

fungus-infected houseflies is not affected. In dung flies, however, fungus-infected insects climb and 

settle on the downwind side of the upper parts of a plant where they perch abnormally in a highly 

specific manner. In contrast, healthy flies feed on the upper surface of the low canopies (Mullens et 

al. 1987). In this way, healthy flies are susceptible to infection when fungal conidia are dispersed 

from the cadavers of infected insects (Maitland 1994). The sexual behaviour of the infected house 

flies (Moller 1993, Watson and Petersen 1993) and dung flies (Maitland 1994) is not affected but the 

fungus E. muscae enhances its own transmission by causing fungus-killed females to be highly 

attractive sexually to healthy male flies. The attraction in male flies is a function of visual, chemical 

and fungus-induced cues (Moller 1993). Although mating and oviposition behaviours were not 

affected during the early days of infection with E. muscae, during late days of infection, mating 

activity is reduced, fewer females are mated and inseminated, resulting in a reduction of fecundity 

(Watson and Petersen 1993). Oviposition behaviour in carrot flies P. rosae in the early days of 

infection by Entomophthora schizophorae (Keller and Wilding) was not affected but, instead, the 

females relocated and oviposited in elevated positions away from the food plant. In later days of 

infection i.e. 5 days, egg-laying behaviour is similar to that of healthy flies (Eilenberg 1987). House 

flies infected with E. muscae frequent areas with high temperatures that range between 35-42° C in 

the early stages of infection and cooler areas shortly before death. In contrast, healthy flies preferred 

a temperature range between 26-35° C. These behavioural changes are beneficial for the insect to 

combat the infection (Watson et al. 1993, Kalsbeek et al. 2001). Manipulating the reproductive 

capacity can effectively reduce the pest status of insects. 

 

2.0 Ascomycota 
 

Members of the Ascomycota are generally considered to be opportunistic pathogens infecting a wide 

range of insect orders. Host death is often associated with a combination of mechanical damage to 
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internal organs, nutrient depletion and toxin production overwhelming host-defence responses 

(Samuels et al. 1988, Gillespie and Claydon 1989, Shah and Pell 2003, Roy et al. 2006). Unlike 

Zygomycetes, Ascomycetes are characterised by a well-defined parasitic phase within insect hosts 

and saprophytic phases upon death of their host. Three genera in the order Hypocreales assert 

behavioural changes in insects.  

 

2.1 Lecanicillium  

 

The genus Lecanicillium Zare & Gams (formerly the Verticillium species complex) is widely distributed 

and includes species such as L. longisporum and L. muscarium that are pathogenic on a wide range of 

insects (Zare and Gams 2001, Goettel et al. 2008). Besides causing mortality in insect pests, L. 

longisporum induces changes in movement, reproduction and feeding behaviours of the green peach 

aphid Myzus persicae (Sulzer). For instance, reproduction rate and food intake (indicated by a decline 

in honeydew excretion) are reduced in infected aphid. In the early days of infection, movement is 

increased in infected aphids and this contributes to the spread of the fungus to other individuals 

(Roditakis et al. 2008).  

 

2.2 Metarhizium  

 

Metarhizium has a worldwide distribution and is found in every habitat type, from arctic to the 

tropics on insects as well as in the soil (Bidochka et al. 2000, Zimmermann 2007b). Metarhizium 

anisopliae consists of four sub-species (Driver et al. 2000) of which M. anisopliae var. acridum 

(formerly M. flavoviridae) and M. anisopliae (Metschnikoff) Sorokin are most widely used fungus 

throughout the world for control of insect pests. Metarhizium anisopliae occurs on a wide range of 

invertebrate hosts including insects (Boucias and Pendland 1998). For detailed information on the 

taxonomy and mycopesticides of Metarhizium anisopliae see Roberts and St. Leger (2004) and 

Zimmermann (2007b). 

 

2.3 Beauveria 

 

Beauveria like Metarhizium is widely distributed in nature on insects and in soil (Rehner 2005). It has 

been reported on more than 700 species of insects (Goettel et al. 1990, Inglis et al. 2001). Two 

species, B. bassiana (Balsamo) Vuillemin and B. brongniartii (Saccardo) Petch, are commonly used for 

control of insect pests (Zimmermann 2007a) and has been developed as commercial 

mycoinsecticides (Shah and Pell 2003). For detailed information on taxonomy and mycopesticides of 

Beauveria bassiana see Zimmermann (2007a). 

 

Infection by M. anisopliae and B. bassiana results in behavioural changes in the infected host. 

Behavioural fever is a common host response to many pathogens in some insect species that are able 

to regulate and maintain body temperatures to a level that suppresses pathogen growth (Inglis et al. 

1996, Inglis et al. 1997). Infected insects achieve this by basking in the sun to elevate the 

temperature. This behaviour occurs particularly in orthopteran insects such as locusts and 

grasshoppers infected with M. anisopliae (Seyoum et al. 1994, Blanford et al. 1998, Blanford and 

Thomas 2000, Arthurs and Thomas 2001, Blanford and Thomas 2001, Gardner and Thomas 2002, 

Seyoum et al. 2002, Ouedraogo et al. 2003, Ouedraogo et al. 2004). Behavioural responses have also 

been observed in the mosquito Anopheles stephensi (Liston) infected with M. anisopliae or B. 

bassiana (Blanford et al. 2009, Blanford et al. 2011) and in the wasp Cephalonomia tarsalis 

(Ashmead) infected with B. bassiana (Lord 2001). Insects with raised temperature i.e. “developed 

fever” take longer to die than those maintained at temperatures preferred by healthy insects. 

Despite the extended survival, the insect fitness is compromised as these “fever” insects fail to 

reproduce (Elliot et al. 2002).  The process is inevitably not beneficial to the insect. 
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The occurrence of behavioural fever affects other processes such as feeding efficiency, reproductive 

potential and escape from predation. Several studies have reported a reduction in locust feeding 

associated with M. anisopliae infection (Moore et al. 1992, Seyoum et al. 1994, Thomas et al. 1997, 

Arthurs and Thomas 2000, Arthurs and Thomas 2001, Gardner and Thomas 2002, Roy et al. 2006), 

which again is an important behavioural consequence of infection with cumulative benefits in terms 

of overall control. In other insects, M. anisopliae infection reduces food consumption in the pea 

leafminer Liriomyza huidobrensis (Blanchard) (Migiro et al. 2011), thrips Megalurothrips sjostedti 

(Trybom) (Ekesi and Maniania 2000), sweet potato weevil Cylas puncticollis (Boheman) (Ondiaka et 

al. 2008a), cowpea leaf beetle Ootheca mutabilis (Sahlberg) (Ekesi 2001), stemborer Chilo partellus 

(Swinhoe) (Tefera and Pringle 2003), plant bug Lygus lineolaris (Palisot de Beauvois) (Sabbahi et al. 

2008), leaffolder Cnaphalocrosis medinalis (Guenee) (Sivasundaram et al. 2008), plant bug Lygus 

hesperus (Knight) (Noma and Strickler 2000) and blood feeding in anopheline and culicine 

mosquitoes infected by M. anisopliae and or B. bassiana (Blanford et al. 2005, Scholte et al. 2006, 

Howard et al. 2010b, Blanford et al. 2011). An increase in searching behaviour, in the number of eggs 

oviposited and in the reproductive capability of locusts is apparent in the early days of infection and 

that is reduced later as the insects near death (Arthurs and Thomas 2000, Arthurs and Thomas 2001). 

The oviposition has also been reported to decrease in late stages of infection before death in other 

groups of insects infected with M. anisopliae or B. bassiana such as the Asian longhorned beetle 

Anoplophora glabripennis (Motschulsky) (Hajek et al. 2006, Hajek et al. 2008), the fruit fly Ceratitis 

capitata (Wiedemann) (Quesada-Moraga et al. 2006), the mosquito Anopheles gambiae (Giles) 

(Scholte et al. 2006), the plant bug Lygus hesperus (Noma and Strickler 2000), the sweet potato 

weevil Cylas puncticollis (Ondiaka et al. 2008a) and the pea leafminer Liriomyza huidobrensis (Migiro 

et al. 2011) However, mating behaviour is not impaired following infection by M. anisopliae and B. 

bassiana in many insects such as mosquitoes (Scholte et al. 2004a, Garcia-Munguia et al. 2011), fruit 

flies (Toledo et al. 2007, Dimbi et al. 2009, Novelo-Rincon et al. 2009), house flies (Zurek et al. 2002), 

termites (Rath 2000) and beetles (Pedrini et al. 2010).   

 

Discussion 
 

Although many and diverse fungal species infect arthropods, of these the Hypocreales (Ascomycetes) 

and Entomophthorales (Zygomycetes) have a significant impact on insect behaviour. All the major life 

history behaviour of the insects that include feeding and reproduction are strongly affected. 

Furthermore, the interaction between fungi and insects is parasitic whereby the fungi attack the 

insects and the insects respond with a defence against the fungi. 

 

Many Entomophthorales are host-specific and have minimal or no infectivity to non-target 

organisms, which is one of the attributes when being considered for biological control of insect pests. 

The interest is mainly due to their potential  to cause epizootics in nature and also offer opportunity 

for conservation and inoculation biocontrol strategies (Hajek and St Leger 1994). However, one of 

the constraints of using Entomophthorales in inoculation and inoculative strategy is the difficulty to 

mass produce them due to their specific nutritional requirements. Hypocreales, by contrast, have a 

wide range of hosts which may be a concern for the safety of non-target species. However, these 

fungi are considerably easier to mass produce and have a good shelf-life. They represent almost the 

totality of the biopesticides commercially available worldwide (Zimmermann 1993, Zimmermann 

2007b). 

 

Both Entomophthorales and Hypocreales induce behavioural changes in their hosts. Feeding 

behaviour is the most studied behavioural trait because of its direct impact on crop damage and 

disease transmission. The efficacy of a pathogen is generally evaluated in terms of mortality; 

however, feeding behaviour can offset mortality which occurs much later. A reduction in feeding in 

insects infected with Entomophthorales occurs at a later stage of infection than with Hypocreales 
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infections. This delay is fungus-induced to allow the host to feed and grow for as long as possible, 

ensuring maximum growth and reproduction of the pathogens. The reproductive fitness of an 

individual is directly dependent on the number of viable offspring produced, and both the pathogen 

and the host adopt strategies to maximise reproductive output. Therefore, it is not surprising that a 

number of studies report modifications of host-reproductive behaviour ranging from direct effects 

on fecundity to changes in the production of and response to alarm and sex pheromones. Both 

hypocrealean and entomophthorean fungi manipulate the insects by ensuring that infected hosts 

oviposit normally but produce fewer progeny (Blanford and Thomas 2001). Indirectly, fungal 

infection reduces the pest population by allowing insects to produce fewer progeny than the 

uninfected ones. Generally, insects infected with entomophthoralean fungi often climb to the top of 

plants just prior to death (“summit disease syndrome”) where they die firmly clasping the plant. The 

movement is a fungal strategy that ensures that the spores contact potential hosts within and 

beneath the plant canopy. This mode of spore dispersal is uncommon in insects infected with 

hypocrealean fungi. The ability of a pathogen to infect, cycle and disperse is an important factor in 

the development of natural epizootics in insect population. 

 

The behavioural response of insects to fungal infections is mostly advantageous as highlighted in this 

review except in the early stages of infection (often referred to as the incubation period) whereby 

hosts behave normally as their healthy conspecifics. During this period, insects respond to the 

invading pathogen by triggering the immunological defense mechanism. For instance, some infected 

pests climb to high positions on the plant where they are exposed to the sun while grasshoppers and 

locusts migrate and settle in sunlit areas. The aim is to raise their body temperature to a level that 

suppresses disease progression irrespective of fungal virulence. The incubation period is a 

prerequisite in fungal pathogenesis. The pathogen undergoes an infectious process which involves 

attachment of the conidium to the insect cuticle, germination of the conidium on the insect, 

penetration of the cuticle, growth of the fungus in the haemocoel, production of toxins and death of 

the host (Ferron 1978, Hajek and St Leger 1994, Rath 2000, Zimmermann 2007b, a). The process may 

last up to at least three days depending on the host species, fungal species, conidial virulence, fungal 

dose, exposure time, application method and environmental conditions before it becomes infectious 

(Gillespie and Claydon 1989, Hajek and St Leger 1994, Inglis et al. 2001, Furlong and Pell 2005). In the 

advanced stages of infection, however, behaviours are altered and the insects eventually succumb to 

death when the fungus overwhelms the host defense.  

 

Although the interaction between the fungal pathogen and its insect host may seem complicated, it 

is perceived as parasitic in favour of the fungus. Behavioural alterations in the equation are often 

ignored even though they affect parameters essential to pathogen and host evolution such as 

transmission and longevity (Moore et al. 1992). It is predicted that generalist pathogens 

(Hypocreales) interact more diffusely whereas specialist pathogens (Entomophthorales) engage in a 

tight process of coevolution. Changes in host behaviour reflect these diverse relationships and 

enable us to begin to address whether these are pathogen-induced, host-mediated, or incidental 

(Roy et al. 2006). Entomophthorales appear to modify the behaviour of their hosts purposely to 

increase their transmission and thus fitness. This has been exemplified by studies on the response 

and production of alarm pheromones by P. neoaphidis-infected aphids (Roy et al. 1999). Therefore, 

understanding the biology of EPF (Bidochka et al. 2000) and their interaction with hosts from a 

behavioural perspective is more practical to the development of novel strategies for increasing 

pathogen transmission within agroecosystems (Roy et al. 2005). This will support other interventions 

that have focused more on ways that suppress pest populations by reducing their survival or 

longevity (Nadeau et al. 1994, Nielsen and Hajek 2005, Vu et al. 2007, Goettel et al. 2008). 

Furthermore, mechanisms and consequences of insect-behavioural modifications would facilitate 

more accurate predictions of the pest population dynamics and consequently allow researchers to 

make better use of fungi as biological control agents (Butt et al. 2001, Deacon 2006). 
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In summary, among the many EPF, the genera of Beauveria and Metarhizium strongly manipulate the 

behaviour of their hosts and have strong potential for the control of insect pests. Manipulation of the 

insect behaviour aids their fitness, transmission and dispersal in insect populations. Knowledge on 

alteration of the various insect behaviours may be an opportunity to exploit other infection pathways 

such as autodissemination besides insects coming directly into contact with fungal spores. This 

review underpins the behavioural effects of fungal infection to be elusive in insect vectors compared 

to the vast influence in pest insects. Therefore, understanding the role of fungal pathogens on the 

behaviour of insect vectors particularly mosquitoes is critical (this thesis) if their full potential as 

biocontrol agents is to be realised. 

 

Finally, the safety of these fungal pathogens towards humans, the environment and non-target 

organisms is an important criterion for consideration. Existing research however suggests that, there 

are minimal effects of EPF on non-target species, and they offer a safer alternative for use in 

Integrated Pest Management than chemical insecticides (Goettel and Hajek 2001, Thungrabeab and 

Tongma 2007, Zimmermann 2007a, Zimmermann 2007b). To affirm this, continued research on 

impact of EPF on non-targets is recommended.  
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Abstract 
 

Mosquitoes are highly susceptible to entomopathogenic fungi (EPF). As a tool for rapid assessment of 

fungal virulence as well as fungal delivery, we developed a new tool that can be used to infect 

mosquitoes with EPF in the laboratory. It consists of a transparent plastic cylinder of 9-cm diameter 

and 15-cm height. Four experiments were conducted to (i) establish preferred resting sites of the 

malaria mosquito Anopheles gambiae inside the cylinder; (ii) evaluate the effect of texture surface 

and colour on mosquito landing; (iii) determine the effective dosage and exposure time and (iv) 

compare the efficiency of the cylinder with clay pots and paper sheets that were treated with fungus 

using a K-bar coating machine. Mosquitoes showed no preference for a particular spot inside an 

empty cylinder or when lined with paper of varying texture and colour. Therefore, to allow optimal 

infection of adult An. gambiae mosquitoes with fungal spores, all paper surfaces were treated with 

fungal inoculum. Rough textured papers were more preferred to smooth-textured papers and so 

were black papers to white ones. Mosquitoes became infected and expressed high mortalities after 

exposure to fungal spore-treated paper. There was no effect of dose (0.1, 0.2 and 0.3 g) or exposure 

time (2, 4, 6 and 8 hr) on infection rate and survival of mosquitoes. Thus, each of the spore 

concentrations and exposure times were sufficient to effect inoculation. With an oil-suspension of 

spores that were spread on paper using a K-bar coating machine, a concentration of 10
12

 conidia/m
2
 

was more effective compared to 10
10

 conidia/m
2
 but not different from 10

11 
conidia/m

2
 (P=0.05). 

Infection rates of mosquitoes with fungal spores through exposure to a clay pot were not different 

from that observed with the K-bar coating machine or the plastic cylinder (P = 0.05). Because of its 

simple use and low cost, the plastic cylinder was recommended as the standard method for infection 

of mosquitoes with spores of M. anisopliae in the laboratory. 
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Introduction 
 

The search for alternative methods to control malaria is intensifying with increasing insecticide-

resistance in the malaria vectors. Entomopathogenic fungi (EPF) in the genera Beauveria and 

Metarhizium are primarily known for their potency against agricultural pests (Zimmermann 1993). 

Laboratory and field studies have demonstrated that Beauveria bassiana and Metarhizium anisopliae 

are pathogenic to larval and adult stages of the malaria mosquitoes (Lacey et al. 1988, Scholte et al. 

2003a, Blanford et al. 2005, Scholte et al. 2005, Bukhari et al. 2011a). Furthermore, EPF is effective 

against malaria vectors that have developed resistance to insecticides (Farenhorst et al. 2009, 

Howard et al. 2010a, Kikankie et al. 2010) and express synergistic effects when used in combination 

with conventional insecticides (Farenhorst et al. 2010). Unlike resistance to insecticides which 

appears in the main insect disease vectors from every genus (Brogdon and McAllister 1998), the 

specific features of fungal infection such as slow-speed of kill, parasite transmission blocking and 

host behavioural changes, provide opportunities to minimize the risk of resistance evolution (Thomas 

and Read 2007a). 

 

Since EPF have proven to infect, kill and reduce the survival of mosquitoes, an understanding of 

factors that affect their pathogenicity is critical to developing them as microbial control agents. Such 

factors include conidial viability, virulence, persistence, formulation and dosage. Viability of a fungal 

pathogen is affected by spore quality, formulation, application method, substrate and prevailing 

environmental conditions (Moore et al. 1995, Darbro and Thomas 2009). Spores can be viable but 

not virulent hence virulence is the capability of a fungus to cause disease in the infected organism. 

Persistence describes the length of time conidia remain viable after application. Thus, it dictates 

effectiveness of entomopathogens in field situations where it is greatly affected by ultra violet light, 

temperature and relative humidity (Ignoffo 1992). Entomopathogenic fungi can be applied as dry 

spores or wet spores formulated in oil or other solvents as a carrier (Lacey et al. 1988, Kannan et al. 

2008, Howard et al. 2011). Dose is expressed as the quantity of spores sufficient to effect high 

mortality rates in the infected population in the shortest time possible. With EPF such high mortality 

has been reported between 3 -7 d post-exposure (Shah and Pell 2003, Schrank and Vainstein 2010). 

 

The interaction between the insects and the EPF influences the outcome of the association. For 

instance, infection is effected when the malaria vectors come into contact with fungal spores 

(Chapter 1). Moreover, a successful infection rate depends on the behaviour of mosquitoes at the 

time of exposure to fungal spores; the fungal delivery tools used such as the texture and colour of 

the fungus-treated surface and the exposure time during which mosquitoes can pick up fungal 

conidia. Host-seeking and resting mosquitoes are the main targets for infection. Both behaviours of 

the Afrotropical malaria mosquito Anopheles gambiae Giles are expressed inside human dwellings 

(Rishikesh et al. 1985, Day 2005, Riehle et al. 2011). The preference of An. gambiae to frequent 

human habitats has contributed to the success of mosquito control with insecticides through indoor 

residual spraying and use of insecticide treated nets (Pates and Curtis 2005). Such an approach can 

be adopted and modified for other intervention tools as with EPF. Host-seeking mosquitoes are 

characterised with short-contact with surfaces prior to reaching the human host for a blood meal as 

opposed to long-contact in the resting population. Resting behaviour is dominant in blood-fed 

females compared to un-fed females as they invest time of up to 24 hr for digestion of the blood-

meal and egg development. With these differences, exposure time becomes a prerequisite to ensure 

that the vectors pick up spores on the treated surfaces they come in contact with. Establishing 

exposure time will also guide in developing realistic field dissemination tools having pre-defined 

whether the intervention targets the host-seeking or resting population, or both (Mnyone et al. 

2009b). 
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Different application methods have been used to infect mosquitoes with EPF in the laboratory and in 

the field (Howard et al. 2010a). The texture and colour of the substrates are important as they 

influence the landing choice of mosquitoes. Choice for texture surface (roughness) is mediated by 

tactile stimuli whereas visual stimuli dictate the choice for colour (O'Gower 1963). Research 

conducted to investigate the effect of texture and colour of the substrate colonized by stream 

invertebrates showed a preference for rough textured over smooth textured with no colour 

preference between white and dark-brown substrates (Clifford et al. 1989). In anopheline 

mosquitoes, only An. gambiae spp. show a preference for rough textured surfaces over smooth 

surfaced ones (Hansell 1970). A similar preference is expressed by Aedes aegypti L. where rough 

surfaces were selected for oviposition in favour of the smooth surfaces (O'Gower 1963, Wilton 1968). 

With colour, An. gambiae are attracted to dark areas inside human dwellings and when provided 

with cloth or fabric of various shades of colour preferred white, yellow, black and green in that order 

(Mutinga et al. 1995). Generally, researchers have given little attention to studies that involve 

texture surface and colour.  

 

Although delivery strategy, formulations and dose of EPF have been widely studied and prescribed, 

none has been singled out as the standard for infecting mosquitoes with fungal pathogens in the 

laboratory, in semi-field and field situations. Therefore, the present study aimed to establish a 

method that successfully infects mosquitoes with spores of M. anisopliae in the laboratory. The 

specific objectives were to (i) determine the preferred An. gambiae resting sites inside a transparent 

plastic cylinder when empty and when lined with paper substrates that varied in texture and colour 

(ii) determine exposure time sufficient for mosquitoes to pick up fungal spores and become infected, 

(iii) determine the dose that causes optimal infection rate and (iv) compare infection methodologies 

i.e. clay pots and a K-bar coating machine to a transparent plastic cylinder.  

 

Materials and Methods 
 
Mosquitoes 

 

Experiments were carried out using laboratory-reared female mosquitoes obtained from a colony of 

Anopheles gambiae Giles sensu stricto (hereafter termed An. gambiae) established from wild gravid 

females collected in Mbita Point (000 25'S, 340 13'E), western Kenya in 1999 (Menge et al. 2005). All 

mosquito life stages were maintained under ambient conditions in the mosquito insectary at the 

Thomas Odhiambo Campus (TOC), Mbita Point of the International Centre of Insect Physiology and 

Ecology (icipe). Larval and adult stages of the mosquitoes were raised using rearing procedures 

described by Olanga et al. (2010). All the experiments were conducted using 3-5 d-old adult females 

that had not received a blood meal. 

 

Fungal isolate 

 

The entomopathogenic fungus Metarhizium anisopliae isolate ICIPE 30 was used in the study. The 

isolate has been described earlier as virulent in infecting anopheline mosquitoes (Scholte et al. 

2003b). The fungus was originally isolated from the stem borer Busseola fusca in Kendu Bay, western 

Kenya in 1999 (courtesy Dr. N.K. Maniania) and has been maintained at the icipe’s Germplasm 

Centre. Conidia were produced on long rice as substrate following the technique described by 

Maniania (1998). Harvested spores were dried for 48 h in a desiccator containing active silica gel and 

stored in a refrigerator (4-6°C) until required.  The viability of conidia was determined using the 

technique described by Goettel and Inglis (1997) before being used in the experiments. Germination 

rates >85% after 24 h on Sabouraud dextrose agar was considered adequate for use in the 

experiments. 
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Fungus delivery tools 

 

In most African homes, clay pots (Figure 1) are used for storage of drinking water because of their 

cooling effect. When turned side-way, its shape keeps the inside dark and this has been capitalised 

on for use as sampling tool for outdoor resting mosquito populations (Odiere et al. 2007). Further, it 

is used as delivery tool to infect mosquitoes with spores of EPF under laboratory conditions 

(Farenhorst et al. 2008). The K-bar coating machine and spreader (Figure 3) has been tested and it 

enhances an even distribution of oil formulated spores on an infecting paper substrate (Farenhorst 

and Knols 2010). The transparent plastic cylinder (Figure 2) is more portable than clay pots and more 

readily available than a K-bar coating machine but its efficiency as an infecting tool has not been 

established. 

 

 

 

 

 

 

Paper substrates 

 

Three paper substrates i.e. (i) white smooth paper (ii) white rough paper and (iii) black smooth paper 

were used. Black rough paper was excluded because it was not available. The white smooth paper 

was a special A4 glossy paper that is commonly used in the paint industry. It is an effective substrate 

in infecting mosquitoes with EPF (Farenhorst and Knols 2010). The white rough paper was 

represented by the “velvex all purpose towels” commonly used as kitchen product. The paper is 

strong and rough in texture. These properties make the paper fit firmly inside a transparent plastic 

cylinder (Figure 2) and also hold dry spores firmly after spreading. Standard A4 printing paper with 

both surfaces painted black using a photocopying machine was used as black smooth paper. In all the 

experiments using the three paper substrates separately, the inner and the base surfaces of each 

cylinder was lined with paper that measured 28.6 × 14.3 cm and 9 cm in diameter respectively. 

 

Determine the preferred resting sites of An. gambiae inside a transparent plastic cylinder 

 

In this experiment, two equidistantly spaced lines were drawn on the outside surface of a plastic 

cylinder (Figure 2) using a pencil so as to demarcate it into upper, middle and lower sections. By 

observing the inner surface of the cylinder, these lines were only visible when the cylinder was 

empty. Therefore, two lines were also drawn on each paper used to divide it into three equal parts 

prior to being lined inside the cylinder. A piece of mosquito netting was secured over the mouth of 

the cylinder using a rubber band and a small hole punched at the centre of the net to serve as an 

entry/exit point for the mosquitoes. Four tests were conducted when the cylinder i) was not lined 

with any paper and when lined with; ii) white smooth paper, iii) white rough paper and iv) black 

smooth paper, respectively. The experiment aimed to establish the effect of the texture and the 

Figure 1. Clay pot: width of the 
opening 24cm; maximum width 
39cm  

Figure 2. Transparent plastic 
cylinder: diameter 9 cm; height 15cm  

Figure 3. K-bar coating machine and 
a spreader (Farenhorst and Knols 
2010)  
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colour of paper substrate on the choice of mosquitoes to land on the upper, the middle or the lower 

section of the cylinder upon release. In each test, three hundred 4 d-old female mosquitoes were 

assessed each day for two days. To investigate whether time of day had any influence on resting site 

selection, the 300 mosquitoes used in each of the four tests per day were evaluated at different time 

periods. One group comprising of 150 mosquitoes was assessed between 10:00-12:00 hr and the 

other group of 150 mosquitoes between 15:00-17:00hr. During the assessment in each group, a 

single mosquito was released inside the cylinder using a mouth aspirator; the time taken from 

release to landing inside the cylinder and the cylinder section where the mosquito landed were 

recorded. The mosquito was then aspirated out of the cylinder and a second one introduced to 

record similar data as with the first mosquito. This procedure was repeated until all the 150 

mosquitoes were evaluated. The experiments were carried out in the laboratory at icipe’s Thomas 

Odhiambo Campus, Mbita, under ambient conditions with no modifications to shun the light sources. 

Normal lighting was essential so as to observe with ease the mosquito landing behaviour inside the 

cylinder especially when the cylinder was lined with a black smooth paper. 

 

Determine the optimal method for mass infection of An. gambiae with M. anisopliae   

 
(i) Infecting An. gambiae with dry conidia inside transparent plastic cylinders 

 

Five transparent plastic cylinders (Figure 2) were used in the experiment and consisted of the 

following treatments: i) cylinder not lined with paper ii) cylinder lined with white smooth paper; iii) 

cylinder lined with white rough paper; iv) cylinder lined with black smooth paper and v) untreated 

control. Each cylinder was held in a slanting position and 0.1g (approx. 1.0 × 10
11

 conidia/m
2
) of M. 

anisopliae spores was weighed and poured on the paper. Sixty 3-5 d old female mosquitoes were 

introduced in each cylinder. Control mosquitoes were released in the cylinder free of fungal spores. 

