Genetic diversity in banana weevil Cosmopolites sordidus, Populations in Banana growing regions of the world

By

Vincent Oduol Ochieng, Msc. (Nairobi)

A thesis submitted in fulfillment for the degree of Doctor of Philosophy in Biochemistry at the University of Nairobi.

DECLARATION

I, Ochieng Vincent Oduol, hereby declare that this thesis is my original work and has not been presented for a degree award in any other university.

Ochieng Vincent Oduol

Dr. E. O. Asir ICIPE Supervisor

Dr. F. J. Mulaa
University Supervisor

Professor D. W. Makawiti
Chairman, Department of Biochemistry

DEDICATION

This thesis is dedicated to my wife, Lynette.

Abstract

Genetic variability in banana weevil populations was analyzed in a large number of samples obtained from 15 banana growing tropical countries using random amplified polymorphism DNA (RAPD). A total of 46 RAPD markers were studied. Within polymorphism as measured by percentage of polymorphic RAPDs, varied between 78.3\% and 97.8%. Genetic variability was measured using shannon"s information index and partitioned into between and within populations components. Overall, genetic variation among C. sordidus populations was $\left(\mathrm{H}_{\text {sp }}-\mathrm{H}_{\text {pop }}\right) / \mathrm{H}_{\mathrm{sp}}=25.3 \%$. The genetic diversity for the species $\left(\mathrm{H}_{\mathrm{sp}}\right)$ was 83.4%. Mean of within population value $\left(\mathrm{H}_{\text {pop }}\right)$ for all populations was 62.3%. The total genetic diversity was explained by high variation among populations (mean Gst $=0.213$), which is consistent with low gene flow among populations ($\mathrm{Nm}=0.811$). High between population genetic variation observed in this study could be explained by limited migration due to restricted mobility and monophagy in banana weevils.

In a parallel study PCR-RFLP analysis was used to differentiate the COI mtDNA of 19 populations of banana weevil. The PCR-RFLP method produced unambiguous profiles that differentiated certain populations from others. In another study, the genetic variability in weevil populations was analyzed in samples obtained from 15 sites in banana growing regions of Uganda. Although the weevil populations in this case were very similar genetically, some variability was observed. The results clearly show genetic diversity in banana weevil.

ACKNOWLEDGEMENTS

I am grateful to my supervisors Dr. E.O. Osir (ICIPE) and Dr. F.J. Mulaa (University of Nairobi) for supervising and guiding me throughout the course of this study. I am greatly indebted to Dr. E.O. Osir for his personal effort to enable me to conduct my research at ICIPE. His guidance, encouragement and keen interest in all aspects of my work have been a constant inspiration throughout this course. My sincere gratitude also goes to Dr. F. J. Mulaa for his constructive criticism during the study and for the help offered during the preparation of this thesis. I would like to thank the International Institute for Tropical Agriculture (IITA) for supplying the banana weevils from different regions used in my study.

I wish to express my sincere thanks to Rockefeller Foundation, the German Academic Exchange Services (DAAD), and African Regional Postgraduate Programme in Insect Science (ARPPIS) for awarding me a scholarship to pursue PhD studies and ICIPE and the Director of ICIPE, Hans Herren for providing me with the facilities to conduct the research, and to write up the thesis. I am also thankful to the Chairman of the Department of Biochemistry, Professor D. W. Makawiti and the University of Nairobi for all the help during my study.

My special thanks go to the members of MBBU for providing me with superb working atmosphere. My special appreciation goes to Mr. S. Obuya, Mr. F. Balliraine, Mr. J. Kabii, Mrs. L. Abubakar, Miss P. Seda. Mr. B. Nyambena, Mr. L. McOpiyo, Mr. E. Ouma for their cooperation, support and advice. Finally, I wish to express my sincere
gratitude to my wife, Lynette, for the sacrifices she made to enable me complete this study.

CONTENTS

PAGE
CHAPTER ONE I
1.0 Introduction
1.1 Biology of Banana weevil 1
1.2 History of banana weevil 2
1.3 Banana evolution and Importance 6
1.4 Uses of Banana (Musa) 11
1.4.1 Alcohol Production 11
1.4.2 Animal feed 12
1.4.3 Medicinal Use 12
1.4.4 Source of fibre 12
1.t.5 Other uses 12
1.5 Banana Cultivars 13
1.6 Banana Pests and Diseases 16
1.6.1 Banana Diseases 15
1.6.2 Banana pests 17
1.7 Integrated Pest Management (IPM) 17
1.8 The banana weevil biotypes 18
1.9 Molecular genetic, taxonomy and systematics 19
1.9.1 PCR: Principles of Technology 20
1.9.2 Use of RAPD-PCR in phylogenetic studies 21
1.9.3 RFLP and the PCR applied to mtDNA 24
1.9.4 Data analysis 25
1.9.4.1 Measuring Genetic Diversity 26
1.9.4.2 Genetic Differentiation 26
1.9.5 Importance of study of genetic biodiversity in banana weevil 27
1.9.6 Objectives 28
1.9.6.1 Overall objective 28
1.9.6.2 Specific objectives 28
CHAPTER TWO 29
2.0 Materials and methods 29
2.1 Weevil collection from different geographical areas 29
2.2 Sexing of weevils 32
2.3 DNA extraction 32
2.4 RAPD-PCR amplification 33
2.4.1 Primers 33
2.4.2 PCR amplification 33
2.5 Extraction and purification of polymorphic bands 34
2.6 Cloning of polymorphic bands 35
2.6.1 Ligation 35
2.6.2 Preparation of competent bacterial cells 35
2.6.3 Transformation of bacteria 36
2.6.4 Maintenance of recombitant clones 36
2.6.5 Small scale plasmid DNA preparation (Miniprep) $\therefore 5$
2.6.6 Sequencing and Design of primers is
2.6.7 Polymerase chain reaction (PCR) using synthesized primers is
2.7 Labelling and detection with the DIG system is
2.7.1 Standard random primed DNA labeling of purified polymorphic DNA fragment reaction is
2.7.2 Southern blotting of DNA to nylon membranes 34
2.7.2.1 Agarose gel electrophoresis 3
2.7.2.2 Denaturation, neutralization and blotting 34
2.7.2.3 Prehybridization and hybridization 45
2.7.3 Colorimetric detection with NBT and X-Phosphate 45)
2.8 PCR-RFLP analysis of the COl region of the mitochondria $4:$
2.8.1 Samples 1
2.8.2 DNA extraction 4
2.8.3 PCR amplification $4:$
2.8.4 Restriction Endonuclease digests 4
CHAPTER THREE $4:$
Results $4:$
3.1 Genetic diversity within and among banana weevils from different regions of :he world. $4:$
3.1.1 DNA extraction $4:$
3.1.2 RAPD-PCR analysis 4
3.1.3. Reproducibility of the method 44
3.2. Genetic diversity within and among banana weevil populations from different regions in Uganda 57
3.3. Molecular markers of randomly amplified polymorphic DNA (RAPD) for banana weevils from different regions of the world 64
3.3.1. Polymorphic bands 64
3.3.2. Cloning polymorphic bands 64
3.3.3. Sequencing and sequence alignment 70
3.3.4. Polymerase chain reaction 79
3.4. Genetic population structure of banana weevils 79
3.4.1. Genetic population structure of banana weevil from different parts of the world79
3.4.2. Genetic population structure of banana weevils from Uganda 82
3.5 Taxonomy and phylogenetic relationships of banana weevils based on information from Intra-specific differentiation 84
3.5.1. Taxonomy and phylogenetic relationships of banana weevils from different parts of the world based on information from intra-specific differentiation 84
3.5.2. Taxonomy and phylogenetic relationships of banana weevils from different parts of Uganda based on information from intra-specific differentiation 87
3.6. PCR-RFLP analysis of the CO1 region of the mitochondria 90
3.6.1. Restriction Endonuclease digests 90
3.6.2. Restriction fragment length patterns 95
CHAPTER FOUR 102
4.0. Discussion 102
4.1. Genetic Diversity in banana weevil 102
4.1.1. Weevils from different sites of the world 102
4.1.2. Banana weevils from different sites in Uganda 105
4.2. Molecular markers for banana weevil from different sites of the world 105
4.3. Population structure of the banana weevil 105
4.3.1. Weevils from different parts of the world 105
4.3.2. Weevils from different parts of Uganda 106
4.4. Genetic differentiation in the banana weevil 106
4.4.1. Banana weevils from different parts of the world 106
4.4.2. Banana weevils from different parts of Uganda 108
4.5. PCR-RFLPs within the COI mitochondrial region of banana weevil from different sites of the world 108
Conclusion 110
References 112
Appendix 126
List of Figures Page
Figure
1 Decaying trunk of banana infested with weevils 3
2 Banana weevil demonstrating a high degree of clustering behavior in decaying tissue of banana. 4
3 Banana weevil collection sites from different regions of the world 30
4 Banana weevil collection sites in Uganda. 31
5 Showing yield and quality of DNA extracted from weevils from different
regions. 46
6 DNA yield (total nucleic acid) from field collected banana weevils. 47
7 Examples of RAPD polymorphism detected in individual C. sordidus. 49
8 The results of pooled DNA of individual clusters distinguished by their RAPD patterns with different primers. 66
9 Results PCR of the white colonies using PGEM-T primers. 67
10 Plasmid DNA harvested by Wizara SV miniprep kit. 68
11 Digested putative recombitant plasmids. 69
12 Southern blot of DIG labeled fragment 14-1. 71
13 Southern blot of DIG labeled fragment 17-1. 72
14 Southern blot of DIG labeled fragment 17-2. 73
15 Southern blot of DIG labeled fragment 18-2. 74
16 Southern blot of DIG labeled fragment 19-1. 75
17 a Sequence of the seven cloned RAPD fragments. 76
17b
Sequenced alignment of the 7 polymorphic fragments using MULTALIN 77
18
UPGMA cluster analysis of Nei's genetic distance in C. sordidus in world populations. 81
19
(UPGMA cluster analysis of Nei's genetic distance in Uganda populations). 83
20
PCR products obtained using synthesized primers. 91
21
PCR products obtained using synthesized primers. 92
22
Agarose gel showing amplicons obtained using COI of mtDNA 93
23
Restriction fragments obtained using 51 enzymes. 94
24
Digests of the 1000 bp amplicon. 98
25
Digests of the 400 bp amplicon. 99
List of Tables
Table
1 Banana production statistics for the provinces of Kenya. 8
2 Nematodes and banana weevil infestation in Kenya. 9
3 Mineral content of banana. 11
4 East African Highland banana cultivars and their use. 15
5 Base pair sequence of RAPD primers. 48
6 RAPD band frequencies. 52
7 Number and percentage polymorphism in world samples. 53
8a Average heterozygousity and its standard error (world populations). 54
8b Total diversity, within population diversity, between population
gene diversity and allelic diversity. 55
9
Estimates of Shannon's phenotypic diversity index in world samples. 56
10 Components of genetic diversity. 57
11 RAPD Band frequencies in Uganda samples. 59
12 Number and percentage polymorphism detected in Uganda samples. 60
I3a Average heterozygousity and its standard error in Ugandan populations. 60
13b Total diversity, within population diversity, between population
diversity and allelic diversity in Ugandan samples. 61
14
Estimates of Shannon's phenotypic diversity index in Uganda samples. 63
15
Components of genetic diversity in C . sordidus from Uganda. 63
16
Base pair sequence designed primers. 78
17
Nei's genetic diversity values and gene flow for world populations. 85
18
Similarity matrix computed using Nei's distance for world populations. 86
1920Similarity matrix computed using Nei's distance for Ugandan samples.89
21
Restriction fragment length estimated on 1.5\% agarose gel for the1000 bp amplicon.100

ABBREVIATIONS

Abbreviations	Full Name
ATP	Adenosine Triphosphate
BSA	Bovine serum albumin
bp	Base pair
CTP	Cytosine triphosphate
DNA	Deoxyribonucleic acid
DTE	Dithioerythritol
DTT	Dithiothreitol
EDTA	Ethylenediaminetetra-acetic acid
HA	Hectares
hr	Hour
KB	Kilobase (s)
M	Metre
Mg	Milligram
Min	Minutes
Ml	Millilitre
mM	Millimolar
M	Molar
μ	Micro
$\mu \mathrm{g}$	Microgram
$\mu \mathrm{l}$	Microlite
$\mu \mathrm{M}$	Micromolar

OD

Rpm
RNA

S

SDS

Sec

Tris

Optical density

Revolutions per minute
Ribonucleic acid

Sverdberg unit (s)
Sodium dodecylsulphate
Second (s)

Tris (hydroxy-methyl) aminoethane

CHAPTER ONE

1.0 INTRODUCTION

1.1. Biology of Banana weevil

The banana weevil (Cosmopolites sordidus Germar) evolved in Asia and is now distributed in all major banana-growing regions (Ostmark, 1974; Waterhouse and Norris, 1987). The geographic dispersal of the weevil is not well documented; in most localities, however, the weevil is believed to have been present for at least 100 years. The adult C. sordidus live under or in newly cut or rotting pseudostem. The female weevil either lays its eggs in the cut or rotting pseudostems or moves out to the living banana plant where the eggs are inserted single into a hole made by the rostrum. Usually after egg-laying which takes place at night, the female moves back to the rotting pieces of pseudostem. The damage is caused mainly by the larvae, which tunnel extensively into the rhizome and pseudostem (Harris, 1947) and tissues between the lateral roots and the bulb, thus cutting off the flow of sap to the plant (Moznette, 1920). Infested farms show general decline in plant vigour, leading to reduced bunch size (Harris, 1947; Bujulu et al., 1983; Sikora et al., 1989). Infested young plants become stunted and leaves tum yellow and wither, often suckers developing in heavily infested stools are too weak to resist strong winds (Harris, 1947) and easily snap just below the ground level (Bujulu et al., 1983; Sikora et al., 1989).

The effect of climate, or geographical location, does not appear to affect the depredations of this pest. It occurs through the tropics well down into the sub-tropical regions, and is as prevalent and destructive in mountain ranges as on lowlands, both at a distance from and along the seaboard (Froggatt, 1925).

The weevil shows long life span and low fecundity with a classical " k " selected life strategy (Pianka, 1970). Adults are free living (not confined to the banana plant) and may live for two or more years (Froggatt, 1923). Adult weevils cause no significant damage to the banana plant, the function of the adult being purely reproductive. Egg production is low with oviposition estimated from 1 to 2.7 eggs per week (Cuille, 1950; Delattre, 1980; Arleu and Neto, 1984) and 10 to 270 in the lifetime of the insect (Cuille, 1950; Arleu and Neto, 1984; Viswanath, 1977; Castrillon, 1989). After six larval instars, pupation occurs near the surface of the rhizome.

The duration of the development varies between 23 and 45 days under tropical conditions (Cuille, 1950). After emergence, the adults remain inside their pupal chamber for 6-30 days (Froggatt, 1924) or 22-60 days (Cuille, 1950). Oviposition starts 1-2 weeks after leaving the chamber (Cuille, 1950).

The borer is a blackish brown weevil approximately 9-20 mm long and possesses a short snout from which protrudes a pair of perpendicularly located eight jointed antennae. The elytra are shield shaped with longitudinal lines and terminate above the most distant abdominal segment. Males are generally smaller than females but of similar morphology. Adults of C. sordidus inhabit old and decaying plants, infested and decaying leaf stalks, trunks which have been cut and abandoned, and decaying tissue surrounding mats (fig. 1). While weevils show a great attraction for decaying tissue, they move away from tissue which is completely rotten. Some adults have been observed climbing up the vascular tubes at levels as high as four feet above ground. They are extremely sluggish creatures and often feign death both in the field and laboratory. A high degree of clustering behavior is demonstrated (fig. 2) and mating occurs throughout the day (Pinto, 1928).

1.2 History of Banana weevil

In 1824 a black weevil belonging to the group of beetles whose heads are drawn out into a snout or proboscics was described by Germar under the name of Calandra sordida, from "India orientali". What eventually proved to be the same insect whose specimens came from Brazil was in 1845 called Sphenophorus striatus by Fahraeus. The name was changed to its present form, Cosmopolites sordidus by Chevrolat in 1885, who gave as its known distribution Brazil, Java, Ceylon, Malacca, Saigon, China, Reunion (Harris, 1947).

Figure 2:
Banana weevils demonstrating a high degree of clustering behavior in decaying tissue of banana in the field.

It was first mentioned in connection with bananas by Fletraux in 1903 in his account of the beetles of Guadeloupe, as being common in rotting bananas. It was not until 1906 that it was regarded as a pest of bananas, and an account given of its destructive powers on the Island of Sao Tome in the Gulf of Guinea. It appears to have been observed as a pest about the same time in localities as far apart as Madagascar and Fiji, so that there is no indication of where it originated or how it spread, except that it probably moved around the tropics with the edible banana as it was spread by man from its original home in the East Indies (Harris, 1947). Knowles noticed important damage in Fidji in 1908. In 1912 Knowles and Jepson published results on nature of damage and biology of the weevil and suggested that invasion goes back to around 1901 (Knowles and Jepson, 1912). In 1917 Knowles noticed that weevils were spreading all over the Island causing very important damage in several areas (Knowles, 1918).

The weevil was described by Chevrolat in Malasia as early as 1885 (Chevrolat, 1885). In 1915, Saasscer discovered banana weevils in America from banana originating from Phillipines (Sasscer, 1915). Between 1916-1917 Tryon reported the presence of banana weevil in Australia (Tryon, 1917). In 1919 Froggatt found banana weevil in some areas of New Wales (Froggatt, 1922). According to Tryon and Benson banana weevil was introduced to Australia around 1895 with plants originating from Jamaica (Tryon and Benson, 1920). In 1941 Froggatt found low population of banana weevil in New Guinea (Froggatt, 1941). In 1885 Chevrolat reported presence of banana weevil in China and Vietnam (Chevrolat, 1885). Banana weevil has been eshtablished for a long time in the Indies (India, Pakistan, Srilanka) according to Chevrolat. He reported the presence of the weevil in Srilanka in 1885 (Chevrolat, 1885). Moznette reported weevils presence in Florida (North America) in 1913. Since 1920 it has disappeared from the U.S after severe control measures (Moznette, 1920). It was reported in South America in Brazil in 1885 by Chevrolat.

On the African continent it was first observed in the lower Congo in 1913 in the region of Mayombe (Ghesquiere, 1929). It was reported by Gowdey in Uganda in 1918, with his opinion that it was not of recent introduction (Gowdey, 1919). Though not recorded by the Germans in Tanganyika prior to 1914, it was found to be well established at Amani by A. H. Ritchie in 1922.

By 1936, banana weevil had been recorded in most parts of Uganda. Four years later it was found established in the adjoining Bukoba district of Tanganyika and on islands in the extreme south of Lake Victoria (Harris, 1943). In 1945 specimens of the pest were identified from Zanzibar and in the following year, from Kilimanjaro area of Northern Tanganyika. In the same year it was stated to be generally distributed in the French West African colonies. Banana weevil existed in Sierrs-Leone as early as 1925 (Hargreaves, 1925). It was reported in South Africa in Natal in 1924 (Anonyme, 1926). A considerable time elapses between the first arrival of Cosmopolites in a new area and it becoming a serious pest. It is estimated that this took about ten years in Uganda (Hargreaves, 1940). There is very little information available on the introduction of the banana weevil in Kenya.

1.3. Banana evolution and importance

Bananas originated in South and South-east Asia from two wild progenitors Musa acuminata (donor of A genome) and Musa balbisiana (donor of B genome), and then spread throughout the humid tropics (Stover and Simmonds, 1987). Secondary centers of crop diversity exist in East Africa (highland cooking bananas, unique to the region) and West Africa (plantains) (Stover and Simmonds, 1987).

Banana and plantains are some of the most important food crops in the world. Grown principally in developing tropical countries, the total annual production of bananas and plantains is 85.5 million tonnes. There are two main types of bananas: dessert bananas and cooking bananas. While dessert bananas are exported to Europe, the United States and Japan (9 million tonnes annually), cooking bananas are an important carbohydrate source in developing countries.

Bananas are an important food crop in many tropical and subtropical regions and are the primary source of dietary carbohydrates, vitamins and minerals for more than 400 million people (McNicoll, 1989). In large parts of East-African highlands, bananas are the primary food source with per capita consumption reaching $220-460 \mathrm{~kg}$ per annum (INIBAP, 1987). The countries around the Lake basin, viz. Uganda, Tanzania, Rwanda, Burundi and Kenya alone produce and consume 18% of the world banana production (FAO, 1991). Most of the produce is consumed within the region and exported quantities are rather low. Initially, banana germplasm probably entered East Africa from two directions: the human inhabited tropics of Western and Central

Africa, and the Indian Coast. Yet the number of distinctive clones recorded in East Africa suggests the importance of the region as a secondary center of diversity (Davies, 1995).

Edible bananas (Musa spp.) comprise a genetically diverse crop encompassing a range of diploids, triploids and tetraploids (Stover and Simmonds, 1987). Triploidy gives various benefits, most importantly triploid plants tend to be more vigorous and productive than diploids. The vast majority of cultivated types are triploid. These now constitute important staple and/or commercial crops in Sub-Saharan Africa, Latin America, Asia, the Pacific and Australia. Banana and plantain production constraints include a pest complex (weevils, nematodes and diseases) which cause serious yield losses and shortens plantation life (INIBAP, 1986; Sebasigari and Stover 1988; Swennen, 1984; Gold et al., 1993). Pest status, in turn, is influenced by genome group. In Africa, for example, the banana weevil, Cosmopolites sordidus (Germar), is considered a primary production constraint of highland cooking bananas and plantains but not of dessert or brewing bananas. As such, it has been reported as the major biotic constraint to banana production in Eastern Africa (Persley and de Langhe, 1987) and either the first or second (after black sigatoka disease) most important plantain pest in West Africa (INIBAP, 1988a). Uganda is the world's leading producer and consumer of cooking bananas. In recent years, a decline in production, largely attributed to pest pressure has led to cultivar shifts and replacement by annual food crops e.g. cassava, sweet potatoes and maize in central Uganda (Gold et al., 1993). In central Uganda, farmers have attributed disappearance of highland cooking bananas, in large part, to increased banana weevil problems.

In Kenya, the banana is cultivated on about 74,000 hectares, which makes up 1.7 percent of the country's total land used for crop production (MALDM, 1997). Banana ranks eighth in the Kenya govemment's crop priority list enlarging food production in order to keep pace with population development (Nguthi, 1996). In all of Kenya's eight provinces bananas are grown, although the four major growing provinces: Nyanza, Central, Eastern and Western make up 90 percent of total national production (Table 1).

The most constraining pests in all banana growing regions of Kenya are banana weevils and nematodes, particularly Radopholus similis and Pratylenchus goodeyi (Table 2). Host plant resistance for these pests is not known in any of the domesticated or wild banana species, although some varieties show a moderate degree of tolerance to nematodes (Sarah, 1993).
Farmers are often faced with gross damage caused by these pests, which can be quite severe.

Yield ${ }_{\mathrm{r}} \mathrm{e}^{\text {ductions }}$ due to weevils, for instance can easily reach 50 percent. Losses are increased where t here is an interaction between weevils and nematodes (Speijer et al., 1993).

Table 1: Banana production statistics for the Provinces of Kenya (1996-97 averages)

Province	Area (ha)	Production (t)	Yield (tha)	Production share (percent)
Central	16,913	169,316	10.0	16.5
Coast	5,743	55,341	9.6	5.4
Eastem	9,669	97,144	10.0	9.5
Nairobi	48	409	8.5	0.0
North Eastern	271	1,522	5.6	0.1
$\mathrm{Nyan}_{\text {乙a }}$	30,234	574,740	19.0	56.1
Rift Valley	2,688	39,781	14.8	3.9
Western	7,800	86,107	11.0	8.5
Total	73,366	1,024,360	14.0	100.0

Source: MALDM $(1996,1997)$.

Table 2. Altitude, banana type, age of banana plants, percent coefficient of infestation (PCI), and numbers of banana weevils and nematodes in banana fields in Kenya, 1989. (Source: Waudo, 1998)

Numbers of
Pratylenchus Radopholus Helicotylenchus
Goodeyi/
similis/ ssp.

District	Altitude (m)	Banana Type	Age (Years)	PCI for weevil	$\begin{aligned} & 100 \mathrm{~cm} \\ & \text { soil } \end{aligned}$	$\begin{aligned} & \mathrm{lg} \\ & \text { dry root } \end{aligned}$	$\begin{aligned} & 100 \mathrm{~cm} \\ & \text { soil } \end{aligned}$	$\begin{aligned} & \mathrm{lg} \\ & \text { dry root } \end{aligned}$	$\begin{aligned} & 100 \mathrm{~cm}^{3} \\ & \text { soil } \end{aligned}$
Kakamega	1460	Cooking	6	83.3	30	0	10	0	80
	1460	Sweet	6	40.00	0	0	0	0	0
	1530	Cooking	7	73.33	20	14,286	10	0	0
	1530	Sweet	7	53.33	20	0	0	0	0
Bungoma	1500	Cooking	5	13.33	440	0	0	20	30
	1500	Sweet	5	30.00	20	0	20	0	100
	1650	Cooking	30	3.30	110	125	10	0	30
	1650	Sweet	30	23.30	0	0	0	0	0
Busia	1160	Cooking	15	100.00	0	0	20	0	130
	1160	Sweet	15	86.33	00	0	0	0	340
Siaya	1330	Cooking	11	100.00	0	0	0	0	60
	1330	Sweet	11	76.66	10	0	10	0	30
	1470	Cooking	11	93.33	0	0	0	0	60
		Sweet	11	40.00	0	0	0	0	80
Kisumu	1430	Cooking	5	60.00	190	0	0	0	0
	1430	Sweet	5	10.00	50	0	0	0	0
	1470	Cooking	5	83.33	470	0	0	0	0
	1470	Sweet	5	53.33	0	0	0	0	0
South	1330	Cooking	2	100.00	0	11,111	0	0	250
Nyanza	1330	Sweet	2	36.70	0	0	0	0	0
Kisii	1470	Cooking	4	80.00	120	0	30	0	0
	1470	Sweet	4	33.33	30	0	0	0	20
	1740	Cooking	7	90.00	180	0	0	0	0
	1740	Sweet	7	33.33	60	0	20	0	0
Trans	1800	Cooking	15	33.33	70	0	10	0	90
Nzoia	1800	Sweet	15	13.33	20	0	20	0	70
Kericho	1770	Cooking	9	50.00	20		0	0	0
	1770	Sweet	9	20.00	0	10,000	0	0	0
Meru	1940	Cooking	5	6.66	10	80,000	10	0	0
	1940	Sweet	5	0.00	0	50,000	0	25,000	0
	1510	Cooking	11	56.66	10	20,000	0		0
	1510	Sweet	11	23.33	10	6,250	0	6,250	0
Machakos	1580	Cooking	14	43.33	10	0	80	33,333	70
	1580	Sweet	14	23.33	10	0	0	0	0
	1650	Cooking	5	6.66	0	0	0	0	0

	1650	Sweet	5	6.66	50	63,636	0	0	0
Nairobi	1780	Cooking	6	10.00	30	277,778	0	4,762	20
	1780	Sweet	6	0.00	40	52,174	0	0	10
	1530	Cooking	3	0.00	90	10,110	20	5,304	30
	1530	Sweet	3	0.00	0	0	10	0	0
Nyeri	1700	Cooking	5	20.00	0	4,348	0	0	0
	1700	Sweet	5	13.33	0	0	0	18,519	0
	1580	Cooking	5	0.00	0	10,000	0	90,000	0
	1580	Sweet	5	0.00	20	18,182	0	9,091	10
Embu	1490	Cooking	4	20.00	0	0	10	0	0
	1490	Sweet	4	16.70	10	10	0	0	0
	1470	Cooking	4	96.66	60	37,500	0	25,000	0
	1470	Sweet	4	50.00	0	0	0	0	0
Kirinyaga	1330	Cooking	4	70.00	20	0	10	25,000	0
	1330	Sweet	4	90.00	10	0	0	0	20
	1470	Cooking	5	0.00	0	0	0	0	0
Kiambu	2040	Cooking	7	96.66	0	0	0	0	10
	2040	Sweet	7	10.00	0	0	0	0	0
Muranga	1215	Cooking	5	40.00	0	20,000	0	0	0
	1215	Sweet	5	33.33	0	0	0	0	0
	1190	Cooking	5	46.66	0	0	0	0	0
	1190	Sweet	5	$+3.33$	0	0	0	0	0
Kilifi	10	Cooking	25	26.66	10	0	0	0	200
	10	Sweet	25	10.00	0	0	0	0	200
	20	Cooking	2	83.33	0	11,111	0	0	1,800
	20	Sweet	2	76.66	0	0	0	0	60
Mombasa	40	Cooking	4	10.00	0	0	0	0	140
	40	Sweet	4	13.33	0	50			
	32	Cooking	4	10.00	0	0	0	0	0
	32	Sweet	4	0.00	. 50	0	0	0	0
Kwale	125	Cooking	5	32.33	0	0	0	0	60
	125	Sweet	5	36.66	0	0	0	0	460
	210	Cooking	1	96.66	0	0	0	13,333	130
	210	Sweet	1	33.33	0	10	0	0	50
Taita Taveta	800	Cooking	3	23.32	0	0	10	0	60
	600	Sweet	3	100.00	20	12,500	0	0	60
	1420	Cooking	9	43.33	0	7,692	0	0	0
	1420	Sweet	9	50.00	20	9.524	20	0	20

1.4. Uses of Banana (Musa)

Bananas are the largest herbaceous plant. The fruit is a rich source of carbohydrate (35%), fibre (7%), minerals (potassium, magnesium, phosphorous, calcium and iron) and vitamins (A and C) (Table 3). While dessert bananas are consumed directly after ripening, cooking bananas are boiled, roasted, fried, steamed, baked, brewed or dried and ground into flour (Table 4). Dried Banana plant sheaths are woven and used for thatching, making ropes, cots, bandages, hats, ornaments and as shading. The pseudostem fibre is used for fishing nets, cattle feed and mulch (Mbwana, 1998).

Table 3. Mineral content of banana
Leaves '
Macronutrients
Nitrogen* 2.6-4.0\%
Phosphorous 0.19-0.25\%
Potassium* 2.6-3.0\%

Calcium $\quad 0.75-1.25 \%$
Magnesium 0.3-0.46\%

> ' Values represent normal range of minerals by dry weight.
> *Major nutrients.

In 1998, bananas were ranked third most important carbohydrate staple in the world after cassava and sweet potato. In Africa, 24.6 million tonnes of bananas are produced annually, making them the third most valuable crop after cassava and maize. In East Africa, bananas are a staple food for more than 20 million people. The average annual consumption per person in the East African highlands near the Lake Victoria basin is $250-350 \mathrm{~kg}$. In Europe, the annual consumption of dessert bananas per person is 11 kg (Mbwana, 1998)

1.4.1. Alcohol Production

In central and East Africa, the juice from the ripe fruit of varieties known as 'beer bananas' is drunk fresh or fermented to make a beer of low alcohol content. Consumption in Rwanda may reach 1.2 litres per capita per day. Bananas are among the crops giving the highest yields in the production of commercial or medical alcohol per hectare.

1.4.2. Animal Feed

Cattle and pigs relish ripe bananas but the unripe fruit can also be dried and made into a meal which can be used to substitute up to $70-80 \%$ of the grain in pig and dairy diets with little change in performance.