Mosquitoes were held in the cylinders for 6 hr and were then transferred into separate holding cages 

(30 × 30 × 30 cm). They were provided with 6% glucose solution on paper wick. The insects were 

maintained at 28 ± 2˚C and 70 ± 5% r.h. Mortality was recorded daily and dead individuals were 

placed in a Petri-dish lined with wet filter paper and incubated at 28 ± 2˚C. Cadavers were inspected 

for fungal growth after three or more days using a compound microscope at 400× magnification. The 

experiment was replicated four times over several days. Another set of experiments was carried out, 

whereby 0.2 g (approx. 2.0 × 10
11

 conidia/m
2
) and 0.3 g (approx. 3.0 × 10

11
 conidia/m

2
) of M. 

anisopliae spores were applied following the procedure described above. Following the results, one 

of the concentrations and one of the paper surfaces was selected for further studies, e.g. survival 

rates of An. gambiae 2, 4, 6 and 8 hr after exposure to M. anisopliae. The experimental procedure for 

infection remained the same as described earlier. 

 

(ii) Infecting An. gambiae with conidia of M. anisopliae formulated in oil inside transparent plastic 

cylinders  

 

A mixture of 0.5 g spores and 25 ml of Shellsol T oil was prepared as stock solution and the spore 

concentration quantified using a bright line haemocytometer. The stock was diluted to 

concentrations of 10
10

, 10
11

 and 10
12 

conidia/m
2
. One ml of the formulation was drawn from each 

concentration using a pipette and released on three white smooth papers. A K-bar hand coating 

machine and a spreader (Figure 3) were used to spread the formulations evenly on the papers. In the 

control group the paper was spread with one ml of Shellsol T oil only. The coated papers were 

allowed to dry for 6 hr and later fitted in each of the four transparent cylinders. Sixty 3-5 d old female 

mosquitoes were then introduced in each cylinder and held for 6 hr after which they were 

transferred into separate holding cages (30 × 30 × 30 cm). The mosquitoes were then supplied with a 

6% glucose solution on paper wick and maintained at 28 ± 2˚C and 80 ± 5% r.h. Mortality was 

recorded daily and dead individuals were placed in a Petri-dish lined with wet filter paper to confirm 
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growth of fungus on the insect after three days. The experiment was replicated four times over time. 

The concentration that resulted in a high infection rate was selected for further study, i.e. 

comparison of the efficacy of infection methods. 

 

(iii) Infecting An. gambiae with M. anisopliae in clay pots and in transparent plastic cylinders 

 
The experiment aimed at comparing the efficacy of infecting mosquitoes with fungal conidia through 

a clay pot (Figure 1) and a transparent plastic cylinder. Three transparent plastic cylinders and one 

clay pot were used and consisted of the following treatments: i) cylinder not lined with paper and 

without fungus; ii) cylinder lined with white rough paper spread with 0.1 g (approx. 1.0 × 10
11

 

conidia/m
2
) of conidia; iii) cylinder lined with white smooth paper coated with 10

12 
conidia/m

2 
and iv) 

clay pot covered with 2 g (approx. 2.0 × 10
12

 conidia/m
2
) of conidia. The procedure followed to 

spread dry spores and coat the conidia formulated in oil remained as described in i) and ii) above. 

Fifty 3-5 d old female mosquitoes were introduced in each of the three cylinders; and 100 females in 

the clay pot then held for 6 hr. Cylinders and clay pot were covered with mosquito netting. After 

fungal exposure, the mosquitoes i.e. 50 females from each treatment were transferred into separate 

holding cages (30 × 30 × 30 cm), provided with 6% glucose and maintained at 28 ± 2˚C and 80 ± 5% 

r.h.. Mortality was recorded daily and dead individuals were placed in a Petri-dish lined with wet 

filter paper to confirm growth of fungus on the insect after three days. The experiment was 

replicated four times over time. 

 

Statistical analysis 

 

Data on resting sites of An. gambiae were scored between 10:00-12:00 hr and 15:00-17:00 hr and 

were calculated separately by expressing the number of mosquitoes that landed on each cylinder 

part as a percentage of the total number released. The chi-square (χ
2
) test (Preacher 2001) was 

applied using actual scores to establish if time of day had an effect on resting site preference. 

Mosquitoes that landed within a minute in each section of the cylinder were expressed as a 

percentage of the total collections in each section. Since time of day had no great impact on 

mosquito landing preference, collections in the two time-periods were pooled. Further, the numbers 

that landed on each cylinder section were then expressed as a percentage of the total released. The 

percent values were subjected to analysis of variance using PROC GLM procedure of SAS (2003). The 

Student-Newman-Keul’s (SNK) test at (P = 0.05) was used to separate the means as a post-ANOVA 

procedure. Dose response and efficiency of infection methods were calculated by expressing the 

numbers of mosquitoes killed by fungal infection as a percentage of total mosquitoes exposed to 

fungus. Percentage mortality data were arcsine-transformed (Gomez and Gomez 1984) to normalize 

the data after correcting for natural mortality (Abbott 1925). Angular values were then subjected to 

analysis of variance using the ANOVA procedure of SAS (2003) where means were separated by SNK 

test at (P = 0.05). Repeated measures logistic regression was used to estimate the lethal time to 50% 

(LT50) values. LT50 values were determined for each replicate and compared among themselves using 

ANOVA followed by mean separation by SNK. Chi-square (χ
2
) test was further used to estimate dose 

effect relative to paper types. For survival of mosquitoes after time of exposure to fungal spores was 

varied, difference in survival between the control and M. anisopliae-infected groups were estimated 

using Cox regression analysis in SPSS. Mortality rates, given as Hazard Ratios (HR) estimate risk of 

dying when infected compared to when not infected with fungus. All analyses were conducted using 

SAS (version 9.1) or SPSS (version 17.0) 

 

Results 
 

Preferred resting sites of An. gambiae inside a transparent plastic cylinder  
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With all paper surfaces, the numbers of mosquitoes that landed on the cover net, upper, middle or 

lower sections of the cylinder between 10:00-12:00 hr were not significantly different from those 

that landed between 15:00-17:00 hr, except with white smooth paper in middle section (P = 0.002) 

and white rough paper in the lower section (P = 0.047). Therefore, the data were pooled (Table 1) to 

interpret the effect of paper texture and colour on mosquito resting site preference inside the 

cylinder. Analysis showed that An. gambiae females significantly preferred to settle on the cover net 

and on the upper section of the cylinder when the cylinder was without paper (F = 18.1, df = 3, P = 

0.0004) and when lined with a white smooth paper (F = 12.3, df = 3, P = 0.0016).  In both situations, 

fewer mosquitoes landed in the middle section of the cylinder (Table 1). With white rough paper (F = 

10.7, df = 3, P = 0.0025) and black smooth paper (F = 40.7, df = 3, P < 0.0001) inside the cylinder, the 

distribution shifted with more mosquitoes landing in the upper and lower sections. More mosquitoes 

in middle section and fewer on the cover net were observed compared to when there was no paper 

inside the cylinder or when lined with white smooth paper. Generally, more mosquitoes landed on 

the upper section of the cylinder in all the treatments. Further, the choice of mosquitoes to rest on 

the cover net was reduced with black smooth paper inside the cylinder; but increased in the middle 

section compared to other paper surfaces (Table 1). However, irrespective of the different paper 

texture and colour mosquitoes were exposed to, their choice to land in all of the four resting sections 

was evident but with variation in numbers. Also, of the mosquitoes that landed in each cylinder 

section, ≥ 80% (not shown) landed within a minute after introduction into the cylinder. 

 

 
Table 1. Mean (± S.E) percentage of female An. gambiae mosquitoes resting on different sections inside a transparent 

plastic cylinder. N is the number of replicates, and n the total number of mosquitoes used per treatment.  

 

Optimal method for mass infection of An. gambiae with M. anisopliae  

 

(i) Infection of An. gambiae with dry conidia inside transparent plastic cylinders 

 

The mortality of spore-treated mosquitoes 6 d post-exposure was significantly different from the 

control with all spore concentrations (0.1 g (F = 11.1, df = 4, P = 0.0005), 0.2 g (F = 115.3, df = 4, P < 

0.0001) and 0.3 g (F = 53.9, df = 4, P < 0.0001)). However, the difference was not significant between 

the types of paper surfaces used to infect mosquitoes in each of the spore concentrations (Table 2).  

 

Similarly, the lethal time to 50 percent mortality (LT50) was not significant between the types of 

paper surfaces in each concentration but significant when 0.1 g (F = 8.7, df = 4, P < 0.0015), 0.2 g (F = 

17.0, df = 4, P < 0.0001) and 0.3 g (F = 50.8, df = 4, P < 0.0001) were compared to that of the control. 

Cylinder (treatment) 

  
N n 

Distribution (%) of resting mosquitoes over the cylinder 

 Cover net Upper section Middle section Lower section 

No paper 4 600 32.0 ± 3.6
ab

 35.3 ± 3.0
a
 7.3 ± 0.6

c
 25.3 ± 2.0

b
 

White smooth paper 4 600 34.7 ± 6.2
a
 41.0 ± 0.8

a
 6.3 ± 1.9

b
 18.0± 4.3

b
 

White rough paper 4 600 16.0 ± 3.6
b
 33.0 ± 1.9

a
 17.2 ± 1.8

b
 33.8± 1.9

a
 

Black smooth paper 4 600 4.5 ± 1.5
c
 47.2 ± 2.9

a
 23.7 ± 2.1

b
 24.7 ± 2.8

b
 

Means followed by the same letters within rows are not significantly different by Student-Newman-Keuls (SNK) test at P = 

0.05  
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Mortality between spore concentrations on the same type of paper was compared using the chi-

square (χ
2
) test. Significantly, increase in spore concentration did not increase mortality rate when 

the cylinder was not lined with paper (χ
2 

= 5.59, df = 2, P = 0.06) or when lined with white smooth 

paper (χ
2 

= 4.13, df = 2, P = 0.13); white rough paper (χ
2 

= 5.64, df = 2, P = 0.06) and black smooth 

paper (χ
2 

= 4.17, df = 2, P = 0.13). Similarly, the difference between the three controls was not 

significant (χ
2 

= 3.84, df = 2, P = 0.15). Based on these results, white rough paper and fungal 

concentration of 0.1 g were selected for assessment of the survival rate. Moreover, viability of 

conidia used in each spore concentration varied and ranged from 69 - 86%. This range correlated 

with the rate of infection in infected insects that was between 55.2 - 87.4% at all concentrations 

(Table 2). 

 

 
Table 2. Effects of surface type and spore concentration on mortality of An. gambiae mosquitoes infected with spores of M. 

anisopliae. Fungal infection rate, percent mortality and LT50 values 6 days post-treatment are shown. n (in parentheses) is 

the number of mosquitoes infected. Spore viability ranged from 69-86%.  

 

 
 

Means followed by same letters within column are not statistically different by Student-Newman-Keuls (SNK) test at P = 

0.05 

 

 

The survival of An. gambiae exposed to dry spores of M. anisopliae for 2, 4, 6 and 8 hr was 

significantly reduced with 100% mortality observed after five days compared to > 14 days in 

uninfected mosquitoes (Figure 4). Furthermore, survival of infected mosquitoes in each exposure 

time was significantly different from its own control. For instance, the daily risk of death was two-

Spore 
concentration 
(grams) 

Surface type Percentage of 
infection (n) 

% mortality (± S.E) LT50  (d) (95% Fiducial 
limits) 

0.0 No paper 0 31.2 ± 7.5
b
 9.6 (8.3-11.6)

a
 

0.1 No paper 55.2 (117) 84.3 ± 2.9
a
 2.0 (1.8-2.1)

b
 

0.1 White smooth paper 61.8 (126) 82.9 ± 6.9
a
 3.2 (3.1-3.3)

b
 

0.1 White rough paper 63.7 (120) 87.4 ± 10.0
a
 3.9 (3.8-4.0)

b
 

0.1 Black smooth paper 56.6 (100) 81.8 ± 7.4
a
 3.6 (3.5-3.7)

b
 

0.0 No paper 0 26.7 ± 3.0
b
 8.6 (7.8-9.9)

a
 

0.2 No paper 84.6 (186) 88.7 ± 1.5
a
 2.8 (2.7-2.9)

b
 

0.2 White smooth paper 80.6 (179) 89.8 ± 1.9
a
 2.7 (2.6-2.8)

b
 

0.2 White rough paper 87.4 (201) 93.3 ± 2.7
a
 3.0 (2.9-3.1)

b
 

0.2 Black smooth paper 86.0 (190) 89.6 ± 2.9
a
 3.2 (3.1-3.3)

b
 

0.0 No paper 0 23.3 ± 0.7
b
 11.2 (9.4-14.2)

a
 

0.3 No paper 70.9 (125) 79.8 ± 5.9
a
 3.0 (2.9-3.1)

b
 

0.3 White smooth paper 72.5 (134) 82.3 ± 4.9
a
 3.0 (2.9-3.1)

b
 

0.3 White rough paper 77.8 (152) 84.4 ± 5.3
a
 3.2 (3.1-3.3)

b
 

0.3 Black smooth paper 71.9 (142) 82.7 ± 5.3
a
 3.2 (3.1-3.3)

b
 



51 

Infecting An. gambiae with M. anisopliae in the laboratory 

C
h

ap
ter 3

 

fold greater in mosquitoes exposed for 2 hr (HR = 2.1 [95% Cl= 1.61 - 2.79], P = 0.0001), three fold 

greater with 4 hr exposure (HR = 3.1 [95% Cl= 2.30 - 4.22], P = 0.0001 ), close to three-fold greater 

with 6 hr exposure (HR = 2.8 [95% Cl= 2.05 - 3.69], P = 0.0001) and slightly more than three-fold 

greater with 8 hr exposure (HR = 3.4 [95% Cl= 2.42 - 4.74], P = 0.0001) relative to their controls. Since 

there was no difference between the four controls (HR = 1.0 [95% Cl= 0.91 - 1.08], P = 0.874), the 

data were pooled for a common control. The daily risk (HR
1
) of death in each of the four exposure 

time was greater compared to control (Table 3). The difference between treatments was significant 

between 8 hr and 2 hr exposure but not between 8 hr and 4 or 6 hr exposures (HR
2
). 

 

 

 

(ii) Infection of An. gambiae with conidia formulated in oil inside transparent plastic cylinders  

 

At 10 d post-treatment, the mortality at all spore concentrations was significantly higher (F = 14.4, df 

= 3, P < 0.001) compared to that of the control mosquitoes. In addition, the highest concentration 

(10
12

) caused a significantly higher mortality compared to the lowest concentration (10
10

) tested. 

Similarly, the LT50 value in the control was significantly (F = 12.3, df = 3, P < 0.002) longer compared 
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Figure 4. Survival of adult female An. gambiae mosquitoes exposed to 0.1 g of M. anisopliae for 2, 4, 6 and 8 hr, 

respectively. Conidia were spread inside transparent plastic cylinders lined with white rough paper. Uninfected and M. 

anisopliae-infected mosquito groups are depicted with open and shaded squares, respectively.  
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to that of the fungal concentrations. Moreover, LT50 was highly significant between the lowest (10
10

) 

and the highest concentrations (10
12

) (Table 4). Viability of the spores used was 69% and this resulted 

in infection rates of 58.7 - 70.5% in mycosed mosquitoes. 

 

 
Table 3. Hazard ratios (HR) plus 95% confidence level (Cl) of An. gambiae mosquitoes exposed to M. anisopliae at different 

exposure times. HR
1 

compares daily risk of death in controls to that in each exposure time. HR
2 

compares the risk of death 

between the 8 hr exposure time to other exposure hrs plus the control. 

 

 
 
 
Table 4. Mortality of An. gambiae mosquitoes exposed to different concentrations of oil formulated M. anisopliae spores 

10 days post-treatment. Conidia were applied on the infecting surface using a K-bar coating machine. n (in parentheses) is 

the number of mosquitoes infected. Spore viability was ≥ 70%. 

 

 
 

Means followed by same letters within column are not statistically different by Student-Newman-Keuls (SNK) test at P = 

0.05 

 

 

 

(iii) Infection of An. gambiae with M. anisopliae in clay pots and in transparent plastic cylinders 

 

There was no significant difference in mortality and LT50 values between treatments when 

mosquitoes were infected with dry conidia in clay pots and transparent plastic cylinders, and 

transparent plastic cylinders treated with spores formulated in oil (Table 5). However, all fungal 

treatments were significant (mortality: F = 22.1, df = 3, P = 0.002 and LT50: F = 6.6, df = 3, P = 0.001) 

compared to control mosquitoes 9 d post-treatment. The surface area (approx. 552 cm
2
) of the 

Spore concentration 
(conidia/m2) 

Percentage infected 
(n) 

Percentage died  (± S.E) LT50 (days) 
(95% fiducial limits) 

0 (control) 0 41.2 ± 6.3
c
 10.8 (10.1-11.7

a
 

1.0 × 10
10

 58.7 (99) 69.3 ± 4.8
b
 8.0 (7.7-8.2)

b
 

1.0 × 10
11

 61.4 (119) 80.9 ± 3.9
ab

 4.9 (4.7-5.0)
bc

 

1.0 × 10
12

 70.5 (143) 88.6 ± 6.6
a
 2.8 (2.7-2.9)

c
 

Treatment Exposure time (hr) HR1 (95% Cl) P-value HR2 (95% Cl) P-value 

Control (pooled) 
      

0.34 (0.28-0.41) 0.0001 

M. anisopliae-

infected 

2 2.14 (1.80-2.53) 0.0001 0.73 (0.60-0.89) 0.002 

4 2.58 (2.15-3.10) 0.0001 0.88 (0.73-1.07) 0.209 

6 2.79 (2.32-3.35) 0.0001 0.95 (0.79-1.15) 0.634 

8 2.92 (2.42-3.53) 0.0001 - - 
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transparent plastic cylinder was estimated to be nine times less than that of the clay pot (Figure 1). 

Thus, the clay pot required 20 times more spores than the cylinder to cause the same mortality on 

infected mosquitoes (Table 5). Of the dead mosquitoes in all the treatments, > 70% developed 

mycosis. 

 

 
Table 5. Effects of infecting surface on infection of An. gambiae with M. anisopliae. Fungal infection rate, percent mortality 

and LT50 values 13 days post-treatment are shown. n (in parentheses) is the number of mosquitoes infected. Fungus was 

applied as dry spores (g/m
2
) or formulated in Shellsol T-oil ((ml/sheet). Spore viability was ≥ 76%. 

 

 
 
Means followed by same letters within column are not statistically different by Student-Newman-Keuls (SNK) test at P = 

0.05 

 

 

Discussion 
 

Results from this study show that An. gambiae mosquitoes exhibit a varied resting-site selection 

behaviour that is influenced by the texture and the colour of the surfaces they are exposed to. 

Although the lower, middle and upper sections of the cylinder were the target areas for evaluation, 

the mosquitoes expressed an additional preference of landing on the cover net. The preference is 

more a behavioural than a light-related effect since even in the cylinder lined with black-coloured 

paper, 4.5% (of 600 mosquitoes) landed on the cover net (Table 1). In the natural environment, 

Anopheles mosquitoes especially An. gambiae and An. stephensi express a similar behavioural 

pattern and the majority prefer to land on the apex of the resting-surface (Silver 2008). Moreover, 

the shape and size of the cylinder used might have influenced the choice for landing site. This has 

been reported to affect resting-site preference of mosquitoes whether the resting sites are natural or 

artificial (Burkett-Cadena et al. 2008). From the total collections recorded per cylinder section, 80 -

100% landed within a minute. On close observation, the mosquitoes hovered within the cylinder 

afterwards. The remaining ≤ 20% kept flying inside the cylinder and landed after 1-3 minutes. The 

short-contact with a surface layer is characteristic of host-seeking mosquitoes (Mnyone et al. 2009b). 

With this unpredictable resting-site selection behaviour in mosquitoes, it is recommended that the 

entire inner surface of the cylinder be treated with spores of M. anisopliae to achieve a high infection 

rate of mosquitoes. 

 

Our finding further demonstrates that An. gambiae mosquitoes prefer rough textured surfaces over 

smooth textured ones. This preference is described to be associated with the leg-waving nature of 

Infecting surface 

 (method) 
Concentration of M. 

anisopliae per assay 

Percentage 

infected (n) 
Percentage 
died (± S.E) 

LT50 (days) 
(95% fiducial limits) 

Plastic cylinder not lined 

with paper 
0 0 33.0 ± 5.8

b
 12.6 (11.5-14.1)

a
 

Plastic cylinder lined with 

white rough paper 
0.1g / cylinder 75.2 (135) 85.3 ± 4.4

a
 3.1 (3.0-3.2)

b
 

Plastic cylinder lined 

with white smooth paper 
1.0 × 10

12 
/ sheet 70.1 (139) 87.4 ± 4.3

a
 3.0 (2.9-3.1)

b
 

Clay pot 

 
2g / pot 87.8 (165) 85.2 ± 6.2

a
 3.7 (3.6-3.8)

b
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the metathoracic legs of the insect (Hansell 1970). This leg-waving motion is only found in An. 

gambiae and is responsible for determining the texture of substrate prior to landing. This might have 

also contributed to the short-contacts and continuous flight activity within the cylinder while 

assessing the resting-site preference. Moreover, rough surfaces exhibit some adhesive properties 

(Brown and Siegmann 2000, Li et al. 2010a) and are thus recommended for use with EPF as they can 

hold the spores firmly. Therefore, white rough paper was selected for use to infect mosquitoes with 

the fungus M. anisopliae in favour of white smooth and black smooth papers. Future integration of 

texture surface to improve infectivity of fungal delivery tools is encouraged. It might be a challenge 

to quantify the degree of roughness of the infecting surfaces, but reasonably easier to select them 

through observation and touch.  

 

Between black and white coloured substrates, our results show a preference of An. gambiae 

mosquitoes for black smooth paper over white smooth or white rough papers. This concurs with the 

general understanding that mosquitoes prefer to settle on black areas or on the dark parts of 

different patterns as a survival strategy (Kennedy 1940, O'Gower 1963). The choice for colour also 

influences oviposition site selection, with black rough inner vertical walls of the oviposition sites 

preferred in An. arabiensis Patton (Balestrino et al. 2010), Aedes spp. (Kaw et al. 2004), Ae. 

Triseriatus (Say) (Wilton 1968) and Ae. albopictus (Skuse) (Novak 1992). However, there are 

exceptions to colour preference. In An. punctipennis Say, blood-fed females show a slight preference 

for black with the unfed females settling for white surfaces (Hecht and Hernandez-Corzo 1963). 

Other findings in a multi-choice situation have described white-coloured fabrics to be a better 

attractant of An. gambiae mosquitoes compared to yellow, black, red, blue and green coloured 

fabrics (Mutinga et al. 1995). Since the mosquito’s preference for colour appears to be wide 

(Mutinga et al. 1995), fabric of any colour described above could be used to infect mosquitoes with 

fungal spores. To increase effectiveness, the fabric treated with fungal spores should be placed in the 

dark side of the room. Our study used white rough paper since the paper was more readily available 

than the more preferred black smooth paper. 

 

An increase in spore concentration, from 0.1 g, 0.2 g to 0.3 g, had no effect on the number of 

mosquitoes infected, irrespective of the type of paper substrate used. Therefore, the lower dose of 

0.1 g was considered the most economical for bioassays. A similar concentration of 0.1 g was 

pathogenic to adults of anopheline and culicine mosquitoes when infected with Beauveria bassiana 

or M. anisopliae (Scholte et al. 2003a, Achonduh and Tondje 2008, Kikankie et al. 2010). In other 

insects, maize weevils Sitophilus zeamais (Motsch) and leaf-cutting ants Atta sexdens rubropilosa 

(Forel) were infected and killed by the same concentration of the fungal species (Adane et al. 1996, 

Jaccoud et al. 1999). Since a standard dose for infecting mosquitoes has so far not been identified, 

this has to be determined through preliminary studies prior to real bioassays. Fungal impact on high 

infection rates is affected by the delivery method used and the conidial (spore) viability. For instance, 

in our study, the infection rate in dead mosquitoes after exposure to fungus increased with increase 

in spore viability. Nevertheless, the resultant mortality was sufficiently high to predict a strong 

impact on mosquitoes in the field (Scholte et al. 2005). For future research it is important to 

remember that retention of high viability and high virulence of spores is a prerequisite for EPF to be 

effective as microbial control agents (Daoust and Roberts 1983) 

 

An increase in exposure time, from 2 to 8 hr, had no effect on the survival rate of fungus-infected 

mosquitoes. Hence, within 2 hr mosquitoes picked up a sufficient number of spores to become 

infected. However, the 8 hr exposure would cause a higher impact compared to 2 hr exposure. In 

other studies, a high infection rate has been reported in mosquitoes exposed to EPF for as short as 

15-30 min (Mnyone et al. 2009b), for 2-8 hr (Paula et al. 2011) and for as long as 24 hr, 48 hr and 

beyond (Scholte et al. 2003a, Scholte et al. 2007). There are many parameters that may influence the 

time of exposure. They include fungal formulation i.e. dry spores or wet spores, design of the 
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infecting tool or surface and host behaviour (host seeking or resting) among others. Just like conidial 

dosage, standard exposure time for infecting mosquitoes with EPF has so far not been identified. 

Therefore, our study chose a 6 hr exposure time, which has been adopted by several researchers in 

evaluating the effects of fungal pathogens on mosquitoes, with which results from different studies 

can be more readily compared. 

 

A simple and efficient fungal delivery tool is critical in infecting with EPF. A number of tools such as 

Petri dishes, hair rollers, modified plastic cylinders, clay pots, K-bar coating machine; black cotton 

cloth attached to the roof or walls, outdoor odour-bait stations (OBS) (Scholte et al. 2003a, Scholte et 

al. 2005, Farenhorst et al. 2008, Farenhorst and Knols 2010, Lwetoijera et al. 2010, Mnyone et al. 

2010a) among other tools have been effective for the infection of mosquitoes in the laboratory and 

field situations. In the present study we evaluated clay pots, plastic cylinders and paper treated 

through a k-bar coating machine as infecting tools in the laboratory. However, our results show that 

the three methods used did not result in differences in infection rate. Therefore, the plastic cylinder 

was selected as the standard method of exposing mosquitoes on the basis of availability, portability, 

cost effectiveness and ease of use. 

 

Conclusions 
 

As contact between spores and mosquitoes is crucial for their infection with entomopathogenic 

fungi, it is important to identify a standard method of infection. Therefore, this study was designed 

to develop a rapid and cheap bioassay method for infection and for testing the virulence of fungal 

spores. Mosquito landing behaviour inside a plastic cylinder revealed no preference for a specific 

resting location while white rough paper emerged as the best substrate for infection. Spore 

concentration of 0.1 g and a 2 hr exposure time were sufficient to achieve a high infection rate. 

Lastly, there was no difference between the cylinder assay and other published methods, so the 

cylinder assay is recommended.     
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Abstract  
 

The effect of Metarhizium anisopliae infections in the malaria mosquito Anopheles gambiae on their 

host-seeking behaviour at short range was evaluated using a dual-choice olfactometer under semi-

field conditions. Two adult men, ranked as highly and poorly attractive to An. gambiae mosquitoes, 

were used as the source of host-seeking stimuli. Three treatment combinations were tested: (i) no 

odour vs. no odour, (ii) no odour vs. the host stimuli of each person separately and (iii) the odorants 

of each person against each other. Host odours were tested as complete human emanations, breath 

only and body odour only. At the start of each test period of 30 min. 100 uninfected mosquitoes and 

100 M. anisopliae-infected mosquitoes were released in each olfactometer set up. Four sets of data 

were recorded i.e. numbers of mosquitoes collected in the (i) two trap chambers separately (ii) 

choice chamber and (iii) release cup. A significant difference in overall response was observed where 

on average 50% of the mosquitoes died on the third day after fungal exposure. Those that survived 

were used for behavioural assays. In the absence of human stimuli few mosquitoes responded and 

there was no significant difference in trap catches between the two tents for uninfected (P = 0.18) 

and for M. anisopliae-infected (P = 0.90) mosquitoes. A significant response of uninfected and M. 

anisopliae-infected mosquitoes to total body emanations, body odour and breath of the highly 

attractive (HA) and the poorly attractive (PA) person occurred when compared to an empty tent (P = 

0.01). Furthermore, the behavioural response of M. anisopliae-infected An. gambiae mosquitoes 

when presented with different test stimuli demonstrated that breath harbours inhibitory odorants as 

opposed to total emanations while compounds present in body odour induce a relatively uniform 

response of vectors to their hosts. These findings suggest that infection with the entomopathogenic 

fungus strongly reduces the host-seeking response of mosquitoes, but does not impair their olfactory

-based discriminatory capability. The use of the entomopathogenic fungus M. anisopliae may, 

therefore, be a good complement to other mosquito vector control tools for the reduction of 

mosquito bites, and transmission of malaria as well as for other mosquito-borne diseases. 
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Introduction 
 
The mosquito Anopheles gambiae Giles is the world's most important vector of Plasmodium 

falciparum malaria. Its ability to transmit malaria triggered by its host-seeking behaviour has been 

and continues to be an important and fascinating area in the field of disease epidemiology and 

control. This behaviour is mediated by olfactory cues with which the mosquito locates its human 

hosts (Bowen 1991, Knols et al. 1995, Takken and Knols 1999). For An. gambiae these cues are host 

specific, hence the mosquito’s preference for human odours rather than odours emanating from 

other vertebrates (Besansky et al. 2004, Lefevre et al. 2009). However, even in the presence of 

human odours, the host-seeking behaviour can be suppressed depending on the physiological status 

of mosquitoes (Bowen et al. 1988, Klowden 2007). Thus, mosquito host location is largely influenced 

by its host preference mediated by olfactory cues and its physiological status. This understanding of 

host-seeking behaviour is relevant when designing measures to better reduce the transmission of the 

parasite and control the disease. 

 

Furthermore, host-seeking behaviour may be enhanced by the presence of a parasite in the vector’s 

body. For example, infection with Plasmodium parasites was associated with increased vector 

contact with individual hosts (Wekesa et al. 1992) and blood-feeding (Koella et al. 1998). In Aedes 

aegypti L., an infection with dengue virus resulted in reduced feeding behaviour (Platt et al. 1997), 

while infection with the bacterium Wolbachia pipientis caused a significant reduction in blood 

feeding and even induced early aging (Turley et al. 2009). In other blood-sucking insects such as the 

phlebotomine sandflies in the genera Phlebotomus and Lutzomyia, leishmania infections interfered 

with blood feeding but increased the frequency of biting (Beach et al. 1985, Schlein et al. 1992, 

Rogers and Bates 2007). However, this is not the case in all parasite-host interactions (Poulin et al. 

1994). Although these induced behavioural changes are beneficial to the pathogens, other outcomes 

are possible such as increased disease transmission.  

 

There is a need to protect humans from blood-sucking arthropods, particularly mosquitoes, and the 

pathogens they transmit. The current hurdle is to find a cost-effective measure to supplement or 

replace the use of chemical insecticides which is facing the challenge of vector resistance (Ranson et 

al. 2009, Alonso et al. 2011). The use of entomopathogenic fungi (EPF) is promising and should be 

explored for efficacy and impact. 

 

In the recent past, EPF in the genera Metarhizium and Beauveria have demonstrated potential to 

infect and reduce the survival of malaria vectors (Blanford et al. 2005, Scholte et al. 2005, Farenhorst 

et al. 2008, Mnyone et al. 2009b). These fungi do not kill the mosquito instantly but cause sublethal 

and late-life lethal effects on different stages of the mosquito life cycle. Late-life lethal effects result 

in reduced blood feeding and fecundity in mosquitoes (Scholte et al. 2006, Howard et al. 2010b). In 

other insects, the effect was reported in the pea leafminer Liriomyza huidobrensis (Blanchard) 

(Migiro et al. 2011), the Asian long horned beetle Anoplophora glabripennis (Motschulsky) (Hajek et 

al. 2008), the legume flower thrips, Megalurothrips sjoistedti Trybom (Ekesi and Maniania 2000) and 

in the sweet potato weevil Cylas puncticollis (Boheman) (Ondiaka et al. 2008a). However, other 

studies did not report it (Arthurs and Thomas 2000, Ondiaka et al. 2008b). Sublethal effects primarily 

demonstrate the potential of the infected females to engage in host-seeking and, if gravid, search 

for, locate and reach suitable oviposition sites (Scholte et al. 2006). Host-seeking is the most 

important component of mosquito vectorial capacity (Zwiebel and Takken 2004) and is quite distinct 

from other blood-feeding behaviours such as landing, probing and biting (Bowen 1991). In a 

laboratory situation, the host-seeking behaviour is reduced in M. anisopliae-infected An. gambiae 

females (Scholte et al. 2006, Ondiaka et al. 2008b). However, it is not clear whether similar effects 

will be observed under more realistic semi-field and field situations.  
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Through olfaction, An. gambiae can differentiate the odour of one human individual from the other 

(Lindsay et al. 1993, Knols et al. 1995, Mukabana et al. 2002). However, it remains uncertain if this 

ability in mosquitoes will be impaired upon infection with an entomopathogenic fungus. 

 

Therefore, the current study investigated the host-seeking response of Metarhizium anisopliae-

infected An. gambiae female mosquitoes to human odours and established whether M. anisopliae-

infected mosquitoes can discriminate between odours from different human individuals. The studies 

were conducted using a dual-choice olfactometer in a semi-field situation. 

 

Materials and Methods 
 

Mosquitoes 

 

Experiments were carried out using laboratory-reared female mosquitoes obtained from a colony of 

Anopheles gambiae Giles sensu stricto (hereafter termed An. gambiae) established from wild gravid 

females collected in Mbita Point (000 25'S, 340 13'E), western Kenya in 1999 (Menge et al. 2005). All 

mosquito life stages were maintained under ambient conditions in the mosquito insectary at the 

Thomas Odhiambo Campus (TOC), Mbita Point of the International Centre of Insect Physiology and 

Ecology (icipe). Larval and adult stages of the mosquitoes were raised using rearing procedures 

described by Olanga et al. (2010). All the experiments were conducted using 2-6 d-old adult females 

that had not received a blood meal. The insects had been starved for eight hr and were provided 

with water on cotton towels placed on top of the mosquito holding cups to prevent dehydration. 

 

Fungus strain  

 

Metarhizium anisopliae var. anisopliae (Metsch.) Sorokin, isolate ICIPE 30 (courtesy of Dr. N.K. 

Maniania) was used to infect mosquitoes in all experiments. The fungus was originally isolated in 

1989 from a stemborer, Busseola fusca, at Kendu Bay, western Kenya, and has since been maintained 

under laboratory conditions at the International Centre of Insects Physiology and Ecology (icipe). 

Mass production of the spores on rice substrate was conducted in the Arthropod Pathology Unit of 

icipe in Nairobi, Kenya using the procedure described by Maniania and colleagues (Maniania et al. 

2003, Mburu et al. 2011). Harvested spores were stored dry until they were used for the 

experiments. 

 

Infection process 

 

Eight transparent plastic cylinders (9cm diameter; 15 cm height) were used. The inside surface and 

the circular base of each cylinder were lined with white rough-surfaced velvex tissue papers that 

measured 28.6 × 14.3 cm and 9 cm in diameter respectively. Each cylinder was held in a slanting 

position and 0.1 g (approx. 1.0 × 10
11

 conidia/m
2
) of M. anisopliae spores were weighed and poured 

on the paper. Using both hands, the cylinders were rolled several times until the papers were 

covered by the spores. Sixty 2-d-old female mosquitoes were introduced into each cylinder and held 

for six hr being supplied with 6% glucose solution soaked in cotton pad and placed on top of the 

netting material covering the cylinder. The mosquitoes were then transferred into one holding cage 

(30 × 30 × 30 cm) and were supplied with 6% glucose solution on filter paper wicks. The insects were 

maintained at 28 ± 2˚C and 70 ± 5 % r.h. in a room simulating semi-field conditions. Females used in 

the dual-choice olfactometer had been exposed to M. anisopliae three days prior to the behavioural 

test. The procedure for uninfected mosquitoes was the same as for those exposed to M. anisopliae 

except that four transparent plastic cylinders were used and no fungal spores were spread on the 

velvex tissue paper. The number of mosquitoes exposed to fungus was higher than for the 
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uninfected group to adjust for mortality in the holding cages prior to the start of the experiments on 

day three post-exposure. 

 

Experimental set-up 

 

The experiments were carried out using a large dual-choice olfactometer which accommodated two 

humans, each in a separate compartment, as sources of host-seeking stimuli. The structural 

component of the olfactometer has been described in detail by Mukabana et al. (2002). The modified 

design described by Olanga et al. (2010) was adopted for use in this study (Figure 1). In order to 

prevent contamination with fungal spores, two olfactometers were used: set up I was used to 

conduct experiments with uninfected mosquitoes and set up II with M. anisopliae-infected 

mosquitoes. The two olfactometers were placed inside a screenhouse (13 × 4.7 × 2.3 m). 

 

 

Human subjects 

 

Two adult men ranked as highly attractive (HA) and poorly attractive (PA) to An. gambiae mosquitoes 

were selected to participate in the experiments. The men were among the nine Kenyan males ranked 

on their attractiveness to An. gambiae mosquitoes by Mukabana et al. (2002). Their malaria infection 

status was tested daily during experimental days by microscopic examination of thin and thick 

smears of a finger-prick stained with Giemsa. Preparations for the men to adhere to prior to the start 

of experiments followed the procedures described by Mukabana et al. (2002). The presence of the 

men was rotated between and within tents to assess the responses of uninfected and M. anisopliae-

infected mosquitoes. Their beddings were not removed during the rotation; instead, two fans were 

directed in each tent after the end of a night experiments. The tents were air-rated for 24 hr prior to 

the start of the next experiment to clear residual odours of the two participants. The bed linens were 

washed after eight d using an odourless soap that was also used by the men to bathe.  

Figure 1. The dual-choice experimental setup. The fan (a) drew air (~130 L/min/tent) from the two tents (b) to the 

outside environment via PVC pipes (c), trap chambers (d) and central choice chamber (e). An exit trap (f) opened into 

each trap chamber. The fan pipe and the release cup (h) were fitted on top and on the bottom of the choice chamber, 

respectively, through circular holes. The trap and choice chamber measured 30 × 15 × 20 and 30 × 20 × 20, respectively. 

Diagrams are not drawn to scale; all dimensions are in centimeters (Olanga et al. 2010).  
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Partitioning of human emanations 

 

Three test stimuli, i.e. (i) total body emanations, (ii) breath and (iii) body odour were used for 

assessment of the response of uninfected and M. anisopliae-infected mosquitoes. Here, total body 

emanations refer to breath plus all volatile discharges of the skin while body odour refers to volatiles 

discharged from the skin only. Breath and body odour were separated using a one-way breathing 

valve (Antec Leyden®, the Netherlands). The human subjects wore a breathing valve by the mouth-

piece and clipped a sprung nose clip on their nose so that they could inhale and exhale air through 

the mouth only (Mukabana et al. 2004). Depending on the test stimuli being assessed, breath was 

either diverted to the tent or directed from the tent to the outside of the screen house. 

 

Baseline studies for dual-choice olfactometer in the absence of human odour stimuli 

 

The experiments were carried out with two experimental set-ups not occupied by human subjects. 

Only clean bed linens were spread on the bed in each olfactometer tent. The experiments were 

performed between 19.30-20.00 and 20.30-21.00 hours. During each test period, 100 uninfected 

mosquitoes or 100 M. anisopliae-infected mosquitoes of 5-d-old and starved for eight hr prior to use 

were released into each olfactometer set-up. Four sets of data were recorded in each test period 

that included numbers of mosquitoes collected in the (i) two trap chambers separately (ii) choice 

chamber and (iii) release cup. Each experiment was replicated eight times. 

 

Effect of fungal infection on mosquito response to human odours 

 

In this study, one tent in each of the two experimental setups was occupied by a human subject and 

the other tent contained only clean bedding. The three test stimuli of the two participants were 

assessed through six dual-choice assays: (i) an empty tent versus total body emanations of person 

HA, (ii) an empty tent versus total body emanations of person PA, (iii) an empty tent versus body 

odour of person HA, (iv) an empty tent versus body odour of person PA, (v) an empty tent versus 

breath of person HA and (vi) an empty tent versus breath of person PA. The experimental procedure 

remained as described above under “baseline studies” except that the two human subjects were 

rotated within and between the two tent set-ups. 

 

Effect of fungal infection on preferential behaviour of mosquitoes 

 

These experiments were designed to ascertain if fungus infection modifies the attraction of host-

seeking mosquitoes to human hosts with different odour profiles. Experimental mosquitoes were 

allowed to make a choice between the following test stimuli: (i) total body emanations of person HA 

versus total body emanations of person PA (ii) body odour of person HA versus body odour of person 

PA and (iii) breath of person HA versus breath of person PA. The participants were concealed in the 

two tents in one of the olfactometer set-ups for two 30 min. test periods (19.30-20.00 and 20.30-

21.00 hours) on each experimental night. During each test period, 100 uninfected or 100 M. 

anisopliae-infected mosquitoes of 5-day old and starved for eight hr prior to use were released on 

separate nights. The numbers of mosquitoes that left the release cup into the choice chamber were 

caught in trap chambers as they progressed towards the source of stimuli from persons present in 

the tents. The two persons were rotated within and between the two tent set-ups. The experiments 

with uninfected and with M. anisopliae-infected mosquitoes were each replicated eight times. 

 

Statistical analysis 

 

Mosquitoes that responded to test stimuli of person HA and person PA in favour of an empty tent 

were expressed as a proportion of the number trapped by each person divided by the sum of the 
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number trapped by both persons including the collections in the choice chamber. A similar formula 

was used to compute the proportion of mosquitoes that were collected in trap chambers when both 

tents were empty. The preferential response of mosquitoes to odours of the two persons was 

calculated as the number of mosquitoes trapped by the emanations of person HA divided by the sum 

of the number trapped by person HA and person PA expressed as a percentage. The differences in 

the number of mosquitoes caught in the absence and in the presence of odours of the two human 

volunteers in uninfected and in M. anisopliae-infected groups was compared using a Generalized 

Linear Model. This was after the data was transformed to assume a normal distribution using a 

logarithmic link function. The significance of changes in relative attractiveness between uninfected 

and M. anisopliae-infected mosquitoes was compared by an independent-samples t-test. Data were 

analysed either by General Statistics analysis software (GenStat® for Windows, 3
rd

 Edition) or 

Statistical Products and Services Solutions (SPSS, version 17.0). 

 

Ethical clearance 

 

The consent to participate in the study was sought for and confirmed by the two human subjects 

after explaining to them in detail the objectives and procedures of the experiments. Ethical approval 

for this study was given by the Kenya National Ethical Review Committee located at the Kenya 

Medical Research Institute (NON-SSC Protocol number 203). 

 

Results 
 

Baseline studies for dual-choice olfactometer in the absence of human odour stimuli 

 

Eighty three percent (665 of 800) of the uninfected mosquitoes and fifty six percent (448 of 800) of 

the M. anisopliae-infected mosquitoes were collected in the combined area of the choice chamber 

plus the two trap chambers. The difference between the collections was significant (P = 0.001). Of 

these collections, the number (expressed as proportion) of uninfected mosquitoes found in trap A 

(0.010) and in trap B (0.003) were not significantly different (P = 0.18). Similarly, the difference was 

not significant (P = 0.90) between M. anisopliae-infected mosquitoes found in trap A (0.002) to that 

from trap B (0.000) (Table 1). The overall response of uninfected (0.010 + 0.003) and M. anisopliae-

infected (0.002 + 0.000) mosquitoes in this situation without odours was very low. 

 

 
Table 1. Proportion of uninfected and M. anisopliae-infected mosquitoes caught per trap in the absence of human 

emanations in a dual choice assay.  

 

 
 
N, the number of replicates. n, the total number of mosquitoes collected in the trap (d in Figure 1) and choice (e in Figure 1) 

chambers. P, level of statistical difference between catches in tent A versus catches in tent B. P
1
, level of statistical 

difference between n-collections in uninfected and M. anisopliae-infected mosquitoes. Levels of significance were 

generated by two-sample t-test. 

 

Behaviour stimuli 
  

Mosquito infection 
status 

N Proportion trapped n (percent 
response) 

P P1
 

Tent A  Tent B   Tent A Tent B       

Empty Empty Uninfected 8 0.010 0.003 665 (83) 0.18 

  

 

0.001 

 
Empty Empty M. anisopliae-

infected 

8 0.002 0.000 448 (56) 0.90 
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Effect of fungal infection on mosquito response to human odours 

 

For the eight hundred mosquitoes that were released in each bioassay, the number of M. anisopliae-

infected mosquitoes that were recaptured in the choice chamber plus the two trap chambers was 

significantly (P = 0.001) less than the number of uninfected mosquitoes. Of the total recapture, 

significantly (P = 0.01) more uninfected and M. anisopliae-infected mosquitoes responded to the 

odour stimuli from the volunteers when (i) total emanations (ii) breath and (iii) body odour of the 

person HA or person PA were compared to an empty tent (Table 2). The proportion that responded 

to odours of each person was not much different between treatments. Nevertheless, the response of 

infected and control mosquitoes to breath of person HA or person PA was less than the response to 

total emanations or body odour. With person PA, more mosquitoes responded to body odour than to 

total emanations with both uninfected and M. anisopliae-infected mosquitoes. However, with 

person HA, more uninfected mosquitoes responded to total emanations but the response to body 

odour was quite close between treatments (Table 2). 

 

 

 
Table 2. Proportion of uninfected and M. anisopliae-infected mosquitoes caught per trap in presence and in absence of 

human stimuli in binary assay. 

 

 
 
Person PA is poorly attractive. Person HA is highly attractive. TE, total emanations, BO, body odour BR, breath. N, number 

of replicates. Proportion trapped, mosquitoes attracted to different behavioural stimuli (person) relative to contrasting 

ones (empty tent). n, the total number of mosquitoes collected in the trap and choice chambers. Numbers in parenthesis 

refer to n expressed as a percentage of the total release. P, statistical difference within treatments i.e. person versus empty 

tent. P
1
, level of statistical difference between treatments i.e. n-collections in uninfected versus M. anisopliae-infected 

mosquitoes. Significance levels were calculated by two-sample t-test 

 

 

 

Behaviour stimuli 
  

Mosquito infection 
status 

N Proportion 
trapped 

n (percent 
response) 

P P1
 

Person  Empty tent   Person Empty 
tent 

      

PA - TE Empty tent Uninfected 8 0.197 0.016 669 (84) 0.01   

0.001 
PA - TE 

Empty tent 
M. anisopliae-infected 8 0.198 0.000 334 (42) 0.01 

PA - BO Empty tent Uninfected 8 0.316 0.019 618 (77) 0.01   

0.001 
PA - BO Empty tent M. anisopliae-infected 8 0.327 0.004 275 (34) 0.01 

PA - BR Empty tent Uninfected 8 0.046 0.011 630 (79) 0.01   

0.001 
PA - BR Empty tent M. anisopliae-infected 8 0.030 0.000 236 (30) 0.01 

HA - TE Empty tent Uninfected 8 0.312 0.000 645 (81) 0.01   

0.001 
HA - TE Empty tent M. anisopliae-infected 8 0.331 0.000 347 (43) 0.01 

HA - BO Empty tent Uninfected 8 0.232 0.017 543 (68) 0.01   

0.001 
HA - BO Empty tent M. anisopliae-infected 8 0.422 0.003 294 (37) 0.01 

HA - BR Empty tent Uninfected 8 0.086 0.024 593 (74) 0.01   

0.001 
HA - BR Empty tent M. anisopliae-infected 8 0.037 0.000 191 (24) 0.01 
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Effect of fungal infection on preferential behaviour of mosquitoes 

 

In the dual-choice test between odours of the HA and PA persons, eight hundred mosquitoes were 

used in each bioassay. The number of uninfected mosquitoes caught in the choice chamber plus the 

two trap chambers was significantly (P = 0.001) more than the number of M. anisopliae-infected 

mosquitoes in each of the three test stimuli (Figure 2). Of these collections, the number (expressed 

as a percentage in Figure 2) that responded to specific odours emanating from the two persons was 

not much different for the uninfected and infected groups. Besides, when the total number of 

mosquitoes was considered, significantly fewer mosquitoes infected with M. anisopliae responded to 

odours emanating from total emanations (P = 0.001) and breath (P = 0.001) of the two persons. 

However, the difference was not significant (P
 
= 0.060) between uninfected and M. anisopliae-

infected mosquitoes that responded to stimuli from body odour of the two persons (Figure 2). 

Between the two persons, total emanations of Person HA were significantly more attractive for both 

uninfected (P = 0.001) and M. anisopliae-infected mosquitoes (P
 
= 0.001) compared to those of the 

poorly attractive person. The attractiveness of body odour of person HA and person PA to uninfected 

(P
 
= 0.78) and to M. anisopliae-infected (P

 
= 0.096) mosquitoes was not different. Breath of person 

PA attracted more uninfected (P = 0.001) and M. anisopliae-infected (P
 
= 0.003) mosquitoes than 

breath of person HA. Furthermore, the response of both uninfected and M. anisopliae-infected 

mosquitoes to breath from both persons was less than that to body odour and total emanations. 

 
 

Figure 2. Percent mosquito catches in experiments evaluating mosquito behavioural responses upon infection with M. 

anisopliae to human emanations. Experiments 1 and 2 demonstrate mosquito catches to total emanations (TE) of person 

highly attractive (person HA) versus TE of person poorly attractive (person PA) to An. gambiae mosquitoes. Experiments 3 

and 4 describe catches to body odour (BO) of person HA versus BO of person PA. Experiments 5 and 6 illustrate mosquito 

catches to breath (BR) of person HA versus BR of person PA. Shaded bars refer to M. anisopliae-infected mosquitoes and 

open bars to uninfected mosquitoes. N is the number of replicates. n the total number of mosquitoes attracted to 

emanations of person HA and person PA (in parenthesis, n presented as a percentage of n
1
). P values depicts the level of 

statistical difference in mosquito catches between emanations of person HA and person PA within treatments. P
1
 refers to 

level of significance between numbers of uninfected and M. anisopliae-infected mosquitoes that responded in each of the 

three odour sources.  n
1
 is the total number of mosquitoes collected in the choice chamber and the two trap chambers i.e. 

exclude mosquitoes that remained in the release cup (Figure 1) (in parenthesis, n
1 

expressed as percentage of the total 

mosquitoes released). P
2
 refers to level of significance between uninfected and M. anisopliae infected mosquitoes in n

1
 

collections.  Levels of significance were generated by two-sample t-test.  
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Discussion 
 
This study demonstrates that the proportion of An. gambiae mosquitoes responding to host odour, 

three days after infection with the entomopathogenic fungus Metarhizium anisopliae, was 

significantly reduced compared to uninfected mosquitoes under semi-field conditions. However, the 

ability of the mosquitoes to differentiate between humans based on their odorant emanations was 

not affected by fungus infection of the mosquitoes. 

 

Throughout the study, the impact of the fungus on mosquitoes was observed right from the start of 

the infection process. For instance, in order to obtain the same number of mosquitoes of the 

infected group being alive at the start of the behavioural studies, it was needed to infect twice the 

number of mosquitoes with M. anisopliae compared to the number used for the controls. On 

average, 50% of the fungus-exposed mosquitoes died on the third day after fungal exposure, while 

those that survived were used for behavioural assays. This much shortened survival rate in the 

mosquito population was directly caused by the infection since mortality of uninfected An. gambiae 

mosquitoes during this time was negligible (see also Chapter 3). Other studies have also estimated a 

similar time frame to impact 50% mortality in An. gambiae mosquitoes (Scholte et al. 2003a, Scholte 

et al. 2003b). However, in some studies the lethal time is more than three days (Blanford et al. 2005, 

Howard et al. 2010a). This variation is affected by dose, the formulation i.e. dry conidia or oil 

formulation and environmental conditions (Schrank and Vainstein 2010). Moreover, fungus used as 

dry conidia causes a greater effect compared to conidia formulated in oil or any other solvent 

(Scholte et al. 2003a). This may have been the case in this study where dry conidia were the mode of 

infection. Although an entomopathogenic fungus is a “slowly” killing microbial agent even with the 

most virulent isolates, its instant impact upon contact with host-seeking mosquitoes can be observed 

quite early after exposure. 

 

Of the mosquitoes that survived for use in our behavioural studies, the effects of the infection 

continued to affect the insects. For example, in the experiment without host emanations, only 56% 

of the infected mosquitoes flew out of the release cup compared to 83% of the uninfected 

mosquitoes during the bioassays. Most likely the non-responders in the infected mosquitoes were 

too weak to fly. Moreover, in the comparison of no-odour versus the host stimuli of each person 

separately, between 24% - 43% of the infected mosquitoes and 74% - 84% of the uninfected 

mosquitoes left the release cup. Furthermore, the response ranged from 36% - 40% in the infected 

and 71% -81% in the uninfected mosquitoes when presented with odour stimuli of each person 

against each other. Although infected, these mosquitoes responded nevertheless to human odours, 

showing a host choice similar to that of uninfected mosquitoes. The infection rate in M. anisopliae-

infected mosquitoes that were caught in trap chambers was 100%. This was confirmed by growth of 

fungus on the mosquito cadaver at least three d after performing mycosis tests. Several possibilities 

are linked to longer survival of mosquitoes after exposure to fungus amongst which is the dose the 

insect picks up and the immunological reaction of the insect to the pathogen (Lacey et al. 1988). 

However, over time the insect weakens when the fungus overwhelms its defence mechanism 

through increased toxin production. Finally, the fungus penetrates into the insect haemolymph and 

consumes the available nutrients that eventually lead to increased physiological starvation and death 

of the insect. 

 

Our bioassay findings reveal that few of both uninfected and M. anisopliae-infected mosquitoes 

reached the tent openings when presented with an empty olfactometer. This low response is 

expected in the absence of human odours. By contrast, a significantly larger proportion of 

mosquitoes was caught in the trap chambers connected to tents occupied by the two persons ranked 

as poorly and highly attractive to An. gambiae mosquitoes when compared to empty tents. 

Furthermore, the behavioural responses of M. anisopliae-infected An. gambiae mosquitoes when 
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presented with different test stimuli demonstrated that breath harbours inhibitory odorants as 

opposed to total body emanations while compounds present in body odour induced a relatively 

uniform response of the mosquitoes to their hosts. Similar results have been reported previously 

with uninfected mosquitoes (Mukabana et al. 2004), where it was found that human breath contains 

mosquito-inhibiting compounds. In all these comparisons, infection with the entomopathogenic 

fungus did not impair the olfactory-based discriminatory capability of mosquitoes but strongly 

reduced the numbers that responded to human stimuli. The response of M. anisopliae-infected 

mosquitoes is attributed to the impact of fungus on the physiological status of the insects. Through 

colonization of the haemolymph by the fungus, the insect is depleted of nutrients, which is likely to 

interfere with its internal metabolism. This directly reduces the primary activity of the mosquito 

which is flight. For example, in the migratory locust Locusta migratoria var. manilensis (Meyen), 

infection with M. anisopliae caused depletion of trehalose sugars in the haemolymph (Zhao et al. 

2007). Trehalose is the principal sugar circulating in the blood or haemolymph of most insects and is 

the main source of energy (Thompson 2003). Moreover, the sugar is the potential nutrient source for 

insect pathogenic fungi like M. anisopliae (Xia et al. 2002). The direct consequences of sugar 

depletion is the reduction of flight energy as observed in the desert locust Schistocerca gregaria 

(Forskal) on infection with M. anisopliae var. acridium (Seyoum et al. 2002). 

 

Odour-mediated host-seeking has been extensively studied and is utilised by virtually all blood-

sucking insects (Lefèvre et al. 2006) to locate their hosts. The results in our current study show that 

infection with the entomopathogenic fungus M. anisopliae had no effect on the olfactory 

discrimination of the mosquitoes since the person ranked highly attractive (HA) consistently 

attracted more uninfected and M. anisopliae-infected An. gambiae mosquitoes compared to the 

person ranked poorly attractive (PA). This concurs with previous studies where uninfected An. 

gambiae s.s mosquitoes preferred certain individuals despite being presented with total body 

emanations from other persons at the same time (Lindsay et al. 1993, Knols et al. 1995, Mukabana et 

al. 2002). This discriminatory capability of mosquitoes to locate their blood hosts is accredited to 

factors present in an individual’s total body emanation such as odour, microbial products, heat and 

moisture (Braks et al. 1999, Mukabana et al. 2002, Verhulst et al. 2010).   

 

To the best of our knowledge, this study provides the first evidence that the host-seeking ability of 

An. gambiae is reduced upon infection with the entomopathogenic fungus M. anisopliae under semi-

field conditions, where mosquitoes are exposed to natural environmental conditions. This coincides 

with other findings in which infection with M. anisopliae reduced host-seeking potential of An. 

gambiae mosquitoes under laboratory conditions (Scholte et al. 2006, Ondiaka et al. 2008b). 

Recently, George et al. (2011) demonstrated a reduced neurosensory response in An. stephensi 

Liston following infection with Beauveria bassiana and M. acridum. Our study, though suggests that 

the olfactory discrimination between two human individuals was not affected by the fungal infection. 

The difference is attributed to the visual observation approach in this study that may be insufficient 

to verify the findings by George et al. (2011). In non-insect arthropods, the bacterium Acaricomes 

phytoseiuli originally isolated from the predatory mite Phytoseiulus persimilis Athias-Henriot (Pukall 

et al. 2006) was pathogenic to the same mite species. The bacterium induce a non-responding 

syndrome that renders A. phytoseiuli ineffective as a biocontrol agent of the herbivorous spider 

mites (Schütte et al. 2008). 