1.4.3. Medicinal Use

Because they contain vitamin A, bananas and plantains act as an aid to digestion. There are also reports of the ripe fruit being used in the treatment of asthma and bronchitis. The pounded peels of ripe bananas can be used to make a poultice for wounds and, as the inside of the peel has antiseptic properties it can be wrapped directly around wounds or cuts in an emergency.

1.4.4. Source of Fibre

Bananas and plantains are the source of a fibre used extensively in the manufacture of certain papers, particularly where great strength is required. The paper is used for, among other things, making tea bags and bank notes. The fibre has numerous other uses, including textile manufacture, for making ropes, string and thread, and for the production of various handicrafts.

1.4.5. Other uses

The large leaves of bananas make ideal green umbrellas and they are frequently used as disposable 'biological' plates. They can also be used for thatching, for wrapping food during cooking, as bowl covers and tablecloths, as temporary mats and for the covering of earth ovens to hold in the heat. Starch can be extracted from banana and plantain pseudostems and such starch has been used for producing the glue used in the manufacture of cartons for exporting fresh bananas. In mixed farming systems, bananas are used as a ground shade and nurse-crop for a range of shade-loving crops including cocoa, coffee, black pepper and nutmeg. While the plants themselves are prized as omamentals worldwide, the seeds from wild species are used for making necklaces and other ornaments. Banana sap can be used as a dye, and banana ash is used in soap manufacture. In Indonesia, the production of floor wax and shoe polish from banana peels is also being explored (IPGRI, 1996).

1.5. Banana Cultivars

A number of different cultivars are available, and the variety selected for growth depends upon environmental conditions and desired end-use. Banana cultivars respond differently to weevil and nematode attack. The sweet dessert types are generally more tolerant, followed by cooking types, beer varieties and the roasting types (Mbwana, 1998).

Originally, there were two wild species of banana plants, Musa acuminata and M. balbisiana. With time, these two species hybridised to generate the numerous cultivars available today. The genetic acuminata-types of bananas (AA) originated in Malaysia and hybridisation between sub-species gave rise to a range of diploid (AA) and triploid (AAA) cultivars. The balbisiana-types (BB) originated in the Indian sub-continent. The spread of AA-types through Southeast Asia to the Indian sub-continent led to hybridisation between AA and BB types, which gave rise to the $\mathrm{A} A \mathrm{AB}$ and ABB cultivars that are grown worldwide today.

Bananas with the AA or AAA genomes are typically sweet and are cultivated as dessert bananas. Hybrids with $A A B$ (plantain) and $A B B$ genomes are starchier and therefore used as cooking bananas. AAB and ABB hybrids are grown in coastal lowlands, while the AAA-type grow well at elevations of 1000-1800 metres. It is the AAA-varieties that are widely grown in the East African highlands. These highlands are a system of high plateau, mountains, valleys and lakes, which extend across Ethiopia, Eritrea, Burundi, Kenya, Rwanda, Tanzania, Uganda and the Democratic Republic of Congo. This region of high elevation receives intermittent heavy rainfall and high winds and is often sloping land. The total annual production of banana and plantain in this region is 13.2 million tonnes, about 20% of the global production.

In Kenya a wide range of banana varieties is grown. The first obvious separation between varieties can be made between the ripening (dessert) bananas on the one hand, and the cooking type on the other. Some of the varieties are also used for both purposes. Ambiguity can occur with the term "plantain". For many, plantains represent all cultivars that are used for cooking. Others confine the expression to a subgroup of the AAB triploid hybrids, which constitutes only a small fraction of all commonly used starchy cooking type varieties (Robinson, 1996). There appears to be no generally accepted rule of distinction between bananas and plantains.
According to FAO statistics, the Kenyan area cultivated with plantains is more than double the area under bananas (FAO, 1998). Kenyan researchers and national statistics, however, say that the use of plantains in the country is negligible. Here, only the term banana is used, with the
description differentiating between ripening and cooking type varieties. According to interview survey, about half of the Kenyan banana production is of the ripening type whereas the other half is made up of cultivars mostly used for cooking. Among the ripening varieties there are some, which have been used for a long time in Kenya. The most prominent of which are the Gros Mitchel (AAA), locally often named Kampala, and apple banana (AB). Other ripening types have been introduced to the country more recently, especially those of the Cavendish subgroup (AAA), such as Dwarf Cavendish, Chinese Cavendish, Lacatan, Valery, Grand Nain, Williams, Paz and others, generally with a fairly good acceptance among banana producers and consumers. Many of the cooking varieties used in Kenya belong to the subgroup of East African highland bananas (AAA). Not all of them have been genetically identified, so that some appear with different local names, although in cytological analysis they turn out to be very similar. Local names of popular cooking varieties include Matoke, Kiganda, Mutahato, Bokoboko among others. A commonly used double purpose cultivar is Muraru (AAA) (Qaim, 1999).

In Queensland, the Cavendish, Sugar, Lady's Finger, plantain, Gros Michel and Dacca varieties of banana plants have all been found to suffer from the attacks of the banana weevil borer (Shani,1990). All species of the Genus Musa are attacked by the banana borer weevils Cosmopolites sordidus GERM and no cultivar is known to possess any useful degree of resistance to the pest (Simmonds, 1966). However, it has been reported that some cultivars are more susceptible to the borer attacks than others. 'Gros Michel' cultivar was reported to be more susceptible than 'Lactan' (Hord and Flippin (1956). In Jamaica 'Valery, 'Lactan' and the tetraploid (Musa AAAA) 65-3405-1 were found to be only 'lightly' infested with borers. In Panama 'Valery' and 'Manzano' cultivars were found to be relatively resistant to this pest (Feakin, 1971).

Table 4. East African Highland banana cultivars and their use

Cultivar group	Cultivars	Areas of common Occurrence	Use
Miboko	Mboko Ibwi Muhonye Ntebwa	Usambara Mountains, Tanzania	Cooking
Mshare	Nshonoa Mnanambo Mlelembo	Kilimanjaro \& Meru Mt areas	
Matoke	Nakyetengu Mbwairuma Nshakara	Lake Victoria basin, highlands	
Cavendish	Kiguruwe Robusta Paz	Coastal, Lowland areas	
Plantain	Mkono wa Tembo Mzuzu	Coastal, Lowland areas	Roasting
Mbire	Nshanshambire Ntalibwambuzi Enyamawa	Lake Victoria basin, highlands	Brewing
Kisubi	Kisubi or Kijivu	All banana areas	
Kijoge	Gros Michel Or Bogoya	Lake Victoria basin, highlands	Dessert
Kisukari	-	All banana Areas	
Bluggoe	Bokoboko Ngazija	Coastal, lowland areas	Multi-purpose

1.6. Banana Pests and diseases

Bananas are stressed by a number of biotic factors, particularly in the humid tropics where the climate is favourable for the propagation of pests and diseases.

1.6.1. Banana diseases

Leaf spot (Sigatoka) is caused by (Mycosphaerella musicola) and the symptoms are small yellow or greenish-yellow streaks, parallel to the leaf veins. Later the streaks darken and expand laterally to form elliptical brown spots. The centre of each spot eventually dries up to form a light- grey structure, like "eyespot" or scorching appearance. It is controlled by using resistant cultivar or spraying with benomyl. The fungal disease of banana black sigatoka caused by Mycosphaerella fijiensis was reported in Kenya in 1989 (Kungu et al. 1992). It can cause yield losses of up to 50 percent. The fungus is spread by the wind or by water and attacks the leaves of the plant. Black sigatoka has so far only been reported in Coast, Central and Eastern provinces. The disease can be controlled by systemic fungicides, but their use is environmentally harmful and often beyond reach of small holder farmers. Most of the banana varieties commonly used in Kenya are affected by black sigatoka, including the Cavendish types. Yellow sigatoka, (Mycosphaerella musicola) does occur but it is much less damaging than the black sigatoka.

Panama disease (Fusarium Wilt) is caused by soil-bome fungus (Fusarium oxysporium). This fungal disease is often referred to as Panama disease, since it was in Central America where it caused oppressive problems at the end of the last century. The first symptom is yellowing of older leaves or collapse of the petiole while the leaves are still green. All leaves eventually collapse and die hanging on the pseudostem. Later, pseudostem may split. It is controlled by use of resistant varieties e.g. Lacatan or other Cavendish cultivars are recommended, good sanitation and disease free material. It is the most important disease in Kenya. In Kenya the disease was observed for the first time in 1952, but a severe outbreak has only been reported in more recent years (Kungu, 1995). Today Panama disease endemic is all over the country's banana growing regions. However, the severity varies because of the varying susceptibility of different varieties and different regional varietal preferences. In Coast province, for instance, Fusarium is not considered a constraint to the same degree as it is in the other provinces, particularly in Central and Eastern, where the strongly affected varieties Gros Michel (Kampala) is most popular. In other parts of the world Panama disease outbreaks in the 1950's and 1960's led to the complete
replacement of Gros Michel by the resistant varieties mainly from the Cavendish subgroup. Other susceptible varieties grown in Kenya are apple banana, Bokoboko and Muraru. Fusarium infects the plant's root system and is spread through unclean sucker material, surface water runoff and infected soil carried around on farm implements. The fungus can completely destroy the whole plantation within a couple of months and even when the host plant itself is removed from the plot it can endure for decades in the soil (Qaim, 1999).

1.6.2. Banana pests

Banana Weevil (Cosmopolites sordidus) is a major pest of bananas. The larvae feed and tunnel in the corm of the plant. The leaves of infected plants are dull yellow green and floppy. Young sucker often wither and fail to develop.

Stem borer weevil (Odoiporus longicollis) bores into the stem and the leaves of the infected plants turn yellow and the plant becomes susceptible to wind damage.

Nematodes (Radopholus similis) are microscopic worm-like organisms which feed on the roots of bananas and infect roots and they turn reddish brown and later become black. The roots become short, blackened and reduced in number and thus, susceptible to wind damage.

Fruit fly (Bactrocera musae) larvae feed on the fruit. Evidence of attack is indicated by black spot on the skin.

1.7. Integrated Pest Management (IPM) Strategies in control of banana weevil.

An integrated management program for banana weevil borer will allow banana producers to minimize insecticide treatment, associated costs and environmental problems in the face of insecticide resistance in the pest and worldwide pressure to reduce pesticide usage. The extensive application of pesticides has not only upset the delicate biological equilibrium of nature, but it also poses a danger to human health and causes problems of resistance. As a result there is worldwide shift towards integrated pest management (IPM) to the forefront of pest control.

No single control strategy will be likely to provide complete control for banana weevil according to previous research results. Chemical pesticides, especially dieldrin and other cyclodienes such as aldrin, have been used extensively for the control of banana weevil (Bujulu et al., 1983; Edge, 1974; Whalley, 1957), but widespread resistant to these pesticides has
developed in most parts of the world (Foreman, 1973; Edge, 1974; Bujulu et al., 1983). The weevil has been repeatedly the subject of attempts at classical biological control (Waterhouse and Norris, 1987). The natural enemies mostly beetles found preying upon weevil larvae in decomposing banana tissues, have been used for biological control. They were successfully established in a number of instances, but no significant reductions of the pest were achieved. A major reason for some of these failures might have been that the pest's biology was not taken into consideration sufficiently. Therefore, a broad integrated pest management (IPM) approach might provide the best chance for success in controlling this pest. The components of such a program would include habitat management, biological control, host plant resistance and (in some cases) chemical control. The success of any of these control strategies will need to account for local biotypes and related physiological and behavioral differences. For example, weevil biotypes may influence the efficacy of resistant host plants, biological control agents, biopesticides or semiochemicals.

1.8. The banana weevil biotypes

The weevils seldom, if ever, fly and dispersal by walking is limited. Gold and Bagabe (1994) found that movement of adult weevils was limited, although some marked individuals moved more than 30 m in five days while, Delattre (1980) recorded a maximum movement of 60 m in five months.

Migration of weevils into banana plantations and movements in the plantation have been studied before (Wallace, 1938; Simmonds, 1929). Measurements made at Kawanda Research Station, Uganda, on movement all support the previous findings that the weevil is very sedentary. Of 400 marked weevils released at one point in the plantation, 35% were recovered over an eight-month period within a radius of ten yards of the original release point. No evidence of flight has been detected and the only times in the laboratory that it has been possible to make the weevil spread its wings were under conditions of extreme drought or in the latest stages of the influence of insecticide.

Dissemination of banana weevils is therefore, predominantly through infested planting material and other ways. The dispersion of the pest may be brought about by transportation of suckers from an infested area, by crawling from an old infested area, more particularly when the supplies of food and breeding material dwindle; this is more applicable where the areas are
adjacent, by wash down gullies and steep slopes. Many of the best banana areas are situated well up on the hillsides and under the often torrential downpours of rain experienced, infested plant material and beetles in the soil are carried down from high to low levels (Frogatt, 1925). Restricted mobility and monophagy leads to discrete populations that are confined to banana plantations. Local selection and a buildup of genetically distinct biotypes may occur in these isolated populations. The existence of such biotypes might explain the differences in biology across sites (activity in wet versus dry seasons; oviposition potential; clonal preference; etc). Moreover, geographic variability in the performance of different strains of entomopathogenic nematodes further suggests the presence of biotypes; the most virulent strains against banana weevil in Tonga differed from those which effected the greatest weevil mortality in Australia (Gold pers. Com.). Finally, shifting pest status of banana weevil in Uganda from an innocuous herbivore to a serious pest may have resulted from development or introduction of a more successful biotype (Gold pers. Com.). The above examples suggested the possibility of distinct banana weevil biotypes.

Biotyping of banana weevil is critical for understanding variation in pest populations across geographical areas and in different ecological zones. This would provide insight into variability in research results from different locations and will be important in understanding differential response to possible weevil controls.

1.9. Molecular genetics, taxonomy and systematics

Electrophoretic markers are powerful molecular tools that have facilitated the study of diverse areas of biology, both pure and applied, covering questions of phylogeny, evolution, ecology and population dynamics (Loxdale \& den Hollander, 1989; Smith \& Wayne, 1996; Symondson \& Liddell, 1996). Initially, protein markers, especially allozymes, were the main marker type employed: more recently, many of the applications of these markers have been superseded and expanded upon using DNA-based techniques (Avise, 1994). As a consequence, greater resolution has been achieved at the population level allowing the investigation of organisms with little detectable protein variation, e.g. clonal organisms (Carvalho et al., 1991). The minute quantities of DNA required also allows stored samples and specimens with small amounts of organic materials to be studied. All these applications are pertinent to entomology
(Hawksworth, 1994; Hoy, 1994; Crampton et al., 1996; Loxdale et al., 1996; Roderick, 1996; Karp et al., 1998).

The field of molecular biology has expanded greatly in the last ten years and many entomologists now wish to use this technology, since it is a new level of resolution for the study of insect ecological systems and taxonomy. The techniques described include allozyme electrophoresis; restriction fragment length polymorphism (RFLP) analysis; single and multilocus (minisatellite) DNA fingerprinting using various core sequence probes; directed amplification of minisatellite-region DNA (DAMD); sequencing of, for example, mitochondrial DNA (mtDNA), ribosomal cistrons (rDNA) and introns; microsatellites (simple sequence repeats; SSRs); randomly amplified polymorphic DNA (RAPD) markers; amplified fragment length polymorphisms (AFLP); direct amplification of length polymorphisms (DALP); fluorescent in situ hybridization (FISH); reverse transcriptase-PCR (RT-PCR) and PCR-ELISA (enzyme-linked immuno-absorbent assay. In general, the molecular screening described here involved investigating genomic DNA (nuclear, nDNA and mtDNA) or whole chromosomal preparations.

In the case of DNA, it is either purified and digested prior to being probed to detect differences, or techniques such as AFLPs, sequencing and SSRs utilize the polymerase chain reaction (PCR) (Saiki et al., 1998) to amplify regions of interest.

1.9.1. PCR: Principles of Technology

The process of DNA amplification utilizes DNA polymerase and results in the production of large amounts of the target DNA. This process is commonly referred to as the polymerase chain reaction (PCR). The PCR allows the enzymatic amplification of minute quantities of specific DNA sequences. The first experiments with PCR used the Klenow fragment of Escherichia coli DNA polymerase (Saiki et al.,1985; Mullis and Faloona, 1987). However, activity of the Klenow fragment is diminished by the high temperatures used for denaturing the template DNA. Therefore, more enzyme must be added at the start of each cycle. This was both labour-intensive and expensive. The technique was revolutionized by the discovery of a heat stable polymerase isolated from a thermophilic bacteria, Thermus aquaticus and therefore called Taq polymerase (Chien et al., 1976; Saiki et al., 1988). This enzyme is added once at the
beginning of the reaction. The development of programmable thermocycling machines and use of Taq polymerase have made PCR a useful procedure in molecular biology work. The three steps (denaturation, primer annealing and template extension) represent a single PCR cycle. Reaction specificity of PCR is dependent on several factors, which include concentration of primers, template, salts, time allocated for annealing, extension and the total number of cycles. The reaction specificity is enhanced by use of Taq polymerase and hot start of the PCR (Mullis and Faloona, 1987; Erlich et al., 1991). During PCR, each primer becomes incorporated into the PCR product. Mismatch between the primer and the original genomic template DNA can be tolerated (Mullis and Faloona, 1987; Saiki et al., 1988). This allows new sequence information (specific mutation, restriction sites, regulatory elements) and labels to be introduced via primer into amplified DNA fragments (Scharf et al., 1986; Saiki et al., 1988, Erlich et al., 1991). PCR have been utilized in several research applications including the phylogenetic studies of extinct species like the mammoth and the quagga (Paabo et al., 1989). This makes PCR a very useful tool in studying DNA from banana weevil.

1.9.2. Use of RAPD-PCR in genetic and phylogenetic studies

Williams et al., (1991) described a process that they called RAPD (Random Amplified Polymorphic DNA) that uses a ten oligonucleotide primers of random sequence but with a minimum guanine-cytosine contents of 50%. The polymerase chain reaction (PCR) is a highly efficient method of amplifying discrete DNA fragments using a thermostable DNA polymerase and single-stranded DNA primers. An application of the PCR technique that uses DNA primers of arbitrary nucleotide sequence to amplify arbitrary regions of the genome has been described (Welsh et al., 1991 and Williams et al., 1991). In order for amplification to occur the primer must anneal on complementary strands of the template DNA and the 3 ' end of the annealed primers must face each other. The primer annealing sites must be separated at a distance of no greater than 3000 bp as this is the maximum site that can be amplified with routine PCR. In practice amplified fragments are rarely greater than 2000 bp . The requirements that the 3' ends of the annealed primers face one another suggests that annealing sites are exact or similar inverted repeats. The observation that single substitutions, especially in the 3^{\prime} end of the
primer can change amplified banding patterns (Williams et al., 1991) implies that annealing in RAPD-PCR must be precise.

Inverted and direct repeats occur frequently in the repetitive regions of genomes and these regions are known to undergo rapid changes in size and sequence through unequal crossing over, gene conversion and at the nucleotide level, slippage replication (Levinson and Gutman, 1987). Not surprisingly, arbitrary PCR amplification of these regions reveals, genetic polymorphisms. However, inverted repeats are not confined to repetitive DNA and Williams et al., (1991) reported that unique regions of genomes were amplified as well. Polymorphisms occur as the presence or absence of a specific fragment among individuals. Absence of a fragment presumably occurs because amplification cannot proceed on DNA strands from either of the homologous chromosomes in an individual. This can occur through point mutations at one or both primer annealing sites on a DNA strand, inversions surrounding a site or insertions that separate the annealing sites at a greater distance than can be amplified. Arbitrarily primed PCR is not quantitative and consequently it is unknown whether individuals whose DNA yields a specific fragment are heterozygous (have one copy) or homozygous (two copies) for an amplifiable allele. Alleles at arbitrarily primed loci therefore segregate as dominant markers (William 1991).

Most alleles of RAPD loci that code for the production of a band are dominant, which makes it impossible to directly estimate allele frequencies. Therefore, assumptions such as Hardy-Weinberg equilibrium must be made to calculate allele frequencies. The dominance of alleles at arbitrarily primed loci presents their greatest drawback for use in insect genetics. Dominance prevents their use in studies of random mating as a component of the breeding structure of natural populations. Testing for conformation to Hardy-Weinberg expectations requires identification of individual alleles at a locus. In common with a number of recent studies (Levi et al., 1993) the present work indicated that while RAPD fragments are useful as genetic markers, a number of other factors can complicate their use and interpretation. The numbers, sizes and intensities of amplified fragments are extremely sensitive to small changes in PCR buffers, co-migration of non homologous fragments, the condition and concentration of template DNA and amplification parameters (Black, 1993).

The relative speed and ease with which these amplified regions, or RAPD (Randomly Amplified Polymorphic DNA) markers can be produced make them suitable for a number of
applications, including genetic mapping (Paran et al., 1991). DNA fingerprinting (CaetanoAnolles et al., 1991) and taxonomic studies (Demeke et al., 1992). RAPD markers have been used to generate molecular markers in a variety of organisms, including humans, fungi and plants (Williams et al., 1991), and more recently, insects (Black et al., 1992).

Among the many molecular methods currently available for taxonomic studies, the random amplified polymorphic DNA (RAPD) polymerase chain reaction technique (Welsh and McClelland, 1990; Williams et al., 1990) appears particularly suitable for population studies of organisms for which only nanogram quantities of DNA are available for characterization. DNA amplification with random primers have been shown to be a sensitive method for revealing polymorphism randomly distributed in any given genome (William et al., 1990; Rafalski et al., 1991). Polymorphism results from either insertions/deletions or substitution of bases at the priming sites (Welsh and McClelland, 1990). The RAPD pattern so obtained have been useful in the derivation of molecular taxonomy and in the study of population genetics of diverse organisms.

The RAPD technique has been used to study a range of insects including, aphids (Black et al., 1992), the honey bee (Hunt and Page, 1992), grasshoppers (Chapco et al., 1992), mosquitoes (Wilkerson et al., 1993) and fruit flies (Haymer and Mclnnis, 1994). RAPD assays have been used in the characterization of intra and inter specific somatic hybrids of potato (Baird et al., 1992) and genetic mapping of trait(s) of interest such as disease resistance in plants (Rafalski et al., 1991). The analysis of RAPD patterns have been utilized in the identification and differentiation of species and strains of various organisms including Schistosoma (Neto et al., 1993; Barral et al., 1993), the sweet-potato whitefly, Bemisia tobaci (Perring et al., 1993), Aedes aegypti (Ballinger-Crabtree et al., 1992), T. parva (Bishop et al., 1993), T. vivar (Mohamed et al., 1993), T. cruzi (Macedo et al., 1992), T. brucei and T. Congolense (Waitumbi and Murphy, 1993; Majiwa et al., 1993a), Leishmania species (Macedo et al.,1992b), Fungus, Leptosphaeria maculans which is a pathogen of Brassica spp (Godwin and Annis, 1991). In phylogenetic studies, RAPD assays have been used to demonstrate genetic relatedness between species and/or strains of various organisms in relation to their geographical distribution, pathogenecity, host-specificity and other behavioral characters (Chapco et al., 1992; Barral et al., 1993; Ballinger-Crabtree et al., 1992). However, a number of recent studies (reviewed by Black,
1993) have indicated that, in addition to template concentration, the manner in which DNA is extracted and preserved can also affect RAPD banding patterns (Post et al., 1993).

Statistical analysis of RAPD Pattems can be done using methods similar to those described for RFLP analysis (Nei 1979; Scott et al., 1993). Genetic distance dendrograms or phylogenetic trees can then be constructed from the data using Nei's unbiased genetic distance, similarity index and percentage match analysis (Nei, 1987) with aid of appropriate computer software. The RAPD assay offers a non labour intensive, time saving method of demonstration of genetic relatedness among individuals. Normally, basic procedures such as cloning, probe construction, radiolabelling of DNA and blot hybridization (Southern, 1975; Feinberg and Vogelstein, 1983) are not required. Thus it offers advantages not shared by other methods such as RFLPs and DNA sequencing, currently employed in molecular systematics.

1.9.3. RFLP and the polymerase chain reaction applied to mitochondrial DNA (mtDNA)

Mitochondrial DNA may be purified using a lengthy caesium chloride gradient ultracentrifugation step that allows the separation of the mtDNA from nuclear DNA (White \& Densmore, 1992). However more recently, crude preparations of mtDNA have been successful using minipreparations (minipreps) that are performed in much shorter periods (minutes instead of hours) (Latorre et al., 1986). Mitochondrial DNA separated in this way has been digested and visualized by radio end-labelling (Smith \& Brown, 1990). The polymerase chain reaction has also been used to amplify specific parts of the mtDNA from such preparations. PCR has increased the scope of material that can be used for DNA studies. Small amounts of DNA can be used from mixed templates of nuclear DNA (nDNA) and mtDNA as a source of investigation, as specific primers will only amplify from select, known regions of DNA in stringent PCR reactions. DNA can be extracted from alcohol-stored material and even, in some instances, dried museum specimens (Wilson et al., 1985; Paabo, 1993) and from ancient insects held in amber (DeSalle, 1994; Grimaldi, 1996).

Universal primers have been developed from conserved sequences developed from conserved regions flanking those of interest to phylogenetic / evolutionary and population studies (Simon et al., 1994). Such primers allow the amplification of the same region from a diverse range of taxa facilitating parallel research studies in new organisms. Briefly, eukaryotic organisms have a circular mitochondrial DNA molecule (Roehrdanz, 1993, 1995). The molecule
is made up of 37 genes coding for 22 tRNAs, 2 rRNAs and 13 mRNAs: most of the mitochondrial DNA is involved in coding, with general lack of introns, large families of repetitive DNA, pseudogenes and large spacer sequences. The mitochonrial DNA consist of the following major coding regions in sequence: ND2, CO1, CO2, ATP, C3, N3, ND5, ND4, ND6, Cyt b, NDl $, 16 \mathrm{~S}, 12 \mathrm{~S}$ and $\mathrm{A}+\mathrm{T}$ regions. Mitochondrial DNA is a valuable marker to indicate maternal gene flow as it is predominantly transmitted through matemal lines (Avise, 1991, 1994). Animal mtDNA is therefore the best known piece of eukaryotic DNA because it is easier to purify than any specific segment of nuclear DNA. This ease of purification is the result of an unusual buoyant density, a high copy number, and occurrence in an organelle other than the nucleus. MtDNA is also easy to characterize because it is small and lacks many of the complicating features of nuclear DNA (such as introns and repetitive sequences). The types of evolutionary change that animal mtDNA undergoes are relatively simple, being mainly base substitutions and length mutations, the latter accumulating predominantly in the small noncoding regions. When suitable large products of PCR amplification are purified using commercially available kits and digested with endonucleases to reveal polymorphism in an amplified product it is termed RFLP-PCR. DNA extracted from small amounts of tissue can be used for molecular analysis using polymerase chain reaction (PCR) and restriction fragment length polymorphisms (RFLPs) (Crozier, 1993). PCR-RFLP has been successfully used for molecular diagnostics of gypsy moth (Pfeifer, 1995), blow flies (Sperling et al., 1994), screworm (Taylor et al., 1996) and Muscidifurax spp (Taylor and Szalanski, 1999, Taylor et al., 1997 and Antolin et al., 1996).

1.9.4. Data analysis

RAPD-PCR polymorphism is analyzed as alleles by making four assumptions (Black, 1993). First RAPD products segregate as dominant alleles in a Mendelian fashion. Secondly, genotype frequencies at RAPD loci are in Hardy - Weinberg proportions. Thirdly, alleles in a homozygous recessive individual are identical in state (iis) (i.e. that they arose from identical mutations) among and within individuals. Fourthly, dominant, amplified alleles are similarly (iis). RAPDs are scored as present (1) or absent (0). The frequency of recessive alleles " a " is estimated as square root of the frequency of homozygous recessive individuals i.e. if " q " is the frequency of the " a " allele then " $1-q=p$ " is the frequency of the dominant allele " A ".

FORTRAN programme DISPAN (Genetic Distance and Phylogenetic Analysis) (Tatsuya, 1993) uses the frequency data to output a distance matrix according to Nei, 1972. This matrix is used in cluster analysis with an option of UPGMA (unweighted pair group method, arithmetic average) to construct a dendrogram that depicts the hierarchical structure of RAPD affinity among the different weevil populations.

1.9.4.1. Measuring Genetic Diversity

The following three measures are used to quantify the amount of genetic variability within a population.

1. The percentage of polymorphic loci is the proportion of loci polymorphic within its population (Lin et al., 1997).
2. Genetic diversity (h) at each RAPD locus in each population is determined using the method of Nei (1973). Genetic diversity within each population is calculated as the mean genetic diversity over all loci from all populations.
3. The genetic diversity is estimated by the Shannon information index of phenotypic diversity: $H_{0}=-\Sigma P_{i} \log _{2} P_{i}$, where P_{i} is the frequency of phenotype i (King and Schaal, 1989). H_{0} can be calculated and compared for different populations. Let $\mathrm{H}_{\mathrm{pop}}=\left(\sum \mathrm{H}_{0}\right) / \mathrm{n}$ be the average diversity over n different populations and let $H_{s p}=-\Sigma P \ln P$ be the diversity calculated from the phenotypic frequencies, P , in all populations considered together. Then, the proportion of diversity present within populations, $\mathrm{H}_{\text {pop }} / \mathrm{H}_{\mathrm{s}}$, can be compared with that between populations $\left(\mathrm{H}_{\mathrm{sp}}-\mathrm{H}_{\mathrm{pop}}\right) / \mathrm{H}_{\mathrm{sp}}$ (Gustafsson \& Gustafsson, 1994).

1.9.4.2. Genetic differentiation

Three methods are used to quantify the degree of differentiation among populations.

1. The genetic divergence among populations is estimated by calculating Nei's Gst value (Nei, 1987).
2. Gene flow (Nm) represents the actual number of individuals exchanged among populations in each generation. Gene flow is quantified using the indirect estimates of Crow and Aoki (1984) after Ellstrand and Elam (1993). In this model, the number of migrant individuals exchanged among demes of each generation is $\mathrm{Nm}=(1 / \mathrm{Gst}-$
1) $/ 4[n /(n-1)]^{2}$, in which $n=$ total number of demes, using the average value of Gst over all loci.
3. Genetic divergence among populations is estimated using the method of Nei (1978). Genetic distance values (D) for all pairs of populations are used to construct a dendrogram by the unweighted pair group method with arithmetic averaging (UPGMA) using DISPAN.

Chi-square analysis tested the independence of pairwise associate between bands amplified by the same primer and across primer. The G^{2} likelihood ratio chi-square test (Test of goodness of fit) was estimated using $\mathrm{G}^{2}=2 \Sigma((\log$ (pyi) $-\log (\mathrm{Pyi}))$ where pyi is the hypothesized probability and Pyi is the estimated probability for the events yi that actually occurred.