 

Our findings suggest that with the use of effective delivery methods, the mosquitoes are likely to pick 

up the infection early in life. This could further lead to acute mortality and eventually reduce the 

mosquito population. Although at this stage, the human host may be susceptible to bites, the chance 

to be infected with the malarial parasite is minimal since the mosquito will die before the parasite 

fully develops into the infectious sporozoites (Scholte et al. 2005). The bites can be prevented by 

sleeping under bednets. 
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We, therefore, conclude that entomopathogenic fungi have the potential to infect, kill and reduce 

the population of host-seeking mosquitoes as well as the general host-seeking response, but not 

their capability to discriminate hosts on differences in odorants. Thus, its use can be a good 

complement to other mosquito vector control tools for reduction of mosquito bites, and 

transmission of malaria as well as other mosquito-borne diseases. 
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Abstract  
 

The impact of infection with the entomopathogenic fungus Metarhizium anisopliae on the house 

entry and hourly human-biting rates of the malaria mosquito Anopheles gambiae was investigated 

under natural climatic conditions in a semi-field enclosure, which contained a traditional African hut. 

House entry behaviour and hourly human-biting responses of uninfected and M. anisopliae-infected 

mosquitoes were studied with a human subject as host. Two experiments, i.e. (i) a control without a 

human host and (ii) a treatment with human host under a bed net were conducted to examine house 

entry each with uninfected and fungus-infected mosquitoes separately. Human-biting response 

experiments were conducted both indoors and outdoors. Of the mosquitoes that were exposed to 

fungus, fifty percent died within the first three days after exposure. The behaviour of the survivors 

was compared with that of uninfected mosquitoes. A significantly higher house-entry response of 

uninfected compared to M. anisopliae-infected mosquitoes occurred irrespective of the presence of 

a human host indoors (P = 0.001). Significantly more infected as well as uninfected mosquitoes 

entered the house in the presence of a human host than in the absence of a human host. 

Furthermore, the hourly human-biting response was significantly higher in uninfected mosquitoes 

compared to infected mosquitoes both outdoors and indoors. However, fungal infection did not 

cause a shift in biting times. These findings indicate that M. anisopliae strongly impairs the flight 

performance of female mosquitoes but not the ability to identify host odours nor did fungal infection 

cause changes in the nocturnal hourly-biting pattern. 
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Introduction 
 

Anopheles gambiae Giles sensu stricto (henceforth termed An. gambiae) is the most efficient vector 

of human malaria in Africa. The mosquito is both anthropophilic and highly susceptible to 

Plasmodium falciparum (Besansky et al. 2004, Day 2005). Transmission of malaria to humans occurs 

when parasite-infected mosquitoes make contact, probe and take blood meals. These behaviours are 

governed by olfaction (Bowen 1991, Costantini et al. 1998b, Takken and Knols 1999, Zwiebel and 

Takken 2004).  Although measures to reduce transmission have increased there is a need to identify 

ways of improving the outcome of interventions (Baber et al. 2010, Alonso et al. 2011). A more 

complete understanding of the behaviour of the vector, especially the host seeking component, is 

implicit (Day 2005, Pates and Curtis 2005). 

 

Host-seeking refers to the in-flight orientation of the avid female towards potential blood hosts. In 

mosquitoes this involves a chain of responses that includes activation, landing, probing and feeding 

(Bowen 1991). These responses are independent and initiated by specific stimuli (Hocking 1971, 

Bowen 1991). Control measures that have impacted greatly on malaria transmission have targeted 

the activation, in-flight orientation and landing phases. Currently, indoor residual spraying (IRS) and 

insecticide-treated bed nets (ITNs), including long lasting insecticidal bed nets (LLINs), are the two 

most important vector control tools (WHO 2006b, Yukich et al. 2008, Zhou et al. 2010, Yakob et al. 

2011). The LLINs have further proven to be effective against pyrethroid-resistant An. gambiae 

mosquitoes (Dabiré et al. 2006). These conventional strategies have been used widely with 

commendable success. However, this has resulted in insecticide resistance in the mosquitoes, which 

is now widespread in many different parts of Africa (Dabire et al. 2008, Yadouleton et al. 2010, 

Ranson et al. 2011, Yewhalaw et al. 2011). The development of resistance is a major setback in the 

global programme for malaria control. Therefore, there is need to develop novel vector control 

methods that can complement the existing intervention tools. The use of entomopathogenic fungi 

(EPF) appears a promising alternative (Federici 1995, Scholte et al. 2003a, Lord 2005, Mnyone et al. 

2010b). 

 

Several studies have shown that spores of EPF Metarhizium anisopliae and Beauveria bassiana are 

pathogenic to Anopheles spp. (Scholte et al. 2005, Kanzok and Jacobs-Lorena 2006, Achonduh and 

Tondje 2008, Kannan et al. 2008, Mnyone et al. 2009a). Similar effects have been reported in Aedes 

spp. (Scholte et al. 2007, de Paula et al. 2008, Paula et al. 2011). Fungal infection is associated with 

reduction in longevity, blood feeding, fecundity (Scholte et al. 2006), host-seeking potential (Scholte 

et al. 2006, Ondiaka et al. 2008b) and interferes with the completion of the Plasmodium cycle in 

mosquitoes (Blanford et al. 2005). These effects demonstrate the potential of EPF in reducing 

transmission of malaria and other mosquito-borne diseases (Thomas and Read 2007a, de Paula et al. 

2008). 

 

Host-seeking capability directly influences house entry rate, indoor and outdoor biting rate of An. 

gambiae. Of these, the preference of the vector to blood feed and rest indoors (Takken and Knols 

1999, Day 2005) is the most critical in disease transmission and is also a behavioural trait that has 

contributed to the success of IRS in malaria vector management (Pates and Curtis 2005). The 

presence of ITNs indoors, however, may repel mosquitoes entering houses leading to low house 

resting densities and an increase in the proportion of outdoor feeding populations (Russell et al. 

2011). This may pose a challenge since control measures that target outdoor populations using 

chemicals are yet to be designed. Moreover, the density of mosquitoes indoors can be reduced by 

blocking house entry points i.e. eaves on houses or screening eaves, fitting ceilings and by improving 

housing (Snow 1987, Lindsay et al. 2002, Kirby et al. 2008, Njie et al. 2009, Ogoma et al. 2010). 

However, the approach faces similar challenges as the use of chemicals in controlling mosquitoes 

outdoors. By targeting indoor host-seeking and resting populations, it has been possible to 
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effectively use EPF to infect, kill and reduce survival of malaria vectors (Scholte et al. 2005, Mnyone 

et al. 2010a).  It is likely that mosquitoes can be infected outdoors by resting on surfaces treated with 

fungal conidia. Such surfaces include clay pots which were proven to be effective sampling (Odiere et 

al. 2007) and infecting tools (Farenhorst et al. 2008). Infection with EPF impairs flight performance of 

mosquitoes (Blanford et al. 2011). Therefore, such occurrence in mosquitoes infected outdoors may 

have a direct impact on house entry, outdoor biting and indoor biting rates of host-seeking 

mosquitoes. 

 

In the current study we examined the effect of M. anisopliae infection on house-entry responses of 

female An. gambiae mosquitoes. We also evaluated the effect of fungal infection on hourly human-

biting response of female An. gambiae mosquitoes seeking to find a human host. Evaluations were 

conducted outdoors and indoors inside a semi-field set-up of a natural malaria mosquito ecosystem 

(Knols et al. 2002). The aim is to address the significance of EPF in reducing the host-seeking fraction 

of the mosquito population, human-vector contact and disease risk.  

 
Materials and Methods 
 

Mosquito rearing 

 

The semi-field experiments were conducted using the Mbita strain of the malaria mosquito 

Anopheles gambiae Giles sensu stricto (hereafter termed An. gambiae). The mosquitoes were reared 

under ambient climatic conditions in the mosquito insectary at the Thomas Odhiambo Campus (TOC) 

of the International Centre of Insect Physiology and Ecology (icipe) located at Mbita Point, western 

Kenya. All maintenance and rearing procedures have been described in detail elsewhere (Olanga et 

al. 2010). The experiments utilised female mosquitoes that were 5-6 days old. The mosquitoes were 

starved for eight hours and did not receive a blood meal before the start of experiments. To prevent 

dehydration, the insects were offered water on cotton towels placed on top of the mosquito holding 

cups.  

 

Fungal isolate  

 

Metarhizium anisopliae var. anisopliae ICIPE 30 was used. The fungus was originally isolated in 1989 

from the maize stem borer, Busseola fusca (Lepidoptera, Noctuidea) near Kendu Bay, Western 

Kenya. Fungal spores were produced at icipe, Nairobi. The viability of the spores was tested with 

percentage germination rate of conidia on Sabouraud Dextrose Agar (SDA) recorded prior to the start 

of experiments. At all times, the conidia were stored in the dark at 4°C. Depending on the 

experiments, 0.05 g and/or 0.1 g of dry conidia were used to infect mosquitoes. 

 

Exposure to Metarhizium anisopliae 

 

Transparent plastic cylinders of 9 cm diameter and 15 cm height were used. The inner and the base 

surfaces of each cylinder were lined with white rough paper that measured 28.6 × 14.3 cm and 9 cm 

in diameter respectively (Chapter 3). A piece of mosquito netting material was secured over the 

mouth of each cylinder using a rubber band. A hole was punched at the centre of the net to serve as 

an entry point for the mosquitoes. Eight transparent plastic cylinders each lined with white rough 

paper were used. Metarhizium anisopliae spores were weighed and 0.1 g (approx. 1.0 × 10
11

 conidia/

m
2
) or 0.05 g (approx. 5.1 × 10

10
 conidia/m

2
) was spread in each cylinder. Sixty 2-d-old female 

mosquitoes were introduced in each cylinder and held for 6 h being supplied with cotton pads 

soaked in 6% glucose solution. The pads were placed on top of the netting material that covered the 

mouth of the cylinders. The mosquitoes were then transferred to a holding cage (30 × 30 × 30 cm) 
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and supplied with 6% glucose solution on filter paper wicks. The insects were maintained at 28 ± 2˚C 

and 70 ± 5 % r.h. in a room simulating semi-field conditions. In the control, uninfected mosquitoes 

were held in four fungus-free cylinders for 6 h prior to release into one holding cage. Twice as many 

mosquitoes compared to controls were exposed to fungal conidia to adjust for mortality associated 

with fungal-infection prior to the start of experiments. Fungus-infected mosquitoes used in the 

experiments were 3-d post fungal exposure. 
 
 
Experimental set up 

 

The experiments were done under semi-field conditions inside a Malaria-Sphere (Figure 1) (Knols et 

al. 2002). This experimental unit is located at the Thomas Odhiambo Campus of the International 

Centre of Insect Physiology and Ecology (icipe) located near Mbita Point township in western Kenya. 

It embraces a screen-walled greenhouse (11.4 × 7.1 × 2.8 m, Cambridge Glass House Co. Ltd., UK) in 

which a traditional African house (3.2 × 2.8 × 1.7 m) is built. Some locally cultivated food crops and 

naturally established plants that mimic vegetation commonly found in the homesteads were grown 

inside the set up.  

 

 

 

 

Human subjects 

 

One male African volunteer, ranked as medium attractive (MA) to An. gambiae mosquitoes, was 

used in all the experiments (R.W. Mukabana, unpublished data). The volunteer bathed with 

odourless bar soap 30 min. prior to the start of experiments. Malaria infection status of the volunteer 

was tested daily by microscopic examination of thin and thick smears of finger-prick blood stained 

with Giemsa. 

 

Mosquito collecting devices 

 

Anopheles gambiae mosquitoes that entered the hut in response to human odours after being 

released inside the Malaria-Sphere were collected using two Centers for Disease Control (CDC) light 

11.4

2.8

1.6

11.4

2.8

1.6

Figure 1. A semi-field set-up in Mbita Point, Kenya (Knols et al. 2002) – photograph: W. Takken  
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traps (Costantini et al. 1998a). As An. gambiae prefer to bite the feet of their host (De Jong and Knols 

1995, Dekker et al. 1998), the traps were positioned at the foot end of the bed near the top of the 

bed net (Mboera et al. 1998). The human landing technique was later employed to estimate the 

hourly human-biting rate of female An. gambiae mosquitoes outdoors and indoors inside the 

Malaria-Sphere. The technique is the most effective method when studying human-biting rates 

(Mboera 2005, Silver 2008). Therefore, the human volunteer acted both as bait and as collector using 

an oral aspirator. 

 

Effect of fungal infection on house entry rate of mosquitoes to find human hosts located 

indoors  

 

First, control experiments were conducted in the absence of a human host in the hut. An intact 

untreated mosquito bed net was hung around a bed in the hut. Two hundred 8-h-starved female An. 

gambiae mosquitoes aged 5-d old were then released within the Malaria-Sphere at 21:00hr. 

Experiments were stopped at 06:00hr the next morning when numbers of mosquitoes inside CDC 

light traps, on the hut walls and on the bed net were collected, counted and recorded. Mosquitoes 

remaining in the Malaria-Sphere were aspirated during day-time before the start of the next night’s 

experiment. Both uninfected mosquitoes and mosquitoes infected with 0.1 or 0.05 g of M. 

anisopliae, released on separate nights, were used. Treatments were conducted using similar 

procedures except that a human being, sleeping under an untreated bed net, was present inside the 

hut. The control experiments, in the absence of a human host, were conducted for 16 nights with 

uninfected mosquitoes and 16 nights with M. anisopliae-infected mosquitoes. Similarly, experiments 

with a human host inside the hut were conducted for 16 nights with uninfected mosquitoes and 16 

nights with M. anisopliae-infected mosquitoes. In all experimental nights, two data loggers were 

each suspended inside the hut and within the Malaria-Sphere to record temperature and relative 

humidity.   

 

Effect of infection with M. anisopliae on outdoor and indoor hourly human-biting rates of 

An. gambiae 
 

Human-biting rates of 8 hr-starved female An. gambiae mosquitoes were assessed outdoors and 

indoors inside the Malaria-Sphere. Two hundred, 5-d old uninfected mosquitoes or mosquitoes 

infected with 0.05 g of M. anisopliae were released in groups of 50 at the four corners of the Malaria

-Sphere in separate nights. The mosquitoes were released 30 min. prior to the start of landing 

collections. The human subject performing the collections sat alert on a stool outside the hut for 

outdoor studies and later inside the hut for indoor studies ready to capture mosquitoes off of his 

exposed legs and arms using a mouth aspirator. Collected mosquitoes were stored in pre-labeled 

holding cups. A separate holding cup was used for each hourly collection. Collections were done 

between 19:00 and 06:00hr the next morning. Holding cups containing mosquitoes were carried 

from the Malaria-Sphere and kept in the refrigerator prior to counting and recording. Mosquitoes 

remaining in the malariasphere were aspirated at daylight before the start of the next night’s 

experiment. This procedure was conducted for four days outdoors using uninfected mosquitoes, four 

days outdoors using M. anisopliae-infected mosquitoes, four days indoors using uninfected 

mosquitoes, and four days indoors using M. anisopliae-infected mosquitoes. 

 

Statistical analysis 

 

The number of uninfected and M. anisopliae-infected mosquitoes that entered the hut included the 

sum of collections in CDC light traps, on the bed net and on the walls of the hut. These numbers were 

expressed as means. The counts were subjected to Generalized Linear Model (GLM) for multiple 

comparison tests to calculate the level of statistical difference between the four treatments. The 
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hourly human-biting rate of mosquitoes caught was calculated by dividing the number of mosquitoes 

collected in a given hour by the number of mosquitoes remaining in the Malaria-Sphere i.e. excluding 

the number that had already been recaptured in the elapsed hr(s). This is because the sample size 

was reduced by a factor “number recaptured” from the start to the end of the experimental time. 

The difference in hourly biting rate between the uninfected and infected groups was estimated by chi

-square (χ
2
) test (Preacher 2001). The analysis was conducted using GenStat® (3

rd
 Edition) or SPSS 

(Version 17.0) 

 

Ethics 

 

Ethical approval for this study was given by the Kenya National Ethical Review Committee located at 

the Kenya Medical Research Institute (NON-SSC Protocol number 203). 

 

Results 
 

House entry rate of fungus-infected mosquitoes in response to human odours indoors  
 

In the absence of human odours inside the hut, 99% (3180 of 3200) of the uninfected mosquitoes 

and 96% (3082 of 3200) of mosquitoes infected with 0.1 g of M. anisopliae flew out of the release 

cup. With the hut occupied by a human host, 98% (3134 of 3200) of the uninfected and 84% (2703 of 

3200) of mosquitoes infected with 0.1 g of M. anisopliae left the release cup. Significantly fewer M. 

anisopliae infected mosquitoes compared to controls left the release cup in the absence (f = 23.8, df 

= 30, P = 0.001) and in the presence (f = 16.3, df = 30, P = 0.0001) of human odours inside the hut 

(Table 1). Of the total released mosquitoes, the numbers of infected mosquitoes that entered an 

empty hut (5.6% versus 9.1%) and the hut occupied by a human subject (16.2% versus 33.7%) were 

significantly less compared to uninfected mosquitoes. Overall, the response of uninfected and 

infected mosquitoes under the different experimental conditions differed significantly (P < 0.0001). 

 

 
Table 1. Mean (± S.E.) number and percent response (in parentheses) of uninfected mosquitoes and mosquitoes infected 

with 0.1 g of Metarhizium anisopliae entering an empty or human-occupied African hut. N is the number of replicates and n 

the total number of mosquitoes that flew out of the release cup in each experiment. Each treatment tested 3,200 

mosquitoes. 

 

 
 
Means followed by different letters within column (between treatments) are statistically different (P = 0.0001) by multiple 

comparison tests. 

 

 

Similarly, a fungal spore concentration of 0.05 g had a significant effect on mosquitoes. With an 

empty hut, 99% (3158 of 3200) of the uninfected mosquitoes and 92% (2939 of 3200) of M. 

anisopliae-infected mosquitoes left the release cup. In the presence of human odours inside the hut, 

Human host   in hut? Mosquito infection status N n Mean ± S.E no. of mosquitoes 

entering hut (%) 

Absent Uninfected 16 3180 18.06 ± 2.81 (9.1) 
a
 

Absent Fungus-infected 16 3082 10.88 ± 1.67 (5.6) 
b
 

Present Uninfected 16 3134 66.13 ± 5.36 (33.7) 
c
 

Present Fungus-infected 16 2703 27.38 ± 2.15 (16.2) 
d
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99% (3187 of 3200) of the uninfected and 96% (3066 of 3200) of M. anisopliae-infected mosquitoes 

flew out of the release cup. Significantly, more uninfected compared to infected mosquitoes flew out 

of the release cup with an empty hut (f = 22.6, df = 30, P = 0.0001) and with a human subject inside 

the hut (f = 12.9, df = 30, P = 0.0001) (Table 2). Of the total mosquitoes released, fewer infected 

compared to uninfected mosquitoes entered the hut in the absence (2.3% versus 3.7%) and in the 

presence of human odours (19.1% versus 41.4%). The response of treated and control mosquitoes 

differed significantly in the absence and in the presence of human host odours (P < 0.0001). 

 

 
Table 2. Mean (± S.E.) number and percent response (in parentheses) of uninfected mosquitoes and mosquitoes infected 

with 0.05 g of Metarhizium anisopliae entering an empty or human-occupied African hut. N is the number of replicates and 

n the total number of mosquitoes that flew out of the release cup in each experiment. Each treatment tested 3,200 

mosquitoes. 

 

 
 
Means followed by different letters within column (between treatments) are statistically different (P = 0.0001) by multiple 

comparison tests.. 

 

 
Outdoor hourly human-biting rates of M. anisopliae-infected mosquitoes 
 

In this study, 80% (644 of 800) of the uninfected and 52% (419 of 800) of fungus-infected female An. 

gambiae mosquitoes were recaptured between 19:00 and 06:00 hr (Figure 2). The difference 

between the catches was significant (χ
2 

= 141.89; P = 0.0001) with fewer infected mosquitoes 

recaptured than uninfected ones. An increase in biting activity was observed from early in the night 

with the peak occurring between 23:00-24:00 hr in both the uninfected and M. anisopliae-infected 

groups. However, a sharp increase was more pronounced in the uninfected group with a slight 

decline in infected group between 21:00-22:00 hr. After midnight, the biting rate gradually decreased 

in both treatments until 03:00 hr and thereafter increased slightly to dawn. Between treatments, 

significantly (P = 0.0001) fewer M. anisopliae-infected mosquitoes responded to odours emanating 

from the human volunteer throughout the night compared with uninfected mosquitoes except for 

the periods between 19:00-20:00 hr (χ
2 

= 0.68; P = 0.41) and 20:00-21:00 hr (χ
2 

= 2.73; P = 0.1) (Figure 

2).  

 

Indoor hourly human-biting rates of M. anisopliae-infected mosquitoes 
 

When the host was seated indoors, 65% (522 of 800) of the uninfected and 43% (344 of 800) of the 

M. anisopliae-infected mosquitoes were recaptured throughout the night of sampling (Figure 3). 

Significantly, fewer infected compared to uninfected mosquitoes were collected (χ
2 

= 79.75; P = 

0.0001). Despite a slight drop in biting activity of mosquitoes between 20:00-21:00 hr, early evening 

biting was evident with the peak occurring between 21:00-22:00 hr with M. anisopliae-infected 

mosquitoes and from 21:00-23:00 hr with uninfected mosquitoes. Furthermore, the biting rate 

Human host   in hut? Mosquito infection status N n Mean ± S.E no. of mosquitoes 

entering hut (%) 

Absent Uninfected 16 3158 7.38 ± 1.37 (3.7) 
a
 

Absent Fungus-infected 16 2939 4.25 ± 0.65 (2.3) 
a
 

Present Uninfected 16 3187 82.56 ± 5.97 (41.4) 
b
 

Present Fungus-infected 16 3066 36.56 ± 3.23 (19.1) 
c
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decreased gradually up to 03:00 hr in both groups. This was followed by an increase in the activity 

again in both treatments before a decline at dawn. In this zigzag pattern of response, significantly (P 

= 0.0001) more uninfected mosquitoes were attracted to the volunteer compared to fungus-infected 

mosquitoes. However, the difference between the treatments in the number of mosquitoes that 

responded was not significant for collections between 19:00-20:00 hr (χ
2 

= 0.17; P = 0.679), 23:00-

24:00 hr (χ
2 

= 1.87; P = 0.171) and 02:00-03:00 hr (χ
2 

= 1.42; P = 0.233).   

 

Both outdoor and indoor human-biting rates with uninfected and fungus-infected mosquitoes were 

higher between 19:00 and 01:00 hr than from 01:00-06:00 hr. However, from 19.00-01:00 hr indoor 

collections were lower than outdoor collections for both treatments. From 01:00 hr until dawn, 

indoor catches were higher than outdoor ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Discussion 
 

The findings of this study demonstrate that, under semi-field conditions, infection with the 

entomopathogenic fungus M. anisopliae has a strong impact on the mosquito’s behaviour, reducing 

the proportion of An. gambiae female mosquitoes that respond to odours emanating from a human 

host located indoors. Furthermore, the results demonstrate that infection with M. anisopliae reduces 

the proportion of mosquitoes biting people outdoors and indoors, but that the nocturnal hourly 

biting pattern is not affected by fungal infection. 
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Figure 2. Proportion of female An. gambiae mosquitoes that responded hourly to odours emanating from human 

subject located outdoors throughout the night. Uninfected and M. anisopliae-infected mosquito groups are 

depicted with black and open squares, respectively. Level of statistical difference between treatments was 

calculated by Chi square (χ2
) test. Each treatment tested 800 mosquitoes.  
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The mosquitoes for these experiments were utilised three days after infection with M. anisopliae 

based on the understanding that it is around this time after exposure that the fungus expresses a 

pathologic effect in the host (Shah and Pell 2003, Roy et al. 2006). This can vary, however, depending 

on the host species, host stage, temperature and virulence of the fungus (Ferron 1978, Zimmermann 

2007b). Considering the virulence part, our spore viability of 86% (data not shown) resulted in a high 

infection rate that significantly reduced the survival of infected mosquitoes by approximately 50% 

before bioassays. Therefore, we exposed more mosquitoes to the fungus than were held as controls 

prior to the start of experiments (see Chapter 4). According to (Hajek and St Leger 1994), a reduction 

in feeding is one of the first signs in an infected insect. Thus, fungal persistence is responsible for the 

reduction in survival at the early stages of infection. Nevertheless, several factors contribute to the 

longer survivorship of insects after infection with the entomopathogenic fungi (EPF). They include 

the number of spores the insects pick up (Moore et al. 1992), the physical condition of the insect at 

the time of exposure to fungal spores and the immune response of the insect to fungal invasion 

(Gunnarsson 1988). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The success of An. gambiae to transmit malaria among a human population depends on the 

availability of blood hosts and the vector’s ability to overcome physical barriers and the various host 

defense mechanisms in order to bite frequently. Therefore, the capability of An. gambiae to enter 

houses and bite people is a critical component of their host-seeking behaviour. The mosquito 

overcomes barriers by the well-advanced behavioural traits of indoor feeding and resting (Gillies and 

Coetzee 1987). Further, with the preference to feed on humans, An. gambiae also responds to 

persons located outdoors. Hence, disruption of mosquito house entry and human-biting rates could 

lead to reduced human-vector contact and subsequent reduced malaria transmission. Disruption of 

these factors with the use of EPF has been illustrated in this study whereby fungal infection affected 

Figure 3. Proportion of female An. gambiae mosquitoes that responded hourly to odours emanating from human 

subject located indoors throughout the night. Uninfected and M. anisopliae-infected mosquito groups are 

depicted with black and open squares, respectively. Level of statistical difference between treatments was 

calculated by Chi square (χ2
) test. Each treatment tested 800 mosquitoes.  
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the flight performance of An. gambiae. A reduction in flight activity has also been reported in An. 

stephensi infected with Beauveria bassiana (Blanford et al. 2011). 

 

In our study, impact of infection on flight performance resulted in a 2-fold reduction in the number 

of mosquitoes collected indoors in the absence as well as in the presence of human odours, 

compared to the controls. A reduction with a similar margin between fungus-infected and uninfected 

mosquitoes has been reported in An. gambiae in the laboratory (Scholte et al. 2006, Ondiaka et al. 

2008b), in semi-field conditions (see Chapter 4) and in the An. gambiae complex under field 

conditions (Scholte et al. 2005). With other pathogens, costs in terms of flight performance and 

increased mortality have been reported in An. gambiae infected with the malaria parasite P. 

falciparum (Anderson et al. 2000, Charlwood and Tomás 2011) and in An. stephensi infested with P. 

yoelii (Rowland and Boersma 1988). However, blood-feeding behaviour which is quite significant in 

malaria transmission is increased in Plasmodium-infected mosquitoes compared to the uninfected 

ones (Koella et al. 1998, Koella et al. 2002). Nevertheless, disease transmission could be lowered by 

reducing the vector population at the host-seeking stage before bloodfeeding through conventional 

and microbial control approaches. 

 

A human volunteer was available outdoors and indoors to simulate the life-style in African villages 

where household members often stay outdoors conducting businesses or household chores until late 

into the night. These activities expose humans to high mosquito contact rates and disease risk 

influenced by the biting rate of the vector. We have demonstrated that although An. gambiae bites 

throughout the night, the outdoor human-biting rate of uninfected and fungus-infected mosquitoes 

was greater than that indoors. Similar observations with uninfected mosquitoes from the An. 

gambiae complex (Afolabi et al. 2006, Geissbühler et al. 2007, Aldemir et al. 2010) and with the 

mosquito Armigeres subalbatus (Pandian and Chandrashekaran 1980) have been reported under 

field conditions. The difference is attributed to the presence of a physical barrier i.e. the hut that 

mosquitoes had to enter in order to reach the human host sleeping indoors. The biting pattern 

throughout the night was also different from that exhibited by mosquitoes sampled in a field setting. 

This is because we evaluated a fixed number of mosquitoes as opposed to a field population whose 

biting habit is influenced by several environmental factors. However, the biting peak observed 

between 22:00 and 24:00 hr was similar to that reported in An. gambiae, An. arabiensis (Geissbühler 

et al. 2007), An. darlingi (Fouque et al. 2010) and An. merus (Sharp 1983, Mutero et al. 1984). 

Similarly, the increase in biting rate at dawn has also been reported in An. gambiae s.l. (Surtees 

1970), An. bwambae (Haddow and Ssenkubuge 1973) and An. arabiensis (Braack et al. 1994). 

Therefore, understanding of the human-biting cycle as well as the biting rate of malaria vectors both 

outdoors and indoors is important in designing control strategies (Rubio-Palis and Curtis 1992, Braack 

et al. 1994, Faye et al. 1997, Moreno et al. 2007, Fouque et al. 2010, Ghosh et al. 2010). 

 

Although EPF reduced the host-seeking population entering the house or biting indoors and 

outdoors, the human host is still susceptible to bites from a fraction of infected mosquitoes that 

responded to host odours throughout the night but that may be overcome by the application of 

mosquito-repellents and by sleeping under a bed net. The bites may not be a threat in terms of 

disease transmission considering the mode of action of fungal pathogens that could have advantages 

over the knock-down effects caused by insecticide usage. First, it is likely that fewer fungus-infected 

mosquitoes collected indoors or outdoors will blood-feed since infection reduces the feeding 

propensity (Scholte et al. 2006, Howard et al. 2010b). Secondly, mosquitoes that succeed to ingest a 

blood meal may further succumb to a reduction in fecundity (Scholte et al. 2006) and a reduction in 

malaria transmission potential because mosquitoes will die before Plasmodium parasites are fully 

developed (Blanford et al. 2005, Scholte et al. 2005, Read et al. 2009). A reduction in feeding and 

fecundity due to infection with fungal pathogens has also been reported in other insects (Arthurs and 

Thomas 2000, Ekesi and Maniania 2000, Tefera and Pringle 2003, Hajek et al. 2008). Third, fungal 
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pathogens have demonstrated potential to control the vector population indoors and outdoors 

whereas insecticide usage is more successful with indoor than outdoor species. Furthermore, 

increased usage of insecticide-treated nets is causing a shift from biting indoors to outdoors 

(Mathenge et al. 2001, Reddy et al. 2011, Russell et al. 2011). This shift to biting outdoors may be an 

emerging concern over sustainability of insecticide usage in addition to development of insecticide-

resistance by the vectors.    

 

The slow speed of kill, the loss of spore persistence over time and successful infection of mosquitoes 

outdoors may be a major drawback with fungal pathogen application. However, the resulting direct 

and indirect effects of fungal infections should not be overlooked. Directly, infection increases 

mortality in infected insects that lead to reduction in longevity and subsequent reduction in vector 

population. Indirectly, by the slow-kill nature of fungal pathogen, fungal infection results in a 

reduction in reproductive fitness (see Chapter 8), feeding propensity and fecundity. Spore 

persistence could be retained by increasing the dosage, using a suitable carrier that may withstand 

ultra-violet radiation and by treating entire infecting surfaces with conidia. Indoors, mosquitoes can 

be infected by resting on surfaces impregnated with fungal conidia (Scholte et al. 2005). Outdoors, 

mosquitoes have been controlled by combining synthetic insecticides with natural sugar sources as 

baits (Müller et al. 2010c, Müller et al. 2010b, Müller et al. 2010a). This mixture is either sprayed on 

the flowering plants in which the insects are killed during feeding or by applying inside stationary 

traps baited with fermented ripe fruits and flower scent as attractants (Muller et al. 2010). The 

strategy may be adopted and modified to infect mosquitoes with EPF outdoors. Amongst other 

alternative pathways, mosquitoes may be infected outdoors using wicker baskets and bait stations 

impregnated with fungal conidia. However, further evaluation is recommended on the impact of the 

fungus on non-target species, e.g. pollinators. 

 

Conclusions 
 

Our results clearly show that infection with an entomopathogenic fungus caused a significant impact 

on the flight performance of An. gambiae female mosquitoes. As a result, their house entry rate in 

response to a human host was sharply reduced. Also significantly reduced was the biting rate of the 

mosquitoes throughout the night with human volunteers either outdoors or indoors. However, 

infection did not cause changes in the nocturnal hourly-biting pattern of An. gambiae mosquitoes. 

The findings underscore the potency of fungal pathogens which is critical in the development of the 

novel tool as microbial control agents against malaria vector.  
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Abstract  
 

The entomopathogenic fungus Metarhizium anisopliae has shown great potential for the control of 

adult malaria vectors. A promising strategy for infection of mosquitoes is supplying the fungus at the 

feeding site(s). However, the efficacy of fungal infection on plant sugar feeding behaviour of 

anopheline vectors is unexplored. Therefore, we evaluated the survival of fungus-exposed Anopheles 

gambiae mosquitoes (males and females) on 6% glucose and on plant sugars of Ricinus communis 

(Castor bean) and Parthenium hysterophorus (Parthenium weed). Further, we determined the 

feeding propensity, quantity of sugar ingested and its digestion rate in mosquitoes when fed on R. 

communis for 12 hr, one and three days post-exposure to fungus. The anthrone test was employed 

to detect the presence of sugar in each mosquito from which the quantity consumed and the 

digestion rates were estimated. Fungus-exposed mosquitoes lived significantly shorter than 

uninfected mosquitoes on 6% glucose (7 versus 37 d), R. communis (7 versus 18 d) and P. 

hysterophorus (5 versus 7 d), respectively. Significantly fewer male and female mosquitoes, one and 

three days post-exposure to fungus, fed on R. communis compared to their respective controls. 

Although the quantity of sugar ingested was similar between the treatment groups, fewer fungus-

exposed than control mosquitoes ingested small, medium and large meals. The reduction in sugar 

intake was more prominent in mosquitoes three days than one day post-exposure. Digestion rate 

was significantly lower in females one day after exposure to M. anisopliae compared to controls but 

remained the same in males. No change in digestion rate between treatments was observed three 

days after exposure. The results demonstrate that entomopathogenic fungi (EPF) strongly impact 

survival and sugar-feeding propensity of both sexes of the malaria vector An. gambiae but do not 

affect their potential to feed and digest meals. Moreover, both R. communis and P. hysterophorus 

harbour toxins and sugars that are either not easily digestible or inhibit growth compared to 6% 

glucose to affect longer survivorship of mosquitoes. These findings therefore, suggest that plant 

sugar sources can be targeted as fungal delivery substrate to infect mosquitoes by EPF. Furthermore, 

targeting males for population reduction by EPF opens a new strategy for mosquito vector control. 
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Introduction  
 

Plant sugar acquired from floral and extrafloral nectaries, honeydew, damaged fruits and leaves is 

essential for the survival of mosquitoes (Nayar and Sauerman Jr 1971, Yuval 1992, Foster 1995). It is 

the only nutritional source of adult males and an optional dietary supplement to blood for females. 

However, sugar feeding is an early priority for both sexes as they emerge with little energy reserves 

(Briegel 1990, Foster and Hancock 1994, Takken et al. 1998, Clements 1999, Gary et al. 2009). 

Besides survival and building of energy reserves, sugar enhances maturation of ovarian follicles in 

females and reproductive fitness in males (Gary and Foster 2006). Survival of the malaria mosquito 

Anopheles gambiae is assured with frequent feeding and ingestion of sizeable amounts of sugar 

meals (Gary and Foster 2004) or by ingestion of small amounts of sugar at a time (Yuval 1992, Foster 

1995). Recent studies have shown that mosquitoes feed on a wide variety of plants common in their 

natural habitats (Impoinvil et al. 2004, Manda et al. 2007b, Gouagna et al. 2010, Muller et al. 2010). 

Sugars from some of these plants promote longer survival of both sexes, which enhance the vectorial 

capacity of females (Okech et al. 2003, Gary and Foster 2004). It is clear that plant sugars play a role 

in regulating the dynamics of mosquito populations. Control interventions that target mosquito sugar 

feeding may be promising in reducing transmission of malaria parasites and other pathogens (Gu et 

al. 2011). Therefore, knowledge on the role of plant sugars in the biology of mosquitoes is essential 

for development and improvement of control strategies against the vector. 

 

Currently, control of the malaria vector Anopheles gambiae focuses on the use of synthetic 

pyrethroids impregnated in bed nets or as indoor residual spray (WHO 2011). The strategy has been 

effective in reducing malaria morbidity and mortality. However, concern over widespread resistance 

to chemicals has triggered interest in the search for alternatives such as microbial agents. 

Entomopathogenic fungi (EPF) are among the microbial agents used against a wide range of insect 

pests (Lord 2005, Thomas and Read 2007a) including adult mosquitoes (Scholte et al. 2003a). 

However, fungi often require several days after the initial application to kill their hosts. During these 

early days of infection, the insects may continue to feed and cause damage to crops or transmit 

diseases (Thomas et al. 1997, Scholte et al. 2004b). For this reason microbial pathogens have been 

criticised as alternatives to chemical insecticides. Nevertheless, studies have shown that fungal 

pathogens reduce survival of Anopheles mosquitoes to a level that prevents transmission of malaria 

parasites (Blanford et al. 2005, Scholte et al. 2005, Blanford et al. 2011). Further, the pathogen 

reduces blood feeding (Scholte et al. 2006, Howard et al. 2010b) and fecundity and inhibits the 

development of malaria parasites in the mosquito vector (Blanford et al. 2005). Therefore, the slow 

speed of kill by the fungal pathogen poses some advantage that impact on the feeding and 

reproduction behaviours of insects. Most studies, though, have targeted females due to their 

significant role in malaria transmission with the contribution of males in the whole process often 

overlooked. Mosquitoes are also associated with plants and male dependence on plants offers 

opportunities for intervention of the malaria-vector population. However, the potential of this 

strategy remains un-explored. 

 

Most studies have reported fitness costs associated with infection by EPF in major life history aspects 

of malaria vectors both in the laboratory using processed sugar as well as in the field (Scholte et al. 

2005, Ondiaka et al. 2008b, Bukhari et al. 2011a, Garcia-Munguia et al. 2011). As sugar feeding is 

central in the biology of adult mosquitoes, we are interested to assess whether infection of 

mosquitoes with an entomopathogenic fungus impacts sugar feeding. 

 

The present study investigated three aspects of sugar feeding behaviour of both sexes of adult An. 

gambiae mosquitoes under ambient conditions inside a screenhouse. Specifically, we (i) determined 

the survival of fungus-exposed An. gambiae mosquitoes when fed on glucose or plant sugars (ii) 

established the feeding propensity and the quantity of sugar ingested from plants by the infected 
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mosquitoes and (iii) assessed the digestion rate of sugar imbibed by fungus-exposed mosquitoes. 

 

Materials and Methods 
 

Mosquitoes 

 

Experiments were carried out using laboratory-reared Anopheles gambiae Giles sensu stricto 

(hereafter termed An. gambiae) mosquitoes obtained from a colony established from wild gravid 

females collected at Mbita Point (000 25'S, 340 13'E), western Kenya in 1999 (Menge et al. 2005). All 

mosquito life stages were maintained under ambient conditions in the mosquito insectary at the 

Thomas Odhiambo Campus (TOC) of the International Centre of Insect Physiology and Ecology (icipe) 

at Mbita Point. Larval and adult stages of the mosquitoes were raised using procedures described by 

Olanga et al. (2010). Both sexes were separated at emergence and held under ambient conditions in 

30 × 30 × 30 cm cages inside a screenhouse. Before experiments, the insects were maintained either 

on an aqueous 6% glucose solution or on plant cuttings of Ricinus communis (Caster bean) and 

Parthenium hysterophorus (Parthenium weed). 

 

Fungal isolate 

 

The entomopathogenic fungus Metarhizium anisopliae isolate ICIPE 30 was used in the study. The 

fungus was originally isolated from the stem borer Busseola fusca in Kendu Bay, western Kenya in 

1999 (courtesy Dr. N.K. Maniania) and has been maintained at the icipe’s Germplasm Centre. Conidia 

were produced on long rice as substrate following the technique described by Maniania et al. (2003). 

Harvested spores were dried for 48 hr in a desiccator containing active silica gel and stored in a 

refrigerator (4-6°C) until required.  The viability of conidia was determined before being used in the 

experiments. Germination rates >85% after 24 hr on Sabouraud dextrose agar was considered 

adequate for use in the experiments. 

 

Standard sucrose solutions 

 

Standard sucrose solutions of different strength in the series 1, 2, 4, 8, 16, 32, 64, 128, and 256 μg/μl 

were used and distilled water as the neutral liquid. Initially, 25.6 g of reagent grade sucrose was 

dissolved in 50 ml of distilled water. More water was added gradually while mixing to make a 100 ml 

solution, from which eight two-fold serial dilutions were prepared. These solutions were stored at -4°

C. 

 

Anthrone reagent 

 

Diluted sulphuric acid was prepared by mixing 380 ml concentrated sulphuric acid with 150 ml 

distilled water in a fume hood. The hot solution was kept for 5 hr at room temperature to cool and a 

further 12 hr in the refrigerator at 5°C before use. The anthrone solution was then prepared by 

mixing 0.15 g of anthrone powder per 100 ml of the diluted sulphuric acid. 

 

Cold anthrone test 

 

This test was used to assess the presence of sugar in the mosquitoes. Three test tube racks were 

used with each rack holding one hundred 5-ml test tubes. One rack was used to hold 10 test tubes 

for the standard solutions. The standards were prepared by pipetting 1 μl from each of the nine 

standard sucrose solutions into the nine separate test tubes. The tenth tube contained 1 μl of 

distilled water. The other two racks were used to hold both sexes of uninfected and M. anisopliae-
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exposed An. gambiae mosquitoes. Each tube held one mosquito. One drop of chloroform and 

methanol in the ratio 1:1 was added to each tube containing mosquitoes to dissolve the cuticle. The 

racks were held in a biological hood where 0.5 ml of anthrone reagent was added to the standards 

and the mosquitoes. The racks were then transferred into a water bath at room temperature for one 

hr. In the presence of sugar, the colour of the solutions changes from green to green-blue and 

further dark-blue depending on the amount of sugar. In absence of sugar, the colour of the sample is 

transparent yellow. The test is biased towards fructose detection. After one hour, the results were 

read by comparing the colour change in the mosquitoes and that of the standard solution. The 

quantity of sugar detected ranged from 1-64 μg. For easy analysis of the data, the mosquitoes were 

categorised as consumers of small, medium or large meals (Van Handel 1972) if they imbibed 1-4 μg, 

8-16 μg or 32-64 μg of sugar, respectively. 

 

Plant species as sugar sources 

 

Two plants, Ricinus communis (Castor bean) and Parthenium hysterophorus (Parthenium weed) 1, 
were used. Castor bean is characterised as a plant whose floral component enhances survivorship of 

An. gambiae while Parthenium weed is among the most preferred plants and frequently visited by 

An. gambiae mosquitoes (Manda et al. 2007b)  
 
Infection process  

 

Transparent plastic cylinders of 9 cm diameter and 15 cm height were used to inoculate An. gambiae 

mosquitoes with spores of M. anisopliae (Chapter 3). The inner and the base surfaces of the cylinder 

were lined with white rough paper that measured 28.6 × 14.3 cm and 9 cm in diameter respectively. 

The cylinder was held in a slanting position and 0.1 g (approx. 1.0 × 10
11

 conidia/m
2
) of M. anisopliae 

spores were weighed and poured on the paper. Using both hands, the cylinder was rolled several 

times until the spores had distributed evenly over the papers. The inner and the base surfaces of the 

cylinder used for uninfected mosquitoes were lined with white rough paper without spores. 

 

Four cylinders (two cylinders with fungus and two cylinders without fungus) were used to infect male 

mosquitoes for survival experiments. Similar numbers of cylinders and their respective treatments 

were used to infect female mosquitoes. Fifty newly emerged males and females were introduced 

into each of their respective four cylinders. The insects were held for 6 h being supplied with 6% 

glucose solution soaked in cotton wool and placed on top of the netting material covering the 

cylinder. The mosquitoes were then transferred into four separate holding cages (30 × 30 × 30 cm) 

based on treatment and sex and were supplied with 6% glucose solution on filter paper wicks. The 

insects were maintained under ambient conditions inside a screenhouse. This procedure was 

repeated to infect the same number of mosquitoes but the insects were provided with floral parts of 

R. communis and P. hysterophorus on separate occasions as source of sugar instead of 6% glucose. 

The base of the floral parts was hooked on the netting material covering the mouth of the cylinder 

using a tooth-pick. In this way mosquitoes could feed on the floral parts during the infection period 

of 6 hr. For sugar quantity and digestion rate experiments eight cylinders i.e. five cylinders with 

fungus and three cylinders without fungus were used each holding 60 males. The same numbers of 

cylinders were used to infect females. The number of mosquitoes exposed to fungus was higher than 

that of the uninfected group to adjust for fungal-induced mortality in the holding cages. 

 

 

1
 Parthenium hysterophorus was recently published as wild quinine (Manda et al 2007), but this is the common 

name for Parthenium integrifolium. In the current paper we use Parthenium weed as common name for 

Parthenium hysterophorus. 
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Effect of infection by M. anisopliae on survival of An. gambiae mosquitoes  

 

Survival on 6% glucose 

 

One hundred males and 100 females, 6 hr post-exposure to M. anisopliae upon emergence, were 

held in separate holding cages (30 × 30 × 30 cm) and supplied with 6% glucose solution regularly. 

Mortality was recorded daily and dead individuals were plated in a Petri dish lined with wet filter 

paper and incubated at 28 ± 2˚C. Fungal growth on the insect was observed under a compound 

microscope at 400× magnification after at least three days. The experiment was replicated four times 

over time. 

 

Survival on plant sugars  

 

One hundred males and 100 females, 6 hr post-exposure to M. anisopliae upon emergence were 

held in separate holding cages (30 × 30 × 30 cm). Each cage was supplied with a 250-ml flat bottomed 

conical flask. The flask contained 200-ml filtered water and at least five stems of R. communis with 

leaves and floral parts intact. The stems were replaced every two days. Mortality was recorded daily 

and dead insects were plated in a Petri dish lined with wet filter paper and incubated at 28 ± 2˚C. 

Fungal growth on the cadaver was observed after at least three days under a compound microscope 

at 400× magnification. The experiment was replicated four times over time. The procedure was 

repeated by using P. hysterophorus in place of R. communis. 

 

Effects of infection by M. anisopliae on amount of sugar ingested by An. gambiae  
 

Preliminary experiments 

 

These experiments were conducted to determine whether there was a plant species effect on sugar 

uptake by mosquitoes and to establish the time required for mosquitoes to feed fully. Of the 200 

male and 200 female mosquitoes tested on each plant, more males (85% versus 40%) and females 

(90% versus 37%) ingested sugar on R. communis than on P. hysterophorus. Moreover, R. communis 

evoked ingestion of small, medium and large amounts of sugar whereas P. hysterophorous evoked 

ingestion of small amounts only. Therefore, R. communis was selected for further experiments. Three 

groups each composed of 50 males and 50 females were established. Mosquitoes in the first, second 

and third group were fed on the plant for 6, 12 and 24 hrs, respectively. The experiments were 

replicated four times over time. At 12 hrs, more male (85%) and female (90%) mosquitoes had 

imbibed sugar compared to males (69%) and females (74%) at 6 h and males (51%) and females 

(68%) at 24 hrs, respectively. Thus, 12 hrs were selected as the time mosquitoes were exposed to R. 

communis to determine sugar uptake and digestion. 

 

Quantity of sugar imbibed 

 

The amount of sugar ingested by male and female mosquitoes, one and three d post-exposure to M. 

anisopliae and fed on R. communis for 12 hr, was evaluated. One day after exposure to fungus, fifty 

male and female mosquitoes were aspirated, each from their respective uninfected and fungus-

exposed cages and released into four separate cages. The insects were starved for 6 hr prior to 

introduction of a 250-ml conical flask containing stems of R. communis in each cage. After 12 hr of 

feeding, the insects were removed from the cages and held in four separate collection cups. The 

insects were anaesthetised and their sugar levels quantified. The experiment was replicated four 

times over time. This procedure was repeated with mosquitoes three days post-infection. 
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Effects of infection with M. anisopliae on digestion rate of sugars imbibed from plants 

 

The digestion rate in An. gambiae mosquitoes exposed to M. anisopliae was determined by feeding 

males and females on R. communis for 12 hr. One day after exposure to fungus, 50 mosquitoes were 

aspirated from each cage holding uninfected and fungus-exposed mosquitoes and released into four 

separate cages. The mosquitoes were starved for 6 hr prior to introduction of the plant in a 250-ml 

conical flask in each cage. Mosquitoes were allowed to feed on R. communis for 12 hr after which the 

flask containing the plant parts were removed from the cages. Fifty mosquitoes that appeared fully 

fed were removed and held in separate cages. Ten mosquitoes were removed from the cage at an 

interval of 8 hr starting from time zero through to 32 hr, anaesthetised and their digestion rate 

quantified with the anthrone test. The experiment was replicated four times over time. This 

procedure was repeated with mosquitoes three days post-infection. 

 

Statistics 

 

Survival of uninfected and M. anisopliae-infected mosquitoes on glucose (6%), R. communis and P. 

hysterophorous was calculated by expressing the number of mosquitoes that succumbed to mortality 

as a percentage of the total number tested. Difference in survival between uninfected and fungus-

infected groups was estimated using Cox regression analysis. Mortality rates, expressed as Hazard 

Ratio (HR) estimate the risk of dying when infected compared to when not infected with fungus. To 

evaluate effects of infection on the amount of sugar ingested by infected (one and three days post-

exposure) and control mosquitoes, first the number of mosquitoes that had fed on R. communis was 

expressed as a percentage of the total number tested. Further, the number of mosquitoes that 

imbibed small, medium and large quantities of sugar, respectively, was expressed as the mean 

percentage of the total number of mosquitoes tested. The difference between control and fungus-

infected mosquitoes was calculated with the Chi square (χ
2
) test (Preacher 2001). The digestion rate 

of the sugar ingested by mosquitoes one and three days post-exposure was each calculated by 

logistic regression. Logistic relationships for uninfected and fungus-exposed mosquitoes were fitted 

to describe sugar detection success for each time elapsed since feeding. The difference between 

uninfected and fungus-exposed mosquitoes was estimated by the Chi square (χ
2
) test. All analyses 

were conducted using SPSS (version 17.0) 

 

Results 
 

Survival of M. anisopliae-infected mosquitoes on different nutritional sources 

 

Infection with M. anisopliae reduced the survival of both sexes of An. gambiae with 100% mortality 

occurring within seven days compared to ≥ seven days with uninfected mosquitoes irrespective of 

the nutritional source (Figure 1). Survival of infected male and female mosquitoes in each nutritional 

group was significantly different from their respective controls. For example, the daily risk of death 

for both sexes was eight-fold greater on 6% glucose; four-fold (males) and eight-fold (females) 

greater on R. communis and two-fold greater for both sexes on P. hysterophorus relative to their 

controls (Table 1). In uninfected mosquitoes, the daily risk of death was three-fold greater for both 

males (HR = 3.4 [95% CI= 2.91 - 4.21], P = 0.0001) and females (HR = 2.9 [95% CI= 2.45 - 3.55], P = 

0.0001) on R. communis and 14-fold greater for males (HR = 14.1 [95% CI= 11.33 - 17.6], P = 0.0001) 

and 13-fold greater for females (HR = 13.4 [95% CI= 10.71 - 16.8], P = 0.0001) on P. hysterophorus 

relative to 6% glucose. Therefore, P. hysterophorus caused a drastic reduction in the survival of 

mosquitoes regardless of fungal infection. Between sexes, survival rate over time in each nutritional 

regime was not different. Mycosis test results indicated high infection rates (>77%) in fungus-

exposed male and female mosquitoes. No fungal conidia were observed on the cadavers of the 

control mosquitoes. 
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Feeding propensity and sugar quantity imbibed by M. anisopliae-infected mosquitoes 
 

Significantly fewer male and female mosquitoes exposed to fungus imbibed sugar from R. communis 

compared to mosquitoes not exposed to fungus (Figure 2). Mosquitoes that imbibed sugar were 

further classified as small, medium or large feeders based on the amount of sugar ingested. In each 

feeding category, more uninfected males (Table 3) and females, except the large feeders (Table 2) 

ingested sugar compared to fungus-exposed mosquitoes. Further, fewer mosquitoes (both sexes) 

three days post-exposure imbibed sugar in each feeding category compared to mosquitoes one day 

post-exposure. Between treatments, the difference in the amount of sugar ingested was not 

significant except for medium-feeding females three days post-exposure (Table 2) and small-feeding 

males, one and three days post-exposure, respectively (Table 3). Results from the mycosis test 
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Figure 1. Survival of uninfected and M. anisopliae- infected An. gambiae females (Panel A, C and E) and males (Panel B, D 

and F) when fed on: - (i) 6% glucose (panel A and B); (ii) Ricinus communis (panel C and D) and (iii) Parthenium 

hysterophorus (Panel E and F). Uninfected and M. anisopliae-infected mosquitoes are depicted by closed squares and 

closed triangles respectively.  
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demonstrated high infection rates (> 75%) in fungus-exposed males and females. No fungal conidia 

were observed on the cadavers of control mosquitoes. 

 

 
Table 1. Survival analysis of An. gambiae mosquitoes infected with M. anisopliae and fed on different nutritional sources; 

data show Cox regression Hazard Ratio (HR) outcomes (95% CI), statistical p-values are relative to the relevant control (not 

exposed to fungus). 

 

 
 

Digestion rate of M. anisopliae-infected mosquitoes 

 

The proportion of uninfected and M. anisopliae-exposed mosquitoes in which sugar could be 

detected decreased over time (Figure 3). For each time period since feeding, more mosquitoes, one 

day post-exposure to fungus, tested positive for sugar than uninfected mosquitoes. However, the 

difference between treatments was not significant except in males at 32 hr (χ
2
 = 6.27; df = 1; P= 

0.001) and in females at 24 hr (χ
2
 = 10.91; df = 1; P= 0.001) and 32 hr (χ

2
 = 11.25; df = 1; P= 0.001) of 

digestion, respectively. Moreover, fewer mosquitoes, three days post-exposure than controls tested 

positive for sugars until the 16
th

 hr in males and the 24
th

 hr in females after feeding. The difference 

however between the treatments was at 32 hr of digestion (males: χ
2
 = 6.49; df = 1; P= 0.001; 

females χ
2
 = 7.67; df = 1; P= 0.006). Cumulative scores from time zero through to the 32 hr 

Nutritional sources HR (95% CI) 

Male mosquitoes P-value Female mosquitoes P-value 

Glucose (6% ) 8.53 (6.68 - 10.89) 0.0001 7.64 (5.99 - 9.75) 0.0001 

Ricinus communis 4.33 (3.59 - 5.23) 0.0001 8.21 (6.49 - 10.37) 0.0001 

Parthenium hysterophorus 1.62 (1.40 - 1.89) 0.0001 2.15 (1.85 - 2.50) 0.0001 
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Figure 2. Mean (± S.E) percentage of uninfected and M. anisopliae- infected An. gambiae males (Panel A) and females 

(Panel B) that imbibed sugar on exposure to Ricinus communis for 12 hr. White and gray shaded bars represent uninfected 

and M. anisopliae-infected mosquitoes respectively. Level of statistical difference between treatments was calculated by 

Chi square (χ2
) test. Each treatment tested 200 mosquitoes.  
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demonstrate that, more one day post-exposure males (52% versus 45%) and females (58% versus 

39%) than controls tested positive for sugar. This was an overall indication that digestion rate was 

slower in fungus-exposed mosquitoes. The difference was only significant for females, one day post-

exposure (Table 4). Further, the proportion of three day post-exposure males (43% versus 43%) and 

females (53% versus 53%) with sugar was equal to that of the controls. Hence, timing of fungal 

exposure only had an effect on sugar digestion in females. Results from mycosis tests indicated that, 

on average 73-81% of males and 78-85% of females were infected with fungus but no spores were 

observed on the cadaver of the control mosquitoes. 

 

 
Table 2. Mean (± S.E) percentage of uninfected and fungus-infected An. gambiae female mosquitoes (see Figure 1) that 

imbibed different amounts of sugar when fed on Ricinus communis for 12 hr. One and three d post-exposure females were 

tested. 

 

 
 
Statistical significance (P value) between the number of uninfected and fungus-infected mosquitoes in each category of 

sugar quantity imbibed was calculated by Chi square (χ2
) test. Each treatment tested 200 mosquitoes.  

 

 
Discussion 
 

Results of this study demonstrate that under ambient conditions, infection with the 

entomopathogenic fungus M. anisopliae reduced the daily survival of An. gambiae mosquitoes 

irrespective of the sugar source. Such a significant reduction in the survival of An. gambiae on 

glucose within 10 d after exposure to M. anisopliae has been reported previously under laboratory 

conditions (Scholte et al. 2003a, Farenhorst et al. 2008, Mnyone et al. 2009b, Mnyone et al. 2009a) 

Chapter 3. Moreover, both R. communis and P. hysterophorus had a strong negative effect on 

survival of healthy mosquitoes. These findings are in agreement with other studies that reported 

longer survivorship of healthy An. gambiae mosquitoes fed on glucose than on plant-derived sugars 

(Gary and Foster 2004, Impoinvil et al. 2004, Manda et al. 2007a). Recent studies have shown that 

An. gambiae feed from a wide variety of plants and the quantity of sugar affects their survival 

(Manda et al. 2007a, Gouagna et al. 2010). Moreover, although sugar is present in the leaves, stem 

and floral parts of the plants, it is in the latter that different sugar types are highly concentrated 

(Manda et al. 2007b). Therefore, the lower survival on plant sugars relative to 6% glucose may be 

due to insufficient production of sugar by nectaries of the cut plants, presence of complex sugars 

Sugar quantity Day after infection mean %  (± S.E) of females that imbibed sugar χ2
 P 

Uninfected Fungus-infected 

Small 1 47.5 ± 8.54 38.0 ± 7.96 3.69 0.055 

Medium 29.0 ± 4.51 26.0 ± 4.08 0.45 0.502 

Large 18.5 ± 8.22 19.5 ± 6.29 0.07 0.799 

Small 3 35.0 ± 4.12 30.0 ± 5.6 1.14 0.286 

Medium 22.0 ± 2.22 6.0 ± 2.16 22.28 0.001 

Large 12.0 ± 4.69 6.5 ± 6.5 3.60 0.058 
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that require more energy than glucose to process into useful products or accumulation of toxic 

substances due to interruption of nutrient circulation in the plant cuttings.   