1.9.5. Importance of study of Genetic diversity in banana weevil.

The banana weevil, Cosmopolites sordidus, is by far the most important biotic constraint to banana production in many banana growing regions. The importance of bananas as staple and commercial crops in sub-Saharan Africa, Latin America, Asia, the Pacific and Australia underscores the need for sustainable ways of dealing with the problems posed by this pest

The importance of studying intra-species variability goes far bevond the realm of basic genetics. In the case of banana weevil, insight into the existence of biotypes has several levels of application. The first is extrapolation of research results and an understanding of the inconsistencies found between similar studies. How relevant is a study conducted in Latin America or West Africa to the East African context? Are there differences in weevil biology between lowland and mid-elevation banana systems? Are weevils found attacking dessert bananas, similar to those attacking highland cultivars? Awareness of how much genetic variability exists among local populations within and between geographic regions will help both in the interpretation of studies on weevil biology while also contributing to a better understanding of population dynamics, habitat characteristics, dispersal and distribution patterns, resource utilization, and other ecological processes. For example, if high levels of variability exist in East Africa, then critical studies may need to e undertaken in the region, irrespective of the information available from studies conducted elsewhere. Secondly, the existence of biotypes may suggest the need for multilocation testing with respect to resistant germplasm, to different strains of fungal pathogens and entomopathogenic nematodes or to predator prey studies with
weevil natural enemies. Differences in pest behavior may influence efficacy of biological control agents; for example, oviposition sites may determine vulnerability of the egg stage to egg parasites. Also, the responses to different semiochemicals may vary between weevil populations and this will in turn influence the efficiencies of any trapping or monitoring devices that may be developed. It is for these reasons that this project proposes to examine the genetic variability among banana weevil populations from the major banana growing regions of the world. At the end of the project, it is hoped that a clear picture regarding the genetic variability of this important pest will have emerged.

1.9.6. Objectives

1.9.6.1. Overall Objective

The overall objective of this project is to study the genetic diversity in banana weevil populations from different banana growing regions of the world and to evaluate the implications of this diversity on management strategies and quarantine.

1.9.6.2 Specific objectives:

(I) To explore how much diversity exists within \& among the banana weevil populations from different regions of the world and Uganda using RAPD.
(II) To develop suitable molecular markers of randomly amplified polymorphic DNA (RAPD) for studying banana weevils from different banana growing regions of the world.
(III) To assess population genetic structure of banana weevils from different regions of the world and Uganda based on information obtained under activity one.
(IV) To analyse of intra-specific differentiation of banana weevils in the tropics in relation to their histories and zoogeography.
(V) To analyse intra-specific differentiation to derive information on taxonomy and phylogenetic relationships.
(VI) To compare PCR-RFLPs within the COI mitochondrial region of C. sordidus from different geographic regions to estimate inter-species group divergence and to assess restriction profiles as potential genetic markers.

CHAPTER TWO

2.0. Materials and Methods

2.1. Weevil collection from different geographical areas

Intact adult weevils (males and females) were collected from different banana growing regions of the world (fig.3) and different banana growing regions of Uganda (fig.4) and shipped to the International Centre of Insect Physiology and Ecology (Molecular Biology and Biochemistry Department) in 70\% ethanol.

Figure 3:
Banana weevil collection sites from different regions of the world.

Figure 4:

Banana weevil collection sites in Uganda. Some sites are points, ot hers are districts. This is exactly the information given by samplers.

2.2. Sexing of weevils

Only male weevils were used for the experiment. This avoided contar nination of a DNA with DNA from eggs and reduced the possibility of contamination fron ingested pra since, unlike females, males do not require a proteinaceous meal prior to reproduction. Wh use of males alone could have limited the degree of genetic variation observed, work by F al., (1980) indicated that more than 95% of the genetically variant loci detec in Lucilid cuprina dorsalis Robineau-Desvoidy are autosomal. Hence, any study of on e or other se, has the potential to cover the significantly major proportion of all genetic variation. Sexi done by looking at the proboscics (Zimmerman, 1968). If the white dots in he proboscic past the center, measuring from the head towards the tip, then that was a fernale. If the da at the center or before then, it was a male.

2.3. DNA extraction

There is a wide variety of problems to consider during DNA extraction. Problen of template quality and concentration as well as extraction of contaminating DNA from other organisms. Extraction of contaminating DNA from other organisms (e.g. bacterial or protozoan endosymbionts) with DNA of the target taxon is inevitable and it is likely that some amplified bands will arise from the contaminating template. If contaminating species occur sporadically throughout the target taxon or if the contaminants are themselves polymorphic, the amplified bands can be mistaken for polym orphisms in th genome of the target taxon. Hence DNA was extracted from the head and legs of banan $=$ weevils. Problems of template quality and concentration were overcome by use of the cold ethanol preservation technique and the extraction protocol described. The yield an quality of DNA extracted from inidividual weevils was therefore assessed and only int DNA was used in the study.

The DNA isolation was performed on individual samples according to Doyle ar(1987) with some modification. Sample size of weevils from each site a indicated in RAPD scoring sheet in the appendix. Briefly, 0.125 grams of the banana weevil (head appendages) were placed in a 1.5 ml eppendorf tube. Using plastic disp sable grinder weevil sample were ground up in the eppendorf tube at room temperature, without buf lo 20 sec or until liquid exuded from the tissue. 250 ul of CTAB extract T on buffer (50
pH 8.0, 10 mM EDTA, $0.7 \mathrm{~N} \mathrm{NaCl}, 1.0 \%$ Cetyl-trimethyl ammonium bromide (CTAB) and $0.1 \% \beta$-mercaptoethanol) pre warmed to $60^{\circ} \mathrm{C}$ was added and inverted several times to disperse the lamp. This was then incubated at $60^{\circ} \mathrm{C}$ for 15 min with occasional mixing by inversion. 250 ul of chloroform was added and mixed by inversion until an emulsion was formed followed by centrifugation at $13,000 \mathrm{rpm}$ in a table-top centrifuge for ten minutes at room temperature. The aqueous phase was placed into a fresh eppendorf tube followed by chloroform addition and centrifugation as described above. The clear phase was transferred to a fresh tube and 0.6 volumes of isopropanol added and mixed by inversion to precipitate the DNA. This was left at room temperature for 10 min and then centrifuged at $13,000 \mathrm{rpm}$ in a tabletop centrifuge for 10 min at room temperature. The liquid was removed carefully without disturbing the pellet. 250 ul of ethanol was added and mixed vigorously by inversion several times and centrifuged at 13,000 rpm in a tabletop centrifuge for 5 min at room temperature. The liquid was carefully removed without disturbing the pellet and vacuum dried for 15 min and the DNA resuspended in 50 ul of TE(10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,1 \mathrm{mM}$ EDTA). The yield and quality of DNA extracted was assessed on a 0.8% Tris-borate EDTA ($0.5 \mathrm{x}: 45 \mathrm{mM}$ Tris-borate, 1 mM EDTA pH 8.0) agarose gel prior to RAPD characterization and the DNA was assayed by measuring UV absorbance in 1:1000 dilution in TE at 260 nm .

2.4. RAPD-PCR amplification

2.4.1. Primers

Forty primers (Operon 10-mer Kits A and O) (Operon technologies, Alameda, CA, USA) were screened, of these 5 produced discrete band patterns suitable for subsequent analysis of variability in weevil populations.

2.4.2. PCR amplification

All reaction tubes, pipette, tips and water (distilled-de-ionised and autoclaved) were irradiated with UV light to destroy any possible contaminating surface DNA (Gawell and Bartlett, 1993). RAPD PCR reactions were set up in a final volume of $25 \mu \mathrm{l}$ containing 10 ng of the genomic DNA of the banana weevil, Cosmopolites sordidus, $5 \mu \mathrm{l}$ of single decamer primer (5
picomoles $/ \mu \mathrm{l}), 2.5 \mu \mathrm{l}$ of $10 \times$ PCR buffer $(50 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM}$ Tris- HCl pH $8.4,1 \mathrm{mg}$ gelatin $/ \mathrm{ml}$), $2 \mu \mathrm{l}$ of $25 \mathrm{mM} \mathrm{MgCl}, 1 \mu \mathrm{l}$ of 5 mM dNTP, $0.1 \mathrm{ul} \mathrm{Taq} \mathrm{DNA} \mathrm{polymerase} \mathrm{(} 2$ units) (Strategene, USA) in a 0.5 ml sterile microfuge tube. The final volume was made up with sterile water. The content was spun down briefly and one drop of mineral oil added to each reaction tube to prevent evaporation of the content during PCR reaction. Positive and negative control tubes were included in the reaction and contained the reaction mix with DNA that successfully amplified before and without any DNA templates respectively. All the reactions were assembled asseptically in a laminar flow hood. The reaction was carried out in a Hybaid Omn-E thermal cycler (Midwest Scientific St. Louis, USA), programmed to denature at $94^{\circ} \mathrm{C}$ for 1 minute, anneal at $36^{\circ} \mathrm{C}$ for 1 minute and extend at $72^{\circ} \mathrm{C}$ for 2 minutes. Amplification was continued for 45 cycles with final extension at $72^{\circ} \mathrm{C}$ for 10 minutes. The reaction was terminated by cooling to $4^{\circ} \mathrm{C}$ until when collected (Innis et al., 1990). The RAPD products were separated by electrophoresis at $2.7 \mathrm{~V} / \mathrm{cm}$ in 1.2% agarose gels using 0.5 x Tris Borate-electrophoresis buffer (TBE) pH 8.0. DNA fragments were visualized by staining with ethidium bromide ($5 \mathrm{ug} / \mathrm{ml}$) and photographed on a 310 nm UV transilluminator (Sambrook et al., 1989).
From the above results, genetic distance matrix was developed and used to construct UPGMA cluster.

2.5. Extraction and purification of polymorphic bands

Samples clustered into six clusters from the UPGMA constructed. All the DNA for every cluster was pooled up. Amplification reactions were performed in volumes of $100 \mu \mathrm{l}$ for each cluster containing $1 \times$ PCR buffer (10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.4,50 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mg}$ gelatin/ml), 2 mM $\mathrm{MgCl}_{2}, 200 \mathrm{mM}$ each of dATP, dCTP, dGTP and dTTP (Pharmacia), 25 picomoles primer, 10 ng of genomic DNA and 2 units of Taq DNA polymerase (Strategene). Amplification was performed in a Hybaid Omn-E thermal cycler (Midwest Scientific St. Louis, USA). Thermal Cycler programmed for 45 cycles of 1 minute at $94^{\circ} \mathrm{C}, 1$ minute at $36^{\circ} \mathrm{C}, 2$ minutes at $72^{\circ} \mathrm{C}$ and a final extension at $72^{\circ} \mathrm{C}$ for 10 minutes. Amplifications were analysed by electrophoresis in 1.2% agarose gels run at 80 V (constant) for 1.5 hours in $0.5 \times$ TBE buffer and detected by staining with ethidium bromide.

The polymorphic bands were extracted according to Qiaex DNA. Gel Extraction (Experienced User Protocol) with some modification. Briefly 126 ml or 420 ml of ethanol (96-
100%) was added to the QX3 concentrate to obtain 180 or 600 ml of buffer QX3, respectively. The DNA fragment was excised and to it was added $300 \mu \mathrm{l}$ of QX1 per 100 mg of the gel. Qiaex was suspended and $10 \mu \mathrm{l}$ of it was added and mixed, followed by incubation for 10 min at $50^{\circ} \mathrm{C}$. This was centrifuged at $4,000 \mathrm{~g}$ for 1 min . The pellet was washed twice in $500 \mu \mathrm{l}$ of QX 2 and then twice in $500 \mu \mathrm{l}$ of QX3. The pellet was air dried and the DNA eluted in $20 \mu \mathrm{ITE}$.

2.6. Cloning of polymorphic bands:

2.6.1. Ligation

The ligation reaction was done using the PCR product and the PGEM-T Easy vector (Promega Corporation, Madison, U.S.A) at concentrations of $25 \mathrm{ng} / \mathrm{ml}$ and $50 \mathrm{ng} / \mathrm{ml}$ respectively. The ligation reaction was set up in a total volume of $10 \mu \mathrm{l}$ as follows: $3 \mu \mathrm{IPCR}$ product, 5μ of $2 \times$ ligation buffer (60 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.8), 20 \mathrm{mM} \mathrm{MgCl} 2,20 \mathrm{mM} \mathrm{DTT}, 2$ mM ATP, 10% polyethylene glycol), $1 \mu \mathrm{l}$ T4 DNA ligase (3 Weiss units $/ \mu \mathrm{l}$) and $1 \mu \mathrm{l}$ pGEM-T vector. The ligation mixture was incubated at room temperature for 1 hour. $4 \mu \mathrm{l}$ of the ligation reaction was used to transform competent bacterial cells.

2.6.2. Preparation of competent bacterial cells.

Tubes of frozen JM 109 High Efficiency competent cells were removed from $-70^{\circ} \mathrm{C}$ storage and placed in an ice bath until just thawed (about 5 minutes). The cells were mixed by gently flicking the tube. The cells were streaked and grown in an overnight liquid culture in 2 x YT medium (YT medium: $16 \mathrm{~g} / \mathrm{I}$ Bacto-tryptone, $5 \mathrm{~g} / \mathrm{l} \mathrm{Nacl}, 10 \mathrm{~g} / \mathrm{l}$ yeast extract). Two ml of the overnight culture was inoculated into 50 ml of $2 \times \mathrm{YT}$ in 250 ml conical flask. The culture was incubated at $37^{\circ} \mathrm{C}$ in thermal shaker at 225 rpm until the cell density reached between $6-9 \times 10^{7}$ viable cells $/ \mathrm{ml}\left(\mathrm{OD}_{600}=0.4-0.6\right)$. The culture was then transferred to a sterile polypropylene tube and chilled on ice for at least 10 minutes. The cells were pelleted by centrifugation at $2,500 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 15 minutes. The medium was decanted and the cells were resuspended in $1 / 10^{\text {th }}$ of the original volume of cold sterile $0.1 \mathrm{M} \mathrm{MgCl}_{2}(5 \mathrm{ml})$. This was left in ice for 20 min , repelleted by centrifugation and resuspended in $1 / 20^{\text {th }}$ of the original volume of $0.1 \mathrm{M} \mathrm{CaCl}_{2}$ on ice $(2.5 \mathrm{ml})$, mixed and kept in ice for a minimum of 30 minutes. The cells were used immediately.

2.6.3. Transformation of bacteria

The procedure described by Sambrook et al., (1989) for transformation of bacteria was used. The competent cells in ice were gently mixed by tapping the tube. The cells ($200 \mu \mathrm{l}$) were aliquoted into prechilled Falcon 2059 polypropylane tubes. $4 \mu \mathrm{l}$ (0.1-50 ng) of the ligation reaction mixture was added to each tube. The resultant mix was swirled gently and then kept in ice for $5-10$ minutes. The tubes were then placed in a water bath at $42^{\circ} \mathrm{C}$ for 1.5 minutes, to heatshock the cells and then immediately chilled on ice for 2 minutes. The cells were plated on NZYCM (10 g/l NZ amine, $5 \mathrm{~g} / 1 \mathrm{NaCl}, 1 \mathrm{~g} / 1$ Casamino acid, $1.71 \mathrm{~g} / 1 \mathrm{MgSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}, 12.06 \mathrm{~g} / \mathrm{l}$ Agar) plates containing $20 \mu \mathrm{l}$ of 2% IPTG, $35 \mu 1$ of 10 mM X -gal and $50 \mu \mathrm{~g}$ ampicillin $/ \mathrm{ml}$. The plates were incubated at $37^{\circ} \mathrm{C}$ overnight in an inverted position. Putative recombitant bacterial colonies, containing insert PCR products were identified by colour selection. White colonies were scored and picked with sterile toothpick under lamina sterile hood. PCR screening of the white colonies was done using PGEM-T primers in a total volume of $50 \mu \mathrm{l}$ in a Hybaid Omni-E thermal cycler (Midwest Scientific St. Louis, USA) as follows: $1 \mu \mathrm{l}$ of $10 \mathrm{mM} \mathrm{dNTPs}, 0.5 \mu \mathrm{l}$ Taq ($5 \mathrm{U} / \mu \mathrm{l}$), $1 \mu \mathrm{l}$ reverse primer, $1 \mu \mathrm{l}$ forward primer, $5 \mu \mathrm{l}$ of $25 \mathrm{mM} \mathrm{MgCl}_{2}, 5 \mu \mathrm{l} 10 \times \mathrm{PCR}$ buffer, $36.5 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$. PCR condition was as follows: Denaturation $94^{\circ} \mathrm{C} / \mathrm{min}$, annealing $55^{\circ} \mathrm{C}$ for 30 seconds, extension $72^{\circ} \mathrm{C}$ for 2 min and a final extension at $72^{\circ} \mathrm{C}$ for 10 min , number of cycles 30. Two samples were picked from each plate.

2.6.4. Maintenance of recombinant clones

The clones were picked and grown overnight in a thermal shaker at $37^{\circ} \mathrm{C}, 225 \mathrm{rpm}$ in 5 ml of $2 \times$ YT medium supplemented with $50 \mu \mathrm{~g}$ ampicillin $/ \mathrm{ml}$. Isolation and purification of the recombinant plasmids was carried out by small scale DNA preparation.

2.6.5. Small scale plasmid DNA preparation (Miniprep)

Isolation and purification of the plasmid DNA was carried out using Wizard SV minipreps Kit (Promega Biotech, Inc., USA). Briefly, cells from the 5 ml antibiotic culture were harvested by centrifugation at $14,000 \mathrm{rpm}$ for 30 sec in a microcentrifuge. The cell pellets were suspended on $200 \mu \mathrm{l}$ cell suspension solution (500 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,10 \mathrm{mM}$ EDTA, 100
$\mu \mathrm{g} / \mathrm{ml}$ RNAse) followed by vigorous vortexing. The suspended cells were transferred to an eppendorf tube. $200 \mu \mathrm{l}$ cell lysis solution ($0.2 \mathrm{M} \mathrm{NaOH}, 1 \% \mathrm{SDS}$) was added and mixed by inverting the tube several times until the cell suspension became clear. $200 \mu \mathrm{l}$ neutralization buffer (2.55 M Potassium acetate, pH 4.8) was added immediately and mixed by several tube inversions. This was spun at $14,000 \mathrm{rpm}$ for 5 min in a minicentrifuge and the supernatant decanted to a new eppendorf tube. 1 ml of DNA purification resin was added and mixed with the solution by several tube inversions. Magic minicolumn was then prepared by removing the plunger from a 3 ml disposable syringe and the syringe barrel attached to the minicolumn extension. Resin/DNA mixture was loaded into the syringe barrel and the slurry pushed gently into the minicolumn. The syringe was detached from the minicolumn and the plunger removed from the syringe. 2 ml of the column wash solution was pippeted into the syringe and gently pushed through minicolumn. The minicolumn was transferred into a new 1.5 ml microfuge tube and centrifuged at $14,000 \mathrm{rpm}$ for 20 sec in microcentrifuge to dry the resin. The minicolumn was transferred to a new tube and $100 \mu \mathrm{l}$ sterile nuclease-free water applied. The DNA was eluted after 1 min by spinning the minicolumn content at $14,000 \mathrm{rpm}$ for 20 seconds. The recombinant plasmids were checked by loading $5 \mu \mathrm{l}$ on a 1% agarose gel. Presence of inserts were confirmed by digestion with ECORI. Digestion reactions were carried out in small tubes as follows; $2 \mu \mathrm{l}$ (10 weiss units) ECORI restriction enzymes (Boehringer Mannheim, Germany), 2 $\mu \mathrm{l}$ of 10 x reaction buffer (50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,10 \mathrm{mM} \mathrm{MgCl} 2,100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ Dithioerythritol (DTE)), 1.0\% Triton X100, $5 \mu \mathrm{l}$ purified plasmids and $11 \mu \mathrm{l}$ of double distilled water. The tubes were incubated for 1 hour at $37^{\circ} \mathrm{C}$ in a water bath. After digestion, $15 \mu \mathrm{l}$ of the mix was resolved in 1.2% agarose gel. The true recombinants plasmid ligated with insert were scored and stored at $4^{\circ} \mathrm{C}$ (Sambrook et al., 1989).

2.6.6. Sequencing and Design of primers

Samples were sent to the International Livestock Research Institute (ILRI) for sequencing and synthesis of primers.

2.6.7. Polymerase chain reaction (PCR) using synthesized primers

PCR amplifications of DNA of individual clusters were carried out in a volume of $25 \mu \mathrm{l}$ as follows: $2.5 \mu \mathrm{l}$ of $10 \times \mathrm{PCR}$ buffer ($500 \mathrm{mM} \mathrm{KCl}, 100 \mathrm{mM}$ Tris- $\mathrm{HCl} \mathrm{pH} 8.4,1 \mathrm{mg}$ gelatin $/ \mathrm{ml}$), $0.25 \mu \mathrm{l}$ of $25 \mathrm{mM} \mathrm{MgCl}, 2.0 \mu \mathrm{l}$ of $5 \mathrm{mM} \mathrm{dNTPs}, 0.1 \mu \mathrm{l} \mathrm{Taq}(5 \mathrm{U} / \mu \mathrm{l})$ Strategene), $2 \mu \mathrm{l}$ of genomic DNA (10 ng), $1 \mu \mathrm{l}(0.3 \mu \mathrm{~m})$ reverse and forward primers and $16.15 \mu \mathrm{l}$ water. The contents were spun down briefly and 1 drop of mineral oil was added to the reaction. Amplification was carried out in a Hybaid Omni-E thermal cycler (Midwest Scientific St. Louis, USA) programmed to denature at $94^{\circ} \mathrm{C}$ for 1 minute, followed by 34 cycles of $94^{\circ} \mathrm{C}$ for 15 seconds, $53^{\circ} \mathrm{C}$ for 10 seconds, $72^{\circ} \mathrm{C}$ for 20 seconds and finally 1 cycle at $72^{\circ} \mathrm{C}$ for 4 minutes.

2.7. Labeling and detection with the DIG system

2.7.1. Standard random primed DNA labeling of purified polymorphic DNA fragment reaction.

DNA labeling was done by random priming according to the DIG User's Guide for Filter Hybridization (Mannheim Boehringer, Germany). The reagents were added to a sterile microfuge tube (on ice) in the following order: $10 \mu \mathrm{l}$ DNA template ($10 \mathrm{ng}-3 \mu \mathrm{~g}$) , $2 \mu \mathrm{l}$ Hexanucleotide mixture (10 x), $2 \mu \mathrm{ldNTP}$ labeling mixture (10 x), $5 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ and $1 \mu \mathrm{l}$ Klenow enzyme, labeling grade. The DNA template was heat denatured in a boiling water bath for 10 minutes and immediately chilled in dry ice for 30 seconds before use. The reaction mix was incubated at $37^{\circ} \mathrm{C}$ for 20 hours. 2μ I EDTA (200 mM EDTA, pH 8.0) was added to terminate the reaction. DNA was precipitated with 0.1 volumes of 4 M LiCl and 2.5-3 volumes chilled ethanol, mixed and incubated at $-70^{\circ} \mathrm{C}$ for 30 minutes. The content was centrifuged at $13,000 \mathrm{~g}$ in a microcentrifuge at $4^{\circ} \mathrm{C}$. Ethanol was decanted and the pellet washed with $100 \mu \mathrm{l}$ chilled 70% ethanol. This was centrifuged at $13,000 \mathrm{~g}$ for 5 minutes at $4^{\circ} \mathrm{C}$. The pellet was dried and resuspended in $50 \mu \mathrm{TE}$ (10 mM Tris- $\mathrm{HCl}, 1 \mathrm{mM}$ EDTA; pH 8.0) buffer and the labelled probe stored at $-20^{\circ} \mathrm{C}$ until use.

2.7.2. Southern blotting of DNA to nylon membranes

2.7.2.1. Agarose gel electrophoresis

DNA samples for each cluster were pooled and PCR reactions were carried out in a total volume of $25 \mu \mathrm{l}$ in a Hybaid Omni-E thermal cycler (Midwest Scientific St. Louis, USA) as follows: 2.5μ l of $10 \times$ PCR buffer, 0.5μ l of $25 \mathrm{mM} \mathrm{MgCl}_{2}, 2 \mu \mathrm{l}$ of 2.5 mM dNTPs, $0.1 \mu \mathrm{l}$ Taq polymerase ($5 \mathrm{U} / \mu \mathrm{l}$) (Strategene), $2 \mu \mathrm{l}$ of DNA (10 ng), $5 \mu \mathrm{l}$ primer ($5 \mathrm{pic} / \mu \mathrm{l}$) and $12.9 \mu \mathrm{l}$ of water. Amplification was carried out as follows: A total of 45 cycles, $95^{\circ} \mathrm{C}$ for 1 minute, $36^{\circ} \mathrm{C}$ for 1 minute, $72^{\circ} \mathrm{C}$ for 2 minutes and a final extension at $72^{\circ} \mathrm{C}$ for 10 minutes. PCR product was run in a 1.2% agarose gel 80 V (constant) for 1.5 hours using, $0.5 \times$ Tris Borate- electrophoresis buffer (TBE) pH 8.0. DNA fragments were visualized by staining with ethidium bromide (5 $\mu \mathrm{g} / \mathrm{ml}$).

2.7.2.2. Denaturation, neutralization and blotting

The agarose gel was submerged in denaturation solution ($0.5 \mathrm{~N} \mathrm{NaOH}, 1.5 \mathrm{M} \mathrm{NaCl}$) twice for 15 minutes at room temperature with shaking. The gel was rinsed with water. The gel was submerged in neutralization solution (0.5 M Tris- $\mathrm{HCl}, \mathrm{pH} 7.5 ; 3 \mathrm{M} \mathrm{NaCl}$) twice for 15 minutes at room temperature. Membrane filters for Southern transfer were prepared according to (Sambrook, et al., 1989). The actual pH of the gel after neutralization was checked (it should always be below pH 9.0 otherwise membranes turn yellow and break during hybridization) (DIG User's Guide for Filter Hybridization, Mannheim Boehringer, Germany). DNA was blotted from the gel by capillary transfer to the membrane using $20 \times \mathrm{SSC}$ buffer ($3 \mathrm{M} \mathrm{NaCl}, 300 \mathrm{mM}$ Sodium citrate, pH 7.0) as follows: The gel was placed on top of three layers of Whatman 3 MM filter paper (soaked with $20 \times$ SSC and placed on top of an inverted gel casting tray in a plastic box such that the filter paper did not touch the base of the box, forming a wick), and was laid with a nylon membrane and three layers of filter papers, all of which were soaked in $20 \times$ SSC. A thick wad of dry tissue paper was placed on the gel/membrane/filter paper sandwich, followed by another glass plate and weight. Blotting was carried out by capillary transfer to the membrane using $20 \times$ SSC buffer. For efficient transformation, blotting was carried out overnight. The DNA was fixed on to the membrane by baking in an oven for 2 hours at $80^{\circ} \mathrm{C}$. The membrane was used for hybridization immediately or stored at $4^{\circ} \mathrm{C}$ in a sealed plastic bag.

2.7.2.3. Prehybridization and hybridization

The blot was placed in a hybridization bag containing 20 ml standard prehybridiaztion solution ($5 \times \mathrm{SSC}, 1.0 \% \mathrm{~W} / \mathrm{V}$ blocking reagent, $0.1 \% \mathrm{~N}$ - lauroylsarcosine, 0.02% SDS) per 100 cm^{2} of membrane surface area. The bag was sealed and prehybridized at $68^{\circ} \mathrm{C}$ ovemight. DNA probe was heated in a boiling water bath for 10 minutes and chilled immediately on ice. The probe was diluted in standard hyridization solution to a probe concentration of $5-25 \mathrm{ng} / \mathrm{ml}$. The amount of standard hybridization solution for $10 \times 10 \mathrm{~cm}$ blot was at least 3.5 ml . The prehybridization solution was discarded and the hybridization solution containing the DIGlabeled probe added and left to hybridize overnight. At the end of the hybridization, the hybridization solution was poured into a capped tube and frozen for future use. The membrane was washed twice 5 minutes per wash in 2 x wash solution (2 x SSC containing 0.1% SDS). The membrane was then washed twice, in $0.1 \times$ wash solution ($0.1 \times$ SSC containing 0.1% SDS) for 15 minutes per wash at $68^{\circ} \mathrm{C}$.

2.7.3. Colorimetric detection with NBT and X-phosphate

All the reactions were done at room temperature with shaking. After hybridization and post hybridization washes the membrane was equilibrated in filtered buffer 1 (100 mM maleic acid, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.5$) for 1 minute. The membrane was blocked by gently agitating in buffer $2(1 \% \mathrm{~V} / \mathrm{W}$ blocking reagent dissolved in buffer 1$)$ for 30 minutes in a plastic bag. The anti DIG-alkaline phosphatase was diluted in a ratio $1: 5,000$ in buffer 2 to a working concentration of $150 \mathrm{mU} / \mathrm{ml}$ ($6 \mu \mathrm{l}$ Anti DIG-alkaline phosphatase was added to 30 ml buffer 2 and mixed) (DIG User's Guide for Filter Hybridization, Mannheim Boehringer, Germany). This working antibody solution is stable for about 24 hours at $4^{\circ} \mathrm{C}$. The membrane was incubated in the antibody solution for 30 minutes. The membrane was washed twice in a sufficient amount of Buffer 1 for 15 minutes per wash. The membrane was equilibrated in 20 ml buffer 3 (100 mM Tris- $\mathrm{HCl}, \mathrm{pH} 9.5,100 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM} \mathrm{MgCl}_{2}$) for 2 minutes. The colour substrate was prepared by adding $45 \mu \mathrm{INBT}$ solution and $35 \mu \mathrm{IX}$ - Phosphate in 10 ml of buffer 3 . This solution was added directly to the membrane in a sealed bag in the dark. The formation of the color precipitate started within a few minutes and the reaction was complete within 12 hours. Once the desired bands had been detected the membrane was washed with 50 ml of Buffer 1 for 5 minutes to stop the reaction.

2.8. PCR-RFLP analysis of the CO1 region of the mitochondria

2.8.1. Samples

Samples used were obtained from Pemba, Australia (Murlimbugah), Thailand, South Africa, Mbita, Honduras, Embu, Costa Rica (Mag Diamanted), Indonesia, Zanzibar, Costa Rica (Finca Guadaloupe), Australia (Coffs), Ghana, Tanzania, Cameroon, Uganda (Masaka) and Uganda (Kawanda), Columbia and Puerto Rico.

2.8.2. DNA extraction

Pools of 5-25 weevils were used for each DNA extraction. Total DNA was isolated fro appendages and head using the CTAB method (Doyle and Doyle, 1989).

2.8.3. PCR amplification

The COl mitochondrial region was amplified using the two pairs of primers S1460: TACAATTTATCGCCTAAACTTCAGCC and A2442: GCTAATCATCTAAAAACTTTAATTCCWGTWG and S2442: CCAACAGGAATTAAAATTTTTAGATGATTAGC and A2771: GGATARTCAGARTAACGTCGWGGTATWC (Primers were supplied by Bran D. Farrell, Harvard University). PCR reactions were carried out in a total volume of $25 \mu \mathrm{l}$ in a Hybaid Omni-E thermal cycler (Midwest Scientific St. Louis, USA) as follows: $2.5 \mu \mathrm{l}$ of $10 \times \mathrm{xCR}$ Buffer, $2 \mu \mathrm{l}$ of $5 \mathrm{mM} \mathrm{dNTPs}, 0.1 \mu \mathrm{I}$ Taq ($5 \mathrm{U} / \mu \mathrm{l}$) (Strategene), $1.0 \mu \mathrm{l}$ BSA ($1 \mathrm{mg} / \mathrm{ml}$) (Sigm $\mu \mathrm{l}$ genomic DNA (10 ng), $15.4 \mu \mathrm{l}$ water and $1 \mu \mathrm{l}(0.3 \mu \mathrm{M})$ reverse and forward primers. The PCR profile was $95^{\circ} \mathrm{C}$ for 1 minute followed by 39 cycles of $95^{\circ} \mathrm{C}$ for 30 seconds, $45^{\circ} \mathrm{C}$ for 1 minute, $72^{\circ} \mathrm{C}$ for 1.5 minutes and finally 1 cycle at $72^{\circ} \mathrm{C}$ for 10 minutes.