 

 
Table 3. Mean (± S.E) percentage of uninfected and fungus-infected An. gambiae male mosquitoes (see Figure 1) that 

imbibed different amounts of sugar when fed on Ricinus communis for 12 hr. One and three d post-exposure males were 

tested. 

 

 
 
Statistical significance (P value) between the number of uninfected and fungus-infected mosquitoes in each category of 

sugar quantity imbibed was calculated by Chi square (χ2
) test. Each treatment tested 200 mosquitoes.  

 

 

The longer survival of uninfected mosquitoes on R. communis than P. hysterophorus may be 

attributed to the diversity and the quality of sugars present in the plant. For instance, mosquitoes 

feed on the leaves, stems and floral parts on R. communis compared to feeding on leaves only on P. 

hysterophorus (Manda et al. 2007b). Furthermore, digestible sugars are consumed in larger amounts 

on R. communis than on P. hysterophorus (Manda et al. 2007a). The drastic reduction in the survival 

of mosquitoes on P. hysterophorus may be associated with the toxic effects of the chemical 

compound parthenin (Narasimhan et al. 1984) present in the plant, absence of sugars in the floral 

parts of the plant and the ingestion of D-allose type of sugar which is a growth inhibitor (Kato-

Noguchi et al. 2011). For instance, plant extracts of P. hysterophorus, resulted in reduction in 

fecundity, fertility and behavioural responses in the yellow fever mosquito Aedes aegypti (L.) (Kumar 

et al. 2011). Similar effects on mosquito adult emergence and fecundity have been reported with 

castor bean extracts (Elimam et al. 2009, Mandal 2010). Interestingly, the negative effects of plant 

sugars from R. communis and P. hysterophorus as reported may be entirely overcome when the 

insects are additionally offered a blood meal and these sugars then are highly beneficial by extending 

the survivorship (Takken et al. 1998, Gary and Foster 2001, Okech et al. 2003, Stone et al. 2011).  
 
Survivorship is a key feature that defines the vectorial capacity of malaria vectors (Garrett-Jones 

1964, Miller et al. 1973). Survival of An. gambiae mosquitoes on R. communis in this study was longer 

than the extrinsic incubation period of a pathogen that is as short as 10d for the malaria parasite 

Plasmodium falciparum (Molineaux et al. 1978, Lines et al. 1991, Beier 1998). This concurs with other 

studies on survival of An. gambiae on plant sugars (Gary and Foster 2004, Manda et al. 2007a). As 

this occurred under semi-field conditions, it is likely that in field situations mosquitoes forage on a 

wide variety of plants to complete their dietary requirements, sustain longevity and with blood-

supplement become efficient as malaria vectors. Therefore, reduction in the life-span of both sexes 

of An. gambiae by EPF as demonstrated in this study could lead to a considerable reduction in 

malaria transmission.  

Sugar quantity Day after infection Mean % (± S.E) of males that imbibed sugar χ2
 P 

Uninfected Fungus-infected 

Small 1 56.0 ± 6.16 41.0 ± 9.47 9.01 0.003 

Medium 22.0 ± 3.56 21.5 ± 4.19 0.02 0.903 

Large 9.5 ± 1.71 6.5 ± 2.63 1.22 0.269 

Small 3 52.0 ± 8.49 37.0 ± 6.14 9.11 0.003 

Medium 16.5 ± 0.50 10.5 ± 7.37 3.08 0.079 

Large 4.0 ± 2.45 1.0 ± 1.0 3.69 0.055 
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Infection with fungus strongly reduced the proportion of mosquitoes that ingested sugar from R. 

communis independent of the time since infection. Interestingly, the feeding potential and the 

quantity of sugar assimilated of the mosquitoes that did feed remained similar between the 

treatment and the control groups. In other insect species, a significant reduction in feeding in the 

maize stem borer Chilo partellus (Swinhoe) larvae (Tefera and Pringle 2003), adult thrips 

Megalurothrips sjostedti Trybom (Ekesi and Maniania 2000) and the variegated grasshopper, 

Zonocerus variegatus (Linnaeus) (Thomas et al. 1997) occurred as early as one to four days after 

infection with the entomopathogenic fungus M. anisopliae. The normal feeding that we observed has 

also been reported in corn earworm, Heliothis zea (Boddie) larvae (Cheung and Grula 1982) infected 

with B. bassiana. The insects, however, die at a later stage, which may indicate that infection causes 

starvation due to physiological changes in infected hosts. Reports to-date about mosquitoes have 

addressed reduction of blood-feeding rather than sugar feeding in fungus-infected females (Blanford 

et al. 2005, Scholte et al. 2006, Blanford et al. 2011) and these are therefore not comparable with 

our study. The reduction in sugar-feeding propensity may be attributed to three factors. First, 

infected mosquitoes may have fed as often as the uninfected ones but the sugar content was too low 

to be detected. Secondly, the sugar in infected mosquitoes may have already been digested and 

converted into a metabolic product which the anthrone test (biased towards fructose) could not 

detect. Lastly, the secondary metabolites produced by the fungus may be responsible for the 

degradation of tissues including the midgut, thus affecting feeding ability (Vey et al. 1985, Samuels et 
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Figure 3. Effect of infection with M. anisopliae on sugar detection success in An. gambiae mosquitoes. Panels A and B 

represent sugar detection success in uninfected and in M. anisopliae-infected males and females respectively one day post-

exposure with Panels C and D represent 3 d post-exposure when fed on Ricinus communis for 12 hr. Solid lines representing 

uninfected mosquitoes and dotted lines representing infected mosquitoes describe the fitted logistic relationships between 

sugar detection success for each time period since feeding: - Logit (sugar detection success) = ß0 + ß1 time. Circles denote 

observed values. Level of statistical difference between treatments was calculated by Chi square (χ2
) test. Each treatment 

tested 200 mosquitoes.  
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al. 1988, Vey and Quiot 1989). The production of these metabolites in combination with utilization of 

glycogen and lipid reserves and possible mechanical disruption of tissues by mycelial growth may be 

responsible for the loss of appetite (Thomas et al. 1997). The normal feeding in fungus-infected 

mosquitoes could be associated with dose (Moore et al. 1992) and the insect defense mechanism 

that may have resulted in delayed colonization of the insect tissues by the fungus (Seyoum et al. 

1994). This is because the immune system of insects responds in defense of fungal attack as early as 

12 h after exposure to the pathogen (Gunnarsson 1988). 

 
Table 4. Proportion of uninfected and fungus-exposed An. gambiae mosquitoes that tested positive to sugar within 32 hr 

after feeding on Ricinus communis for 12 hr. Males and females were tested one and three d post-exposure. 

 

 
 

Statistical significance (P value) between the number of uninfected and fungus-infected mosquitoes in each category of 

sugar quantity imbibed was calculated by Chi square (χ2
) test. Each treatment tested 200 mosquitoes.  

 

 

The study has further shown that infection by M. anisopliae had no effect on the digestion rate of 

sugar except in females, one day post-exposure. However, as the fungal infection progressed, fewer 

infected than uninfected mosquitoes (both sexes) tested positive to sugars. Digestion of sugar in 

insects takes place in the crop and midgut and its rate is influenced by the meal size consumed, sugar 

concentration (Van Handel 1965), metabolic rate (Nayar and Van HandeL 1971b) and the extent of 

energy reserve, among other factors. The mechanism that affects feeding rate due to pathogen 

attack may also affect the digestion process. Therefore, the slow digestion rate in early days of fungal 

infection is likely to be associated with the dose and the mechanical disruption of the midgut tissues 

by fungal toxins (Vey and Quiot 1989). Furthermore, the increased breakdown of sugar as the 

infection advances could be associated with the need to replenish the teneral energy reserves 

depleted by invasive fungal pathogens in the insect haemolymph. These teneral reserves are critical 

for the survival of insects (Takken et al. 1998, Thompson 2003). In the case where digestion rate 

between treatments was equal, it is likely that infected mosquitoes imbibed more sugar than 

controls for two purposes. First, to nourish the storage reserve this is the primary source of 

nourishment to the fungal pathogen (Xia et al. 2002). Second, to replenish and store sugar in the 

crop for future use. This is because the accumulation of energy reserves retards digestion (Foster 

1995). Between sexes, the proportion of individuals that tested positive to sugars did not differ in 

spite of their different synthesis of reserves. This concurs with what has been reported by (Van 

Handel 1965). 

 

The inability of fungus-exposed mosquitoes to sugar feed may pose some advantages. The life-span 

of both sexes could be reduced to less than five days. During this period, the mating ability of males 

may be compromised leading to fewer females getting inseminated (Chapter 8). Although females 

can build their energy reserves from human blood, they may not survive long enough to become 

Sex Day after 

infection 

% mosquitoes positive to sugar χ2
 P Percent (± S.E) 

infection Uninfected Fungus-exposed 

Male 

1 

45 52 1.96 0.161 73.0 ± 3.87 (146) 

Female 38.5 58 15.29 0.001 78.0 ± 4.16 (156) 

Male 

3 

43.5 43 0.01 0.920 81.0 ± 1.0 (162) 

Female 52.5 53 0.01 0.920 85.0 ± 2.08 (170) 
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efficient malaria vectors. Therefore, if both sexes become infected early in life, this could lead to 

population suppression, incomplete development of the malaria parasite in females and reduction in 

malaria transmission (Scholte et al. 2006, Gary et al. 2009). Moreover, the ability of mosquitoes to 

feed on and digest sugars may negatively impact on the survival of both sexes and minimize human-

mosquito contact. Thus, maintaining the normal rate of food consumption and digestion in fungus-

infected insects for as long as possible benefits the fungal pathogen because this maximizes the 

amount of food available for the entomopathogen (Gary and Foster 2001, Roy et al. 2006). Further 

research however is needed to determine if a similar impact of fungus can occur in field situations. 

 

The life of male mosquitoes is exclusively tied to the plant community. By focusing on fungal 

inoculation during plant feeding, therefore, both males and females are likely to become infected. 

Control strategies that target both sexes may lead to significant reduction in the prevalence and 

transmission of malaria and other mosquito borne diseases. In recent studies, the efficiency of plant 

attractants in attractive toxic sugar baits (ATSB) for the control of mosquitoes has been 

demonstrated (Müller et al. 2008, Müller and Schlein 2008, Muller et al. 2010, Müller et al. 2010c, 

Müller et al. 2010b, Müller et al. 2010a, Müller et al. 2011). The approach uses odour stationary traps 

baited with fermented ripe fruits and flower scent as attractants, a sugar solution as feeding 

stimulant and an oral pesticide (Muller et al. 2010). The strategy can be adopted to infect and kill 

mosquitoes with EPF during plant sugar feeding in two ways. Firstly, by spraying flowering plants 

with fungal conidia formulated in a suitable carrier that can withstand ultra-violent effects and retain 

spore virulence. This strategy however, requires assessment on the impact of fungal pathogens on 

non-target organisms especially pollinators. Secondly, by spraying fungal conidia in traps baited with 

fruits and flowers and sugar solution. The first approach may be cost effective since preparation of 

attractants for the traps may be problematic. Also, more mosquitoes are likely to be targeted and 

killed by spraying the plants than by being attracted to the baited traps, as these are in competition 

with flowering plants. Nevertheless, research is needed to demonstrate the possibility of these 

proposed pathways and other unexplored approaches for infecting wild mosquitoes, particularly 

males, by entomopathogenic fungi.           
 

Conclusions 
 

This study has demonstrated that the entomopathogenic fungus M. anisopliae has the potential to 

infect, kill or reduce the survival of malaria vectors feeding on plant sugars beyond ages at which 

they are old enough to transmit malaria. Significantly, infection with fungus reduced the proportion 

of both sexes of An. gambiae that ingested sugar from R. communis but not the quantity of sugar 

imbibed relative to the controls.  Moreover, infection by fungal pathogen had no effect on the 

digestion rate of sugar except in females, one day post-exposure. Fungal infection reduced the 

proportion of mosquitoes that tested positive to sugars as the fungal infection progressed. The 

possibility of targeting mosquito males for population reduction by an entomopathogenic fungus 

opens a new strategy for mosquito vector control.  
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Abstract 
 

Malaria remains a key hindrance to the improvement of health in Africa. Transmission rates and the 

risk of the disease can be greatly reduced by vector control. At present, control of adult mosquitoes 

is almost exclusively based on chemical insecticides. However, development of resistance to 

chemicals is of great concern for sustainable malaria control. Entomopathogenic fungi are effective 

against adult vectors and can be used as an alternative to insecticides. As slow-killing agents, fungi 

are expected to impose limited evolutionary pressure for resistance formation in exposed 

populations. The host-seeking response, feeding propensity, blood meal size (quantified through 

haematin analysis), and fecundity was evaluated by exposing mosquitoes infected with the fungus 

Metarhizium anisopliae to human volunteers. It was found that fungal infection reduces feeding 

propensity but blood meal size and fecundity remained unaffected. The implications of these findings 

with regard to potential resistance development against fungal infection are discussed.  
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Introduction 
 
Malaria remains a major global problem, exerting an unacceptable toll on the health and economic 

welfare of the world’s poorest communities (WHO 2005, Breman et al. 2007). The burden of disease 

is greatest in Africa where children under the age of five and pregnant women are most vulnerable 

due to their lower level of malaria immunity (WHO 2006a). Each year, over one million deaths from 

the direct effects of the disease occur in the continent (World-Bank 2007) and it is therefore 

regarded as the leading cause of morbidity and mortality in the sub-Saharan region. Malaria is 

caused by protozoan parasites of the genus Plasmodium and is transmitted through bites of 

mosquitoes belonging to the genus Anopheles. Females of An. gambiae s.l. are the principal vectors 

of malaria in Africa, besides An. funestus. Their dominance as malaria vectors is largely due to a 

preference for human blood, high vector competence, and high daily survival rates (Besansky et al. 

2004, Day 2005). 

 

The transmission rates and risks of the disease can be greatly reduced by vector control (WHO 

2006b). Contemporary adult mosquito control is almost exclusively based on indoor application of 

chemical insecticides in the form of impregnated bed nets or as indoor residual spraying (of walls and 

ceilings). However, sustainable use of chemicals is undermined by problems of insecticide resistance 

in mosquito populations, environmental contamination and risks to human health. Growing concern 

to these problems has increased interest in the search for alternative approaches (Zaim and Guillet 

2002). Biological control is one option, and several biological control agents, like Bacillus 

thuringiensis israelensis have been used successfully to control mosquito larvae (Fillinger et al. 2003, 

Fillinger and Lindsay 2006). Entomopathogenic fungi are effective against adult vectors and are 

currently being developed as biopesticides (Scholte et al. 2004b, Blanford et al. 2005, Scholte et al. 

2005, Knols and Thomas 2006, Thomas and Read 2007a). As slow-killing agents, fungi are expected to 

impose limited risks for resistance formation in malaria mosquitoes (Thomas and Read 2007a). 

Fungal resistance is not considered an immediate risk in mosquito populations based on their 

multiple modes of action. Fungi use an array of weapons to attack the insect, such as chitinases, 

proteases and release of toxins (Hajek and St Leger 1994). Compared to insecticides, fungi have low 

virulence as they kill an insect in 6-14 days after infection depending on the fungal species and 

isolate used. Within this period, the females are likely to be able to mate and reproduce. Therefore, 

the slow killing mechanism of the fungus imposes a limited selection pressure on the mosquitoes 

thus reducing the likelihood of anti-fungal resistance (Knols and Thomas 2006).  

 

To curb malaria transmission, understanding behavioural consequences of fungal infections in 

mosquito populations is vital. The propensity to select humans for blood feeding is arguably the most 

important component of mosquito vectorial capacity (Zwiebel and Takken 2004). This aspect further 

determines the success of mating, blood feeding and oviposition. A laboratory study in which 

infected female mosquitoes were blood fed by arm in small cups revealed that fungal infection 

reduces (but not eliminates) feeding propensity and fecundity (Scholte et al. 2006). However, it 

remains unknown if under more realistic conditions, whereby mosquitoes have to perform a host-

seeking response, similar results are obtained.  

 

Here we report findings of the impact of progressive fungal infections on the feeding propensity, 

blood-meal size and subsequent number of eggs laid by female An. gambiae one, three and five days 

after infection with spores of M. anisopliae. The experiment was conducted under simulated room 

conditions in the laboratory where insects had a choice to locate and bite a host instead of making 

the host directly available to them when placed in cups. 

 

Materials and Methods 
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Mosquitoes 

 

Anopheles gambiae (Suakoko strain; courtesy Prof. M. Coluzzi) were maintained at 27 ± 1°C, 80 ± 5% 

relative humidity (RH) and a photoperiod of 12:12 light: dark. Adults were held in 30 cm × 30 cm × 30 

cm gauze cages and had ad libitum access to a 6% glucose solution on filter paper. They were fed on 

a human arm twice a week. Eggs were laid on wet filter paper and transferred to water trays. Larvae 

were reared in tap water in plastic trays and were fed daily on Tetramin® fish food. Pupae were 

collected daily and placed in adult cages for emergence. A cone of damp white filter paper held in 

pint-sized cups was introduced in the cages where mated females oviposited following a bloodmeal. 
 
Fungus application in clay pots  

 

Four Ghanaian clay water storage pots (2 for control and 2 for infection with fungus) were used in 

the study according to protocols described by (Farenhorst et al. 2008). These pots have previously 

been shown to be highly attractive resting sites for anopheline mosquitoes in Western Kenya (Odiere 

et al. 2007). Each of the control pots was sprayed with 50 ml of Ondina oil (Shell, The Netherlands) 

while each of pots for infection was sprayed with 35 ml Ondina oil. Two hours later, pots for infection 

were each sprayed with 17 ml of M. anisopliae (IC30 isolate) formulated in Ondina oil at a 

concentration of 4.0 × 10
10

 spores/m
2
. Both control and fungus-treated pots were left to dry for 

fifteen hours. 

 

Mosquito infection 

 

A wet cotton pad soaked in 6% glucose solution was placed at the mouth of each pot and covered 

with a cylindrical nylon paper firmly held with a rubber band. Groups of 800 female adults, 3-5 days 

old, were randomly collected from rearing cages with a mouth aspirator and were introduced in clay 

pots through a round hole at the base of the pot. The holes were sealed with a stopper to prevent 

mosquito escape. Each control and fungus-treated pot had 150 and 250 adults, respectively. Six 

hours later, both infected and control mosquitoes were transferred into separate rearing cages and 

were provided with 6% glucose solution (supplied on filter paper wicks). For the human volunteer 

experiments mosquitoes of one, three and five days post infection were used. Approximately 2 hours 

before each experiment, two groups of 30 mosquitoes, from control and fungus-treated mosquito 

cages were removed at random and released in a large netting cage (3 m × 3 m × 3 m) fitted in an 

experimental room maintained at 26 ± 1°C, 75 ± 5% RH. For mosquitoes one and three days post 

infection, the experiment was replicated twice, for mosquitoes 5 days post infection thrice. 

 

Assessing feeding propensity 

 

Upon release, the insects were given the option to respond, locate and bite a human host and take a 

blood meal for a fixed period of 30 minutes. The volunteer entered the cage into which the 

mosquitoes had been released, and laid down on a bed with exposed arms and legs to facilitate 

biting. Both blood fed and unfed mosquitoes were collected individually into 30 ml cylindrical plastic 

tubes (9 × 2.5 cm) covered with hollow plastic caps. The tubes were lined with a strip of thin filter 

paper firmly held with a paper clip for mosquitoes to rest on. The caps had several holes to allow for 

feeding. Cotton pads soaked in 6% glucose water were placed in each cap. Thereafter, the tubes 

were assigned numbers (both for blood-fed and non blood-fed). They were then arranged in holding 

racks and maintained at 27 ± 3°C, 70 ± 10% RH and 12:12 L:D photoperiod for hematin (excreted 

during the post-diuresis phase) collection. Cotton pads water were replaced daily. After two days, 

blood-fed mosquitoes were transferred into oviposition tubes fitted with wet filter paper that served 

as oviposition substrate. The tubes were assigned numbers corresponding to labels on the hematin 

tubes. Hematin within the tubes was quantified using a standard curve to provide an estimate of 
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blood meal size (see below). Two days later, filter paper in oviposition tubes containing eggs were 

removed and the number of eggs per individual recorded by counting under a stereomicroscope. 

Dead individuals in hematin or oviposition tubes including the non-bloodfed insects were collected 

and plated on petri dishes containing wet filter paper to allow growth of fungus on the cadaver. Petri 

dishes were placed in an incubator for three days at 26 ± 2
o
C to promote fungal growth. Mosquitoes 

without fungal growth were assumed to belong to the control treatment. The procedure described 

above was repeated with mosquitoes 3 and 5 days post infection. 

 
Estimation of blood meal size 

 

The amount of hematin excreted was determined by the method of (Briegel 1980). The excreta in 

holding tubes were dissolved in 1 ml of 1% lithium carbonate (LiCO3) solution. The absorbance of the 

resulting solution was read at 387 nm and compared to a standard curve made from bovine 

haematin (Hurd et al. 1995, Hogg and Hurd 1997). 

 

Statistical analysis 

 

Individuals that took a blood meal and died in the hematin or oviposition tubes were excluded from 

the analysis. Feeding propensity was expressed as mean percentage (± SE) of the total number of 

mosquitoes that took a blood meal in both the control and infected groups while blood meal size and 

number of eggs oviposited were expressed as means (± SE) per individual mosquito. These means 

were compared using χ
2 

square analysis. 

 

Results 
 

Reduction in feeding propensity was significant (P = 0.006) for mosquitoes that were three days old 

after fungus infection when compared against uninfected mosquitoes of that age. However, this 

difference was not significant between the fungus-infected and control groups one (P = 0.68) and five 

day(s) (P = 0.33) post infection (Fig. 1A). The amount of blood consumed by fungus-treated 

mosquitoes was not significantly different from the amounts taken by mosquitoes from the control 

groups for all periods post infection (Fig. 1B). Unfortunately, a considerable number of mosquitoes in 

both treatments died before oviposition. Nevertheless, the number of eggs laid by the few surviving 

individuals was not affected by fungal infection (Fig. 1C).  

 

Discussion 
 

Results from the current study show that feeding propensity decreased in adult female An. gambiae 

mosquitoes that were three days old after infection with fungus M. anisopliae, but not one or five 

days post infection. Such an impact on behaviour will result in a reduction of female lifetime vectorial 

capacity and hence malaria transmission risk. (Scholte et al. 2006) observed virtually similar effects 2, 

3 and 4 days post infection where the 4-day treatment yielded marginal significance (P=0.048) in 

feeding propensity reduction compared to control mosquitoes. Interestingly, therefore, it appears as 

if mosquito feeding appetite decreases 2-3 days after infection, but that this effect is no longer 

apparent one or two days later. From the perspective of resistance developing against fungal 

infections, this finding is important in the sense that mosquitoes with infections do still engage in 

host-seeking behaviour and are willing to consume blood meals in similar proportions as their 

uninfected counterparts. 
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We further observed that fungal infection had no effect on blood meal size and fecundity. (Scholte et 

al. 2006) reported a significant reduction in blood-meal size for mosquitoes four, but not two and 

three days post infection. Our findings differ only for the groups four days post infection, which 

consumed similar amounts of blood as control mosquitoes. Again, considering that blood meal size 

remains unaffected by fungal infection in the first five days, it is likely that these mosquitoes will 

engage in egg development and completion of at least one gonotrophic cycle, thereby enabling 

reproduction and thus reduction of the potential for resistance development. Lifetime fecundity in 
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Figure 1. A: Proportion (mean ± SE) of M. anisopliae-infected or control female An. gambiae blood feeding 1, 3 

and 5 days post infection; B: Blood meal size (mean ± SE) of mosquitoes surviving to oviposition, and C: Number 

of eggs laid by surviving females that blood fed 1, 3 and 5 days post fungus infection. Numbers inside bars 

indicate number of mosquitoes tested (n).  
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An. gambiae, following infection with M. anisopliae, was also reported to reduce significantly 

(Scholte et al. 2006), though we did not observe this effect in the present study. Such findings have 

also been reported for other insects infected with fungus. For instance, (Ekesi and Maniania 2000) 

reported a reduction in fecundity in thrips Megalurothrips sjoistedti upon infection with M. 

anisopliae. 

 

According to (Blanford et al. 2005), fungus interferes with blood meal intake in An. stephensi 8-14 

days after infection. Assuming that this is the same for An. gambiae then our focus on insects 1-5 

days post infection would not reveal such effect. Generally, upon contact with a mosquito, the fungal 

spores begin to invade and develop inside the mosquito, after which the fungus multiplies and kills 

its host within two weeks; the approximate time a malaria parasite takes to develop into its infective 

form (sporozoites). This slow-kill approach by fungi is an advantage given that mosquitoes cannot 

transmit sporozoites until about two weeks after an infectious blood feed (Kanzok and Jacobs-Lorena 

2006). Besides, (Blanford et al. 2005), when evaluating blood meal intake and using a mouse malaria 

model system established that fungal infection has a negative effect on Plasmodium development in 

the mosquito. Putting the effects of blood meal intake, which also directly influences fecundity and 

Plasmodium development together, M. anisopliae could reduce malaria transmission by 

approximately 80 times. Nonetheless, mouse malaria may have different characteristics from human 

malaria and many different factors can come into play when applying research findings in the field. 

The factors include fungal specificity and the possibility of insects developing resistance to fungi. 

Mosquitoes might evolve ways to prevent the fungus from entering their body or limit its growth if 

they become infected but it seems unlikely that they would intensify Plasmodium transmission or 

virulence (Michalakis and Renaud 2005). 

 

The future of using M. anisopliae as a novel vector control tool is increasing as pressure mounts on 

the search for alternative public health insecticides. Studies by Jenny Stevenson (Stevenson et al., 

unpubl. data) have shown that fungus is effective against a multiple insecticide-resistant strain of An. 

stephensi, fuelling hope to solve problems of insecticide resistance (Knols and Thomas 2006). 

However, the big challenge towards sustainable use of fungus-based measures for vector control is 

the possible resistance development by mosquitoes. So far, this has not been reported in mosquitoes 

or any other insect, and our current findings support the idea that the evolutionary pressure exerted 

on populations will remain small. Nevertheless, we intend to conduct similar studies under semi-field 

and field conditions before drawing final conclusions. 
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Abstract  
 
The entomopathogenic fungus Metarhizium anisopliae is a potential biocontrol agent for malaria 

vectors. The effect of fungal infection on the normal and multiple mating performances were 

evaluated with Anopheles gambiae males 3 d post-exposure under semi-field conditions. 

Furthermore, horizontal transmission of the fungal conidia during mating was quantified using males 

1, 3 and 5 d post-exposure. Two-day old Anopheles gambiae virgin males were exposed to fungal 

conidia for 6 hr. Contaminated males were confined in cages or released in a screenhouse to mate 

with virgin females in male: female proportions of 1:1, 1:3 or 1:5 for 24 hr. Fungus-free males were 

used in controls. Overall, survival of infected males was reduced by 50% before the start of 

experiments. In a screenhouse, M. anisopliae-infected males inseminated significantly fewer virgin 

females compared with the controls. With cage tests, however, the difference in number of females 

inseminated by infected and uninfected males was not significant. Fungus infection also affected the 

multiple-insemination capacity, causing fewer inseminations. Horizontal transfer of fungal conidia 

occurred frequently, but was strongly dependent on exposure time. On average, 62.5, 17 and 6% of 

virgin females died of mycosis after mating with 1, 3 and 5 d post-exposure males, respectively. 

These findings suggest that infection with M. anisopliae has strong effects on the mating 

performance of adult male An. gambiae mosquitoes. Furthermore, conidial transfer during mating 

increases the chances of passing on pathogenic fungus to other members of the population. These 

pathologic effects on the fitness of male mosquitoes may lead to the suppression of mosquito 

populations and a subsequent reduction in malaria transmission. 
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Introduction 
 

The mosquito Anopheles gambiae Giles is the principal vector of malaria, a disease that affects more 

than 250 million people and causes more than 600,000 deaths each year (WHO 2011). The disease is 

transmitted to humans by the bite of a female mosquito infected with the Plasmodium parasite. 

Male mosquitoes do not feed on blood and thus do not transmit disease. However, they play a key 

role in reproduction and population growth in the field. Therefore, major attempts to limit malaria 

transmission focus on the control of females by use of insecticide-treated nets and through indoor 

residual spraying (Pates and Curtis 2005). The approach has been effective but with the emergence 

of insecticide resistance, alternative methods are needed to control the malaria vector including 

male mosquitoes. Microbial control agents such as entomopathogenic fungi (EPF) have shown 

potential for development as an alternative control tool (Lacey and Undeen 1986, Federici 1995) 

 

An understanding of mosquito behaviour has been the key in designing control strategies. However, 

the behavioural ecology of the males, in particular mating behaviour, remains insufficiently explored 

(Charlwood and Jones 1979, Ferguson et al. 2005, Takken et al. 2006). Current strategies are based 

on exploiting sexual competitiveness of the males since that defines their fitness in a population 

(Takken and Knols 1999). The possible approach to control An. gambiae males may be the use of the 

sterile insect technique (SIT) whereby sterile but sexually competitive males are released to mate 

with wild females. The application has been widely tested with success in eradicating the 

screwworm, Cochliomyia hominivorax (Coquerel) and other dipterans but its efficacy for the control 

of mosquitoes remains uncertain (Benedict and Robinson 2003, Townson 2009). The uncertainty with 

SIT usage confirms the need to search for alternatives. Entomopathogenic fungi have potential to 

reduce the survival of infected An. gambiae males (Scholte et al. 2003a, Scholte et al. 2004a, Scholte 

et al. 2005, Farenhorst et al. 2008, Mnyone et al. 2009a). The success of the use of the EPF 

Metarhizium anisopliae and Beauveria bassiana has been through contact when mosquitoes rest on 

surfaces impregnated with conidia, i.e. indoor resting targets (Scholte et al. 2005). The authors 

suggested other non-contact pathways be explored to increase the impact of infection such as 

autodissemination or horizontal transmission (Scholte et al. 2004a).  
 

Horizontal transmission has been described as one of the strategies that can be adopted to improve 

the effectiveness of entomopathogens (Ignoffo 1978). The technique entails the use of insects to 

introduce and spread an entomopathogen in the ecosystem. Some studies utilised the technique and 

reported its efficiency in management of plant pests in field trials. In all cases, traps either unbaited 

or baited with a pheromone lure were used as fungal delivery tools. The fungus Zoophthora radicans 

was spread by males of the diamond-back moth Plutella xylostella (Linnaeus) to a field population 

(Pell et al. 1993, Furlong et al. 1995). Similarly both sexes of the Japanese beetle Popillia japonica 

Newman (Klein and Lacey 1999) spread M. anisopliae while B. bassiana was dispersed by the sap 

beetle Carpophilus lugubris Murray (Dowd and Vega 2003) and the green bug, Plautia crossota stali 

Scott (Tsutsumi et al. 2003), respectively. In non-plant pests, field populations of tsetse were 

suppressed by M. anisopliae spread by the tsetse fly Glossina fuscipes fuscipes Newstead infected 

using an inoculative device (Maniania et al. 2006). These practical examples are encouraging for 

further studies to develop methods for scaling up of the technique. 

 

In the recent past, research has focused on exploiting mating behaviour as a means to spread EPF. 

Several laboratory based studies have reported that fungus can be spread from infected to healthy 

insects during mating. For example, healthy fruit fly females infected by M. anisopliae (Quesada-

Moraga et al. 2006) and B. bassiana (Toledo et al. 2007) during mating experienced shortened 

survival and reduced fecundity. Some studies reported a reduction in mating success in infected 

males (Dimbi et al. 2009) while other studies have not reported it (Toledo et al. 2007, Novelo-Rincon 

et al. 2009). The only two studies on horizontal transfer of EPF in mosquitoes showed that infected 
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individuals of An. gambiae (Scholte et al. 2004a) and Aedes aegypti (L.) (Garcia-Munguia et al. 2011) 

infected their conspecific untreated mates. These studies were done in laboratory cages, where 

males and females were within close range. 

 

The studies mentioned above demonstrate that EPF can be disseminated in insect populations 

directly when insects come into contact with conidia. Moreover, the pathogen can be acquired 

indirectly through mating between uninfected and infected individuals. This suggests that fungus 

application could pose an advantage over pesticide usage whose mode of action is by direct contact 

only. Nevertheless, further research is still required to highlight the impact of EPF on mating 

behaviour in mosquitoes. Studies in females demonstrate a strong impact of infection on fecundity 

(Scholte et al. 2006) but it is not clear whether the mating process is implicated. The ability of male 

mosquitoes to inseminate females is the most important component of male biology on which 

reproductive success in mosquito populations depends (Voordouw and Koella 2007). However, it is 

uncertain if mating success in An. gambiae, which characterises male fitness, can be compromised on 

invasion with a fungal pathogen. Besides, it is unclear if An. gambiae males can transmit fungal 

conidia through mating.  

 

The current study aimed to investigate, under semi-field conditions, the effects of infection by the 

entomopathogenic fungus M. anisopliae on mating performance of An. gambiae males. Specific 

objectives were (i) to determine the capability of infected males to inseminate virgin females; (ii) to 

investigate the ability of infected males to inseminate more than one virgin female and (iii) to 

establish through mycosis tests whether females can acquire infectious conidia from infected males 

during mating. 

 

Materials and Methods 
 

Mosquitoes 

 

Laboratory-reared Anopheles gambiae Giles senso stricto (Mbita strain) maintained at the 

International Centre of Insect Physiology and Ecology (icipe) in Mbita Point, western Kenya, since 

1999 were utilised. The rearing procedures at ambient conditions have been described in detail 

elsewhere (Olanga et al. 2010). Experimental males were separated from females at emergence to 

preserve virginity of both sexes. Mosquitoes were held in separate holding cages (30 × 30 × 30 cm) 

under semi-natural conditions inside a screenhouse (13 × 4.7 × 2.3 m). They were maintained on 6% 

glucose solution supplied on paper wicks and were used in the experiments when five days old. 

 

Fungus 

 

The entomopathogenic fungus Metarhizium anisopliae ICIPE 30 was used in this study. The fungus 

has been maintained at the icipe’s Arthropod Germplasm, Nairobi, Kenya. It was isolated from the 

stem borer Busseola fusca near Kendu Bay, western Kenya in 1989 (courtesy Dr. N.K. Maniania). 

Conidia were produced on long rice as substrate following the technique described by Maniania et al. 

(2003). The viability of conidia was determined before experiments by spread-plating 0.1 ml of 

suspension at 3 × 10
6
 conidia/ml on 9-cm Petri dishes containing Sabouraud dextrose agar (SDA). The 

plates (N=3) were sealed with Parafilm® and incubated at 28 ± 2°C for 18 h. A sterile microscope 

cover slip was placed on each plate and observed under a compound microscope. The percentage 

germination of conidia was established from 100 spore counts under the cover slip at 400× 

magnification. The average viability of conidia used in the tests was 86%. 
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Infecting males with fungus  

 

Six transparent plastic cylinders (9 cm diameter; 15 cm height) were used. The inner and the base 

surfaces of each cylinder were lined with white rough paper that measured 28.6 × 14.3 cm and 9 cm 

in diameter respectively. Each cylinder was dusted with 0.1 g (approx. 1.0 × 10
11

 conidia/m
2
) conidia 

of M. anisopliae prior to introduction of 50, two-day old virgin male mosquitoes. The males were 

held for 6 h and thereafter transferred into one holding cage (30 × 30 × 30 cm). They were offered 

6% glucose solution and maintained at ambient conditions inside a screenhouse. In the control, 

uninfected virgin males were maintained in four fungus-free cylinders for 6 h prior to release into 

one holding cage. Twice as many males compared to controls were exposed to fungal conidia to 

adjust for mortalities associated with fungal-infection prior to the start of experiments. All males 

used in the experiments were 3-d post fungal exposure (i.e. five days since emergence). 

 

Effect of M. anisopliae infection on mating performance of caged male mosquitoes 

 

Two cages (30 × 30 × 30 cm) were used for the treatment and for the control experiments. In the 

treatment cage, 100 M. anisopliae-infected virgin males and 100 virgin females were introduced at 

the same time. Similarly, 100 uninfected virgin males and 100 virgin females were introduced in the 

control cage. They were allowed to mate for 24 h between 12:30hr and 12:30hr the next day. The 

females were then removed, put in separate collection cups and held inside a refrigerator at 4° C for 

30 min. Thereafter, each female was dissected in 0.95% physiological saline solution under a 

dissecting microscope to remove the spermatheca (Figure 1A). The spermatheca was then placed on 

a sterile microscope slide moistened with the saline solution. The slide was observed under a 

compound microscope at 1000× magnification to examine the presence of sperm in the 

spermatheca. Females with sperms present (Figure 1B) were classified as inseminated while females 

with an empty spermatheca (Figure 1C) were not inseminated. Males were left to die and the dead 

individuals were surface-sterilised in 70% ethanol, rinsed in distilled water, plated on moistened filter 

paper and incubated at 28 ± 2° C. Cadavers were inspected for mycelial growth after three or more 

days under a compound microscope at 400× magnification. The experiments were replicated four 

times over time. 

 

 

Effect of M. anisopliae infection on mating behaviour in free-flying mosquitoes 

 

The experimental procedure is similar to the caged one described above, except that 100 males and 

100 females in separate holding cups were released inside a screenhouse (13 × 4.7 × 2.3 m) at the 

AA BB CC

Figure 1. Dissection and insemination status of female spermatheca in mosquitoes. A) Dark-brown ball-shaped 

spermatheca; B) Spermatheca engorged with sperm (100× magnification); C) Spermatheca without sperm. Courtesy: Staff 

at the Malaria Research and Reference Reagent Centre (MR4).  
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same time each night. Virgin females were allowed to mate with M. anisopliae-infected virgin males 

and with uninfected virgin males on separate nights from 18:00 hr to 06:00 hr. After 12 hr, the 

mosquitoes were recaptured with males and females placed in separate collecting cups. The females 

were held inside a refrigerator at 4° C for 30 min. Thereafter, each female was dissected under a 

dissecting microscope and observed under a compound microscope to determine the presence of 

sperm in the spermatheca. The males in the collecting cup were supplied with 6% glucose until 

death. Mycosis tests were performed on the dead males to confirm growth of the fungus on the 

cadaver. The experiments were repeated for four nights with fungus-infected mosquitoes and four 

nights with uninfected mosquitoes. 
 

Effects of M. anisopliae infection on multiple mating potential of An. gambiae males  

 

This study was conducted in cages (15 × 15 × 15 cm) using An. gambiae in the ratio of 1:1; 1:3 and 1:5 

(male: female). One, three and five virgin females were placed in three separate cages. A single M. 

anisopliae-infected virgin male was then added to each of the cages.  Three other cages were set up 

to hold the same number of females and uninfected male mosquitoes as controls. The mosquitoes 

were left together for 24 hr from 12:30 hr to 12:30 hr the following day after which the females were 

removed and held in a collection cup. Other virgin females were then introduced into the cages 

containing males in the same ratio and allowed to mate for 24 hr. The removal of mated females and 

introduction of virgin females to the same males was conducted everyday at 12:30 hr until the male 

died. The mosquitoes were sustained on 6% glucose solution on paper wicks at all times. The sex 

ratio was varied to ascertain if that had any effect on the mating potential of the males. The collected 

females were anaesthetised and dissected in the laboratory to observe the spermatheca for the 

presence of sperm. Dead males on the other hand were surface-sterilised in 70% alcohol, plated on 

moistened filter paper and incubated at 28 ± 2° C to confirm fungal growth on the cadaver. The 

experiments with fungus-infected and uninfected males were each replicated four times. 

 

Horizontal transmission of conidia during mating 

 

Three sets of cage experiments were carried out to determine whether males can transfer inoculum 

to females during mating. The first experiment was conducted by holding 50, 1-d post-exposure 

males and 50 uninfected virgin females in a cage (30 × 30 × 30 cm). They were allowed to mate for 24 

hr between 12:30 hr and 12:30 hr the next day. Females were then removed and kept in a separate 

cage. Both the males and the females were deprived of sugar water, but had free access to water 

only. When all individuals had died, they were plated for mycosis tests. The experiment was 

replicated four times. This experimental procedure was repeated to conduct the second and the 

third experiments using three and five day post-exposure males respectively. 

 

Statistical analysis 

 

Mating potential of the fungus-exposed and the uninfected males was separately quantified by 

expressing the number of females inseminated as a percentage of the total number dissected. The 

difference in insemination rates between the treatments was compared using the chi square (χ
2
) test 

(Preacher 2001). The effect of fungus on multiple mating ability while controlling for time (days) was 

estimated by a regression linear model in SAS (SAS 2003). The number of females infected upon 

mating with males one, three and five d post-exposure, respectively, was expressed as a percentage 

of the total number of females exposed to males. Statistical differences between the numbers of 

females inseminated were compared using the chi square (χ
2
) test. Furthermore, the infection status 

of the males used in each experiment was calculated by expressing the number that developed 

fungal growth as a percentage of the total in cages or recaptured in screenhouse. Significant 

differences in one, three and five d post-exposure males were estimated by the chi square (χ
2
) test. 
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Results 
 

Effect of M. anisopliae infection on mating performance of caged male mosquitoes 

 

After dissection, the number of females that had successfully mated and was inseminated by fungus-

exposed males did not differ (χ
2
 = 0.43, df = 1, P = 0.51) from the controls (Table 1). While 77.8% of 

400 fungus-exposed males developed mycosis none of the 400 males used as controls developed 

mycosis after death. 

 

 
Table 1. Proportion of An. gambiae females inseminated by fungus-infected males after a 24 hr period in test cages. The 

mean number of females dissected and the percentage of males infected is illustrated. N is the number of replicates and n 

the number of mosquitoes tested. 

 

 
 
 
Effect of M. anisopliae infection on mating behaviour in free-flying mosquitoes 

 

Thirty-seven percent (147 out of 400) of the females that had an opportunity to mate with control 

males and 39% (154 out of 400) of the females that had an opportunity to mate with fungus-treated 

males were recaptured. The difference between the collections was not significant (χ
2
 = 0.26, df = 1, 

P = 0.61). Of these, significantly (χ
2
 = 12.99, df = 1, P = 0.0003) more females that mated with control 

males were inseminated compared with the treated males (Table 2). Mycosis was observed on 73.4% 

of the recaptured males that were exposed to M. anisopliae and none in control males. 

 

Effects of M. anisopliae infection on multiple mating potential of An. gambiae males  

 

In this study, 24 male mosquitoes (12 uninfected and 12 fungus-exposed) and 616 females were used 

over 10 days. Of these females 298 became inseminated i.e. 226 by uninfected males and 72 by 

fungus-exposed males. The effect of treatment with respect to day and ratio was modeled and 

indicates a decreasing incidence of insemination as the ratio increases, although not significantly so 

(P = 0.2703) (data not shown). The model was refitted controlling for days only and the results are 

presented in Table 3. The parameter estimate for treatment indicates that for a given day, for males 

treated with fungus, the odds that a female is inseminated is exp (-3.32) = 0.036 times the odds for 

those not treated with fungus i.e. the odds of insemination is lower among those treated with 

fungus. This effect of treatment is highly significant (P <0.0001). The results also indicate a highly 

significant day (time) effect (P <0.0001): given the treatment, the odds of insemination multiply by 

exp (-0.635) = 0.53 for a one-day increment; that is, there is a 47% decrease. Further, the probability 

that a female mosquito is inseminated on any given day x by a male infected by fungus is presented 

in Figure 2. Also presented for each day is the sample proportion of females inseminated separately 

Infection status of the 

mating individuals 

N Mean ± S.E no. of 

females dissected (n) 

  

Percentage ± S.E of 

females inseminated 

(n) 

Percentage ± S.E of   

males infected (n) 

Males Females 

Uninfected Uninfected 4 93.5 ± 2.22 (374)
 a

 86.6 ± 1.12 (324) 
a
 0 (400) 

Fungus-

exposed 

Uninfected 4 93.0 ± 1.22 (372)
 a

 84.9 ± 3.05 (316) 
a
 77.8 ± 3.45 (311) 



123 

Fungal infection, mating performance and horizontal transmission 

C
h

ap
ter 8

 

for each treatment group. Both the sample proportions and estimated probabilities show a 

decreasing trend as days go by in both the treatment and control groups, although the drop is 

sharper in the early days in the treatment group. 

 
Table 2. Proportion of An. gambiae females inseminated by M. anisopliae-infected males after a 12 h period inside a 

screenhouse. The mean number of females recaptured and the percentage infection of the recaptured males is shown. N is 

the number of replicates and n the total number of mosquitoes assessed. 

 

 
 
 

Horizontal transmission of conidia during mating 

 

Fungal inoculum was passed from males to females during mating. On average, 62.5, 17 and 6% of 

females were infected by one, three and five day post-exposure males, respectively (Table 4). One-

day old infected males have, therefore, a higher transfer rate of the conidia than three and five-day 

old infected males. Mycosis was observed for 77, 72 and 82.5% of one, three and five-day post-

infected males, respectively. The infection rate was significantly higher in males that were 5 d after 

exposure compared with males that had been exposed three days previously (χ
2
 = 6.27, df = 1, P = 

0.01). 

 

 

Discussion 
 

Our results demonstrate that the entomopathogenic fungus M. anisopliae reduces the proportion of 

An. gambiae female mosquitoes inseminated by infected males in a screenhouse. In cage studies, 

however, the proportion of females inseminated was not affected by the fungal infection of the male 

mosquitoes. Moreover, fungal infection is likely to reduce the propensity of multiple mating because 

infected males are physiologically compromised. Our findings further illustrate that fungal conidia 

can be transferred to healthy An. gambiae female mosquitoes through mating. 

 

In nature, male mosquitoes require a large space for swarming, which is an important component of 

their mating behaviour (Charlwood and Jones 1980). As a consequence, they may not swarm 

properly when confined in small cages (Fraccaro et al. 1977) and that could eventually lead to low 

insemination rates if mating occurred. The results of our cage studies have shown that the males 

mated successfully and many females became inseminated while confined. Besides swarming, male 

mosquitoes are guided by sound produced by the females and vision to find a mate (Roth 1948, 

Charlwood et al. 2002, Gibson et al. 2010) in addition to contact pheromones present on the cuticle 

(Takken and Knols 1999). Furthermore, any factor that triggers both sexes to fly increases the 

frequency of mating, leading to a higher proportion of females getting inseminated (Roth 1948). 

Therefore, the size of the cage we used was not an obstacle in the mating behaviour of males. 

Infection status of the 

mating individuals 

N Mean ± S.E no. of 

females recaptured 

(n) 

  

Percentage ± S.E of 

females inseminated 

(n) 

Percentage ± S.E of   

infected males (no. 

recaptured) 
Males Females 

Uninfected Uninfected 4 36.8 ± 4.97 (147)
 a

 81.6 ± 1.36 (120) 
a
 0 (113) 

Fungus-

exposed 

Uninfected 4 38.5 ± 8.86 ( 154)
 a

 63.0 ± 5.2 (97) 
b
 73.4 ± 4.0 (113) 
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Instead, the cages promoted close-range and forced mating that may have resulted in the absence of 

a difference in insemination rates between fungus-infected and uninfected males. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Table 3. Parameter estimates and standard errors from the logistic regression model comparing effect of treatment 

(uninfected and M. anisopliae-infected An. gambiae mosquitoes) on multiple-mating ability over time (day) 

 
 

The situation in a screenhouse is different and the significant reduction in mating performance of 

fungus-infected males observed may be associated with the large space, the absence of nutritional 

sources and the effect of the fungal pathogen. It is reported that mating in mosquitoes is an energy-

dependent activity (Stone et al. 2009, Gouagna et al. 2010) and most males get depleted of energy 

when mating is completed but replenish this quickly with frequent visits to plant sugar sources 

(Foster and Takken 2004). In this study, after the mating period had elapsed, both uninfected and 

infected recaptured males were less active in their respective collection cups (S.O. personal 

observation) possibly due to depletion of energy as there were no sugar sources in the screenhouse 

during the experimental period. When provided with sugar water soaked in cotton wool, the control 

Figure 2. The estimated probability of insemination when a female mosquito is inseminated on any given day x by an 

uninfected and a M. anisopliae-infected male  
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Parameter Estimate Standard error P-value 

Intercept 4.600 0.398 <0.0001 

treatment -3.320 0.285 <0.0001 

day -0.635 0.059 <0.0001 
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males engaged in flight to reach the sugar source while their infected counterparts hardly moved and 

died soon afterwards. We can, therefore, conclude that infected males succumbed to the pathologic 

effects of the fungus and that this affected their ability to fly and engage in swarming for mating.  

 

The fitness of male mosquitoes is not only defined by their potential to mate and inseminate 

females, but also by their ability to mate multiple times. The latter is critical since males are assumed 

to remain in a constant “mating state” after the onset of mating (Roth 1948, Boyer et al. 2011). 

Interruption of the multiple-mating propensity of male mosquitoes may therefore affect the 

reproductive capacity and hence population growth rate of mosquitoes. Our cage study results show 

that multiple mating was not affected, but the frequency of occurrence over time was reduced with a 

M. anisopliae-infection. This is because infected males rarely survived longer than three days (6 d 

post-exposure) after being in contact with virgin females daily whereas the uninfected ones mated 

continuously up to the tenth day. The scenario may be worse in a field situation since infected males 

with reduced fitness may fail to compete and inseminate females. Therefore, the effect caused by an 

entomopathogenic fungus can enhance early elimination of males in the population and a further 

decline in reproduction success in the mosquito population. 

 

 
Table 4. Proportion of females infected after a 24 h mating period with males 1, 3 and 5 d post exposure to M. anisopliae in 

test cages. Percent infection rate in males is shown. N is the number of replicates, n the number of mosquitoes infected. 

 

 
 

 

The effect of entomopathogenic fungus on the reproductive performance of males may impose 

direct and indirect consequences on the mosquito population. Directly, mated but uninseminated 

females may derive a blood meal from the host, undergo successive gonotrophic development, 

oviposit but fail to produce progency, a common feature of uninseminated An. gambiae (Thailayil et 

al. 2011). As a result, reproduction success will be reduced in the entire population to a level that can 

significantly contribute to malaria vector control. Moreover, a successful mating might imply an 

increased chance of passing on the fungus to other members of the population through horizontal 

transfer of fungal inoculum. However, considering that males were used at a stage (3 d post-

exposure) when the infection process is taking place in the mosquito, the probability of transmission 

to females at this time is likely to be low (this chapter). Consequently, there is a possibility for 

indirect sub-lethal effects to occur which is beyond the scope of this study. For instance, in An. 

gambiae females, sub-lethal effects of fungus result in reduced blood-feeding and fecundity (Scholte 

et al. 2006, Blanford et al. 2011). Therefore, in the males it is likely that infection may cause a 

reduction in sperm load transferred to the females and a subsequent reduction in sperm viability. 

This remains to be investigated; however, if this can indeed occur, it may give rise to fewer offspring 

in the population. One case study shows a reduced fecundity in uninfected Musca domestica 

Linnaeus females mated with males infected with Entomophthora muscae (Watson and Petersen 

1993). This occurrence could be an advantage since An. gambiae females are considered to be 

Day post-exposure N Percentage ± S.E of females infected 

(n) 

Percentage ± S.E of   infected males 

(n) 

1 4 62.5 ± 5.06 (125)
 a

 77.0 ± 6.03 (154)
 ab

 

3 4 17.0 ± 2.08 (34)
 b

 72.0 ± 4.32 (144)
 b

 

5 4 6.0 ± 1.41 (12) 
c
 82.5 ± 2.63 (165)

 a
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monogamous, becoming refractory to re-insemination and re-mating is rare (Roth 1948, Klowden 

and Russell 2004, Howell and Knols 2009). 

 

Our study has further demonstrated that the probability of horizontal transfer of fungal conidia is 

highest after males have been exposed to the fungus for 24 hr. In mosquitoes, there are only two 

reports that address the aspect of horizontal transmission. One study found that transfer of the 

fungus B. bassiana from Ae. aegypti males allowed to mate for 48 hr caused 80-90% mortality in the 

recipient females (Garcia-Munguia et al. 2011). The second report describes a 34% mortality in An. 

gambiae males that acquired infection during 1 hr of mating with M. anisopliae-infected females 

(Scholte et al. 2004a). These findings and our observation demonstrates that conidial transfer rate is 

higher in the early days of infection, possibly due to the fact that at that time conidia are still loosely 

attached to the insect cuticle (Hajek and St Leger 1994, Scholte et al. 2004b, Zimmermann 2007b, a). 

Transmission is possible even after 3 d post-exposure (Zimmermann 2007b, a) as we also observed, 

but the effect may be too low to cause a significant impact. Therefore, this approach can be more 

beneficial when males mate soon after exposure to fungal pathogen. In other insects, transfer of the 

entomopathogenic fungus B. bassiana or M. anisopliae from males to females has been reported in 

the Mexican fruit fly Anastrepha ludens Loew (Toledo et al. 2007, Novelo-Rincon et al. 2009), in the 

African fruit flies Ceratitis capitata Wiedemann, C. cosyra (Walker) and C. fasciventris Bezzi (Dimbi et 

al. 2009) and in the tsetse fly Glossina morsitans morsitans Wiedemann (Kaaya and Okech 1990). The 

findings in these studies were shortened survival and reduced fecundity. In insects, any activity that 

enhances contact with fungal spores increases the chance of spreading the fungal pathogen through 

a host population. Such activities include mating, swarming, tactile communication, grooming and 

temporary aggression, among others (Billen 2006). Besides, the morphology of the insect plays a role 

as in mosquitoes where fungal spores were spotted on the lower parts of the first and second pair of 

legs, the hairs on the wings and the mouth parts of An. gambiae males (Scholte et al. 2004a). These 

parts in males are critical in initiating mating and their invasion with fungal conidia is an advantage 

for efficient transmission. This could have contributed to the higher conidial transfer to the females 

as observed in this study.  

 

The efficacy of the entomopathogenic fungus was expressed quite early in the mosquito population. 

We were required to expose twice as many males to the pathogen compared to the numbers held as 

controls because on average 50% of individuals in the exposed group succumbed to mortality prior to 

the start of experiments on day three post-exposure. If a similar impact of the fungus occurs in field 

situations with wild mosquitoes, then the fungus contributes positively to the reduction of malaria 

vectors by shortening their survival, and hence removing a fraction of the male mosquito population. 

Individuals that survived longer and used in the experiments have demonstrated a high mating ability 

including sperm transfer. This may be explained because they received a lower dose of the fungus or 

their immune system was stronger to suppress the invasion initially (Gunnarsson 1988, Moore et al. 

1992, Seyoum et al. 1994). Moreover, the infection may have induced rapid synthesis of juvenile 

hormone (Blanford and Thomas 2001) for early maturation of accessory glands to sustain the 

insemination process. Nevertheless, at a later stage, the insects become overwhelmed and die from 

the infection. The combined effect of early and delayed mortality in fungus-infected male 

mosquitoes is significant and results in a low proportion of males present in the population available 

for mating successfully with the females.  
 
In general, transfer of conidia to the population through the males poses some advantages. Foremost 

a greater percentage of the population is likely to be affected due to the ability of males to mate with 

several females in succession. On rare occasions, it is likely that newly emerged males will be 

infected when approached by mature males in an attempt to copulate as observed by Charlwood 

and Jones (1979). Males have been found to rest indoors (Charlwood et al. 2003, Scholte et al. 2005, 

Howell and Knols 2009) and this increases the chance to pick up conidia while resting on fungus-
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impregnated surfaces. In turn, infected males will transfer conidia to females during mating 

outdoors. However, the major challenge remains to be finding a means of infecting males outdoors 

where they spend most of the time feeding and searching for mates. The possible approach to infect 

males by fungal pathogens may be by targeting their sugar sources and it is evident that males are 

inseparable from plant communities (Yuval 1992, Foster 1995). We have demonstrated that males 

can be infected and killed with entomopathogenic fungus during plant sugar feeding (Chapter 6). 

Strategies for mosquito control are reported that combine synthetic insecticides with natural sugar 

sources as baits (Müller and Schlein 2008, Müller et al. 2010c, Müller et al. 2010b, Müller et al. 

2010a). Alternatively, flowering plants frequented by mosquitoes can be sprayed with insecticides. 

Therefore, the approach can be adopted to infect males by spraying flowering plants with infectious 

fungal conidia formulated in a suitable carrier that can withstand detrimental effects of the UV-light. 