2.8.4. Restriction Endonuclease digests.

Amplicons were digested with 51 restriction enzymes - Alu I, Ava I, Ava II, Avi II, Bgl I, Bgl II, BstE II, BmH I, BssHI, Cla I, Cfo I, Dra II, Dra III, Dde I, Dpn I, Dra I, EcoR I, Eco47 III, EcoR V, Fok I, Hae II, Hae III, Hinf I, Hind II, Hind III, Hpa I, Hpa II, Kpn II, Ksp I, Msp I, Mlu I, Nae I, Nde II, Nci I, Not I, Nru I, Nsi I, Pvu I, Pvu II, Rsa I, Sac I, Sal I, Sau I, Sca I, Sfi I, Sma I, Spha I, Taq I, Xba I, Xho I, Xho II. Twelve enzymes Ava II, BstE II, Dra II, Hae III, Dde I, Hinf I, Hind II, Hpa II, Nde II, Rsa I, Sau I and Xba I cut the amplicon generated from S1460 and A2442 (1000bp) and only one enzyme Alu I cut the amplicon from S2442 and A2771 (400bp). The PCR product (1000 bp) was therefore digested with BstE II, Hae III, Dde I, Hpa II, Nde II, Rsa I, Xba I and Hinf I. The PCR product (400 bp) was digested with Alu I. All restriction digests were carried out according to the manufacturer's instructions (Mannheim, Boehringer, Germany). The fragments were separated on 1.5% agarose gels (1 x TBE buffer) and visualized with ethidium bromide and ultraviolet light.

CHAPTER THREE

3.0. RESULTS

3.1. Genetic diversity within and among the banana weevil populations from different regions of the world

3.1.1. DNA Extraction

To avoid contaminating DNA sample with DNA from ingested food or gut parasites, only the head and legs of male C. sordidus were used as sources of DNA. After verifying that these tissues gave identical amplification patterns, tissues were combined when extracting DNA from individual weevils. DNA was extracted, as total nucleic acid by the cetyl trimethyl ammonium bromide (CTAB) method (Doyle and Doyle 1987). The quality of DNA obtained, the suitability of CTAB extraction for material rich in polysaccharides and the small number of extraction steps required, made this method ideal for preparation of the small quantities of DNA present in chitinous insect tissues. Approximately 2000 ng of DNA was obtained from the head and legs of individual weevils.

The yield and quality of DNA extracted from field individual weevils was assessed using a 0.8% tris-borate-EDTA (TBE) agarose gel prior to RAPD characterization. Samples (5μ l of total nucleic acid) were run against 2μ of DNA molecular weight marker XIV (Boehringer Mannheim). The discreteness of the high molecular weight band (7943 bp) and the degree of streaking in each sample lane provided a measure of DNA quality (fig.5).

The suitability of absolute ethanol for preservation was evaluated by storing C. sordidus for $0,2,4,6$ and 8 weeks in absolute ethanol at room temperature. 8 weeks was considered to be the maximum length of time that collected C. sordidus would remain stored at room temperature prior to DNA extraction since they had to be collected in the field and then shipped in absolute ethanol to ICIPE.

DNA was diluted $(1: 1000)$ and the concentration measured by examining its optical density at 260 nm (fig. 6). DNA quality was assessed on a 0.8% agarose gel using

TBE as the running buffer. The yield of DNA from weevils stored for $0,2,4,6$ and 8 weeks in 100% ethanol at room temperature decreased significantly between 0 and 2 weeks in storage (fig. 6), ANOVA, $\mathrm{F}=12.47, \mathrm{P}<0.001$; Tukey multiple range test, $\mathrm{P}<$ 0.05). However, from 2 weeks onwards the change in yield did not alter significantly ($\mathrm{P}<$ 0.05) and remained at approximately 340 ng DNA/ $\mu \mathrm{l}$ in TE buffer (fig. 6). The quality of DNA did not appear to be affected by storage in ethanol at room temperature for up to 8 weeks. In consequence, ethanol preservation was used for all field - collected banana weevils, prior to DNA extraction. Attempts to extract DNA from individuals preserved in lower concentrations of alcohol proved unsatisfactory.

3.1.2. RAPD - PCR analysis

3.1.3. Reproducibility of the method

All studies done to date have found that bands amplified by arbitrarily primed PCR vary in intensity (Black, 1993). Faint bands have been found to be sporadically amplified (Black, 1993). In this study only intensely and consistently amplified bands were included in RAPD dataset. These were identified by performing replicate reactions in a single run on DNA extracted from the same individual and then repeating this over several consecutive runs. However, the oversensitivity of those primers which identified so much variation between closely related Cosmopolites sordidus that they were of no use for broader numerical studies was of particular concern. Each unusable primer reduced the number of available markers. In view, however, of the high degeree of variability associated with the extremely $\mathrm{A}+\mathrm{T}$ rich non-conserved, repetitive regions found in the genome of many insects (Meyer, 1994), it is expected that primers annealing in or around such regions will produce a large number of possibly similar sized amplification products of uncertain homology. The use of such primers is thus to be avoided and a broad preliminary screening of primers is essential for each new taxonomic group to be studied. In the study of genetic variation in the mosquito (Ballinger-Crabtree et al., 1992), forty primers (kits A and B) were tested in the primary screening using two mosquito populations. Four of these were used to test all eleven populations and only three were selected for the analysis. In this study, forty primers (kits A and B) were
screened. Only five primers out of forty gave consistent results and hence were used for studying genetic variability. Consequently, the genetic variation described in this study, is and should be regarded as, intraspecific particularly in view of findings of Black (1993) and Smith et al., (1994) concerning the co-migration of non-homologous fragments. Homology is established with isozymes by the fact that enzymes from two species react in a common histochemical stain. Homology is assumed with Southern analysis by the fact that two target DNAs hybridize to a common probe. However, with arbitrarily amplified loci there is no reason to believe that bands that comigrate in two species represent homologous regions. Comigrating bands may have no sequence similarity. Furthermore, homologous regions might not be amplified in both of the species to be compared and, even if they are, might vary greatly in size.

Forty random primers (Operon 10 mer kit O, A) were screened, five produced discrete scorable bands and did not give rise to amplification products in negative control. Thus, of the 40 primers screened 4 did not produce any amplification products, 19 produced non variable patterns among individuals, 12 produced complex or poorly resolved banding patterns, and 5 produced clear-cut easy to score variable band pattems The 5 polymorphic O-A primers were used to analyze variation in individuals from each population (table 5). Each variable band was scored as present (1) or absent (0) and was considered to represent the phenotype of a distinct locus. Negative controls were run with each primer to ensure that scorable fragments were not artifacts. The five random primers chosen for analysis generated 46 bands that ranged in size from $100-2600 \mathrm{bp}$. Each primer had between $9-10$ bands and the grand average for the 15 populations was 9.2 (table 5). RAPD profiles for the five chosen primers were reproducible in terms of presence/absence both within run and between runs. Although there were differences in staining intensity of RAPD fragments between profiles, this was not scored as real variation (fig. $7 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$) which is an example of RAPD results on a gel after staining with ethidium bromide.

Figure 5:
Showing yield and quality of DNA extracted from banana weevil from four different regions analysed using 0.8% (TBE) agarose gel visualized using ethidium bromide. 1 - Cameroon, 2 - Uganda, 3 - Kenya, 4 Australia and M - Molecular weight marker.

Figure 6:
DNA yield (total nucleic acid) from field collected banan at weevils at
$0,2,4,6$ and 8 weeks of storage in absolute ethanol at room temperature.

Change in DNA concentration with time

Table 5. Base pair sequence of RAPD primers used

Primer	Base-pair sequence (5' $\mathbf{3}^{\prime}$)	Number of RAPD Loci Screened
OPO - 14	AGCATGGCTC	9
OPO -18	CTCGCTATCC	9
OPO -19	GGTGCACGTT	10
OPO - 20	ACACACGCTG	9
OPA -17	GACCGCTTGT	9
Mean of all five primers		9.2

Figure 7:

Example of RAPD polymorphism detected in individuals of C. sordidus. The PCR products were separated on a 1.2% agarose gel, stained with ethidium bromide.

A - Tanzania samples 1-29 amplified using OPO14
B - Tanzania samples 1 - 29 amplified using OPA 17
C - Tanzania samples 1 - 29 amplified using OPO19
D - Embu samples l-35 amplified using OPO18
E - Embu samples $1-35$ amplified using OPO20
B on the left comer of each gel - negative control
M - Molecular weight marker

The reproducibility of results between C. sordidus tissues (head and legs) was verified by RAPD analysis of DNA extracted separately from these two tissues. DNA from Mbita population was analyzed using the five OPO-A primers. In all instances RAPD fragments patterns for the two tissue types were identical within individuals. The effect of template concentration on the reproducibility of the amplification pattern was assessed at three concentrations. Amplification became inconsistent at or above 200 ng template DNA per reaction and at or below 2 ng template DNA per reaction.

Characterization reactions therefore, were performed with a 10 ng template. After amplification the gels were stained with ethidium bromide. The results of each variable bands scored as present (1) or absent (0) for individual sites and primers are shown in appendix III. Fifteen populations were studied. A total of 46 different RAPD loci were generated using 5 primers (table 5).

In order to test whether the 46 RAPD loci were homogenous among the 15 populations, Chi-square ($\chi 2$) and likelihood ratio $\left(\mathrm{G}^{2}\right)$ were determined among the populations (Hedrick, 1984). The presence and absence of bands produced within a single primer are often assumed to be independent. However, Wilkerson et al., (1993) showed that amplification of certain bands interferes with or precludes the amplification of other bands. This might occur through preferential annealing of the primer to a repetition sequence present on one chromosome. The concentration of the primer would be rapidly reduced early in the PCR process. Chi-square analysis was done to test the independence of pairwise association between bands amplified by the same primer and across primers. Once a sample of individuals in a population had been characterized for variation at any locus the allele frequencies were calculated according to Hardy-Weinberg Equilibrium Law (table 6).

The RAPD band frequencies for each of the world population and G^{2}-tests, for heterogeneity of band frequencies across populations are given in table 6.17 bands were polymorphic in each population of which 4 were present at a frequency of 0.100 or less in some populations. The frequencies of 27 out of 46 were heterogenous across populations (59\%).

Chi-square analysis tested the independence of pairwise association between bands amplified by the same primer and across primers (Legendre and Legendre, 1983).

Test for independence between pairs of bands amplified by the same primer and across primers revealed 1% (Australia), 9.5% (Zanzibar) to 28.6% (Indonesia) significant association, average 6.7% across the fifteen populations. Since the number of fragments surveyed is large at 46, the few fragments that might correlate would not affect the validity of the results on population structure of banana weevil. RAPD band frequencies calculated in Hardy - Weinberg proportions are indicated in table 6. The number and percentage of polymorphism detected by the selected five primers for the 15 populations of banana weevils from different parts of the world are indicated in table 7.

Polymorphism in RAPD banding patterns among individuals of C. sordidus was detected (Figure 7 (A), (B), (C), (D), (E). The number of polymorphic RAPD loci per population ranged from 36 (Honduras) to 45 (Puerto Rico, Tanzania and Mbita (Kenya) (table 7). Among C. sordidus world populations, genetic diversity varied considerably (table 7 and 8). For instance the percentage polymorphic loci ranged from 78.3% (Honduras) to 97.8% (Mbita, Puerto Rico and Tanzania) averaging 92.2% for the 15 populations (table 7).

Primer OPO14 was on average polymorphic at 90.3% of the loci whereas OPA17, OPO18, OPO19 and OPO20 were on average polymorphic at $96.3 \%, 94 \%, 85.3 \%$ and 95.6% of the loci respectively.

The gene diversity (h) within each population (averaged over 46 loci) ranged from 0.297 (Honduras) to 0.455 (Mbita (Kenya)) and the mean genetic diversity over all populations was 0.375 (table 8a). The average heterozygosity for individual weevil populations ranged from as high as 0.46 in Mbita population to as low as 0.30 in Honduras population. Higher total diversity (Ht) were calculated with Tanzania ($\mathrm{Ht}=0.45$), Costa Rica $(\mathrm{Ht}=0.40)$ and Zanzibar $(\mathrm{Ht}=0.397$) (table 8a). The effect of allele frequency divergence between the different populations on the partitioning of genetic diversity were quantified by the gene diversity statistics of Nei (1973). The total genetic diversity (Ht) was 0.470 over all the populations (table 8 b). Within population diversity (Hs) was 0.370 for all loci.

Table 6: RAPD band frequencies in fifteen populations ${ }^{3}$ of weevils from different parts
of the world calculated using Hardy-Weinberg.
${ }^{3} 2 \mathrm{~A}=$ Australia, $\mathrm{CA}=$ Cameroon, $\mathrm{COL}=$ Colombia, $\mathrm{CR}=$ Costa Rica,
$\mathrm{Fl}=\mathrm{Florida}, \mathrm{GH}=$ Ghana, $\mathrm{Ho}=$ Honduras, $\mathrm{N}=$ Indonesia, $\mathrm{KMB}=$ Kenya (Mbita),
$\mathrm{KE}=$ Kenya (Embu), Puerto= Puerto Rico, $\mathrm{SA}=$ SouthAfrica, $\mathrm{TZ}=$ Tanzania, $\mathrm{Ul}=$
Uganda,
ZA= Zanzibar
${ }^{\mathrm{b}} \mathrm{G}^{2}-$ test for heterogeneity of band frequencies across populations : *, **
significant at $p \leq 0.05$ and 0.0001 , respectively.

PRIME	2.4	CA	COL	CR	FL	GH	HO	IN	K.MB	KE	PLE	SA	rZ	U1	ZA	G^{26}
O14-01	0.929	0.820	0.793	0.953	0.583	0.720	1.000	0.786	0.800	0.886	0.692	1.000	0.800	0.960	1.000	$22.8{ }^{\circ}$
014-02	0.643	0.880	1.000	0.953	0.708	0.980	1.000	0.762	0.829	0.971	0.821	1.000	0.860	0.960	1.000	40.68**
014-03	0.071	0.620	0.724	1.000	0.375	0.940	0.950	0.548	0.771	0.914	0.462	0.349	0.900	0.320	0.708	0.45
014-04	0.429	0.820	0.897	0.907	0.208	0.960	0.775	0.643	0.657	0.743	0.359	0.442	0.780	0.580	0.813	0.00
014-05	0.857	0.820	0.931	0.884	0.208	0.920	1.000	0.548	0.800	0.914	0.590	0.953	0.700	0.800	0.625	$6.18{ }^{\circ}$
014-06	0.857	0.860	0.931	1.000	0.833	0.660	1.000	0.	0.800	0.914	0.615	1.000	0.840	0.860	0.729	15.33°
07	0.214	0.280	0.276	0.977	0.167	0.780	0.675	0.	0.62	0.	0.385	0.512	0.860	0.600	0.271	22.47°
8	0.286	0.260	0.000	0.	0.750	0.780	0.725	0.	0.62	0.85	0.385	0.535	0.720	0.380	0.333	17.01°
9	0.571	0.800	0.069	0.	0.	0.	0.900	0.	0.6	0.8	0.256	0.512	0.760	0.200	0.292	112.81**
-01	0.714	0.520	0.3	0.	0.792	0.	0.075	0.	0.80	0.400	0.769	0.256	0.680	0.960	0.771	$16.82{ }^{\circ}$
A17-02	0.214	0.960	0.828	0.	0.	0.	0.	0.	0.	0.	0.410	0.721	0.700	0.980	0.688	0.27
A17-03	0.357	0.460	0.828	0.6	0.	0.	0.	0.	0.	0.	0.	0.	0.780	0.980	0.813	1
A17-04	0.786	0.960	0.9	0.8	0.8	0.	1.	0.	0.	0.	0.	0.8	0.800	0.980	0.833	17.33°
A17-05	0.786	0.920	0.8	0.9	0.8	0.	1.	0.	0.	0.	0.359	0.	0.680	0.980	9	$10.56{ }^{\circ}$
A17-06	0.786	0.960	0.6	0.	0.3	0.	0.	0.	0.	0.	0.	0.	0.800	0.740	5	4
A17-07	0.929	0.700	0.6	0.	0.3	0.9	0.	0.	0.	0.	0.	0.	0.540	0.980	0.583	6
A17-08	0.286	0.960	0.	0.	0.	0.9	0.	0.	0.	0.	0.	0.	0.580	0.700	0	*
A17-09	0.0	0.8	0.2	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.380	0.780	0	109.17**
O18-01	0.500	0.680	0.	0.	0.	0.9	0.	0.	0.	0.	1.000	0.	0.760	0.800	0.438	0.01
018-02	0.929	0.440	0.	0.	0.	0.92	0.	0.	0.	0.8	0.	0.	0.860	0.920	54	3.34
O18-03	0.	0.980	0.9	0.8	0.750	0.9	0.9	0.	0.9	0.	0.923	0.	0.760	0.920	58	10.39°
018-04	0.7	0.960	0.9	0.	0.6	0.	0.	0.	0.	0.	0.	0.	0.760	0.900	92	$15.53{ }^{* *}$
O18-05	0.357	0.	0.	0.	0.	0.8	0.	0.	0.	0.	0.	0.	0	0.900	0.583	5
018-06	0.214	1.000	0.	0.	0.0	0.82	0.8	0.	0.	0.8	0.	0.	0.380	0.420	0.250	$4.66{ }^{\circ}$
018-07	0.071	0.580	0.552	0.	0.	0.8	0.	0.	0.	1.	0.	0.	0.000	0.860	08	4
018-08	0.143	0.940	0.552	0.	0.208	0.880	0.875	0.00	0.829	0.9	0.487	0.698	0.720	0.920	0.563	0.41
018-09	0.286	0.520	0.000	0.	0.292	0.	0.675	0.	0.200	0.8	0.256	0.302	0.560	0.860	0.271	$118.54{ }^{* *}$
019-01	0.143	0.560	0.517	0.0	0.	0.	0.000	0.	0.571	1.00	0.333	0.186	0.200	0.560	0.583	$74.92^{\circ *}$
019-02	0.429	0.640	0.690	0.	0.833	0.92	0.675	0.	0.514	0.857	0.897	0.442	0.680	0.600	0.771	0.13
019-03	0.357	0.880	0.828	0.930	0.333	1.000	0.925	0.	0.686	0.857	0.718	0.907	0.500	1.000	0.771	4.13°
019-04	0.786	0.980	0.655	0.8	0.583	1.000	0.925	0.35	0.657	0.886	0.821	0.884	0.840	0.940	0.563	$7.23{ }^{\circ}$
019-05	0.000	0.880	0.759	0.907	0.333	1.000	0.975	0.357	0.743	0.886	0.872	0.977	0.860	0.880	0.771	10.12°
019-06	1.000	0.960	0.828	1.000	0.667	1.000	0.975	0.500	0.771	1.000	0.897	0.907	0.900	0.960	0.896	29.00**
019-07	0.786	0.960	0.793	0.930	0.917	0.700	1.000	0.238	0.743	0.514	0.821	0.953	0.860	0.980	0.521	4.77°
019-08	0.643	0.020	0.724	0.767	0.708	0.980	0.900	0.310	0.771	1.000	0.872	0.884	0.900	1.000	0.750	1.49
019-09	0.786	0.000	0.724	0.767	0.500	0.980	1.000	0.262	0.771	1.000	0.462	0.744	0.760	0.980	0.375	0.24
019-10	0.357	0.000	0.586	0.140	0.542	0.860	0.900	0.048	0.514	1.000	0.282	0.419	0.920	0.960	0.354	109.32**
020-01	0.143	0.280	1.000	0.581	0.375	0.900	0.975	0.833	0.743	0.971	0.795	0.744	0.900	0.900	0.833	0.00
U20-02	0.714	0.740	0.724	0.674	0.958	0.980	0.950	0.667	0.800	0.657	0.872	0.977	0.900	0.840	0.896	$3.92{ }^{\circ}$
U20-03	0.929	0.860	0.793	0.791	0.917	1.000	0.975	0.714	0.829	0.886	0.872	0.907	0.860	0.920	0.833	$9.96{ }^{\circ}$

O20-044	0.857	0.860	0.793	0.814	0.625	1.000	0.975	0.714	0.886	0.943	0.667	0.907	0.900	0.940	0.958
O20-05	0.786	0.780	0.690	0.814	0.500	0.980	0.975	0.452	0.886	1.000	0.667	0.884	0.880	0.940	0.792
$\mathbf{O 2 0 - 0 6}$	0.714	0.820	0.621	0.767	0.667	0.960	0.975	0.381	0.886	0.971	0.436	0.884	0.880	0.940	0.729
$\mathbf{O 2 0 - 0 7}$	0.786	0.800	0.552	0.721	0.750	1.000	0.850	0.333	0.829	0.971	0.256	0.907	0.880	0.920	0.750
O20-08	0.714	0.840	0.241	0.581	0.792	0.960	0.925	0.214	0.829	0.914	0.256	0.651	0.840	0.940	0.667
O20-09	0.071	0.360	0.000	0.512	0.542	0.900	0.650	0.119	0.800	0.886	0.077	0.791	0.600	0.880	0.042

Table 7: Number and percentage of polymorphism detected by the selected five primers for 15 populations ${ }^{\text {a }}$ of banana weevils from different parts of the world.
${ }^{2} 2 \mathrm{~A}=$ Australia, $\mathrm{CA}=$ Cameroon, $\mathrm{COL}=$ Colombia, $\mathrm{CR}=$ Costa Rica, $\mathrm{Fl}=\mathrm{Florida}, \mathrm{GH}=\mathrm{Gh} a n a, \mathrm{Ho}=$ Honduras, $\mathrm{IN}=$ Indonesia, $\mathrm{KMB}=\mathrm{Kenya}$ (Mbita), $\mathrm{KE}=$ Kenya (Embu), Puerto= Puerto Rico, SA=SouthAfrica, $\mathrm{TZ}=$ Tanzania, U1 = Uganda, ZA= Zanzibar

PRIMER	2 A	CA	COL	CR	FL	GH	H0	IN	K.MB	KE	PUE	SA	TZ	U1	ZA	MEAN
OPO14	9	9	7	7	9	9	5	9	9	9	9	6	9	9	7	8.1
\%	100	100	77.8	77.8	100	100	55.5	100	100	100	100	66.7	100	100	77.8	90.3
OPA17	9	9	9	9	9	9	7	8	8	9	9	9	9	9	8	8.7
\%	100	100	100	100	100	100	77.8	88.9	88.9	100	100	100	100	100	88.9	96.3
OPOI8	9	8	8	9	9	9	8	7	9	8	8	9	8	9	9	8.5
\%	100	88.9	88.9	100	100	100	88.9	77.8	100	88.9	88.9	100	88.9	100	100	94.0
OPO19	8	8	10	9	6	7	7	10	10	5	10	10	10	8	10	8.5
\%	80	80	100	90	60	70	70	100	100	50	100	100	100	80	80	85.3
OPO20	9	9	7	9	9	6	9	9	9	8	9	9	9	9	9	8.6
\%	100	100	77.8	100	100	66.7	100	100	100	88.9	100	100	100	100	100	95.6
TOTAL	44	43	41	43	42	40	36	43	45	39	45	43	45	44	43	42.4
MEAN	95.6	93.5	89.1	93.5	91.3	86.9	78.3	93.5	97.8	84.8	97.8	93.5	97.8	95.6	93.5	92.2

Estimates of Shannon's phenotypic diversity $\left(\mathrm{H}_{0}\right)$ for RAPD's are given in table 8 (King and Schaal, 1989). They ranged from 0.382 (Honduras) to 0.806 (Florida) and the mean for the 15 populations was 0.623 . Estimates of H_{0} also varied among primers with OPO19 detecting the lowest 0.597 and OPO18 detecting the highest 0.647 value of diversity (table 9). Shannon's information index of phenotypic diversity was used to partition the diversity into within - and between population components (table 10). $\mathrm{H}_{\mathrm{pop}}$ provided a measure of the average diversity of the fifteen populations. OPO18 detected the most and OPO19 the least within-population variability. A t-test was carried out to evaluate differences between genetic distances within and between C. sordidus populations. The statistical result showed that the variation within and between C.
sordidus populations was significantly different ($\mathrm{p}<0.0001$). An examination of genetic diversity present within populations $\left(\mathrm{H}_{\mathrm{pop}} / \mathrm{H}_{\mathrm{sp}}\right)$, and between populations, $\left(\mathrm{H}_{\mathrm{sp}}-\mathrm{H}_{\mathrm{pop}}\right) / \mathrm{H}_{\mathrm{sp}}$, Indicated that on the average the diversity (74.7%) mainly occurred within C. sordidus
populations. The distribution of variability between - and within - populations, however, varied between primers. For example, OPO19 detected most variability between populations (27.5%), whereas primer OPO20 and OPO14 detected most variation within populations (78.7% and 76.6%), respectively (Table 9). The genetic diversity within and among the 15 populations revealed a high level of divergence (Gst value of 0.216) (table 9). This means that approximately 22% of the genetic variation observed in this study was due to differentiation among populations of C. sordidus compared with 78% within populations. Estimates of gene flow (Nm) (table 17) ranged from 0.617 to 1.05 . Over all populations, according to Crow and Aoki (1984), gene flow values (Nm) of less than 1 should be interpreted as little or no gene flow. Thus, the average of the values ($\mathrm{Nm}=0.811$) observed within populations in this study would indicate extremely rare migratory events.

Table 8a: Average Heterozygousity and its Standard error calculated for Banana Weevil Populations from different parts of the world.

Population Number	Country	Average heterozygousity	Standard Error
$\mathbf{1}$	Australia	0.357481	0.024852
2	Cameroon	0.364895	0.020914
3	Columbia	0.383447	0.023916
4	Costa Rica	0.401675	0.021749
5	Florida	0.387155	0.019130
6	Ghana	0.333383	0.025293
7	Honduras	0.297153	0.027561
8	Indonesia	0.324004	0.026621
9	Kenya (Mbita)	0.455424	0.015939
10	Kenya (Embu)	0.345164	0.024985
11	Puerto Rico	0.372587	0.019660
12	South Africa	0.384329	0.019027
13	Tanzania	0.446906	0.013511
14	Uganda	0.367122	0.017507
15	Zanzibar	0.397390	0.021764

Table 8b:

Partitioning of total diversity (Ht) for each polymorphic locus and averaged for the 46 loci: diversity within population (Hs), between populations gene diversity (Dst), and proportion of total allelic diversity found among populations (Gst).

Locus number	Gst	Ht	Hs	Dst
1	0.280109	0.468080	0.336967	0.131113
2	0.212479	0.385439	0.303541	0.081898
3	0.282031	0.497437	0.357144	0.140293
4	0.147433	0.496081	0.422942	0.073139
5	0.182499	0.490293	0.400815	0.089478
6	0.169919	0.447986	0.371865	0.076121
7	0.282882	0.453833	0.325451	0.128382
8	0.146126	0.437153	0.373274	0.063879
9	0.223825	0.413860	0.321228	0.092632
10	0.169078	0.468817	0.389550	0.079267
11	0.169959	0.498094	0.413439	0.084655
12	0.143196	0.499600	0.428060	0.071540
13	0.166458	0.462535	0.385543	0.076992
14	0.178345	0.477330	0.392200	0.085130
15	0.167898	0.499534	0.415663	0.083871
16	0.224407	0.499162	0.387147	0.111988
17	0.305942	0.475535	0.330049	0.145486
18	0.330446	0.455479	0.304967	0.150512
19	0.274905	0.492246	0.356925	0.135321
20	0.132023	0.492542	0.427515	0.065027
21	0.147237	0.486986	0.415283	0.071703
22	0.131201	0.483944	0.420450	0.063494
23	0.208435	0.499998	0.395781	0.104217
24	0.307744	0.466787	0.323136	0.143651
25	0.335385	0.485550	0.322704	0.162846
26	0.271211	0.491376	0.358109	0.133267
27	0.217507	0.405126	0.317009	0.088117
28	0.319147	0.375100	0.255388	0.119712
29	0.109445	0.491004	0.437266	0.053738
30	0.252971	0.493101	0.368361	0.124740
31	0.190014	0.481026	0.389625	0.091401
32	0.271499	0.491341	0.357942	0.133399
33	0.229209	0.391111	0.301465	0.089646
34	0.221307	0.483146	0.376222	0.106924
35	0.282149	0.489766	0.351579	0.138187
36	0.351971	0.499706	0.323824	0.175882
37	0.379681	0.470943	0.292135	0.178808
38	0.261287	0.495302	0.365886	0.129416
39	0.113147	0.464444	0.411894	0.05255

40	0.071540	0.445021	0.413184	0.031837
41	0.111771	0.451286	0.400845	0.050441
42	0.153090	0.488710	0.413893	0.074817
43	0.152839	0.490806	0.415792	0.075014
44	0.194788	0.492688	0.396718	0.095970
45	0.195533	0.499792	0.402066	0.097726
46	0.290402	0.442291	0.313849	0.128442
All loci	0.216117	0.471030	0.369232	0.101798

Table 9: Estimates of Shannon's phenotypic diversity index for RAPD's $\left(\mathrm{H}_{0}\right)$ for fifteen populations ${ }^{3}$ of Banana weevil from different parts of the world.
${ }^{3} 2 \mathrm{~A}=$ Australia, $\mathrm{CA}=$ Cameroon, $\mathrm{COL}=$ Colombia, $\mathrm{CR}=$ Costa Rica,
$\mathrm{Fl}=\mathrm{Florida}, \mathrm{GH}=\mathrm{Ghana}, \mathrm{Ho}=$ Honduras, $\mathrm{IN}=$ Indonesia, $\mathrm{KMB}=$ Kenya (Mbita), KE=Kenya (Embu), Puerto= Puerto Rico, SA=SouthAfrica, TZ=Tanzania, Ul= Uganda, ZA= Zanzibar

PRIMER	2 A	CA	COL	CR	FL.	GH	HO	IN	K, ${ }^{\text {Cl }}$	KE	PUE	SA	TZ	U1	ZA	MEAN
OPO14	0.716	0.724	0.445	0.363	0.771	0.566	0.365	0.727	0.821	0.462	0.910	0.577	0.698	0.703	0.588	0.630
OPA17	0.712	0.542	0.748	0.623	0.855	0.435	0.411	0.702	0.636	0.621	0.753	0.627	0.870	0.380	0.751	0.644
OPO18	0.735	0.536	0.601	0.642	0.792	0.507	0.493	0.575	0.724	0.356	0.669	0.924	0.733	0.557	0.868	0.647
OPO19	0.665	0.376	0.836	0.511	0.832	0.239	0.300	0.850	0.878	0.321	0.705	0.585	0.656	0.359	0.848	0.597
OPO20	0.668	0.732	0.662	0.848	0.782	0.190	0.340	0.827	0.643	0.361	0.744	0.559	0.576	0.416	0.621	0.598
MEAN	0.699	0.582	0.658	0.597	0.806	0.387	0.382	0.736	0.740	$0 . .424$	0.756	0.654	0.707	0.483	0.735	0.623

Table 10: Components of Genetic diversity in C. sordidus from 15 locations from different parts of the world partitioned into within and between populations for 5 random oligonucleotide primers. $H_{\text {pop }}=$ Average diversity of RAPD markers for all populations, $\mathrm{H}_{\mathrm{sp}}=$ Shannon's within species diversity index, $\mathrm{H}_{\mathrm{pop}} / \mathrm{H}_{\mathrm{sp}}=$ within population diversity, $\left(\mathrm{H}_{\mathrm{sp}}-\mathrm{H}_{\mathrm{pop}}\right) / \mathrm{H}_{\mathrm{sp}}=$ diversity among populations.