A more costly approach in terms of bait preparation could be by spraying fungus in stationary traps 

baited with plant sugars. Besides targeting plants, emergence traps impregnated with fungal conidia 

may be used in larval habitats to infect both sexes on emergence (Bukhari et al. 2011a).       

 

Further research is still needed on the effect of fungal pathogens on other aspects of male mating 

behaviour. These include the quantity and quality of sperm transferred, mating competitiveness and 

possible transfer of conidia to other males in swarms. The information will be vital to underscore the 

reproductive fitness costs associated with fungal infection in male mating biology and its significance 

in reduction of malaria vector populations. 

 

Conclusions 
 

Our study has demonstrated that male mosquitoes succumb quickly to infections with 

entomopathogenic fungi, similar to female mosquitoes. The first three days after exposure, males 

mate normally when infected with the entomopathogenic fungus M. anisopliae in laboratory cages, 

but significantly less in large outdoor enclosures suggesting a strong impact of the fungus on natural 

mating behaviour. Horizontal transfer of fungus occurs rapidly during mating, providing a means of 

infecting female mosquitoes. Furthermore, the frequency of the males to engage in multiple mating 

and the rate at which females become inseminated is reduced in the advanced stages of infection. 
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Introduction 
 

Malaria remains a major global hindrance to health improvement and economic development in the 

world’s poorest countries where more than 225 million cases and more than 600,000 deaths occur 

each year (WHO 2011). Ninety percent of malaria-related deaths occur in sub-Saharan Africa, with 

the majority of deaths being young children. The transmission rates and risks of malaria disease can 

be greatly reduced by vector control. Widespread insecticide resistance is reducing the efficacy of 

current tools that target adult mosquitoes (N'Guessan et al. 2007, Ranson et al. 2009). 

Entomopathogenic fungi (EPF) have demonstrated potential as microbial control agents to 

complement synthetic chemicals for malaria vector control. Several studies have demonstrated the 

efficacy of EPF to infect, kill and reduce the survival of insects including mosquitoes (Hajek and St 

Leger 1994, Scholte et al. 2003a, Lord 2005, Achonduh and Tondje 2008, de Paula et al. 2008). The 

reduced survival directly affects the transmission potential of malaria parasites by mosquitoes, as a 

smaller fraction of the population will reach the age when transmission can occur (>10 days after 

infection). Infection with EPF not only affects survival, but also inflicts behavioural changes in pest 

insects with little attention given to disease vectors (Chapter 2). Understanding the relationship 

between pathogens and their hosts from a behavioural perspective is more practical to the 

development of strategies for increasing pathogen transmission in the ecosystem. Such a 

relationship is, until now, only marginally explored as is with understanding the dynamics of malaria 

vector populations, the latter’s behaviour and ecology, and how these affect disease transmission. 

The aim of this thesis was to determine whether fungal infection causes behavioural effects in adult 

malaria mosquitoes under laboratory and/or semi-field conditions. Host-seeking, plant sugar-feeding, 

mating and oviposition are the major life-history behaviours studied. This information is important 

when mosquitoes are to be targeted in their natural environment to evaluate the potential public 

health benefits of the fungus control approach. In this thesis the entomopathogenic fungus 

Metarhizium anisopliae ICIPE 30, virulent on the malaria vector Anopheles gambiae Giles sensu 

stricto (Scholte et al. 2003b), was tested to obtain insights in the potential effects of fungal infection 

on the major life-history behaviours. The six objectives of the thesis and the findings are discussed in 

a broader perspective and suggestions for future research are highlighted. 

 

Fungus formulation and application method  
 

Prior to conducting behavioural studies, it was important to identify a tool for infecting mosquitoes 

in the laboratory under ambient conditions. There were options to choose from amongst several 

tools that have been tested such as the use of clay pots (Farenhorst et al. 2008) and PVC-tubes 

(Farenhorst and Knols 2010) but clay pots are not simple to use while PVC-tubes lined with smooth, 

gloss proofing paper coated with a conidial suspension using a hand-coating machine are not cost 

effective. I therefore decided to develop a new tool, a paper sheet placed inside a plastic cylinder 

that was simple to use and of low cost (Chapter 3). Several studies have utilised conidia formulated in 

mineral oil or other suitable carriers as the search for a standard formulation continues but in this 

study I used dry conidia that are described to be more virulent than when formulated in a carrier 

(Lacey et al. 1988, Scholte et al. 2003a). The effective dosage and exposure time established to 

achieve high infectivity concurs with what has been reported in mosquitoes previously (Scholte et al. 

2003a, Paula et al. 2011) and in other pest insects (Jaccoud et al. 1999). These findings indicate that 

fungus delivery tools are arguably important in facilitating the accessibility of infectious fungal 

conidia to mosquitoes. Besides, conidial formulation, dosage and exposure time sufficient for pest 

insects and vectors to pick up large numbers of conidia are important to enhance fungal 

pathogenicity (Chapter 3). 

 

 

 



132 

Summarizing discussion 

Impact of infection with M. anisopliae on host-seeking response, blood feeding and 
fecundity of An. gambiae mosquitoes  
 

Host-seeking is an important component of mosquito vectorial capacity on which the success of the 

other behavioural determinants depends. Host-seeking is mediated by olfactory cues (Zwiebel and 

Takken 2004), which are responsible for the differential attractiveness of humans to the malaria 

vector An. gambiae. Therefore, manipulating the behaviour and the olfactory response in order to 

reduce human-vector contact may greatly lead to reduction of malaria transmission. (Scholte et al. 

2006) showed that fewer caged female mosquitoes made contact with their blood meal host on 

infection by the entomopathogenic fungus M. anisopliae under laboratory conditions. My study 

aimed to evaluate the ability of fungus-infected mosquitoes to respond to cues from their blood host 

at close-range, medium-range and long-range. The close range (1 m from host) evaluation, using a 

dual-choice olfactometer, included human subjects ranked as highly attractive and poorly attractive 

to An. gambiae mosquitoes (Mukabana et al. 2002) to ascertain the impact of fungal infection on the 

mosquito’s discriminatory capability (Chapter 4). The medium-range studies were executed using 

experimental cages (3 x 3 x 2 m) under laboratory conditions (Chapter 7). At long range (7 m from 

host), house-entry rate and the outdoor and indoor human-biting rates of malaria vectors were 

assessed under natural climatic conditions in a semi-field enclosure referred to as Malaria Sphere 

(Chapter 5). It is important to note that in all these studies the survival of mosquitoes was reduced by 

50% in the first three days after fungal infection (incubation period), an indication that a fraction of 

the mosquito population is eliminated before external signs of infection are noticeable. 

 

Infection further affected flight performance in a fraction of the remaining fungus-infected 

individuals causing a reduction in the host-seeking population (Chapters 4 and 7) and a reduction in 

the house-entry rate, indoor human-biting rate and outdoor human-biting rate (Chapter 5). Impact of 

fungus on flight performance and how this directly affects behavioural activities has also been 

reported for other insects (Seyoum et al. 2002, Blanford et al. 2011). It is therefore likely that 

behavioural changes observed in insects as described in Chapter 2 are primarily triggered by 

impaired flight performance. Besides, host-seeking behaviour, in particular in fungus-infected 

mosquitoes, may be further affected due to an impaired olfactory sensitivity (George et al. 2011) 

although the visual observation approach in my study was not sufficient to verify this. However, it is 

evident that where the host was present or absent, the number of infected mosquitoes entering the 

house was only half of the uninfected mosquitoes. In other words, those that did respond were not 

impaired (Chapters 4 and 5), but those that did not respond were either physically impaired (‘too 

sick’) or olfaction impaired. The differences between the laboratory cage studies by (George et al. 

2011) and this study call for further research, especially as the first study was done with Beauveria 

bassiana and the latter with M. anisopliae. 

 

Although effective against adult mosquitoes, EPF take time to evoke pathogenicity and that exposes 

the human host to mosquito nuisance and bites. For example, female mosquitoes ingested a blood 

meal at five days post-exposure to fungus M. anisopliae although blood feeding propensity was 

reduced (Chapter 7). In other studies, a reduction in blood feeding propensity was reported in An. 

gambiae (Scholte et al. 2006), An. stephensi (Blanford et al. 2005, Blanford et al. 2011) and Culex 

quinquefasciatus (Howard et al. 2010b) infected with M. anisopliae or B. bassiana. Moreover, fungus

-infected mosquitoes imbibed equal amounts of blood as the uninfected ones and their fecundity 

remained unaffected. This however, is in contrast to a reduction in the quantity of blood meal 

ingested and in fecundity as reported by (Scholte et al. 2006). The difference may be because I 

assessed an unequal number of uninfected and infected mosquitoes since a fraction of the infected 

mosquitoes died from infection before oviposition (Chapter 7). Although the mosquitoes took a 

blood meal, it is unlikely that these mosquitoes can transmit malaria parasites. This is because it 

takes at least 10 days for the parasite to mature in the mosquito yet the mosquito is killed from 
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fungal infection in less than 10 days (Chapter 3) depending on the fungal species and dosage used. In 

addition, fungi negatively impact on Plasmodium development preventing the parasite to develop 

into sporozoites (Blanford et al. 2005). The general effects of fungal infections on mosquitoes are 

therefore likely to have a strong impact on the transmission potential of the mosquito-borne 

parasites if mosquitoes are infected early in life. 

 

Impact of infection on feeding and survival of An. gambiae mosquitoes on plant sugars  
 

Sugar feeding is central in the biology of both sexes of An. gambiae. At emergence, mosquitoes 

search for sugar to rebuild their energy reserves without which they are less able to mate, blood 

feed, develop eggs, or lay them (Foster and Takken 2004). Interference of the sugar-feeding activity 

may therefore impose a direct impact on survival, reproduction in the vector population, and 

therefore, on malaria transmission. My data have shown that the survival and sugar-feeding 

propensity of the malaria vector An. gambiae is reduced by fungal infection but their potential to 

ingest and digest meals remains unaffected (Chapter 6). The lack of difference between feeding and 

digestion rate of uninfected and fungus-infected mosquitoes may be due to their confinement in test 

cages. However, by considering the observations with blood meal intake (Chapter 7), then there is no 

doubt that the difference is likely not to occur. The fact that infected mosquitoes succeed to feed is 

an indication that they have a chance to sustain their physiological requirements including 

reproduction. This may delay mosquitoes from succumbing to infection quickly but may facilitate the 

occurrence of sub-lethal effects that can lead to reduction in fecundity as reported in other studies 

and mating performance in males (Chapter 8). 

 

Impact of fungal infection on the mating performance and the probability of horizontal 
transfer of fungus in the malaria mosquito Anopheles gambiae  
 

Successful mating propels females to seek a human host for a blood meal to complete egg 

development (Chambers and Klowden 2001) and in the process increases chances of transmitting 

malaria parasites from one individual to another. This study examined the impact of infection with 

EPF fungi on the mating performance and probability of horizontal transmission in malaria vectors. 

The number of female mosquitoes inseminated by fungus-infected males was reduced when mating 

takes place in a large arena such as a screenhouse. Moreover, infected males were able to transfer 

conidia to uninfected females during mating increasing the chance of passing on pathogenic fungus 

to other members of the population (Chapter 8). These pathologic effects on the mating 

performance of male mosquitoes may lead to the suppression of mosquito populations and a 

subsequent reduction in malaria transmission. 

 

Implication of fungal infection on mosquito behaviour 
 

Entomopathogenic fungi infect and kill their arthropod hosts without the need for ingestion 

(Gillespie and Claydon 1989), a characteristic shared with insecticides; and an advantage over 

bacteria or viruses that infect their hosts through the gut wall. Besides, sub-lethal effects of EPF 

strongly affect the major life-history behaviours of An. gambiae mosquitoes (Table 1), an important 

advantage over insecticides that only result in the death of the insects. Although I have 

demonstrated behavioural changes in fungus-infected mosquitoes, the high mortalities observed in 

the early days of infection cannot be overlooked as both occurrences collectively have a significant 

impact in suppressing a vector population. For instance, up to 75% of mosquitoes that I exposed to 

the fungus M. anisopliae did not survive beyond 6 d after emergence (3 d post-infection). In addition, 

behavioural activities in 50% of the remaining fungus-infected mosquitoes were impaired. This 

indeed is a major contribution of EPF to the reduction in vector populations and subsequent malaria 

cases in a proportion that approaches the global target of ≥ 75% set to be achieved by 2015 (WHO 
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2009). Understanding the mechanisms employed by EPF to cause the various behavioural changes in 

insects is important in emphasising the need to develop the tool as a microbial control agent. 

 

 
Table 1. Summary of behavioural effects of fungal infection with Metarhizium anisopliae on adults of the malaria mosquito 

Anopheles gambiae as observed in this thesis 

 

 
 
 

It is evident that through fungal parasitism, insects exhibit behavioural alterations (Roy et al. 2006). 

Moreover, through parasitism, arthropod host invasion is made easy by the release of well-

characterised enzymes affecting the non-permeable cuticle while host death is often associated with 

toxin production overwhelming host-defence responses. As slow-killing agents in addition to their 

invasion and colonization of the host tissues that result in multiple modes of attack on various insect 

behaviours as demonstrated in this thesis, fungi are expected to impose limited risks for resistance 

development in malaria mosquitoes (Thomas and Read 2007a, Knols et al. 2010). If resistance occurs, 

which should be considered (Michalakis and Renaud 2005), then it would probably take a longer time 

to evolve (Read et al. 2009). Such an occurrence would be advantageous over insecticides to which 

the insect pests and vectors are prone to develop resistance (Hemingway and Ranson 2000, 

Hemingway 2004, Ranson et al. 2009, Ranson et al. 2011). Therefore, the outcome of direct (lethal) 

and indirect (sub-lethal) effects of fungal pathogens envisage their potential as microbial control 

agents for the control of malaria vector.        

 

Behavioural 
category 

Behavioural 
activity 

Effects of fungal infection on the behaviour/traits 

Feeding Host-seeking - Reduction of host-seeking propensity 

    

- Reduction of the house-entry response of the host-seeking 

population 

    

- Reduction of the outdoor and the indoor biting responses of 

the host-seeking population 

    

- No effect on the olfactory discrimination capability of the 

host-seeking population 

      

  Blood-feeding - Reduction of blood-feeding propensity 

    - No effect on quantity of blood-meal ingested 

      

  Sugar-feeding - Reduction of plant sugar-feeding propensity 

    - No effect on amount of sugar imbibed 

    - No effect on digestion rate of sugars consumed 

      

Reproduction Mating 

- Reduction of insemination rate when females mate with 

infected males in a large arena 

    - Reduction of propensity of multiple mating in males 

    

- Enhancement of conidial transfer from infected to healthy 

individual during mating. 

      

  Oviposition - Reduction in oviposition propensity 

    - No effect on the number of eggs laid 
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The direct effect of EPF on mosquito populations is the potential to infect, kill and reduce the survival 

of mosquitoes. Diet plays a major role in regulating the life-span of mosquitoes through which 

reproduction, fecundity and migration/movement are enhanced (Nayar and Sauerman Jr 1971). 

Teneral reserves of trehalose (sugar carried over from the larval stage), glycogen (sugar stored in the 

fat body) and sugar (diverted and stored in the crop) are the three possible sources of energy in 

mosquitoes to support different activities. Teneral energy is used for basal maintenance functions 

such as respiration, excretion, digestion, resting etc (Clements 1955, Nayar and Van Handel 1971a, 

Foster 1995, Takken et al. 1998). Glycogen and sugar are primarily used as energy source for flight. 

During fungal invasion, trehalose is depleted and fungal toxins disrupt enzymatic activities in the 

midgut that interfere with mosquito feeding. As a consequence, the insects die from starvation. 

Dosage and immune response of the insects determine when a mosquito dies following exposure to 

fungal conidia. With the continuous depletion of trehalose by fungus in the insect, more sugar and 

glycogen are converted to replenish the reserves at the expense of facilitating flight. As a result, the 

flight performance is strongly compromised with which, sub-lethal effects are expressed in the 

various behavioural activities of the insect. For instance, with increasing fungal infection, mosquitoes 

become less able to fly and engage in host-seeking (Chapters 4, 5 and 7), foraging for plant sugars 

(Chapter 6) and mating (Chapter 8). Although the behaviours are distinct, they interact at so many 

levels such that foraging for sugar and blood meal presents a challenge to the female mosquito since 

each feeding decision has a major impact on reproductive success (Stone et al. 2011). To overcome 

the challenge, females adopt a certain pathway that starts with sugar priority at emergence (Foster 

and Takken 2004), mutual inhibition of feeding preferences during feeding and digestion, sugar 

feeding late in the gonotrophic cycle and even permanent dominance of one food or the other in the 

diet (Foster 1995, Gary and Foster 2006). Frequency of feeding (on blood or sugar) however, is 

regulated by the nutritional requirement of the insect while the rate of digestion by flight demand 

but the sustainability of the activities to enhance longer survivorship are jeopardized by fungal 

infection. 

 

In this thesis, I have demonstrated and now emphasise that in-depth understanding of the insect-

pathogen interaction is a guide in determining the extent to which fungal pathogens may be utilised 

as biocontrol agents. Further knowledge on the biology and ecology of the fungus is the core on how 

best to explore its pathogenicity (Bidochka et al. 2000). I worked with a fungal species and isolate 

that is highly virulent against mosquitoes (Scholte et al. 2003b) and identified the most lethal dose 

that was used throughout the study as a standard dose (Chapter 3). Dry spores in favour of spores 

formulated in any suitable carrier were used for two reasons. One, it provides a reliable infection 

method for controlled laboratory-based assays. Secondly, on the basis that formulating fungal 

conidia slightly lowers its virulence unless a very high dose of up to 10
11

 and 10
12

 conidia/m
2
 is used 

(Blanford et al. 2005, Mnyone et al. 2009a, Farenhorst and Knols 2010, Howard et al. 2010a). All 

these factors were a prerequisite for the behavioural outcomes observed. It is possible that these 

findings may be observed when wild mosquitoes are being targeted. However, that will require a 

modification of fungus delivery tools and dosage to enable the fungus to withstand the fluctuating 

environmental conditions and retain efficacy and persistence (Knols and Thomas 2006, Blanford et al. 

2009). With a control approach aimed at reducing the chance for transmission of malaria and other 

vector-borne diseases, the advocacy would be maintaining higher doses. Lower doses, however, are 

still effective in reducing the survival of malaria vectors and allow for expression of sub-lethal effects 

to lower the chance for resistance development, but instead increase the chance for disease 

transmission. 

 

Among the behavioural activities and traits studied, extensive research has focused on the host-

seeking population because of its relationship of certain parameters in the vectorial capacity 

equation (MacDonald 1957). Targeting males for population reduction by EPF also opens a new 

strategy for mosquito vector control (Chapters 6 and 8). Male mosquitoes spend most of the time 
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outdoors although a fraction of them have been found to rest indoors (Scholte et al. 2005, Howell 

and Knols 2009). In contrast, malaria vectors An. gambiae and An. funestus females blood feed and 

rest indoors while An. arabiensis blood feed and rest outdoors. Although not the scope of this study, 

it would be ideal to identify suitable pathways to infect both sexes of malaria vector indoors and 

outdoors in order to reap the benefits of EPF in vector control. My results however, add new 

dimensions to the direct and indirect effects, indicating the impact of fungal infections on insect 

behaviours that could be considered in designing or modifying control strategies under development. 

Given the present state of fungal research, very few trials have translated the use of EPF to field-

based evaluations of their actual impact on mosquito survival and malaria risk (C.J.M. Koenraadt, 

personal communication). Thus, it is only possible to interpret these findings in the context of the 

potential for future malaria control. 

 
Suggestions for future research 
 
The findings in this thesis are encouraging particularly in new areas of plant sugar-feeding and mating 

performances in An. gambiae mosquitoes. For a complete overview of the impact of infection on 

these behaviours, further research is recommended on: 

 

1. Pathogenicity of EPF in terms of effects on reproductive success and male mating 

competitiveness: I have shown that infected males can inseminate females but it remains 

to be investigated whether the quantity and the quality of the sperm transferred are 

compromised. It should furthermore be established if the fecundity of females 

inseminated by infected males is affected. The ability of infected males to compete with 

healthy males for females as occurs in nature is an important element in male mating 

biology. The findings will underscore the significance of EPF in the behaviour of males 

and their reproductive ability. 

2. Plant sugar feeding: My findings are based on studies with caged mosquitoes and it will 

be interesting to investigate how infected mosquitoes forage for nectar or honeydew in 

open spaces that simulate conditions in nature. A more modern and accurate technology 

is recommended for use to detect lipid and glycogen levels in mosquitoes as a direct 

indicator of digestion to complement the use of cold anthrone test that is biased towards 

fructose only. 

3. Formulation and delivery methods: I utilised dry conidia and a delivery tool that could 

infect a small number of insects. To evaluate the impact of EPF in semi-field and field 

situations, alternative fungal formulations and delivery tools to target large population of 

mosquitoes are a prerequisite. Further research is also recommended on methods to 

infect male mosquitoes outdoors where they spend most of the time to sugar-feed and 

search for mates. 

 

Conclusions 
 

The entomopathogenic fungus M. anisopliae significantly reduced the survival of the mosquito An. 

gambiae s.s. Flight performance of mosquitoes was negatively affected by fungal invasion that 

strongly reduced the host-seeking response, house-entry rate, outdoor and indoor human-biting 

rate, plant-sugar feeding potential and mating performance of An. gambiae mosquitoes. The 

multiple modes of attack of the fungal pathogen may reduce the likelihood of resistance 

development. The susceptibility of male mosquitoes to fungal conidia opens a new strategy for 

mosquito vector control. The findings may further be incorporated in malaria transmission models to 

gauge their full impact on the Entomological Inoculation Rate (EIR). Overall, this thesis has 

demonstrated that EPF are a suitable novel tool to complement the use of insecticides in malaria 

vector control. 
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Malaria is nog steeds een groot wereldgezondheidsprobleem met de grootste impact in Afrika, met 

name ten zuiden van de Sahara. Strategieën om malaria te bestrijden verschillen over de wereld al 

naar gelang de mate van endemiciteit en de omvang van de ziekte. De focus blijft echter om de 

malaria parasieten of de vectoren te bestrijden. Een hoge mate van resistentie tegen medicijnen en 

het ontbreken van malaria vaccins zijn belangrijke belemmeringen om de ziekte onder controle te 

krijgen. In dergelijke omstandigheden is bestrijding van vectoren een goed alternatief en tot nu toe 

de meest effectieve manier om malaria overdracht te voorkomen. De huidige bestrijding van 

volwassen muggen is vrijwel uitsluitend gebaseerd op insecticide-geïmpregneerde klamboes en het 

toepassen van chemische insecticiden binnenshuis in de vorm van ‘indoor residual spraying’ (IRS) van 

muren en plafonds. Echter, duurzaam gebruik van chemische middelen wordt ondermijnd door 

resistentie van muggenpopulaties tegen insecticiden, vervuiling van de leefomgeving en risico’s voor 

de menselijke gezondheid. Biologische bestrijding die is gebaseerd op schimmels als pathogenen 

heeft reeds veel potentie getoond om de huidige vectorbestrijdingsmethoden aan te vullen. De 

entomopathogene schimmels Metarhizium anisopliae en Beauveria bassiana kunnen malaria 

vectoren infecteren, doden en de overleving beïnvloeden. Echter, het mogelijke effect van 

entomopathogene schimmels op het gedrag van malaria vectoren is onvolledig bestudeerd. 

 

Het doel van dit proefschrift was het vergaren van basis informatie over mug-schimmel interacties 

met daarbij de focus op de effectiviteit van de entomopathogene schimmel M. anisopliae ICIPE 30 op 

belangrijke gedragsaspecten van de Afrikaanse malariavector Anopheles gambiae Giles sensu stricto 

onder laboratorium en semi-veld omstandigheden. Deze informatie is belangrijk om een verdere 

ontwikkeling van biologische bestrijdingsmiddelen mogelijk te maken gericht op malariavectoren. 

Het gastheerzoekgedrag, voeden op suikers, paargedrag en eileggedrag zijn de gedragsaspecten die 

zijn onderzocht. Omdat mug-schimmel contact cruciaal is voor infectie met entomopathogene 

schimmels, is een bio-toets ontwikkeld bestaande uit een papieren vel (28.6 x 14.3 cm) in een plastic 

cylinder (met een diameter van 9 cm en hoogte van 15 cm) als kosteneffectieve manier om muggen 

te infecteren. Ongeveer 0.1 gram droge sporen (≈10
11

 sporen per m
2
) en zes uur blootstellingsduur 

waren voldoende voor An. gambiae om grote aantallen sporen op te pikken en hoge pathogeniciteit 

te veroorzaken (Hoofdstuk 3). Omdat eerder beschreven is dat de impact van entomopathogene 

schimmels op het gedrag van insecten ten minste drie dagen na blootstelling aan een 

schimmelpathogeen plaatsvindt (Hoofdstuk 2), zijn alle experimenten uitgevoerd met een speciale 

focus op muggen drie dagen na blootstelling. Het is echter belangrijk te vermelden dat gemiddeld 

50% van de muggen dood was drie dagen na blootstelling aan de schimmel (Hoofdstuk 3). Alleen de 

muggen die overleefden zijn gebruikt voor de gedragstoetsen. 

 

De bekwaamheid van An. gambiae muggen om gastheren te zoeken is een belangrijke parameter in 

de zogenaamde vector capaciteit vergelijking. Gebruik makende van een tweekeuze olfactometer 

onder semi-veld omstandigheden, reduceerde een infectie met entomopathogene schimmels de 

gastheerzoekrespons van muggen op korte afstand (1 meter van de gastheer), maar verhinderde niet 

dat muggen in staat waren om een op geur gebaseerd onderscheid te maken tussen gastheren 

(Hoofdstuk 4). Op middellange afstand en gebruik makende van experimentele kooien van 3 x 3 x 2 

m in het laboratorium, reduceerde een schimmelinfectie de gastheerzoekrespons en de neiging tot 

voeding van vrouwelijke An. gambiae muggen (Hoofdstuk 7), terwijl op lange afstand (7 m van de 

gastheer) in een semi-veld opzet een infectie met entomopathogene schimmels de mate 

verminderde waarmee muggen een huis binnentraden als ook de respons per uur van 

gastheerzoekende muggen om mensen zowel binnen als buiten te bijten (Hoofdstuk 5). Het voeden 

op suikers afkomstig van planten is een belangrijke component in de biologie van muggen en heeft 

de hoogste prioriteit voor beide geslachten na het uitkomen van de poppen. Infectie met 

schimmelpathogenen verminderde de overleving en neiging om op suiker te voeden van beide 
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geslachten van An. gambiae, maar had geen effect op hun mogelijkheden om maaltijden te verteren 

(Hoofstuk 6). Het paargedrag speelt een sleutelrol in de groei van populaties. Deze activiteit vindt 

plaats na het voeden op suikers en daarna zoeken de vrouwtjes een gastheer om bloed te verkrijgen. 

Infectie met M. anisopliae verminderde zowel de neiging om meerdere malen te paren sterk, als ook 

de paarprestatie van volwassen An. gambiae mannetjesmuggen in een grote arena (zoals een kas van 

gaas). Dit resulteerde in een reductie van het aantal geïnsemineerde vrouwtjes en faciliteerde de 

overdracht van schimmelsporen naar gezonde, vrouwelijke soortgenoten tijdens het paren 

(Hoofdstuk 8). Tenslotte, na het opnemen van een bloedmaaltijd, bereiden vrouwtjes zich voor om 

eieren te leggen. Infectie met M. anisopliae verminderde de neiging om eitjes te leggen van 

vrouwelijke An. gambiae muggen, alhoewel het aantal eieren gelijk bleef (Hoofdstuk 7). 

 

Deze bevindingen tonen aan dat de entomopathogene schimmel M. anisopliae belangrijke 

gedragsaspecten van An. gambiae verandert. Dit is mogelijk omdat de schimmel het vliegvermogen 

van muggen sterk beïnvloedt wat er voor zorgt dat de insecten minder in staat zijn om te vliegen, 

gastheren te zoeken, suiker op te nemen, te paren en eieren te leggen. De grote sterfte die in de 

eerste dagen van infectie vóór het uitvoeren van de gedragstoetsen wordt waargenomen, de sterfte 

die wordt waargenomen terwijl de gedragstoetsen worden uitgevoerd en de vermindering van de 

gedragsrespons van muggen geïnfecteerd met M. anisopliae hebben allemaal een significante impact 

op het onderdrukken van vectorpopulaties. De gevoeligheid van mannetjesmuggen voor 

schimmelsporen baant de weg voor een nieuwe strategie om muggen te bestrijden. Dit proefschrift 

heeft aangetoond dat entomopathogene schimmels een goede toevoeging zijn aan andere 

muggenbestrijdingsmethoden voor de vermindering van muggenbeten, en de overdracht van malaria 

en andere door muggen overgedragen ziekten. 
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