Primer	$\mathbf{H}_{\mathrm{pop}}$	\mathbf{H}_{sp}	$\mathbf{H}_{\mathrm{pop}} / \mathbf{H}_{\mathrm{sp}}$	$\left(\mathbf{H}_{\mathrm{sp}}-\mathbf{H}_{\mathrm{pop}}\right) / \mathbf{H}_{\mathrm{sp}}$
OPO14	0.630	0.822	0.766	0.234
OPA17	0.644	0.873	0.738	0.262
OPO18	0.647	0.891	0.726	0.274
OPO19	0.597	0.824	0.725	0.275
OPO20	0.598	0.760	0.787	0.213
Mean	0.623	0.834	0.747	0.253

3.2. Genetic diversity within and among Banana Weevil populations from different regions in Uganda using RAPD.

PCR products were run on gels and the gels stained with ethidium bromide.
RAPDs were scored as present (1) or absent (0) and the results are indicated in appendix IV. RAPD band frequencies in fifteen populations of banana weevils from different regions in Uganda were calculated according to Hardy-Weinberg as indicated in section 1.9.4 and the results are indicated in table 13. Chi-square $\left(\chi_{2}\right)$ and likelihood ratio $\left(\mathrm{G}^{2}\right)$ were performed among the populations to test whether the 37 RAPD loci were homogenous among the 15 populations.
The RAPD band frequencies for each of the Uganda populations and G^{2}-test for heterogeneity of band frequencies across populations are given in table 13. 16 bands were polymorphic in each population of which 2 were present at a frequency of 0.100 or less in some populations. The frequencies of 18 out of 37 were heterogenous across populations (48.6%). Therefore, RAPD divergence among natural populations of banana weevil was due mainly to band frequency differences rather than the fixation of locally common or rare bands (table l1).

Test for independence between pairs of band amplified by the same primer and across primers using Chi-square analysis revealed 2.74% (Uganda 2) to 12.9% (Uganda 15) significant association, average 6.7% across the fifteen populations. Since the number of fragments surveryed is large at 37 , the few fragments that might correlate would not affect the validity of the results on populations structure of the banana weevil. A total of 37 different RAPD loci were generated using 4 primers. The number of polymorphic RAPD loci per population ranged from 29 (Buwama) to 37 (Kalegweri, Namubiru, Ntungamo and Bundagara) (table 12). Among the Uganda populations there was some degree of variation (table 12, 14). The percentage polymorphic loci ranged from 78% (Buwama) to 100% (Kalegweri, Namubiru, Ntungamo and Bundagara) averaging 94.2\% for the 15 populations.

Primer OPA17 was on average polymorphic at 94.7% of the loci whereas OPA17, OPO18, OPO19 and OPO20 were on average polymorphic at $87.4 \%, 94.7 \%, 85.3 \%$ and 94% of the loci respectively (table 12).

The gene diversity (h) within each population (averaged over 37 loci) ranged from 0.321 (Ntengeru) to 0.468 (Namubiru) and the mean genetic diversity over all populations was 0.408 (table 13a). The mean estimated heteroygousity for individual populations ranged from 0.47 for Namubiru to 0.32 for Ntengeru (table 13a). The total genetic diversity (Ht) was 0.46 at all loci. Within poulation diversity (Hs) was 0.40 . Between population diversity (Dst) was only 0.060405 , therefore within population diversity (Hs) was responsible for most of the genetic diversity (table 13b).

Table 11 : RAPD Band frequencies in fifteen populations ${ }^{1}$ of banana weevils from
different regions in Uganda calculated using Hardy-Weinberg.
${ }^{3}$ UG2 $=$ Kalegweri, UG3 = Ikulwe, UG4 = Ntengeru, UG5 = Buwama, UG6= Bukanga, UG7= Buzaya, UG8= Lakeshores, UG9= Bunyaruguru, UG10= Namubiru, UGl1 = Ntungamo, UG12= Kabukye, UG13= Bundagara, UG14= Namunonyi, UG15= Kawanda, UG16= Ntinkalu.
${ }^{\mathrm{b}} \mathrm{G}^{2}-$ test for heterogeneity of band frequency across populations : *, ** significant at $\mathrm{p} \leq 0.05$ and 0.0001 , respectively.

PRIMER	$\begin{array}{r} \text { UG } \\ 2 \end{array}$	$\begin{array}{r} \text { UG } \\ 3 \end{array}$	$\begin{array}{r} \hline \text { UG } \\ 4 \end{array}$	$\begin{array}{r} \text { UG } \\ 5 \end{array}$	$\begin{array}{r} \text { UG } \\ 6 \end{array}$	$\begin{array}{r} \text { UG } \\ \hline \end{array}$	$\begin{array}{r} U G \\ 8 \\ \hline \end{array}$	$\begin{array}{r} \text { UG } \\ \hline \end{array}$	$\begin{array}{r} \text { UG } \\ 10 \end{array}$	$\begin{array}{r} \text { UG } \\ 11 \end{array}$	$\begin{array}{r} \text { UG } \\ 12 \end{array}$	$\begin{array}{r} \text { UG } \\ 13 \end{array}$	$\begin{array}{r} \text { UG } \\ 14 \end{array}$	$\begin{array}{r} \text { UG } \\ 15 \end{array}$	$\begin{array}{r} \text { UG } \\ 16 \end{array}$	26
OPA17-01	0.650	0.966	0.793	1.000	0.759	1.000	0.931	0.828	0.690	0.690	0.966	0.931	0.759	0.345	0.655	$6.60{ }^{\circ}$
OPA17-02	0.750	0.966	0.793	0.793	0.448	0.724	0.931	0.724	0.621	0.655	0.793	0.828	0.724	0.586	0.655	0.80
OPA	0.85	0.966	0.828	1.	0.793	0.966	0.931	0.759	0.655	0.897	0.9	0.828	0.690	0.724	0.862	$14.50{ }^{\circ}$
OPA17-04	0.850	0.966	0.862	1.000	0.862	1.000	0.931	0.862	0.690	0.966	0.793	0.897	0.724	0.414	0.552	10.75^{*}
OPA17-05	0.900	0.966	0.897	0.793	0.931	1.000	0.966	0.724	0.690	0.966	0.759	0.759	0.862	0.862	0.897	$18.29^{* *}$
OPA17	0.80	0.86	0.75	0.96	0.93	0.86	0.8	0.759	0.6	0.931	0.414	0.862	0.034	0.586	0.586	0.28
OPA17-07	0.850	0.966	0.897	0.96	0.931	1.000	0.966	0.759	0.690	0.966	0.655	0.862	3	0.828	0.828	$18.29{ }^{\circ}$
OPA17-08	0.550	0.586	0.034	0.34	0.62	0.483	0.	0.5	0.483	0.448	0.759	0.690	0.241	0.448	0.690	$29.38^{* *}$
OPA17-09	0.500	0.690	0.	0.	0.276	0.483	0.655	0.138	0.276	0.690	0.000	0.276	0.207	0.276	0.241	$5.25{ }^{\text {a }}$
OPO18-0	0.9	0.8	0.9	0	0.	0.	0.8	0.9	0.	0.793	0.897	0.966	0.966	0.897	0.931	$5.82{ }^{\circ}$
OPO18-02	0.750	0.931	0.966	1.000	0.828	0.931	0.93	0.	0.931	0.862	0.931	0.966	0.690	0.897	1.000	7.57^{*}
OPO18	0.7	0.9	0.	1.000	0.	0.931	0.966	0.828	0.	0.	0.862	0.897	0.448	0.931	0.	2.63
OPO18-0	0.800	1.	0.9	1.000	0.	0.	1.	0.	0.862	0.897	0.931	0.897	0.862	0.897	0.966	12.12^{*}
OPO18-05	0.750	0.966	0.7	0.862	0.759	0.759	0.966	0.621	0.828	0.552	0.931	0.759	0.690	0.793	0.241	0.62
OPO18	0.7	0.	0.8	0.	0.	0.	0.	0.86	0.	0.	0.828	0.931	0.931	0.690	0.	0.99
OPO18	0.15	0.793	0.690	0.	0.	0.8	0.	1.000	0.	0.379	0.172	0.379	0.586	0.621	0.552	$3.70{ }^{\circ \prime}$
OPO18-08	0.7	0.	0.828	0.	0.	0.89	0.	0.862	0.862	0.862	0.828	0.966	0.65	0.793	0.93	. 61
OPO18-09	0.500	0.828	0.8	0.000	0.	0.	0.	0.	0.	0.	0.	0.89	0.310	0.069	0.138	0.38
OPO19-01	0.900	0.	0.103	0.9	0.	0.931	0.75	0.4	0.8	0.	0.	0.	0.9	0.759	0.828	1.34
OPO19-02	0.950	0.793	1.000	0.96	0.89	0.9	0.	0.3	0.	0.552	0.931	0.862	0.897	0.759	0.586	0.63
OPO19-03	0.950	0.724	1.000	0.966	0.931	1.000	0.7	0.62	0.8	0.966	0.862	0.966	0.897	0.897	0.862	7.09^{*}
OPO19-04	0.950	0.	1.000	0.9	0.	0.	0.	0.586	0.	0.931	0.552	0.828	0.897	0.793	0.724	0.93
OPO19-05	0.900	0.552	0.517	0.897	0.897	0.276	0.552	0.7	0.862	0.621	0.586	0.414	0.310	0.621	0.517	$6.02{ }^{\text {a }}$
OPO19-06	0.950	0.793	1.000	0.	0.931	0.966	0.793	0.75	0.862	0.966	0.793	0.897	0.897	0.828	0.621	$1.61{ }^{\text {² }}$
OPO19-07	0.900	0.655	0.931	0.690	0.690	0.	0.690	0.	0.	0.897	0.621	0.690	0.897	0.724	0.759	0.00
OPO19-08	0.950	0.793	1.000	0.966	0.897	0.897	0.793	0.690	0.793	0.966	0.793	0.897	0.862	0.862	0.759	$4.64{ }^{\text {a }}$
OPO19-09	0.700	0.759	0.448	0.	0.	0.793	0.759	0.621	0.828	0.897	0.379	0.690	0.793	0.724	0.586	2.10
OPO19-10	0.400	0.759	0.828	0.000	0.793	0.931	0.	0.	0.759	0.931	0.483	0.414	0.897	0.000	0.586	1.25
OPO20-01	0.750	1.000	0.828	0.103	0.966	0.345	1.000	0.483	0.207	0.483	0.759	0.414	0.897	0.517	0.690	$11.54{ }^{\text {* }}$
OPO20-02	0.900	1.000	1.000	0.621	1.000	0.966	1.000	0.448	0.862	0.966	0.966	0.897	0.931	0.966	0.793	$9.68{ }^{\text {² }}$
OPO20-03	0.900	0.897	1.000	0.621	0.897	0.655	0.897	0.93	0.862	0.931	0.966	0.931	0.897	0.931	0.586	$5.90{ }^{*}$
OPO20-04	0.650	0.828	0.862	0.58	0.69	0.931	0.862	0.690	0.828	0.828	0.931	0.586	0.759	0.862	0.586	0.00
OPO20-05	0.950	0.897	0.793	0.552	0.931	0.931	0.931	0.793	0.862	0.759	0.862	0.897	0.828	0.759	0.759	3.24
OPO20-06	0.900	0.966	0.862	0.655	0.966	0.586	0.966	0.655	0.862	0.931	0.759	0.897	0.828	0.828	0.897	3.45
OPO20-07	0.950	0.931	0.793	0.655	0.517	0.690	0.931	0.655	0.862	0.931	0.828	0.690	0.862	0.517	0.483	0.05
OPO20-08	0.950	0.897	0.862	0.690	0.621	0.862	0.897	0.655	0.862	0.931	0.828	0.759	0.793	0.621	0.828	1.10
20-09	0.700	0.655	0.241	0.643	0.931	0.621	0.655	0.207	0.862	0.862	0.517	0.448	0.000	0.310	0.172	0.17

Table 11 : RAPD Band frequencies in fifteen populations ${ }^{3}$ of banana weevils from
different regions in Uganda calculated using Hardy-Weinberg.
${ }^{4} \mathrm{UG} 2=$ Kalegweri, UG3 $=$ Ikulwe, UG4 $=$ Ntengeru, UG5 = Buwama, UG6 $=$ Bukanga, UG7= Buzaya, UG8= Lakeshores, UG9= Bunyaruguru, UG10= Namubiru, UG11 = Ntungamo, UG12= Kabukye, UG13 = Bundagara, UG14= Namunonyi, UG15= Kawanda, UG16= Ntinkalu.
${ }^{6} \mathrm{G}^{2}$ - test for heterogeneity of band frequency across populations: *, ** significant at $p \leq 0.05$ and 0.0001 , respectively.

PRIMER	UG	UG	$\begin{array}{r} \text { UG } \\ \hline \end{array}$	$\begin{array}{r} \text { UG } \\ \hline \end{array}$	$\begin{array}{r} \text { UG } \\ \hline \end{array}$	$\begin{array}{r} \text { UG } \\ 7 \\ \hline \end{array}$	$\begin{array}{r} \text { UG } \\ 8 \end{array}$	9	$\begin{array}{r} \text { UG } \\ 10 \\ \hline \end{array}$	$\begin{gathered} \text { UG } \\ 11 \end{gathered}$	$\begin{array}{r} \text { UG } \\ 12 \end{array}$	$\begin{array}{r} \text { UG } \\ 13 \end{array}$	$\begin{array}{r} \text { UG } \\ 14 \end{array}$	$\begin{array}{r} \text { UG } \\ 15 \end{array}$	$\begin{array}{r} \text { UG } \\ 16 \end{array}$	$\mathrm{G}^{2 \mathrm{D}}$
OPA17-01	0.650	0.966	0.793	1.000	0.759	1.000	0.931	0.828	0.690	0.690	0.966	0.931	0.759	0.345	0.655	$6.60{ }^{*}$
OPA17-02	0.750	0.966	0.793	0.793	0.448	0.724	0.931	0.724	0.621	0.655	0.793	0.828	0.724	0.586	0.655	0.80
OPA17-03	0.850	0.966	0.828	1.000	0.793	0.966	0.931	0.759	0.655	0.897	0.931	0.828	0.690	0.724	0.862	¢4.50**
OPA17-04	0.850	0.966	0.862	1.000	0.862	1.000	0.931	0.862	0.690	0.966	0.793	0.897	0.724	0.414	0.552	$10.75{ }^{\text {a }}$
OPA17-05	0.900	0.966	0.897	0.793	0.931	1.000	0.966	0.724	0.690	0.966	0.759	0.759	0.862	0.862	0.897	$18.29^{\text {T }}$
OPA17-06	0.800	0.862	0.759	0.966	0.93	0.862	0.828	0.759	0.621	0.931	0.414	0.862	0.034	0.586	0.586	0.28
OPA17-07	0.850	0.966	0.897	0.966	0.931	1.000	0.966	0.759	0.690	0.966	0.655	0.862	0.793	0.828	0.828	18.29°
OPA17-08	0.550	0.586	0.034	0.345	0.621	0.483	0.552	0.	0.483	0.448	0.	0.	0.241	0.448	0.690	$29.38^{\text {" }}$
OPA17-09	0.500	0.690	0.379	0.034	0.276	0.483	0.555	0.138	0.276	0.690	0.000	0.276	0.207	0.276	0.241	$5.25{ }^{\prime \prime}$
OPO18-01	0.900	0.828	0.966	0.5	0.93	0.966	0.828	0.931	0.862	0.793	0.897	0.966	0.966	0.897	0.931	$5.82{ }^{\circ}$
OPO18-02	0.750	0.931	0.966	1.000	0.828	0.931	0.931	0.759	0.931	0.862	0.931	0.966	0.690	0.897	000	$7.57{ }^{\text {a }}$
-03	0.750	0.966	0.862	1.000	0.7	0.931	0.966	0.828	0.862	0.655	0.862	0.897	0.448	0.931	0.931	2.63
OPO18-04	0.800	1.000	0.966	1.000	0.897	0.966	1.000	0.897	0.862	0.897	0.931	0.897	0.862	0.897	0.966	$12.12{ }^{\text {z }}$
OPO18-05	0.750	0.966	0.759	0.862	0.	0.759	0.966	0.62	0.828	0.552	0.931	0.759	0.690	0.793	0.241	0.62
-0018-06	0.700	0.931	0.862	0.724	0.7	0.897	0.931	0.862	0.862	0.862	0.8	0.931	0.931	0.690	0.586	0.99
	0.150	0.	0.690	0.448	0.72	0.828	0.828	1.00	0.690	0.379	0.17	0.379	0.586	0.621	0.552	$23.70{ }^{\circ}$
OPO18	0.750	0.	0.828	0.966	0.82	0.897	0.724	0.862	0.862	0.862	0.828	0.966	0.655	0.793	0.931	1.61
OPO19			0.862	0.000	0.517	0.690	0.793	0.483	0.621	0.759	0.	0.897	0.310	0.069	0.138	0.38
OPO19-02		0.759	0.103	0.966	0.	0.931	0.759	0.414	0.828	0.793	0.793	0.448	0.931	0.759	0.828	1.34
OPO19-03				0	0.897	0.966	0.793	0.310	0.862	0.552	0.9	0.862	0.897	0.759	0.586	0.63
OPO19-04			1.000	0.966	0.931	1.000	0.759	0.621	0.828	0.966	0.862	0.966	0.897	0.897	0.862	$7.09{ }^{\text {a }}$
OPO19-05	0.900				0.89	0.931	0.655	0.586	0.86	0.931	0.	0.828	0.897	0.793	0.724	0.93
OPO19-06	0.950	0.793			0.897	0.276	0.552	0.7	0.86	0.62	0.58	0.	0.310	0.621	0.51	.02***
OP019-07	0.900	0.655	0.9		0.	0	0.	0.75	0.862	0.966	0.793	0.897	0.897	0.828	0.621	$1.61{ }^{\circ}$
OPO19-08	0.950	0.793	1.000					0.	0.828	0.897	0.621	0.690	0.897	0.724	0.	0.00
OPO19-09	0.700	0.759	0.448	0.				0.	0.793	0.966	0.793	0.89	0.862	0.862	0.759	${ }^{*}$
OPO19-10	0.400	0.759	0.828	0.000					0.828	0.897	0.379	0.690	0.793	0.724	0.586	2.10
OPO20-01	0.750	1.000	0.828	0.103					0.7	0.931	0.48	0.414	0.897	0.000	0.	\%
OPO20-02	0.900	1.000	1.000	0.621	1.000				0.207	0.48	0.7	0.	0.897	0.5	0.	11.54
OPO20-03	0.900	0.897	1.000	0.621	1.000	0.655	1.000		0.862	0.966	0.966			0.966	0.793	$8{ }^{\circ}$
OPO20-04	0.650	0.828	0.862	0.586	0.690	0.931	0.862	0.690	0.828	0.828	0.93	0.586	0.759	0.862	0.586	0.00
OPO20-05	0.950	0.897	0.793	0.552	0.931	0.931	0.931	0.793	0.862	0.759	0.862	0.897	0.828	0.759	0.759	3.24
OPO20-06	0.900	0.966	0.862	0.655	0.966	0.586	0.966	0.655	0.862	0.931	0.759	0.897	0.828	0.828	0.897	3.45
OPO20-07	0.950	0.931	0.793	0.655	0.517	0.690	0.931	0.655	0.862	0.931	0.828	0.690	0.862	0.517	0.483	0.05
OPO20-08	0.950	0.897	0.862	0.690	0.621	0.862	0.897	0.655	0.862	0.931	0.828	0.759	0.793	0.621	0.828	1.10
20-09	0.700	0.655	0.241	0.643	0.931	0.621	0.655	0.207	0.862	0.862	0.517	0.448	0.000	0.310	0.172	0.17

Table 12: Number and percentage of polymorphism detected by the selected four primers for fifteen populations ${ }^{2}$ of banana weevils from Uganda.
${ }^{3}$ UG2 $=$ Kalegweri, UG3= Ikulwe, UG4= Ntengeru, UG5= Buwama, UG6= Bukanga, UG7= Buzaya, UG8= Lakeshores, UG9= Bunyaruguru, UG10= Namubiru, UG11= Ntungamo, UG12= Kabukye, UG13= Bundagara, UG14= Namunonyi, UG15= Kawanda, UG16= Ntinkalu.

PRIMER	UG														
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
OPA17	9	9	9	6	9	5	9	9	9	9	8	9	9	9	9
$\%$	100	100	100	66.6	100	55.5	100	55.5	100	100	88.9	100	100	100	100
OPO18	9	8	9	5	9	9	8	8	9	9	9	9	9	9	8
$\%$	100	88.9	100	55.5	100	100	88.9	88.9	100	100	100	100	100	100	88.9
8.5															
OPO19	10	10	5	9	10	9	10	10	10	10	10	10	10	9	10
$\%$	100	100	50	90	100	90	100	100	100	100	100	100	100	90	100
OPO20	9	7	7	9	8	9	7	9	9	9	9	9	8	9	9
$\%$	100	77.8	77.8	100	88.9	100	77.8	100	100	100	100	100	88.9	100	100
OTAL	37	34	30	29	36	32	34	36	37	37	36	37	36	36	36
TOTAL															
MEAN	100	91.1	81.1	78.0	97.3	86.5	91.9	97.3	100	100	97.3	100	97.3	97.3	97.3

Table 13a: Average heterozygousity and its standard error (Uganda populations)

Population Number	Site	Average Heterozygousity	Standard Error
1	Kalegweri	0.439824	0.012738
2	Ikulwe	0.401940	0.023520
3	Ntengeru	0.321372	0.033339
4	Buwama	0.331807	0.030293
5	Bukanga	0.416766	0.019513
6	Buzaya	0.362676	0.026511
7	Lakeshores	0.402659	0.023101
8	Bunyaruguru	0.438525	0.018666
9	Namubiru	0.467596	0.010313
10	Ntungamo	0.423712	0.011745
11	Kabukye	0.426844	0.017412
12	Bundagara	0.424135	0.011426
13	Namunyonyi	0.415187	0.020654
14	Kawanda	0.426034	0.019161
15	Ntinkalu	0.421654	0.019819

Table 13b: Partitioning of total diversity (Ht), for each polymorphic locus and averaged for the 37 loci: diversity within population (Hs), between populations gene diversity (Dst), and proportion of total allelic diversity found among populations (Gst).

Locus number	Gst	Ht	Hs	Dst
1	0.211798	0.475859	0.375073	0.100786
2	0.074135	0.499996	0.462929	0.037067
3	0.104294	0.462242	0.414033	0.048209
4	0.192715	0.461912	0.372894	0.089018
5	0.100304	0.446295	0.401530	0.044765
6	0.167374	0.499712	0.416073	0.083639
7	0.112327	0.444755	0.394797	0.049958
8	0.070446	0.420692	0.391056	0.029636
9	0.121597	0.320639	0.281651	0.038988
10	0.079570	0.437295	0.402499	0.034796
11	0.120715	0.411408	0.361744	0.049664
12	0.131148	0.456821	0.396910	0.059911
13	0.106628	0.366183	0.327138	0.039045
14	0.120308	0.498232	0.438290	0.059942
15	0.061227	0.481849	0.452347	0.029502
16	0.210248	0.479893	0.378997	0.100896
17	0.081966	0.489381	0.499268	0.040113
18	0.193586	0.460949	0.371716	0.089233
19	0.157181	0.499313	0.420830	0.078483
20	0.185429	0.476614	0.388236	0.088378
21	0.139228	0.418822	0.360511	0.058311
22	0.149038	0.476873	0.405801	0.071072
23	0.128915	0.482378	0.420192	0.062186
24	0.097506	0.450156	0.406263	0.043893
25	0.049699	0.493532	0.469004	0.024528
26	0.089069	0.451826	0.411582	0.040244
27	0.087907	0.499800	0.455864	0.043936
28	0.219346	0.490950	0.383263	0.107687
29	0.331870	0.499308	0.333603	0.165705
30	0.248709	0.380276	0.285698	0.094578
31	0.125420	0.449013	0.392698	0.056315
32	0.065542	0.497857	0.465227	0.032630
33	0.057099	0.476296	0.449100	0.027196
34	0.087138	0.469938	0.428989	0.040949
35	0.111822	0.497969	0.442285	0.055684
36	0.059603	0.489166	0.460010	0.029156
37	0.197685	0.449607	0.360727	0.088880
All loci	0.130978	0.461184	0.400779	0.060405

Estimates of Shannon's phenotypic diversity $\left(\mathrm{H}_{0}\right)$ for RAPD's are given in table 15. They ranged from 0.491 (Uganda 5) to 0.770 (Uganda 9) and the mean for the 15 Uganda populations was 0.619 . Estimates of H_{0} also varied among primers with OPO18 detecting the lowest (0.579) and OPA17 detecting the highest 0.642 value of diversity (table 14). Shannon's information index of phenotypic diversity was used to partition the diversity into within - and between population components (table 15). $\mathrm{H}_{\text {pop }}$ provided a measure of the average diversity of the fifteen populations. OPO20 detected the most and OPO19 the least within- population variability. A t-test was carried out to evaluate differences between genetic distances within and between C. sordidus populations. The statistical result showed that the variation within and between C. sordidus populations was significantly different ($\mathrm{p}<0.0001$). An examination of genetic diversity present within populations $\left(\mathrm{H}_{\mathrm{pop}} / \mathrm{H}_{\mathrm{sp}}\right)$, and between populations, $\left(\mathrm{H}_{\mathrm{sp}}-\mathrm{H}_{\mathrm{pop}}\right) / \mathrm{H}_{\mathrm{sp}}$, indicated that on the average the diversity (84.7%) mainly occurred within C. sordidus populations. The distribution of variability between - and within - populations, however, varied between primers. For example, OPO19 detected most variability between populations (16.6%), whereas primer OPO20 and OPA17 detected most variation within populations (85.2% and 85.1%), respectively.

The genetic diversity within and among the 15 populations revealed average level of divergence (Gst value of 0.131) (table 19). This means that approximately 13% of the genetic variation observed in this study was due to differentiation among populations of C. sordidus compared with 87% within populations. Estimates of gene flow (Nm) (table 19) ranged from 1.305 to 1.553 . Over all populations, according to Crow and Aoki (1984), gene flow values (Nm) of less than 1 should be interpreted as little or no gene flow. Thus, the average of the values $(\mathrm{Nm}=1.45)$ observed within populations in this study would indicate reasonable migratory events.

Table 14 : Estimates of Shannon's phenotypic diversity index for RAPD's $\left(\mathrm{H}_{0}\right)$ for fifteen populations ${ }^{\text {a }}$ of Banana weevils.
${ }^{2}$ UG2 $=$ Kalegweri, UG3 $=$ Ikulwe, UG4= Ntengeru, UG5 = Buwama, UG6= Bukanga, UG7= Buzaya, UG8= Lakeshores, UG9= Bunyaruguru, UG10= Namubiru, UG11= Ntungamo, UG12= Kabukye, UG13= Bundagara, UG14= Namunonyi, UG15= Kawanda, UG16= Ntinkalu.

PRIMER	$\begin{array}{r} \text { UG } \\ 2 \end{array}$	$\begin{array}{r} \text { UG } \\ 3 \end{array}$	$\begin{array}{r} \text { UG } \\ 4 \end{array}$	$\begin{array}{r} \text { UG } \\ 5 \end{array}$	$\begin{array}{r} \text { UG } \\ 6 \end{array}$	$\begin{array}{r} \text { UG } \\ 7 \end{array}$	$\begin{array}{r} \text { UG } \\ 8 \end{array}$	$\begin{array}{r} \text { UG } \\ 9 \end{array}$	$\begin{array}{r} \text { UG } \\ 10 \end{array}$	$\begin{array}{r} \text { UG } \\ 11 \end{array}$	$\begin{array}{r} \text { UG } \\ 12 \end{array}$	$\begin{array}{r} \text { UG } \\ 13 \end{array}$	$\begin{array}{r} \text { UG } \\ 14 \end{array}$	$\begin{array}{r} \hline \text { UG } \\ 15 \end{array}$	$\begin{array}{r} \text { UG } \\ 16 \end{array}$	
OPA17	0.751	0.417	0.627	0.359	0.667	0.405	0.496	0.768	0.919	0.578	0.617	0.652	0.717	0.866	0.805	0.64
OPO18	0.770	0.452	0.527	0.404	0.711	0.497	0.452	0.602	0.641	0.736	0.554	0.467	0.749	0.609	0.516	0.57
OPO19	0.469	0.835	0.350	0.325	0.578	0.416	0.821	0.887	0.650	0.502	0.803	0.715	0.544	0.671	0.813	0.62
OPO20	0.544	0.401	0.519	0.895	0.498	0.690	0.379	0.834	0.605	0.721	0.588	0.716	0.529	0.718	0.799	0.62 9
MEAN	0.633	0.526	0.506	0.491	0.614	0.502	0.537	0.770	0.704	0.634	0.641	0.638	0.635	0.716	0.733	$\begin{array}{r} 0.61 \\ \hline \end{array}$

Table 15: Components of genetic diversity in C. sordidus from 15 locations from Uganda, partitioned into within and between populations from 4 random oligonucleotide. $\mathrm{H}_{\text {pop }}=$ Average diversity of RAPD markers for all populations, H_{sp} = Shannon's within species diversity index, $\mathrm{H}_{\mathrm{pop}} / \mathrm{H}_{\mathrm{sp}}=$ within population diversity, $\left(\mathrm{H}_{\mathrm{sp}}-\mathrm{H}_{\mathrm{pop}}\right) / \mathrm{H}_{\mathrm{sp}}=$ diversity among populations.

Primer	$\mathbf{H}_{\mathrm{pop}}$	\mathbf{H}_{sp}	$\mathbf{H}_{\mathrm{pop}} / \mathbf{H}_{\mathrm{sp}}$	$\left(\mathbf{H}_{\mathrm{sp}}-\mathbf{H}_{\mathrm{pop}}\right) / \mathbf{H}_{\mathrm{sp}}$
OPA17	0.642	0.754	0.851	0.149
OPO18	0.579	0.684	0.846	0.154
OPO19	0.624	0.748	0.834	0.166
OPO20	0.629	0.738	0.852	0.148
MEAN	0.619	0.731	0.847	0.153

3.3. Molecular markers of randmonly amplified polymorphic DNA (RAPD) for Banana Weevils from different regions of the world.

3.3.1. Polymorphic bands

The amplification results were routinely repeatable. The clusters were distinguished by their RAPD patterns with all primers, however no single primer generated patterns for each cluster. Primer OPO14 produced a unique 500 bp in $2^{\text {nd }}$ cluster designated as 14-1 (figure 8a). Primer OPA17 produced 3 products: F3 approximately 550 bp product designated as 17-1, F2 approximately 500 bp designated as 17-2 and Fl approximately 200 bp designated 17-3 all unique in $1^{\text {st }}$ cluster (figure 8 b). Primer OPO18 produced two unique products. A 250 bp product designated as 18 -1 unique in $3^{\text {rd }}$ cluster and a 400 bp product designated as $18-2$ unique to $6^{\text {th }}$ cluster (figure 8c). Primer OPO19 produced two unique products. A 250 bp product designated as 19-1 unique in $4^{\text {th }}$ cluster and a 600 bp product designated as $19-2$ unique in $6^{\text {th }}$ cluster (figure 18 d). Primer OPO20 produced a unique 200 bp product designated as $20-1$ in $3^{\text {rd }}$ cluster (figure 18 e).

3.3.2. Cloning polymorphic bands

The polymorphic PCR products obtained in section 4.5 were ligated with pGEMT vectors (Promega Corporation, Madison, U.S.A) then transformed into E.coli. PCR screening of the white colonies was done. Two samples were picked from each plate for each of the following fragments $14-1,17-1,17-2,17-3,18-1,18-2,19-1,19-2,20-1$. Fragment 17-3 did not give any product with pGEM -T primers. All the other fragments were positive (fig.9).

The plasmid DNA was harvested by Wizard SV miniprep kit and checked by running $5 \mu \mathrm{l}$ on 1% agarose. Plasmid DNA in the case of fragment 17-3 was lower than 2 kb , all the rest of the plasmids containing the other fragments were all approximately 2 kb (fig. 10). The plasmid DNA prepared from bacteria harbouring putative recombinant plasmids were digested with EcoRI to confirm presence of inserts, electrophoresed in an
agarose gel, which was subsequently stained with ethidium bromide and photographed (figure 11). Plasmids containing fragment 17-3 on restriction did not give any product. Plasmid containing OPO 19-2 gave two fragments of 400 bp and 200 bp indicating the presence of internal recognition site by EcoRI in the fragment. All the rest of the putative recombinant plasmids had inserts of approximately $500 \mathrm{bp}, 400 \mathrm{bp}, 500 \mathrm{bp}, 250 \mathrm{bp}, 400$ $\mathrm{bp}, 400 \mathrm{bp}$ and 200 bp in sizes corresponding to the weights of the original seven fragments $14-1,17-1,17-2,18-1,18-2,19-1$ and 20-1 respectively that were cloned confirming the presence of the inserts. After restricting the plasmid to release the insert in the case of fragment $17-1$ (550 bp), a fragment of 400 bp was observed. This can be attributed to the enzyme having internal restriction site within the fragment giving the 400 bp fragment and additional small fragments that are not resolved on the gel system used.

The polymorphism of the seven fragments $14-1,17-1,17-2,18-1,18-2,19-1$ and 20-1 was confirmed by Southern blotting of PCR products of the six clusters after separation on agarose gels, and probing with each of the cloned fragments labeled with DIG. The probing revealed the expected approximately 500 bp product for the fragment 14-1 generated by OPO 14 in the $2^{\text {nd }}$ cluster. It did not hybridize to any of the other clusters (figure 12). Fragment 17-1 revealed more products than expected. A product of approximately 550 bp was expected only in $1^{\text {st }}$ cluster but the product was revealed in all clusters except $6^{\text {th }}$ cluster, indicating that this fragment was not very specific for cluster one as indicated by PCR (figure 13). Fragment approximately 500 bp from OPA17 (17 2) revealed a product approximately 500 bp in $1^{\text {st }}$ and $4^{\text {th }}$ cluster and did not hybridize to the other clusters (figure 14). Fragment approximately 400 bp from OPO18 revealed a product approximately 400 bp in $6^{\text {th }}$ cluster as expected but did not hybridize to the rest of the clusters (fig. 15). Fragment approximately 250 bp produced by OPO19 revealed a product approximately 250 bp as expected in $4^{\text {th }}$ cluster, but did not hybridize to any other cluster (figure 16).

Figure 8:

The results of pooled DNA of individual clusters distinguished by their RAPD patterns with different primers. They were run on 1.2% agarose gels and stained with ethidium bromide after PCR. A - six clusters amplified by OPO14.
$\mathrm{f}-1^{\text {st }}$ cluster, $\mathrm{e}-2^{\text {nd }}$ cluster, $\mathrm{d}-3^{\text {rd }}$ cluster, $\mathrm{c}-4^{\text {th }}$ cluster, $\mathrm{b}-5^{\text {th }}$ cluster, $a-6^{\text {th }}$ cluster. F - fragment $14-1, \mathrm{M}$ - Molecular weight marker. This order of clusters was maintained for figures 10 A 10 E .

B - six clusters amplified by $\operatorname{OPA17}\left(\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}\right.$ represent fragment $17-3,17-2$ and $17-1$ respectively).

C - six clusters amplified by OPO18 (F 1 and F 2 represent fragment 18-1 and 18-2 respectively).
D - six clusters amplified by OPO19 (F 1 and F 2 represent fragment $19-1$ and $19-2$ respectively).
E - six clusters amplified by OPO 20 (F represents fragment 20-1).

Figure 9:

Results of PCR of the white colonies using PGEM-T primers run on a 1.2% agarose gel and stained with ethidium bromide. Two samples were picked from each plate. 1 - fragment $20-1,2$ - fragment $19-2,3-$ fragment 19 - 1, 4 - fragment 18 - 2, 5 - fragment 18 - 1, 6 - fragment 1 $-3,7$ - fragment $17-2,8$ - fragment $17-1,9$ - fragment $14-1, \mathrm{M}-$ Molecular weight marker.

Figure 10:
Plasmid DNA harvested by Wizard S V miniprep kit and checked by running on 1% agarose gel. 1 - fragment 20,2 - fragment $19-2,3$ fragment 19 - 1, 4-fragment 18 -2,5-fragment 18 - 1,6 - fragment 17 - 3, 7 - fragment $17-2,8$ - fragment $17-1,9$ - fragment $14-1$ and \mathcal{M} Molecular weight marker.

Figure 11:

Showing the confirmation of the presence of inserts after digesting the putative recombinant plasmids with EcoR I run on a 1.2% agarose gel and stained with ethidium bromide.
a - fragment $20-1, b-$ fragment $19-2, \mathrm{c}-$ fragment $19-1, \mathrm{~d}-$ fragment $18-2$, e-fragment $18-1, \mathrm{f}$ - fragment $17-3$, g - fragment 17 -2 , h - fragment $17-1, \mathrm{i}$ - fragment $14-1$ and $\mathrm{M}-\mathrm{Molecular}$ weight marker.

3.3.3. Sequencing and sequence alignment

The seven RAPD products, which were polymorphic were cloned and sent to ILRI for sequencing (figure 17a). A search on the Gene Bank 79 and EMBL 36 databases did not reveal significant homology with any of the accessions. When the fragments were aligned to check for any similarity using Multiple Sequence Alignment with Hierarchical Clustering Program MULTALIN, all the fragments were different (Corpet, 1988) (fig.17b).

Suitable primers were designed for each of the seven fragments and used for PCR studies (table 16).

Figure 12:
Southern blot of PCR products of the six clusters probed with DIG labeled fragment $14-1.1$ and 2 - negative controls, 3 - cluster six, 4 - cluster 5, 5 - cluster 4, 6-cluster 3, 7-cluster 2 and 8 - cluster 1 .

Figure 13:

Southern blot of PCR products of each of the six clusters probed with DIG labeled fragment 17 - 1.1 - cluster 1, 2 - cluster 2, 3 - cluster 3, 4 - cluster 4,5 - cluster 5 and 6 - cluster 6.

Figure 14:
Southem blot of PCR products of each of the six clusters probed with DIG labeled fragment 17-2.1-cluster 1, 2- cluster 2, 3-cluster 3, 4 cluster 4, 5 - cluster 5 and 6 - cluster 6.

Figure 15:

Southern blot of PCR products of each of the six clusters probed with DIG labeled fragment $18-2$. 1- cluster 1,2-cluster 2,3-cluster 3, 4 - cluster 4, 5 - cluster 5, 6 - cluster 6,7 and 8 - negative controls.

Figure 16:

Southern blot of PCR products of each of the six clusters probed with DIG labeled fragment 19 -1. 1-cluster 6,2-cluster 5,3-cluster 4, 4 - cluster 3,5 - cluster 2, 6 - cluster 1 and B - negative control.

Figure 17a:
Sequences of the seven cloned RAPD fragments. VO-14-1 \rightarrow fragment 14 -1, VO-17-1 \rightarrow fragment $17-1, \mathrm{VO}-17-2 \rightarrow$ fragment $17-2, \mathrm{VO}-18-1 \rightarrow$ fragment 18-1, VO-18-2 \rightarrow fragment 18-2, VO-19-1 \rightarrow fragment 19-1, VO-20-1 \rightarrow fragment 20-1

vo-14-1

GATTAGCATGGCTCCGGCCGAGGCAGTAGAATTTCTCAAATTTGGTAACCTCCGTTTTTGT GAATGGCCTGGCCAAACACAAAAATTACCTGGAACGCGTAGAAGAAACCAAGAGCAGCCA AAAACCATTTGCGGCCATCCTCAGTTGTATGGATAGCCGGGCACCTGTAGAAATCCTGTT cGACCAGGGCATAGGCGATATATTCAGTGTACGCATGGCGGGAAACATCATTTCCGAAAA CATTCTGGGATCGCTGGAATATGCCACCGGCGTGGTTGGTTCCAAACTCATCCTGGTAAT GGGCCACACCAATTGCGGAGCTGTAAAAGGCGCTTGCGATGGAGTGGAATTAGGCCACGT tACCATCCTGCTGGATAAAATAAAACCGGCAGTGGCGCAGGCCAAAGCGGAAGGCAATGC CGAGGGTGGTTCAGAATTTTACGAAGAAGTGGCCAGGCTCAATGTGATCAATAGCCTCAA
 GCGTGGAGCCATGCTAATCI
vo-17-1
GATTGACCGCTTGTATGATTAAATGGAAAACCCGTCTATATGTATAGAATTACTAAAGAA CACCACGTACACTACTGGAGAGATACCTATAAGCAGGGGAATATTTCAGTGGGATAGTTT AAGATAGGTATGTATGGCTTTAACATCGTTAAGTAGACTGTTGAGAGACTCCAGCATGAG CTATGCGATGAATAGAAATCCAAACATTCAGGTATCACATCAGTTCTCGATGGACGATCT AAAATCATATGTATCAAATTCTTATAATCTTCAAAATGAAATAGAGCTTGTCAAAAATGT
 gCGGTCAATC1
v0-17-2
GATTGACCGCTTGTTCAACCACTTTATGATGGTAAATCTGCTCACGAAGTAGTTCAGCTT TTTGCCAAGGAAAACTTTGAAAAGAAAGAACTTGACATCGTTAAGGATTATTGGAAAGCG AATGGTTTAGCAGACGATAAATCTTGGAGAAAAGCCGTTCACGATGGTTTTATTCCAAAT TCGGCATTGCCTGCCAAAGCTGTGACAGCTAGTTCGGCATTTTTTGAGTCAACCTGCAACT GCTCCAAGCGGAAGCGGAAAATATGAAATTGCCATTCTGCCTGATCCGAGTATTTACGAC GGACGATATTCAAATAACGGCTGGCTCCAAGAAGTTCCAAACCCATTAACCAAAATAACT TGGGATAACGTGGCATTGGTTTCGCCAAATACTGCCAAAGAACTTGGAGTAAACCAAGGA NGCGATCCCGAATCACAAGCGGTCAATCI

vo-18-1

GATT'CTCGCTATCCACACCGGGCCTTCCGTGAATTTCAAATCGCCCGCCAGCTTTTTGAT СTCTACATCCGCTTCTCCAATCTTCGCGAAAGCATCGGCATCTTCGATCTTAACGTCCGC ATGGGCAGAAAACCTCAGCAGAGCACTGTAAAACAGGGCGGAAAAATACTTGATTTTTTC GTAT"IGACTTTGCATATACATGGTGTATTGATTGTTCACAGGTTACGGGATAGCGAGAAT C1

```
vo-18-2
```

GATTGGTGCACGTTGCGTATTAAATGCGTAGTAATAGGTTCCTAATTGGTCTGGTGTGAA AACCTCATTAGGAATATCTTGCAATAACTTTTGATAGCGCTGTTTCGGGAAGGATTCAGT AATGTCTAAATCCCCAGCTAAATAACGGTTTGTCGCATGAGATTCTTGGTTAATAGGAAT AAATGTGACTTGAGTAATCACTGTATTTTTATGATCCCAATAATACGGGTTCGGTGTTAA AACAATTTTTTCATTCACAACACGGTCAGCTAACGTAAAAGCGCCATTTCCAACTAAATT СССTACTTTTATCCAATCCGCTCCTAATTTTTCTATCGTTCCACGATGAACTGGATACAA ACTAAAATTTGCAGCTAAAGAGGGAAAATATGGCACGGGTTTATTCAATGTTATTTTTAA TGTGTGTTCATCAACCGCTTCCACACCTAATTGCTCCACGGACAACTTGCCATCAATAAT ATCTTGCGCATTATTAATTCCGGCAAGTGCAGCAAACCATGCAAACGGTGATGTATTTGC AGGTGCAACCAAACGCTGCCAACTATAAACAAAGTNACTTGCGGTGACAGGCTCTCCATT GGACCAACGTGCACCAATCI

vo-19-1

Gattggtgcacgttccanatantccanaatcgcatcanttttagcattggrtttattgat GCTTCCAAAGCGTTGATGAGTTCTGCGAAATTCTTCATAACTCTGGATTTAAAGTAGTT
TCCTTTTCAGTTACCTCTTCATCATCGTCTCCGTATAAAGTTTCCACGACATCAGATTTA
ATTCCGATTTCGTTCAGATATTTCGAGAAAACTTCGGTTTGTCCGTGCGTAACGTGCACC

```
AATCl
vo-20-1
GATTACACACGCTGCACAAGAAGGGAGATAGAACAGATGTGAATAACTACAGAGGAATCT
ATTTACTACAAGTTACTTACAAAATCCTCTCAGCATGCCTTCTTCAGAGAACACAAGAAC
AATTAGAACACAAAATTGGCGAGTAACCTTTCGTTCAAGTTAAGTTGTGAAGTTTTCCTG
GTTGGATCAGCGTGTGTAATC1
```

Figure 17b:
Sequenced alignment of the 7 polymorphic fragments using MULTALIN.
v $11-14-1$ vo-18-2 vo-17-2 40-17-1
V0-19-1
Y0-18-1
YO-20-1
Consensus

Y0-14-1
V0-18-2
Y(0)-17-2
Y0-17-1
YO-19-1
Y0-18-1 YO-18-1
YO-20-1
Consensus

131	140	150	160	170	1800	190	200	210	220	230	240	250	260
131	140	150	160	170	180	190	200	210	220	230	240	250	260

GATTCTCGCTATCCACRCCGGGCCTTCCGT--
liat TICACAC.GCTGCRCARGRAGG--

40-14-1
Y0-18-2
Y(0-17-2
Y0-17-1 v0-19-1 V0-18-1 V0-20-1
Consensus

-GCATGG-C-GGGAAACATCATTTC-CGAARACATTCTGGGRTCGCTGGARTATGCCAC-CGGCGIGGTTGGIICCAHACTCATCCTGGT-AATGGGCCACACCAATTGCGGAGCTGTAARAGGCGC-II -ACACGGIC-HGCTARCGTA ARAGCGCCAI ITCCAACTAAATICCCTACTTT TAICCARTCCGCICCTAATTIITCTATCGTTCCACGATGAACTGGATACAAACTAARATTTGCAGCTRAAGAGGG-AA -GAATGGTIIAGCAGACGATAAATCYTGGAGRAARGCCGTTCACGATGGTTT TAT TC---CARAT TCGGCATTGCCIGCCAAAGCTGIGACAGCTAGITCGGCATTTTTGAGTCARCCTGCARCTGC-TC AGCAT FAGCTATGCGATGAATAGARATCCAAACATTCAGGTAT CACATCAGT TCI--=-=-=-CGATGGACGATCTAARATCATATGTATCAAAT TCTTATARTCT TCARARTGARATAGAGCTTGT-CA
 (

 YO-18-2 RATATGGCACGGGTTJATICAATGITATTTTTRATGTGTGTTC-ATCAACCGCTTCCACACCTARTTGCTCCACGGACAACT-TGCL:ATCARTRATATCTTGCGCAITRIIRATTCCGGCARGTGLAGCA vori8-2 Y0-17-2 Y0-17-1 0-19-1 Y0-18-1 Y0-20-1
Consensus
Consensus

10-14-1
10-18-2 VO-17-2 Y0-17-1
V0-19-1
vo-18-1
Y0- $18-1$
Consensus

 ARAHTGJTHGCARTACCRTCJCCATGGAGIITGCCCTTGAGARGTGTGCAGTCGTC-----CATGTCCACARGCGGTCARTC
GTITCCTJTTCAFITTACCTCJTCATCHTLGICTCCGTRTHARGJTTCCACGACATCAGRTIIRATICCGATITCGTTCAGRTATTTCGAGRARA
-----=----CTTCGGTTTGTCCGTGCGTARCGTGC GGARARATACTTGAITTT TTCGTATTGAC T T GCATATRCATGGTGTATTGATTGT-ーTCACAGGT JACGGGRTRGCGAGAAIC
GAACACARART TGG------CGAGTRACRTTT-CGTTCAAGT TAAGTTGTGARGTT--TTCCTGGT T--GGATCRICGTGJGTARTC

 ARCCHTGCARACGGTGATGTRT I IGCAG--GIGCAACCAARACGCTGCCAACIRIARACRARGTNACJTGCGGIGRCAGGCICICCATIGGACCAACGTGCACCARTC

ACCRRIC
\qquad
\qquad

TABLE 16. BASE-PAIR SEQUENCE DESIGNED PRIMERS

PRIMER	BASE-PAIR SEQUENCE (5'-3')
Top sequence - forward and bottom - reverse	

3.3.4. Polymerase chain reaction (PCR)

In order to obtain the predicted PCR product for each of the fragments 14-1, 17-1, 17-$2,18-1,18-2,19-1,20-1$ within each cluster when the primers designed above were used to probe the pooled DNA for each of the six clusters, it was necessary to optimize the PCR amplification conditions. Annealing temperature of $53^{\circ} \mathrm{C}$ in combination with other conditions of PCR amplification, as described in Materials and Methods section 4.6.7 were used in further experiments involving PCR amplification.

The conditions thus established were used to obtain the results shown in figure 20a, b. Primer VO 14-1 amplified predominantly one major band only in DNA from $2^{\text {nd }}$ cluster giving a product approximately 500 bp but did not with the other clusters (figure 20a). Primer VO 18-2 also amplified predominantly one major band only DNA from $6^{\text {th }}$ cluster giving a product approximately 550 bp but did not amplify all the other clusters (fig. 20b). It is apparent that no single distinct products were obtained with some primer pairs due to primer annealing at several sites in the genome, thus producing several fragments of different sizes (VO 18-1 and VO 20-1) (fig. 21). Primer OPO19-1 amplified one major product in $4^{\text {th }}$ cluster. VO 17-1 amplified DNA in first, second, third, fourth and fifth clusters and did not amplify the sixth cluster. VO 17-2 amplified DNA from first and fourth clusters only.

3.4. Genetic Population structure of Banana weevils

3.4.1. Genetic population structure of Banana Weevils from different parts of the world.

The genetic distances of Nei (1972) were calculated for all possible pairwise comparisons among 15 populations. These were clustered by UPGMA . Six clusters were generated: Columbia, Zanzibar, Mbita, Tanzania formed the first cluster; Puerto Rico was in the second cluster; Indonesia, Australia, Florida formed the third cluster; Ghana, Embu, Uganda formed the third cluster; Cameroon was in the fifth cluster and the sixth cluster included Honduras, Costa Rica and South Africa (fig. 18).

All the banana weevil populations showed distinct RAPD electrophoretic types using the five primers. The four individual (Tanzania, Mbita, Zanzibar, Columbia) were
grouped together at 93% similar level. However, two of these, Tanzania and Mbita, were 96% similar. Puerto Rico was 90% similar to (Tanzania, Mbita, Zanzibar and Columbia). Florida, Australia and Indonesia clustered together at 91% similarity level while two of these Florida and Australia were 93% similar. Uganda, Embu and Ghana grouped together at 89% similarity level and two of these Embu and Ghana were 91% similar. South Africa, Costa Rica, Honduras grouped together at 90% similarity level and two of these, South Africa and Costa Rica were 91% similar. Cameroon was 85% similar to South Africa, Costa Rica and Honduras (fig.18).

Figure 18:
UPGMA cluster analysis of Nei's genetic distance for 15 Cosmopolites sordidus populations.

3.4.2. Genetic population structure of Banana Weevils from Uganda.

Samples from different regions of Uganda (fig. 4) were analyzed using four primers OPA 17, OPO 18, OPO 19 and OPO 20. The genetic distances of Nei (1972) were calculated for all possible pairwise comparisons among 15 populations. These were clustered by UPGMA. Six clusters were observed. Kalegweri, Namubiru, Ntungamo, Bukanga, Kabukye and Bundagara formed first cluster. Namunyonyi, Kawanda, Ntinkalu formed the second cluster. Ikulwe and Lakeshores formed the third cluster. Ntengeru was in fourth cluster. Bunyaruguru was in fifth cluster and the sixth had Buwama and Buzaya (fig. 19). A Total of 37 loci were analyzed. Three individuals from Ntungamo, Namubiru and Kalegweri grouped at 95% similarity level, two of these Namubiru and Kalegweri were 97% overall. Bukanga group together with Ntungamo, Namubiru and Kalegweri at 93% similarity level. Bundagara and Kabukye grouped together at 96% similarity level. Namunyonyi, Kawanda and Ntinkalu grouped together at 92%, while Ntinkalu is 96% similar to Kawanda. Ikulwe and Lakeshores were 99% similar. Buzaya and Buwama were 91% similar. All the weevils from all the sites from Uganda were similar at 88% level (fig. 19).

Figure 19:
UPGMA cluster analysis of Nei's genetic distance in Ugandan populations.

3.5. Taxonomy and phylogenetic relationships of Banana weevils based on information from -intra-specific differentiation.

3.5.1. Taxonomy and phylogenetic relationships of Banana weevils from different parts of the world based on intra-specific differentiation.

The coefficient of gene differentiation (Gst) was 0.220 and between population gene diversity (Dst) was 0.102 , therefore within population diversity (Hs) was responsible for most of the genetic diversity. The combination of different loci to this partitition of variability indicated that locus 37 and locus 36 contributed the most, and locus $40,29,41$ and 39 contributed the least to the partitition (table 18b). All the 46 loci were polymorphic and Gst higher than 0.2 were (25 out of the 46) polymorphic loci. Two loci (37 and 36) showed a Gst higher than 0.35 (table 18b).

The smallest genetic distance values were observed between Tanzania + Mbita, Zanzibar + Mbita and Tanzania + Columbia while the distance values between Indonesia and Ghana, Indonesia and Honduras, Kenya (Embu) and Florida, Kenya (Embu) and Australia were much higher. The highest genetic distance values were observed between Kenya (Embu) and Indonesia (table 18).

Table 17: Nei's genetic diversity values and estimates of gene flow between C. sordidus from world populations : Partitioning of total diversity (Ht), for each polymorphic locus and averaged for the 37 loci: diversity within population (Hs), between populations gene diversity (Dst), and proportion of total allelic diversity found among populations (Gst), Gene flow estimates (Nm).

Primer	Dst	Hs	Ht	Gst	Nm
OPO14	0.097	0.357	0.454	0.214	0.8
OPA17	0.099	0.383	0.482	0.206	0.840
OPO18	0.108	0.371	0.478	0.225	0.750
OPO19	0.121	0.345	0.467	0.261	0.617
OPO20	0.082	0.393	0.474	0.172	1.05
Mean	0.102	0.369	0.471	0.216	0.811

Table 18: Similarity matrix computed using Nei's distance for world populations. matrix: Standard genetic distances

	1	2	3	4	5	6	7	8	
2	0.2021								
3	0.1346	0.1651							
4	0.2026	0.1142	0.1520						
5	0.0676	0.2160	0.1518	0.2305					
6	0.3307	0.1904	0.2316	0.1413	0.3533				
7	0.2790	0.2104	0.1929	0.1044	0.2945	0.1018			
8	0.0977	0.3004	0.1092	0.3075	0.0882	0.5110	0.4718		
9	0.0943	0.1537	0.0786	0.1363	0.1027	0.1732	0.2049	0.1237	
10	0.3924	0.2777	0.2725	0.1828	0.4011	0.0910	0.1648	0.5525	0.1937
11	0.1199	0.2320	0.0941	0.2257	0.0920	0.3291	0.3431	0.1006	0.0920
12	0.1395	0.1287	0.1359	0.0920	0.1539	0.1425	0.0921	0.2497	0.1156
13	0.1107	0.1642	0.1006	0.1196	0.1190	0.1335	0.1613	0.1831	0.0379
14	0.2387	0.2075	0.1883	0.1731	0.2535	0.0919	0.1053	0.3856	0.1219
15	0.0892	0.1899	0.0706	0.1619	0.1003	0.2501	0.2286	0.0751	0.0669

matrix: standard error of standard genetic distances

	1	2	3	4	5	6	7	8	
2	0.0453								
3	0.0369	0.0362							
4	0.0501	0.0260	0.0322						
5	0.0191	0.0467	0.0325	0.0443					
6	0.0550	0.0423	0.0346	0.0261	0.0485				
7	0.0488	0.0474	0.0326	0.0220	0.0467	0.0249			
8	0.0220	0.0565	0.0241	0.0435	0.0170	0.0542	0.0547		
9	0.0221	0.0365	0.0215	0.0272	0.0159	0.0305	0.0325	0.0232	
10	0.0686	0.0714	0.0511	0.0522	0.0559	0.0348	0.0515	0.0769	0.0368
11	0.0301	0.0430	0.0215	0.0462	0.0260	0.0471	0.0627	0.0202	0.0194
12	0.0350	0.0298	0.0212	0.0290	0.0315	0.0242	0.0194	0.0363	0.0277
13	0.0278	0.0371	0.0150	0.0264	0.0217	0.0251	0.0340	0.0289	0.0091
14	0.0466	0.0577	0.0325	0.0373	0.0402	0.0215	0.0293	0.0545	0.0227
15	0.0206	0.0398	0.0155	0.0306	0.0217	0.0331	0.0409	0.0153	0.0193

10
11
12
13
14
0.3605
$0.2376 \quad 0.1994$
$0.1790 \quad 0.1273 \quad 0.1040$
$0.1289 \quad 0.2619 \quad 0.1126 \quad 0.1259$
0.09080 .11550 .0915
0.3209
0.0908
0.1155
0.0915
0.1909

10
11
12
13
14

∞

0.0503
0.0533
0.0389
0.0506
0.0233
0.0195
0.0331
0.0476
0.0235
0.0282
0.0558
0.0263
0.0260
0.0181
0.0327

3.5.2. Taxonomy and phylogenetic relationships of Banana weevils from differe

 parts of Uganda based on information from intra-specific differentiation.The coefficient of gene differentiation (Gst) was 0.130 . The contribution of different loci to the observed partitition of variability indicated that locus 29 and 30 contributed the most and loci $25,33,36$ and 15 contributed the least to the partitition (table 18b). A few loci had a Gst higher than 0.2 (5 out of the 37 polymorphic loci). None had a Gst higher than 0.35 (table 13b).

The genetic distance coefficient were averaged among the populations (table 2 The smallest genetic distance values were observed between Ikulwe and Lakeshores, Kalegweri and Namubiru and Ntinkalu and Kawanda. While the distance values betw Buwama and Ikulwe, Lakeshores and Buwama, Bunyaruguru and Ntengeru were muc higher. The highest genetic distance values were observed between Bunyaruguru and Buwama.

Table 19: Nei's genetic diversity values and estimates of gene flow between C. sordidus from Uganda populations : Partitioning of total diversity (Ht), for each polymorphic locus and averaged for the 37 loci: diversity within population (Hs), between populations gene diversity (Dst), and proportion of total allelic diversity found among populations (Gst), Gene flow estimate (Nm).

Primer	Dst	Hs	Ht	Gst	Nm
OPA17	0.058	0.390	0.448	0.128	1.483
OPO18	0.0559	0.403	0.454	0.123	1.553
OPO19	0.062	0.412	0.474	0.130	1.457
OPO20	0.066	0.402	0.468	0.143	1.305
MEAN	0.060	0.401	0.461	0.131	1.450

Table 20: Similarity matrix computed using Nei's distance for Ugandan samples.

	1	2	3	4	5	6	7	8	9
2	0.1022								
3	0.0737	0.1297							
4	0.1269	0.1732	0.1992						
5	0.0522	0.0829	0.1009	0.1441					
6	0.1011	0.1000	0.1165	0.0869	0.1035				
7	0.0933	-0.0080	0.1146	0.1740	0.0667	0.0968			
8	0.1412	0.1276	0.1762	0.1779	0.1184	0.1562	0.1225		
9	0.0341	0.1096	0.1156	0.1000	0.0681	0.0954	0.1010	0.0798	
10	0.0438	0.0940	0.1135	0.1281	0.0749	0.0679	0.0967	0.1444	0.0527
11	0.0577	0.0781	0.0926	0.1560	0.0955	0.1123	0.0715	0.1085	0.0495
12	0.0589	0.0881	0.0582	0.1134	0.0759	0.0771	0.0850	0.0921	0.0512
13	0.0603	0.1192	0.1114	0.1889	0.1027	0.1103	0.1075	0.0984	0.0679
14	0.0632	0.1407	0.0996	0.1536	0.0913	0.1456	0.1300	0.0945	0.0462
15	0.0940	0.1399	0.1675	0.1477	0.1198	0.1469	0.1355	0.0874	0.0765

matrix: Standaxd errox of standard genetic distances

1
2
3
4
5
6
7
8
9
$2 \quad 0.0195$
$3 \quad 0.0194 \quad 0.0258$
$4 \quad 0.0243 \quad 0.0469 \quad 0.0417$
$\begin{array}{lllll}5 & 0.0168 & 0.0193 & 0.0216 & 0.0346\end{array}$
$6 \quad 0.0263 \quad 0.0334$
$\begin{array}{lllllll}7 & 0.0194 & 0.0020 & 0.0233 & 0.0459 & 0.0158 & 0.0324\end{array}$
$\begin{array}{llllllll}8 & 0.0487 & 0.0309 & 0.0499 & 0.0380 & 0.0368 & 0.0327 & 0.0307\end{array}$

9	0.0102	0.0413	0.0224	0.0202	0.0280
10	0.0159	0.0289	0.0331	0.0249	0.0230
11	0.0146	0.0182	0.0264	0.0296	0.0181
12	0.0163	0.0288	0.0123	0.0284	0.0222
13	0.0217	0.0243	0.0311	0.0461	0.0374
14	0.0147	0.0372	0.0231	0.0430	0.0281
15	0.0204	0.0320	0.0353	0.0328	0.0271

0.02730 .0405
0.0233
$0.0191 \quad 0.0286 \quad 0.0370$
0.0257
0.0290
0.02720 .0218
0.0294
0.0293
0.0259

$0.0736 \quad 0.0431$
$0.0938 \quad 0.0648 \quad 0.0974$
0.1126
0.0658
0.0729
0.0718
0.1284
0.0894
0.0929
0.0814
0.0402

10

11
12
13
14
0.0235
$0.0152 \quad 0.0114$
$0.0316 \quad 0.0143 \quad 0.0279$
$0.0341 \quad 0.0210 \quad 0.0257 \quad 0.0255$
$\begin{array}{lllll}0.0237 & 0.0232 & 0.0257 & 0.0206 & 0.0132\end{array}$

3.6. PCR-RFLP analysis of the CO1 region of the mitochondria

3.6.1. Restriction Endonuclease Digests

Amplification of the CO1 mitochondrial region using primers S1460 and A2442 produced an amplicon estimated to be 1000 bp (fig. 22a). Primer pair S2442 and A2771 produced an amplicon estimated to be 400 bp (fig. 22a). The amplicons were readily amplified in all the samples used except samples from Indonesia. The COI mitochondrial region produced an amplicon estimated to be 1000 bp for all the populations except Indonesia using primers S1460 and A2442 (fig. 22b). The CO1 mitochondrial region resulted in an amplicon estimated to be 400 bp for all the samples from different regions of the world except Indonesia with the primers S2442 and A2771 (fig. 22c).

Fifty-one restriction enzymes were screened (fig. 23 a,b). The restriction enzymes Ava II, Bst E II, Dra III, Hae III, Dde I, Hinf I, Hind II, Hpa II, Nde II, RSA I, Sau I and Xba I restricted the 1000 bp amplicon (fig. 23c). These enzymes were therefore used to examine the genetic differentiation among the different banana weevil populations from different regions. The rest of the enzymes did not cut the amplicon. The 400 bp amplicon was cut using Alu I.

Figure 20:

Shows PCR products obtained using synthesized primers for each fragment run on a 1.2% agarose gel and stained with ethidium bromide. A - primer VO-14-1 was used to analyze DNA from individual clusters. 1 - negative control, 2 - cluster 1,3-cluster 2, 4 - cluster 3,5-cluster 4, 6 - cluster 5, 7 - cluster 6, M - Molecular weight marker. B - primer VO-18-2 was used to analyze DNA from individual clusters. I and 8 were negative controls, 2 - cluster 1,3 - cluster 2, 4 - cluster $3,5-$ cluster 4, 6-cluster 5, 7 - cluster 6.

Figure 21:

PCR products obtained using synthesized primers run on a 1.2% agarose gel and stained with ethidium bromide.

A - were products obtained using primer VO- 20-1.
A was done at a lower annealing temperature. 1-cluster 6,2-cluster 5,3cluster 4, 4-cluster 3, 5-cluster 2, 6-cluster 1, B - negative control. B - were products obtained using primer VO-18-1, 1-cluster 1, 2-cluster2, 3-cluster 3, 4-cluster4, 5-cluster 5, 6-negative control, 7 -cluster 6 . C - were products obtained using primer VO-20-1 but at higher annealing temperature. 1-cluster 1, 2-cluster 2, 3-cluster 3, 4-cluster 4, 5cluster 5, 6 -cluster 6, B- negative control, M-molecular weight marker.

Figure 22:
A- 1.5% agarose gel showing amplicons obtained by amplifying CO1 mitochondrial region using two pairs of primers. a- S2442 and A2771, b- S1460 and A2442.

B- 1.5% agarose gel showing amplicons obtained by using primers S1460 and A2442 for samples 1-17 in the order indicated in section 4.8.1.

C- 1.5% agarose gel showing amplicons obtained by using primers S2442 and A2771 for samples 1-17 in the order indicated in section 4.8.1.

Figure 23:
A and B-1.5 \% agarose gel showing 51 restriction enzymes screened using 1000 bp amplicon. Enzymes 1-27 in A and continuation 1-27 in B are in the same order as given in section 4.8.4. Wells 28 in A and 26 in B are undigested 1000 bp amplicon. Last two wells in both gels are molecular weight markers.

C- 1.5% agarose gel showing the twelf enzymes that restricted the 1000 bp amplicon. 1-12 are in the same order as given in section 3.8.1.

3.6.2. Restriction Fragment Length patterns

Restriction digest using Bst E II identified three haplotypes in Pemba, Australia (Murlimbugah), Costa Rica (Mag Diamanted), Zanzibar, Costa Rica (Finca Guadaloupe), Australia (Coffs), Tanzania, Columbia and Puerto Rico (fig. 24a). It is possible that all the ten populations have two restriction sites which cleave the 1000 bp band to give three fragments of approximately $250 \mathrm{bp}, 500 \mathrm{bp}$ and 750 bp , even if enzyme concentration or the duration of the digest was increased to rule out incomplete digests. It is likely that the enzyme cuts to give two equal fragments of approximately 250 bp and a fragment of about 500 bp . The 750 bp fragment is likely to be as a result of incomplete digestion. The rest of the populations: Thailand, South Africa, Mbita, Honduras, Embu, Cameroon, Uganda (Masaka) and Uganda (Kawanda) all have a restriction site and cleaves the 1000 bp product to give only two fragments of 250 bp and 750 bp .

Restriction digests using Hae III identified 4 haplotypes in Pemba, Mbita (Kenya), Honduras, Embu (Kenya), Costa Rica Md, Zanzibar, Costa Rica FG, Australia (Coffs), Ghana, Tanzania, Cameroon, Uganda (Masaka), Uganda (Kawanda), Columbia and Puerto Rico (Figure 18b). These populations indicate the presence of three or more restriction sites, which cleave the 1000 bp product to give four fragments of approximately $100 \mathrm{bp}, 150 \mathrm{bp}, 200 \mathrm{bp}$ and 500 bp . The fragment length of the different profiles for this enzyme do not add up to 1000 bp , this is attributed to the presence of additional small fragments that are not resolved on the gel. Australia (Murlimbugah) only showed two haplotyes indicating possible presence of two restriction sites, which cleave the 1000 bp into two fragments of 250 bp and a 500 bp fragment. Two haplotypes were identified in Thailand population indicating the presence of more than 1 restriction site, which cleaves the 1000 bp to give two fragments of approximately 250 bp and 600 bp and other small fragments that are not resolved by the gel system used. Restriction digests using HaeIII in South African population identified only one haplotype. This indicates the presence of one restriction site which cleaves 1000 bp fragment to give two equal fragments of 500 bp (figure 24b).

Restriction digests of the 1000 bp product in all the populations using Dde I showed two fragments in all the populations of approximately 350 bp and 500 bp . The fragment length of the different profiles for this enzyme do not add up to 1000 bp , this is
attributed to the presence of additional small fragments that are not resolved on the gel system (figure 24c). Restriction digests of the 1000 bp product in all the populations using Hinf I showed four fragments in all the populations of approximately $200 \mathrm{bp}, 250$ $\mathrm{bp}, 500 \mathrm{bp}$ and 750 bp (figure 24 d). The sum of the lengths of the bands even after several repeats of this experiments consistently exceeded the length of the amplicon. Although these bands appeared to be caused by incomplete digests they could not be eliminated by increasing enzyme concentration or the duration of digest. As a result of difficulties in interpretation this data was not discussed.

Restriction digests of 1000 bp product in all the populations using Hpa II identified two fragments of 400 bp and 500 bp . The fragment length of the different profiles for this enzyme do not add up to 1000 bp . This is attributed to the presence of additional small fragments that are not resolved on the gel system used (figure 24e). Restriction digest of 1000 bp product in all the populations using Nde II identified two fragments of 700 bp and 300 bp (figure 24 f). From the RFLP of Nde II digests, the location of Nde II sequence recognition site appears to be conserved among the populations studied.

Restriction digests of 1000 bp product in all the populations except Thailand using RSA I identified two fragments of 150 bp and 750 bp . The fragment length of the different profiles for this enzyme do not add up to 1000 bp . This is attributed to the presence of additional small fragments that are not resolved on the gel system used (figure 24 g). Restriction of the 1000 bp product in Thailand population with RSA I gave two fragments of 150 bp and 650 bp . There is a possibility of three or more restriction sites being present that give rise to fragments of 150 bp and 650 bp fragment. This fragment lengths do not add up to 1000 bp . This is attributed to the presence of additional small fragments that are not resolved on the gel system used (figure 24 g).

The restriction of all the 100 bp products in all the populations using Xba I identified two fragments of approximately 450 bp and 550 bp (figure 24h). The Xba I sequence recognition site appears to be conserved amongst the populations studied.
Some enzymes revealed non-variant (non-polymorphic recognition sites) in the different weevil populations studied. Such restriction enzymes include Hinf I, Dde I, Hpa II, Nde II and Xba I. Polymorphism was observed with respect to the location of BstE II site.

BstE II had one recognition site giving two fragments of 250 bp and 750 bp in nine populations and two recognition sites giving three fragments of $250 \mathrm{bp}, 500 \mathrm{bp}$ and 750 bp in the rest of the nine populations (table 21). Restriction fragments for Columbia and Puerto Rico samples are shown in figs. 24 i and j .

Hae III gave four fragments in sixteen of the populations indicating the presence of three recognition sites. Australia (Murlimbugah) had two sites giving two equal fragments of 250 bp each and 500 bp . Thailand population gave a unique fragment of approximately 600 bp . South Africa seems to have only one recognition site giving two equal fragments of 500 bp each. RSA I gave a unique fragment of 650 bp with Thailand population. Alu I restricted the 400 bp in Pemba samples to give a fragment of 200 bp . It gave what seems to be partial digests in all the other populations (fig. 25).

Figure 24:

1.5% agarose gels showing restriction fragments digests of banana weevil mitochondrial CO1 1000 bp amplicons. Samples 1-17 are in the order indicated in section 4.8 .1 for all cases from A-H.

A- Bst E II digests
B- Hae III digests
C- Dde I digests
D- Hinf I digests
E- Hpa II digests
F- Nde II digests
G- Rsa I digest
H- Xba I digests
I- Columbian samples digested with Ava II, BstE II, Dra II, Hae III, Dde I, Hinf I, Hind II, Hpa II, Nde II, Rsa I, Sau I and Xba I

J- Puerto Rico samples digested with Ava II, BstE II, Dra II, Hae III, Dde I, Hinf I, Hind II, Hpa II, Nde II, Rsa I and Xba I

Figure 25:

A. 1.5% agarose gel showing restriction digests of banana weevil $\{1$ mitochondrial CO1 400 bp amplicon using Alu I. Samples $1-17$ a are in the order indicated in section 4.8.1. Puerto Rico samples are not incl Iluded.

Table 21: Restriction Fragment lengths estimated on 1.5\% agarose gel for geographical population of Cosmopolites sordidus_for the 1000 bp amplicon

Geographic source	BstEII	HaeIII	dde	Hpall	NdeII	RSAI	Xbal	Hinfl
Pemba	250,500	100,150	350,500	400,500	300,700	150,750	400,600	$200,250$
	750	$250{ }^{3}, 500$						500,750
Australia	250,500	250,500	350,500	400,500	300,700	150,750	400,600	200,250
(Murlimbugah)	750							500,750
Thailand	250,750	250,650	350.500	400,500	300,700	150,650	400,600	200,250500,750
SouthA frica	250,750	$500^{\text {a }}$	350,500	400,500	300,700	150,750	400,600	200,250
								500,750
Kenya (Mbita)	250,750	100,150	350,500	400,500	300,700	150,750	400,600	200,250
		250,500						
Honduras	250,750	100,150	350,500	400,500	300.700	150,750	400,600	200,250
		250,500						500,750
Kenya (Embu)	200,750	100,150	350,500	400,500	300,700	150,750	400,600	200,250
		250,500						
Costa Rica (Md)	250,500	100,150	350,500	400,500	300,700	150,750	400,600	200,250
	750	$250,500$						
Indonesia			--------	-------	\qquad	-...-----	---------	$500,750$ \qquad
Zanzibar	$\begin{aligned} & 250,500 \\ & 750 \end{aligned}$	$\begin{aligned} & 100,150 \\ & 250,500 \end{aligned}$	350,500	400,500	$300,700$	$150,750$	400,600	200,250500,750
Costa Rica (FG)	$\begin{aligned} & 250,500 \\ & 750 \end{aligned}$	$\begin{aligned} & 100,150 \\ & 250,500 \end{aligned}$	350,500	400,500	300,700	150,750	400,600	200,250
Australia (coffs)	$250,500$	100,150	350,500	400.500	300,700	150,750	400,600	200,250 500,750
	750	250,500						
Ghana	250,750	100,150	350,500	400,500	300,700	150,750	400,600	200,250 500,750
		250,500						
Tanzania	$\begin{aligned} & 250,500 \\ & 750 \end{aligned}$	100,150	350,500	400,500	300,700	150,750	400,600	$\begin{aligned} & 200,250 \\ & 500,750 \end{aligned}$
		250,500						
Cameroon	250,750	100,150	350,500	400,500	300,700	150,750	400,600	$\begin{aligned} & 200,250 \\ & 500,750 \end{aligned}$
		250,500						
Uganda (Masaka)	250,750	100,150	350,500	400,500	300,700	150,750	400,600	$\begin{aligned} & 200,250 \\ & 500,750 \end{aligned}$
		250,500						
Uganda (Kawanda)	$\begin{aligned} & 250,500 \\ & 750 \end{aligned}$	100,150	350,500	400,500	300,700	150,750	400,600	$\begin{aligned} & 200,250 \\ & 500,750 \end{aligned}$
		250,500						
Columbia	200,500	$100,500$	350.500	$400,500$	$300,700$	$150,750$	$400,600$	200,250

Puerto Rico	750	250,500						
250,500	100,150	350,500	400,500	300,700	150,750	400,600		
750	250,500							
200,250								
500,750								

CHAPTER FOUR

4.0 DISCUSSION

4.1 Genenetic diversity in banana weevil

4.1.1 Weevils from different sites of the world

Three measures were used to quantify the amount of genetic variability as shown in section 1.9.4.1. In this study, because of the large number of polymorphic loci revealed within individuals by arbitrarily primed PCR, the data can be used to address intraspecific questions concerning the genetic relatedness of individuals as well as populations of banana weevil. The use of RAPD analysis has allowed individual Cosmopolites sordidus to be characterized on the basis of their distinct electrophoretic types permiting closely related individuals to be readily distinguished from each other. Little is known about the genetics and the population structure of this species. The results show that under the described conditions, individual RAPD phenotypes were highly reproducible. This is the first RAPD report within and between natural populations of C. sordidus. Analysis of these RAPD data using suitable numerical methods has provided an indication of the genetic heterogeneity of Cosmopolites sordidus from different parts of the world, therefore RAPD fingerprinting appears to be valuable for population studies of the banana weevil. Likelihood ratio $\left(G^{2}\right)$ test for overall genetic structure was significant for 27 out of 46 indicating that RAPD divergence among natural populations of banana weevil was due mainly to band frequency differences rather than the fixation of locally common or rare bands.

The percentage of polymorphic loci clearly demonstrated genetic diversity in the banana weevil. 92.2 \% polymorphism was estimated for world samples. Primer OPO 14 was on average polymorphic at 90% of the loci. OPA17, OPO18, OPO19 and OPO20 were on average polymorphic at $96 \%, 94 \%, 85.3 \%$ and 95.6% of the loci respectively. The observed differences in RAPD polymorphisms may simply reflect different abilities of the different primers to detect variation. For the world populations, the Mbita (Kenya), PuertoRico and Tanzania populations had the highest absolute level of polymorphism (45 out of 46), while the Honduras population had the lowest (36 out of 46). The diversity in Banana weevil from different regions of the world revealed by amplification of total
cellular DNA with random primers revealed low to moderate variabililty in different weevils populations world wide. The average genetic heterozygosity among RAPD loci $\left(\mathrm{H}_{\mathrm{t}}=0.470\right)$ was within the range reported in most insects i.e. within species genetic distances (Nei 1978) unbiased genetic distances of $0.4,0.5$ and 0.76 for M. raptor form North Carolina, Utah and Israel (Taylor et al., 1997). The range of within population distaces of (0.13-0.57) were observed in the mosquito (Ballinger-Crabtree, 1992). Estimates of Shannon's phenotypic diversity (H_{0}) for RAPD ranged from 0.382 (Honduras) to 0.806 (Florida) and the mean for the 15 populations was 0.623 indicating genetic variability in the banana weevil. Examination of genetic diversity present within populations, $\left(\mathrm{H}_{\mathrm{pop}} / \mathrm{H}_{\mathrm{sp}}\right)$, and between populations, $\left(\mathrm{H}_{\mathrm{sp}}-\mathrm{H}_{\mathrm{pop}}\right) / \mathrm{H}_{\mathrm{sp}}$ indicated that on the average the diversity (74.7%) occurred within weevil populations.

The amount and partitioning of genetic variation among and within populations results from the dynamic processes of gene flow, selection, inbreeding, genetic drift and mutation (Hartle and Clark, 1994). Thus knowledge of the current genetic structure allows inferences about past processes. At the same time genetic variation represents the starting point for further evolution and is an important prerequisite for the prediction of evolutionary responses. This is of practical significance in the light of human-caused habitat fragmentation, alteration or destruction during banana farming.

A high level of genetic variation within populations (74.7%) was observed in this study and a relatively srong level of differentiation between geographical populations. C.sordidus is directly affected through human manipulation of the environment. Breeding sites are created as a result of banana farming activities and with the increased transportation of infected planting material. Human activities associated with the movement of planting material encourage the spread of this species favouring outbreeding between populations and promoting a certain degree of genetic homogeneity. This kind of homogeneity was especially evident between the sampling areas, Tanzania, Mbita and Zanzibar which despite being separate by several km from Columbia shared genetic affinities with Columbia. With the struggle for planting materials that are resistant to disease, pests and high yields, a large number of planting material movement occurs to all parts of the banana growing regions of the world promoting weevil spread.
The effects of small population size with accompanying genetic drift represent an
important component to understanding genetic variation in natural populations of banana weevils because of control efforts by humans. Unlike positive assortative mating, which only affects a single locus, small population size and drift affect the entire genome, including those traits that are important to vectorial capacity and competence as observed in arthropod vectors of disease (Hartl and Clark, 1994). Banana weevils, which are serious pests are different from many other organisms because they are often directly subject to human efforts to control populations. The efforts to reduce populations through pest control play a major role in changing gene frequencies through genetic drift.

The mutation of alleles into variant forms is the ultimate source of new genetic material. The effect on genetic variation is dependent on the mutation rate. Mutation rates alone are not believed to be high enough to play a major role in the population genetics of a species (Tabachnick and Black IV, 1996). However, mutation rates in noncoding regions, especially in highly repetitive sequences with simple repeat structures are known to be greater, and mutation rates cannot be ignored when using these in population studies. Mutation rates in these regions are probably greater because they do not code for a gene product and are, therefore, not constrained by selection. However if they occur as tandem repeats, specfic molecular events can cause them to mutate at greater rate. The rate with which selection can act is proportional to the fitness differences between genotypes, and such differences are dependent on environment in which the population is found. RAPD and RFLP have a measurable effect on fitness (Tabachnick and Black IV, 1996). They are considered to be neutral in their impact on fitness, and variation in their frequencies among weevils populations is most likely caused by low levels of migration (mainly through planting material), mutation, population size, and drift.

It is suggested that two factors may have caused the greater differentiation among populations. Firstly, weevil dispersal may be a limiting factor for gene flow. Secondly the wide separation between populations may also result in increased genetic diversity. The populations sampled in this study were separated by many kilometers and this distance could be a significant factor accounting for the observed genetic diversity between populations. Thus the observed values (in range of $0.85-0.96$) for worldwide
populations 0.99) isvery close to the limit usually recognized for genetic identities between species of $0.85-0.90$ (Crawford, 1983).

4.1.2 Banana weevils from different sites in Uganda

For the samples that were collected from different regions of Uganda, the average heterozygosity (Ht) among RAPD loci was 0.46 indicating a reasonable amount of diversity. 94.2% polymorphism was estimated. Estimates of shannon's phenotypic diversity $\left(\mathrm{H}_{0}\right)$ for RAPD ranged from 0.491 to 0.77 averaging 0.619 for the 15 populations indicating a lower diversity in comparison to world populations. Examination of genetic diversity present within populations, ($\mathrm{H}_{\text {pop }} / \mathrm{H}_{\mathrm{sp}}$), and between populations, $\left(\mathrm{H}_{\mathrm{sp}}-\mathrm{H}_{\mathrm{pop}}\right) / \mathrm{H}_{\mathrm{sp}}$ indicated that on the average the diversity 84.7% occurred within weevil populations.

4.2 Molecular markers for banana weevil from different sites of the world

Specific molecular markers for the different clusters were identified. The second cluster (made up of Puerto Rico) was characterized by a 500 base pair fragment generated by primer OPO 14. OPA 17 conistently gave a 500 base pair fragment with the first cluster. (Columbia, Zanzibar, Mbita-Kenya and Tanzania). OPO 18 on the other hand amplified a 400 bp fragment in the sixth cluster (Honduras, Costa Rica and South Africa). This proved the distinctiveness of the clusters.

4.3 Population structure of the banana weevil

4.3.1 Weevils from different parts of the world

The results of the study clearly showed genetic variability in the banana weevil.
The populations were found to fall into six clusters depending on their degree of similarity. Columbia, Zanzibar, Mbita-Kenya and Tanzania clustered together in the first cluster. In the second was Puerto Rico, Indonesia, Australia and Florida in the third; Ghana, Embu and Uganda clustered together in the fourth; Cameroon alone made up the fifth, and in the sixth were Honduras, Costa Rica and South Africa.

4.3.2 Weevils from different parts of Uganda

The Ugandan populations were found to fall into 9 clusters. Kalegueri, Namubiru in the first; Bukanga in the second, whereas Kabukye and Bundagara grouped together in a third cluster. Fourth cluster was made up of Namunyonyi, Kawanda and Ntinkalu in the fifth, Ikuluwe and Lake shores made up the sixth, while in the seventh was Ntengeru. The eighth was made up of Bunyaruguru and in the ninth were Buwama and Buzaya.

4.4 Genetic differentiation in the banana weevil

4.4.1 Banana weevils from different parts of the world

Overall Gst was 0.13 indicating lower differentiation among the populations. Overall Gst given by DISPAN was equal to 0.216 , indicating strong differentiation among populations. This implies that approximately 22% of total genetic variability observed in this study was due to differentiation between populations compared with 78 \% within populations. The smallest Gst values were found in Tanzania and Mbita (Kenya) (0.0379), Zanzibar and Mbita (0.0669) and Tanzania and Columbia (0.1006). Highest Gst value was found between Embu (Kenya) and Indonesia (0.5525). Higher Gst values were in Indonesia and Ghana (0.5110), Indonesia and Honduras (0.4718), Embu (Kenya) and Florida (0.4011) and Embu (Kenya) and Australia (0.3924). Indonesia and Kenya (Embu); Indonesia and Ghana; Indonesia and Honduras had Gst values higher than 0.4 in the case of world populations. All of the interpopulation distances were lower than 0.4 (which is the grand mean Nei 1972) distance for populations of congeneric species (Crawford 1989). Most mean interpopulation Nei (1972) distances higher than 0.4 involve Indonesia samples, while all the other interpopulation distances are lower than 0.4 .

We can thus hypothesize that the first step in banana weevil evolution was the diversification of Indonesia populations which appear primitive, since the genetic distances between Indonesia and Kenya (Embu), Indonesia and Honduras and Indonesia and Ghana were as high as those usually reported between different species (Crawford 1989).

The second step would have involved the diversification of the other populations which appear to have evolved more recently, since the genetic distances between them are lower than those usually reported between different species (Crawford 1989).

Estimates of gene flow (Nm) ranged from 0.617 to 1.05 , averaging 0.811 within populations in this study. This indicated extremely rare migratory events or no migration at all. According to Crow and Aoki (1984), Nm values of less than 1 indicates little or no gene flow. This is expected in this study considering the geographic isolation of these populations and the fact that migration is minimal and is mainly through planting material. Thus isolation by distance and minimal dispersal might have been an important factor in the genetic differentiation of the banana weevil. If migration occurs between two populations, they always share some common alleles and differentiation is hindered When 2 populations differ in gene frequencies and exchange migrants, the gene frequencies in each population change depending on the proportion of migrant individuals. However, as a result of artificial dispersal of weevils by humans through transportation of infested planting materials in the last few hundred years, weevils are now found in all banana growing regions worldwide. During this distribution, populations of the species may have experienced numerous genetic bottlenecks and periods of isolation and geographically isolated populations became genetically distinct. Many weevil populations probably occur with population sizes that because of seasonal fluctuations such as heat, freezing and desiccation, or control efforts become small. At these times, random chance and genetic drift can have significant consequences on gene frequencies. Ae. Aegypti populations, particularly on many Caribbean islands, demonstrated this effect. Islands such as Jamaica, Puerto Rico, Martinique, Barbados, and Aruba have extensive mosquitoe control activities directed against Ae. Aegypti. These control activities cause reduced mosquitoe population size. However, mosquitoe population sizes fluctuate because control activities are often discontinued until the mosquitoes become abundant (Tabachnick and Black IV, 1996).

This implies that approximately 13% of total genetic variability observed in this study was due to differentiation between populations compared to 87% within populations.

4.4.2 Banana weevils from different parts of Uganda

The smallest Gst value was found between Ikurwe and Lakeshores (-0.008) indicating that the two populations are almost 100% similar. This is because the two locations are next to each other and there is a possibility of a lot of weevils from one location migrating to the other and vice versa, leading to genetic homogeneity. While the highest Gst value was observed between Bunyaruguru and Buwama (0.1779). Estimates of gene flow (Nm) ranged from 1.305-1.553. Over all populations, according to Crow and Aoki (1984), gene flow values (Nm) of less than 1 should be interpreted as little or no gene flow. Thus, the average of the values $(\mathrm{Nm}=1.45)$ observed within populations in this study would indicate reasonable migratory events. This clearly explains the low level of Gst observed. If migrations occurs within two populations, they always share some common alleles and differentiation is hindered. Due to geographic proximity of all the sites studied in Uganda, there is higher chances of dissemination of banana weevils from one location to another through infested planting material. There could even be possibility of crawling from one site to another. Torrential downpours of rain may also carry infested plant material and weevils in the soil from high to low levels. This could possibly explain the low differentiation and low variability observed almost tending towards homogeneity.

Polymerase chain reaction-restriction fragment length polymorphism (PCRRFLP) analysis of the COl mitochondrial region was used to study variation in the weevil. Low variability was observed. Owing to its mode of inheritance, mtDNA is more sensitive to bottlenecks in population size and to population subdivision than are nuclear genes. Joint comparative studies of both mtDNA and nuclear DNA variability give valuable insights into how effective population size has varied through time. Such studies also give insight into the conditions under which mtDNA from one population can colonize another.

4.5 PCR-RFLPs within the COI mitochondrial region of banana weevil from different sites of the world

There was no amplification using the COl mitochondrial primers in all the samples from Indonesia, indicating how genetically remote the Indonesian samples are from the rest of
the samples. This confirms the hypothesis derived from RAPD data. It appears as though Indonesian populations develop more independently than the other weevil populations. Perhaps it has been genetically isolated from other populations for longer, during which time genetic drift has increased its differentiation. Digestion of the COl amplicon (1000 bp) with Bst E II restriction enzyme produced patterns that were interpretable on agarose gels. It distinguished the populations into two groups just like it was done by RAPD at 85% similarity level, except for Mbita (Kenya) population. Pemba, Australia (M), Costa Rica (Md), Zanzibar, Costa Rica (FG), Australia Coffs, Tanzania, Columbia and Puerto Rico formed the first group. The second group that had two fragments included Thailand, South Africa, Mbita (Kenya), Honduras, Embu (Kenya), Cameroon, Uganda (Masaka) and Uganda (Kawanda).

Restriction enzyme Hae III distinguished Pemba, (Mbita) Kenya, Honduras, Embu (Kenya), Costa Rica (Md), Zanzibar, Costa Rica (FG), Australia (Coffs), Ghana, Tanzania, Cameroon, Uganda (Kawanda), Columbia and Puerto Rico from Australia (Murlimbugah) andThailand populations, which had unique restriction patterns from all the the rest of the populations.

Dde I did not give any useful patterns to distinguish the populations. Hinf I consistently gave partial digests, which obscured interpretation of RFLP patterns. Hinf I restriction digest for C. sordidus had faint bands in addition to the stronger bands, and the sum of the bands consistently exceeded the length of the initial amplicon. Although these bands appeared to be caused by incomplete digests, they could not be eliminated by increasing enzyme concentration or duration of digest. Because of the difficulty in the interpretation, it was not discussed. A similar observation was made by Taylor et al., (1997) in wasps in the genus Muscidifurax. Hpa II, Nde II and Xba I identified fragments that were similar in all the populations and hence were not useful in the study of genetic variation in the weevil.

Digestion of the CO1 amplicon with eight commercially available restriction enzymes produced patterns that were interpretable in agarose gels, although only four of the eight tested enzymes proved useful. Hinf I consistently gave partial digests, which obscurred interpretation of RFLP patterns. Four restriction enzymes, BstE II, Hae III, Alu I and Rsa I resulted in digest patterns which were diagnostic among the weevil
populations studied. Differences between the fragment patterns are usually due to base substitutions that cause restriction sites to be gained or lost but, sometimes are the result of length mutation (Brown and DesRosiers, 1983; Cann and Wilson, 1983; Ferris et al., 1983c; Greenberg et al., 1983; Cann et al., 1984). Because a single breeding pair of diploid animals contain four nuclear genomes and one transmissible mtDNA, a population that goes through an extreme bottle neck could lose all of its mtDNA variability and retain a significant fraction of its nuclear variability (Nei et al., 1975; Barton and Charlesworth, 1984). In this study, there were reasonable differences among the various populations as regards nuclear genes, nevertheless there was remarkable homogeneity with low variability among the weevil populations with respect to their mtDNAs. The times at which these apparent bottlenecks took place are in most instances probably very recent and suspected to be due to human influence.

Kambhampata and Rai (1991) examined RFLP variation among 17 worldwide populations of Ae. Albopictus and found 99% of fragments were shared among populations. Mitchell et al., (1992) found similarly low variability in mtDNA RFLPs in the four sibling species of the An.quadrimaculatus species group. In this study low mtDNA RFLP was also observed in the banana weevil. This low variability suggests either that populations were too recent in origin to have accumulated differences or that the mtDNA in C. sordidus evolves slowly.

Conclusion

In conclusion, the results of the study clearly showed low to moderate variability in different weevil populations worldwide. Indeed, the project hypothesis was that genetic variability might be expected in these weevils given their restricted mobility and monophagy. The populations were found to fall into several distinctive clusters depending on their degrees of genetic similarities. In addition, specific molecular markers for the different clusters were identified. This proved the genetic distinctiveness of the clusters. In another study, the genetic variability in weevil populations was analyzed in samples obtained from 15 sites in banana growing regions of Uganda. Although the weevil populations in this case were very similar genetically, some variability was observed.

In the present study, conclusions drawn from RAPD analysis were supported by COI mtDNA, PCR-RFLPs data. mtDNA showed low variability and diagnostic fragments that could be used to differentiate certain populations. It appears that sufficient divergence exists in these mtDNA region for a large scale assessment of diagnostic polymorphism. Banana weevil relationships cannot be determined based only on the limited nucleotide data presented here. Yet there is enough sequence divergence in the mitochondrial region to suggest that an expanded taxonomic survey would be phylogenetically informative.

It is suggested that a number of factors may have caused the genetic differentiation among these populations. Wide separation between populations may have resulted in genetic distance observed. It is clear from the study that genetic relatedness and geographic proximity are not directly related in all cases in the study as is the case in where East Africa share genetic affinity with Columbia. The other factors include length of time in different regions, generation time, reproductive levels, genetic drift, environmental factors (elevation, rainfall, soil type), host (type of banana), stress - related (entomopathogenic fungi, pesticides) and selection pressures.

The existence of weevil biotypes as shown by the study suggests the need for multilocation testing with respect to resistant germplasm, to different strains of fungal pathogens, entomopathogenic nematodes or to predatory - prey studies with weevil natural enemies especially in weevil populations with high levels of variability loike Ghana and Indonesia.

REFERENCES

Anderson, T. E., Roberts, D. W. and Soper, R. S (1989). Use of Beauveria for suppression of Colorado potato beetle populations in New York State (Coleoptera: Chrysomelidae). Environmental Entomology 17, 140-145.
Anonyme. - Banana Root-Stock Borer. Farming in Sud Africa, Pretoria, Sept. 1926.
Antolin, M.F., D.S. Guertin, and J.J. Petersen (1996). The origin of gregarious Muscidifura (Hymenoptera Pteromalidae) in North America: an analysis using molecular markers. Biol. Control 6: 76-82.

Arleu, R. J. and Neto, S. S. (1984). Broca da bananeira Cosmopolites sordidus (Germ., 1824) (Coleoptera: Curculionidae). Turrialba 34, 359-367.

Avise, J.C. (1991). Matriarchal liberation. Nature 352, 192.
Avise, J.C. (1994). Molecular markers, natural history and evolution. New York, Chapman and Hall.

Baird, E., Cooper-Bland, S. Waugh, R., De Maine, M. and Powell, W. (1992). Molecular characterization of inter- and intra- specific somatic hybrids of potato using randomly amplified polymorphic DNA markers. Molecular and General Genetics 233: 469-475.

Ballinger-Crabtree, M. E., Black, W. C. and Miller, B. K. (1992). Use of genetic polymorphism etected by random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) for differentiation and identification of Aedes aegypti subspecies and populations. American Journal of tropical Medicine and Hygiene. 47: 893-901.
Barral, V., This, P., Imbert-Establet, D. Canes, c and Delseney, M. (1993).
Barton, N. H. and Charlesworth, B., 1984. Genetic revolutions, founder effects and speciation. Annual Review of Ecology and Systematics, 15:133-164.
Bishop. R., Sohanpal, B. and Morzaria, S. (1993). Thelaria prava: detection of genomic polymorphism by polymerase chain reaction amplification of DNA using arbitrary primers. Experimental parasitology 77: 53-61.
Black, W. C.(1993). PCR with arbitrary primers: approach with care. Insect molecular biology 2 (1), 1-6.

Black, W. C., Du Teau, N.M., Puterka, G.J., Nechois, J. R. and Pettorini, J.M. (1992). Use of the andom amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to detect DNA polymorphisms in aphids. Bull Ent Res 82: 151-159.

Brown, G. G. and DesRosiers, L.J., 1983. Rat mitochondrial DNA polymorphism: sequence analysis of a hypervariable site for insertions/deletions. Nucleic Acids Research, 11: 6696-6708.

Bujulu, J., Uronu, B. \& Cumming, C. N. C. (1983). The control of banana weevil and parasitic ematodes in Tanzania. East African Agricultural Journal. 49: 1-13.
Caetano-Anolles, G., Bassam, B. J. and Gressof, P.M. (1991). DNA amplification fingerprinting: a strategy for genome analysis. Plant Molecular Biology Rep 9: 294-307.
Cann. R.L. and Wilson, A.C., 1983. Length mutations in human mitochondrial DNA. Genetics, 104: 699-711.
Cann, R.L., Brown, W. M. and Wilson, A.C., 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA.Genetics, 106: 479-499.

Carvalho, G.R., Maclean, N., Wratten, S.D., Carter, R.E. and Thurston, J. P. (1991). Differentiation of aphid clones using DNA fingerprinting from individual aphids. Proceedings of the Royal Society, London, Series B243, 109-114.

Castrillon, C (1989). Plagas del cultivo del planto. In curso de Actualization sobre problemas Sanitarios en Platano. (ICA Ed.) La Dorada, Colombia. 54 pp.
Chapco, W., Ashton, N. W., Martel, R., K. B., Anonishyr, N. and Crosby W. L. (1992).A feasibility study of the use of random amplified polymorphic DNA in the population genetics and systematics of grasshoppers. Genome 35: 569-574.
Chevrolat. - Ann. Soc. Ent. Fr., 1885, 6 serie T.V.
Chien, A., Edgar, D. B., and Sacchi, N. (1976). Deoxyribonucleotide polymerase from extreme thermophile Thermus aquatics. Journal of Bacteriology 127: 1550-1557.

Corpet, F., (1988). Nucl. Acids Res. 16 (22), 10881-10890.
Crampton, J. M., Beard, C. B. and Louis, C. (1996) The molecular biology of insect disease vectors. London, Chapman and Hall.
Crawford, D.J. (1989) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Chapman and Hall, London, pp 146-164.
Crawford, D.J., (1983) Phylogenetic and systematic inferences from electrophoretic studies. In Tankesly, S. O., Orton, T. J., (Eds): Isozymes in plant genetics and breeding, A, pp. $257-$ 287. - Amsterdam: Elsivier.

Crow, J. F., and Aoki, K., (1984). Group selection for polygenic behavioral trait: Estimating the degree of population subdivision. Proc. Natl. Acad. Sci. USA 81, 6073-6077.

Crozier, R. H., and Crozier, Y.C. (1993). The mitochondrial genome of the honeybee Apis Mellifera: complete sequence and genome organisation, Genetics 133, 97-117.
Cuille, J. (1950). Recherches sur le charancon du bananier. Inst. Fr. Agric. Col. Ser. Tech. 225 pp.
Davies, G. (1995). Banana and plantain in the East African Highlands. In : S. Gowen (ed.). Bananas and plantains. Chapman \& Hall, London, pp. 493-508.
Delattre, P. (1980). Recherche' d'une methode d'estimation des populations du charancon du bananier, Cosmopolites sordidus Germar (Col., curculionidae). Acta Oecologica: Oecol. Applic. 1: 83-92.

Demeke, T., Adams, R.P. \& Chibbr, R. 1992. Potential taxonomic use ofrandom amplified polymorphic DNA (RAPD): a case study in Brassica. Theoretical and Applied Genetics, 84: 990-994.

DeSalle, R. (1994). Implications of ancient DNA for phylogenetic studies. Experimentia 50, 543550.

Doyle, J. J. and Doyle, J. L. (1987). A rapid DNA isolation procedure or small quantities of fresh leaf tissues. Phyto. Bull., 19: 11-15.

Dupont, P.R. - Insects Notes of Curator's Report on Botanic Stations, Seychelles for 1917, in R.A.E. 1918, p. 375-376.

Dupont, P.R. - Insects. Notes of Curator, Botanique Station Seychelles, $18^{\text {th }}$ March 1915, in R.A.E. 1915, p. 410.

Edge, V. E. (1974). Cyclodiene- BHC resistance in Cosmopolites sordidus (Germ.) (Coleoptera Curculionidae) in New South Wales, Australia. Bulletin of Entomological Research 64: 1-7.

Ellstrand, N. C. and Ellam, D. R. (1993). Population genetic consequences of small population size: Implications for conservation. Ann. Rev. Ecol. Sys. 24, 217-242.

Erlich, H. A, Gelfand, D. and Skinsky, J. J. (1991). Recent advances in polymerase chain reaction. Science 252: 1643-1650.
FAO (1998). FAOSTAT Online Database; Production Statistics. Food and Agriculture Organization of the United Nations, Rome.

FAO. 1991. FAO Yearbook Production, Vol.44, 1990. FAO Statistics Series No. 99. 286 pp. Feakin, S. D. 1971. Pest Control in Bananas. PANS Manual. 1 (Rev. 1972). London: PANS. 128 pp.
Feinberg, A. P. and Vogestein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 321: 6-13.

Ferren, P. (1981). Pest control by fungi Beauvaria and Metarhizium, in Microbial control of Pest and Plant Disease, 1970-1980 (BURGES, H., Ed.) Academic Press, London, pp. 465482.

Ferris, S.D., Sage, R.D., Prager, E.M., Ritte, U. and Wilson, A.C., 1983c. Mitochondrial DNA evolution in mice. Genetics, 105: 681-721.

Filho, A. B., Camargo, L. M. Myazaki, I Cruz, B. P. B. and Oliveria, D. A. (1987). Controle biologico do 'Moleque' a bananeira (Cosmopolites sordidus Germar, 1824) Pelo uso de fungos entomogenos no laboratorio. Biologico Sao Paulo 53, 1-6)

Fleutiaux, E. - Agric. Pratique des pays chauds, II, juil. 1902-juin 1903, p. 117-119.
Foreman, P. L. (1973). Investigations into the resistance of the banana weevil borer (Cosmopolites sordidus) to dieldrin in Jamaica. Banana Board Annual Report, 1973.

Foster, G. G., Whitten, M. J., Konovalov, C., Bedo, D. G., Maddern, R. H. and Boon, D. J.(1980). Cytogenetic studies of Lucilia cuprina dorsalis R.-D. (Diptera: Calliphoridae) polytene chromosome maps of the autosomes and cytogenetic localization of visible genetic markers. Chromosoma (Berlin) 81, 151-168.
Frogatt, J. L. (1923). The banana weevil borer. IV. Queens. Agric. J. 21, 369-378.
Frogatt, J. L. (1924). The banana borer. Queensl. Agric. J. 22: 154-1 56.
Frogatt, W.W. - The Black Banana stem weevil (Cosmopolites sordidus Germ. Agric. Gaz. N. S. W. Sidney, XXX, no 11, novembre 1919, p. 815-818. R. A. E. 1920, p. 112.

Froggat, J. L. (1925). The banana weevil borer, (Cosmopolites sordidus Germar) Queensl. Agr. J. 24: 558-93.

Froggatt, J.L. - Entomological Notes. New Guinea agric. Gaz. Rabaul. 1941. R.A.E. 1942, p. 70. Froggatt, J.L. - The Banana Beetle Borer III. Queensland Agric. Journ., Brisbane, October 1922. Fu, Y. H. Kuhl, D. P. A., Pizzuti, A., M., Sutcliffe, J. S., Richards, s., Verkerk, M. J. M. H., Holden, J. J. A., Fenwick Jr, R. G., Warren, S. T., Oostra B. A., Nelson, D. L. and

Caskey, C. T., (1991). Variation of the CGG repeats at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell. 67: 1047-1058.
Gawell, N. J. and Barlett, A. C. (1993). Characterization of differences between white flies using RAPD-PCR. Insect molecular biology 2 (1): 33-38.
Genetic variability and evolution of Schistoma genome analysed by using randomly amplified polymorphic DNA markers. Molecular and biochemical parasitology 59: 211-222.
Ghesquiere, J. - Les maladies du bananier dans le bas-Congo. Bull. agric. Congo belge, 1929. Gillespie, A. T., Collins, M. D. and Atienza, A. (1989). Control of Nilaparvata lugens with entomogenous fungi, in Fundamental and Applied Aspects of Invertebrate Pathology (Samson, R. A., Vlak, J. M. and Peters, D., Eds) Society for Invertebrate Pathology, Adelaide, Australia, p. 244.
Godwin, P. H. and Annis, S. L (1991). rapid identification of genetic variation and pathotype of leptosphaeria maculans by random amplified polymorphic DNA assay. Applied and Environmental Microbiology 57: 2482-2486.
Gold, C. S. and Bagabe, M. I. (1994). In: African Crop Science Conference.
Gold, C. S., Ogenga-Latigo, M. W., Tushemereirwe, W., Kashsija, I. and Nankinga, C. (1993). Preceedings of a Research Coordination Meeting (Eds, Gold, C. S. and Gemmill, B.) pp 3-24 IITA. Ibadan.
Gowdey, C.C. - Report of the Government Entomologist. Uganda Dept. Agric. Ann. Rept. Year ended 31^{54} March 1919. Entebbe 1920, p. 243-244.
Greenberg, B.D., Newbold, J. E. and Sugino, A., 1983. Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene. 21: 33-49.
Grimaldi, D.A. (1996). Captured in amber. Scientific American April 1996, 70-77.
Gustafsson, L., and Gustafsson, P. (1994). Low genetic variation in Swedish populations of the rare species Vicia pisiformis (Fabaceae) revealed with rflp (rDNA) and RAPD. Plant Sys. Evol. 189, 133-148.
Hagreaves E. - Report of the Entomological section Sierra-Leone. Ann. Rept. Lands \& Forests Dept. 1925. Freetown, 1926.
Hagreaves, II. (1940).""Insect Pests of Bananas." Agriculture in Uganda (Oxford).

Haniford, D. B. and Pulleybank, D. E. (1983). Facile transition of poly (d(TG).D(ca)) into a left handed helix in a physiological conditions. Nature 302: 632-634.
Harris, W. V. (1947). The banana borer, East African Agricultural Journal 13: 15-18.
Harris, W.V. - Annual Report of the Entomologist for the Year 1942. Dep. Agric.Tanganyika (1943).

Hartle, D.L., and A. G. Clark. (1994). Principles of population genetics, Sinauer, Sunderland, Massachusetts, USA

Hawksworth, D.L. (Ed.) (1994). Identification and characterization of pest organisms. Wallingford, CAB International.
Haymer, D.S. \& McInnis, D.O. (1994). Resolution of populations of the Mediterranean fruit fly at the DNA level using random primers for the polymerase chain reaction. Genome 37, 244-248.

Hedrick, P.W. (1984). Population Biology. The Evolution and Ecology of Populations. Eds. ones and Bartlett Publishers Inc. Boston.
Hord, H. H. V. and Flippin R. S., 1956. - Studies on Banana weevils in Honduras. J. Economic Entomol., 49 (3). 290-300.

Hoy, M.A. (1994). Insect Molecular genetics. 288 pp. London, Academic Press.
Hunt, G.J. and Page, R.E. Jr. (1992). Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theoretical and Applied Genetics 85,15-20.

INIBAP (1986). A preliminary study of the needs of banana research in Eastern Africa. 98pp.
INIBAP (1987). INIBAP-International Network for the improvement of banana and plantain.
Monpellier, France: INIBAP.
INIBAP (1988a). Plantain in Westem Africa: Proposal for a Regional Research and
Development Network. INIBAP. Montpellierr. 68pp+ appendices.
Innis, A. M., Celfand, D. H. Sninsky, J. J. and White, J. T. (1990). PCR protocols. A Guide to methods and applications. Academic Press, NY, USA.
International Network for Banana and Plantain, IPGRI Annual Report 1996.htt://www.cgiar.org/ipgri/ANNUREP/initxt.htm.

Kambhampata, S., and K.S. Rai. 1991. Mitochondrial DNA variation within and among opulations of the mosquitoe Aedes albopictus. Genome 34: 288-292.

Karp, A., Isaac, P.G. \& Ingram, D.S. (Eds) (1998). Molecular tools for screening biodiversity. 98 pp. London, New York, Melbourne, Madras, Chapman \& Hall.
King, L. M., and Schaal, B. A. (1989). Ribosomal DNA variation and distribution in Rudbeckia missouriensis. Evolution 42, 1117-1119.
Knowles, C.H. - Division of Entomology . Fiji Dept. Agric. Ann. Rept. 1918, Suva, council Paper, no 60, $16^{\text {th }}$ August 1918, p. 8-12. R.A.E. 1919, p. 311.
Knowles, L.H. et Jepson F.P. - Dep. Agric. Fiji Bul. 4, 17 P., 3 pl., 1912.
Kung'u, J.N. (1995). Fusarium Wilt and other Banana Diseases in Kenya. In: Infomusa, Vol. 4, No. 2, pp. 14-16.
Kung'u, J.N., A.A. Seif, and J.M. Waller (1992). Black Leaf Streak and ther Foliage Diseases of Bananas in Kenya. In: Tropical Pest Management, Vol. 38, No. 4, pp. 359-61.
Lattore, A., Moya, A. and Ayala, F.J. (1986). Evolution of the mitochondrial DNA in Drosophila subobscura. Proceedings of the National Academy of Sciences, USA 83, 8649-8653.
Legendre, L., and Legendre, P. (1983). Numerical Ecology. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York.
Levi, A., Rowland, L. J. Y Hartung, J. S. (1993). Production of reliable random amplified polymorphic DNA (RAPD) markers from DNA of woody plants. Horticultural Science 28, 1188-1190.

Levinson, G. and Gutman, G. A. (1987). Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203-221.
Lin, T. P., Cheng, Y. P and Huang, S. G (1997). Allozyme variation in four geographic areas of Cinnamomum kanehirae. J. Hered. 88, 433-438.

Litt, M. and Luty. J. A. (1989). A hypervariable microsattelite revealed by in vitro amplification of a dinucleotide repeat within the cardiac acting gene. Am. J. Hum. Genet. 44: 379.168. Loxdale, H.D. and Den Hollander, J. (Eds) (1989). Electrophoretic studies on agricultural pests. Systematics Association Special Volume No. 39, Oxford, Clarendon Press.
Loxdale, H.D., Brookes, C.P. and De Barro, P.J. (1996). Application of novel molecular markers (DNA) in agricultural entomology. pp. 149-198 in Symondson, W.O.C. and Liddell, J.E. (Eds) The Ecology of agricultural pests: biochemical approaches. Systematics Association Special Volume No. 53, London, Chapman and Hall.

Macedo, A. M., Martinis, S. M., Chian, E. and Pena, S. D. J. (1992a). DNA fingerprinting of Trypanosoma cruzi, a new tool for characterization of strains and clones. Molecular and Biochemical Parasitology 55: 147-154.
Macedo, A. M., Melo, M. N., Gomes, R. F and Pena, S. D. J. (1992b). DNA fingerprinting, a tool for identification of relationship between species and trains of Leishmania. Molecular and Biochemical Parasitology 3: 63-70.
Majiwa, P. A. O., Maina, M. M., Waitumbi, J. N., Mihok, S. and Zweygarth, E.(1993a). Trypanosoma (Nannomonas) congolense: Molecular characterization of a new genotype from Tsavo, Kenya. Parasitology 106: 151-162.

MALDM (1996, 1997). Provincial Annual Reports. Ministry of Agriculture, Livestock Development and Marketing, Nairobi.

Mbwana, S.S.A., Ngode, L., Reddy , S.V.K. and Sikora, R.A. (1998). A Guide to Banana Growing in the Eastern African Highlands. ICIPE Science Press.
McNicoll, A. (ed.), (1989). International network for the improvement of banana and plantain. Annual report 1988. INIBAP, Montpellier.
Meyer, A. (1994). Shortcomings of the cytochrome b gene as a molecular marker. Tree 9, 278280.

Mitchell, S. E., S.K. Narang, A. F. Cockburn, J.A. Seawright, and M. Goldenthal. 1992. Mitochondrial and ribosomal DNA variation among members of the Anopheles quadrimaculatus (Diptera: Culicidae). Species complex. Genome 35: 939-950.

Mohamed, F. D., Murphy, N. B. and Gardiner, P. R. (1993). Fingerprinting of Trypanosoma vivax isolates rapidly identifies intraspecific relationships. Journal of Eukaryotic Microbiology 40: 132-134.

Moznette, G. F. (1920). Banana root borer, Journal of Agricultural Research. 19: 39-46.
Mullis, K. B., and Faloona, F. (1987). Specific synthesis of DNA in vitro via a polymerasecatalysed chain reaction. Methods in Enzymology 155: 335-350.

Nei, M. (1972). Genetic distance between populations. Am. Nat. 106, 283-292.
Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press, New York.
Nei, M. and Li, W-H. (1979). Mathematical model for studying genetic variations in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA 76: 5269-5273.

Nei, M., Maruyama, T. and Chakraborty, R. (1975). The bottleneck effect and genetic variabilit in populations. Evolution, 29: 1-10.
Neto, E. D., De Souza, P. C., Rollinson, D., Katz, N., Pena, D. J. and Simpson, A. J. C. (1993). The random amplification of polymorphic DNA allows the identification of strains and species of Schistostomes. Molecular and Biochemical parasitology 57: 83-86.
Nguthi, F.N. (1996). Banana Production and Research in Kenya. Mimeo., National Horticultura Research Center, Thika, Kenya.
Northeim, A. and Rich, A. (1983). The sequence (dC-dA)n. (dG-dT)n form left handed Z-DNA in negatively supercoiled plasmid. Proc. Natl. Acad. Sci USA 80" 1821-1825.
Ostmark, H. E., (1974). Economic insects pests of bananas. Annu. Rev. Ent. 19: 161-176.
Paabo, S., (1993). Ancient DNA. Scientific American, November, 1963, 60-66.
Paabo, S., Higuchi, R. G. and Wilson, A. C. (1989). Ancient DNA and the polymerase chain reaction. Journal of biological Chemistry 264: 9709-9712.
Paran, I., Kesseli, R. and Michelmore, R. (1991). Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers liked to downy mildew resistance genes in lettuce, using near-isogenic lines. Genome 34: 1021-1027.
Perring, T. M., Cooper, D. A., Rodriguez, R. J., Farrar, C. A. and Bellow Jr., T. S. (1993). Identification of whitefly species of genomic and behavioral studies. Science 259: 74-77.
Persley, G. J. and de Langhe, E. A. (eds) (1987). Banana and plantain breeding strategies. Proceedings of an international workshop held at Cairns, Australia 13-17 October 1986. ACIAR and INIBAP. Canberra 187 pp.
Pfeifer, T.A., Humble, L. M. , Ring, M. and Grigliatti, T.A. (1995). Characterization of Gypsy moth populations and related species using a nuclear DNA marker. Can. Entomol. 127: 49-58.

Pianka, E. R. (1970). On r- and k-selection. Amer. Nat. 104, 592-597.
Pinto, M. P. D. 1928. The two weevil Pests of Plantains (Musa sapientum L.) Cosmopolites sordidus Germar and Odoiporus Longicollis Oliv. The Tropical Agriculturist (LXX) 216224.

Post, R.J., Flook, P.K. \& Millest, A.L. (1993). Methods for the preservation of insects for DNA studies. Biochemical and Systematic Ecology 21, 85-92.

Prathepha, P. \& Baimai, V. (1999). Genetic Differentiation in Thai populations of the rare species Afgekia sericea Craib (Leguminosae) revealed by RAPD-PCR assays. Genetica 105: 193-202.

Qaim, M. (1999). Assessing the Impact of Banana Biotechnology in Kenya. ISAAA Briefs No. 10. ISAAA: Ithaca, NY.

Qaim, M. (1999). Frauengruppen in der kenianischen Landwirtschaft. In: Entwicklung + Landlicher Raum, Vol. 33, No. 2, pp. 26-28.
Rafalski, J. A., Tingey, S. V., and Williams, G. K. (1991). RAPD markers: a new technology for genetic mapping and plant breeding. Ag Biotech News and Information 3; 645-648.
Roberts, D. W., and Wright, S. P. (1986). Current status on the use of insect pathogens as biocontrol agents in agriculture: fungi, in Fundamental and Applied Aspects of Invertebrate Pathology (Samson. R. A., Vlak, J. M. and Peters, D., Eds) Society for Invertebrate Pathology, Adelaide, Australia, pp. 510-513.
Robinson, J.C. (1996). Bananas and Plantains. Crop Production Science in Horticulture Series No.5, CAB International, Wallingford, UK.
Roche, R. and Abreu, S. (1983). Control del picudo del planto (Cosmopolites sordidus) por la hormiga Tetramorium guineense. Ciencias de la Agricultura 17: 42-49.
Roderick, G.K. (1996). Geopgraphic structure of insect populations: gene flow, phylogeography, and their uses. Annual Review of Entomology 41, 325-352.
Roehrdanz, R. L. (1993). An improved primer for PCR amplification of mitochondrial DNA in a variety of insect species. Insect Molecular Biology 2, 89-91.
Roehrdanz, R.L. (1995). Amplification of complete insect mitochondrial genome in two easy pieces. Insect Molecular Biology 4, 169-172.
Rombach, M. C., Aguda, R. M., Shephard, B. M. and Roberts, D. W. (1986). Entomopathogenic fungi (Deuteromycotina) in the control of the black bug rice, Scotinophara coarctata (hemiptera: Pentatomidae), in Fundamental and Applied Aspects of Invertebrate Pathology (Samson, R. A., Vlak, J. M. and Peters, D., Eds) Society for Invertebrate Pathology, Adelaide, Australia, p. 241.
Saiki, L. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horm, G. T., Mullis, K. B. and Erlich, H. A. (1988). Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 230: 1350-1354.

Saiki, R. K., S., Faloona, F., Horn, G. T., Mullis, K. B., Erlich, H. A. and Arnheim, N. (1985). Enzymatic amplification of beta-globin genomic sequence and restriction analysis for sickle cell anemia. Science. 230: 1350-1354.

Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Hom, G.T., Mullis, K.B. and Erlich, H.A. (1988). Primer directed enzymatic amplification of DNA with a thermostabe DNA polymerase. Science 239, 487-491.

Sambrook, J. ,Frisch, F. and Maniatis, T. (1989). Molecular cloning: a laboratory manual, second edition. Cold Spring Harbor Laboratory, New York.

Sanger, F., Nicklen, S. and Conlson, A. R. (1977). DNA Sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.

Sarah, J.L. (1993). Early Varietal Screening of Banana for Resistance of Nematodes. In: Infomusa, Vol.2, No.2, p.7.
Sasscer, E.R. - Important Insect Pests Collected on Imported Nursery Stock in 1914. J. Econ. Entom. Concord., VII, no 2, avril 1915, in R.A.E. 1915, p. 455.

Scharf, S. J., Horn, G. T. and Erlich, H. A., (1986). A direct cloning and sequence analysis of enzymatically amplified genomic sequence. Science 233: 1076-1078.

Scott, M.P., Williams, S.M. (1993). Comparative reproductive success of communally breeding burying beetles as assessed by PCR with randomly amplified polymorphic DNA. Proc. Natl. Acad. Sci. USA 90: 2242-2245.

Sebasigari, K. and Stover, R., H. (1988). Banana diseases and pests in East Africa: Report of a survey in November 1987. INIBAP. Montpellier.

Shani, A. (1990). Roles of Pheromones in Integrated Pest Management. Pheromones in Pest Control, p. 1-15, Survey conducted in July to November, 1990.

Sikora, R. A., Baokuzara, N. D., Mbwana, A. S. S., Oloo, G. W., Uronu, B. \& Seshu Reddy, K. V. (1989). Interrelationship between banana weevil, root lesion nematode and agronomic practices and their importance for banana decline in the United Republic of Tanzania. FAO Plant protection bulletin. 37: 151-157.

Simmonds, H. W. (1929). Some experiments to ascertain the part played by flight in the dispersal of the banana borer Cosmopolites sordidus in Fiji. Agr. J. Dep. Agr. Fiji 1: 2226.

Simmonds, N. W. Bananas, London Longmans, 1966. 512 p.

Simon, S., Frati, F., Beckenbach, A., Crespi, B., Liu, H. and Flook, P. (1994). Evolution, weighting , phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America. 87, 651-701.

Smith, D.R. and Brown, W.M. (1990). Restriction endonuclease cleavage site and length polymorphisms in mitochondrial DNA of Apis Mellifera and A. M. Carnica (hymenoptera: Apidae). Annals of the Entomological Sciety of America 83, 81-88.
Smith, J. J., Scott-Craig, J. S. and Leadbetter, J. R. (1994). Characterization of random amplified polymorphic DNA (RAPD) products from Xanthomonas campestris and some comments on the use of RAPD products in phylogenetic analysis. Molecular Phylogenetic Evolution 3, 135-145.

Smith, T.B. and Wayne, R.K. (Eds) (1996). Molecular genetic approaches in conservation Oxford, Oxford University Press.
Southern, E. M. (1975). Detection of specific sequences among DNA fragments by gel electrophoresis. Journal of Molecular Biology 98: 501-517.
Speijer, P.R., W.J. Budenberg, and R.A. Sikora (1993). Relationships between Nematodes, Weevils, Banana and Plantain Cultivars and Damage. In: Annals of Applied Biology, Vol. 123, pp. 517-25.
Sperling, F. A. H., Anderson, G.S. and Hickey, D.A. (1994). A DNA-based approach to the identification of insect species used for postmorterm interval estimation. J. Forensic Sci.39: 418-427.

Storey, G. K., and Gardner, W. A. (1987). Vertical movement of commercially formulated Beauveri bassiana conidia through four Georgia soil types. Environmental Entomology 16: 178-181.

Stover, G. K. and Simmonds N. W. (1987). Bananas. $3^{r d}$ ed. London, Longman Group UK (Ltd). 468pp.
Swennen, R. (1984). A physiological study of the suckering behavior in plantain (Musa cv. AAB). Unpubl. Ph.D. dissertation. Katholike Universiteit te Leuven, Belgium. 180pp. Symondson, W.O.C. and Liddell, J.E. (Eds) (1996). The ecology of agricultural pest: biochemical approaches. London, Chapman and Hall.

Tabachnick, W. J. and Black IV, C. W.(1996). Population genetics in vector biology. The biology of disease vectors, Edited by Barry J. Beauty and William C. Marquardt, University Press of Colorado, pp 417-435.

Tatsuya, Ota. (1993). DISPAN (Genetic Distance and Phylogenetic Analysis). http://medhumgen14.bu.edu/ota/program/dispan.html
Tauz, D. (1989). Hypervariability of simple sequences a general source for polymorphic DNA markers. Nucleic Acids Res. 17:6463-6471.
Tauz, D. and Renz, M. (1984). Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 1427-4138.
Taylor, D.B., A.L. Szalanski, and R.D. Peterson II. (1996). Identification of screwworm species by polymerase chain reaction-restriction fragment length polymorphism. Med. Vet. Entomol. 10: 63-70.

Taylor, D.B., Peterson, R.D., Szalanski, A.L., and Petersen, J. J. (1997). Mitochondrial DNA variation among Muscidifurax spp. (Hymenoptera: Pteromalidae), pupal parasitoids of filth flies. Ann. Entomol. Soc. Am. 90, 814-824.

Traore, L., Gold, C. S., Pilon, J. G. and Biovin, G. (1993). African Crop Science Journal 2, 111 116.

Traut, W., Epplen, J. T., Weichenhan, D. and Rohwedel, J. (1992). Inheritance and mutation of hypervariable (GATA)n microsatellite loci in a moth, Ephestia kuehniella. Genome 35: 659-666.

Tryon, H. et Benson A. H. - The Banana weevil (Cosmopolites sordidus, Chevr.). Queensland Agric. Journ. Brisbane, XIII, no 4, avril 1920, pp. 165-168, 5 fig., R. A. E. 1920, p. 337.
Tryon, H. Report of the Entomologist and Vegetable Pathologist. Pueensland Ann. Rep. Agric. And Stock for the year1916-1917, Brisbane, 1917, p. 49-63, R.A.E. 1920, p. 155-156.
Viswanath, B. N. (1977). Studies on the biology, varietal response and control of banana rhizome weevil, Cosmpolites sordidus (Germar) (Coleoptera: Curculinidae). Unpubl. Ph. D. Bangalore, India.

Waitumbi, J. N. and Murphy, N. B. (1993). Inter- and Intra-species differentiation of trypanosomes by genomic fingerprinting with arbitrary primers. Molecular and Biochemical Parasitology 58: 181-186.

Wallace. C. R. 1938. Measurement of beetle borer migration in banana plantations. J. Aust. Inst. Agr. Sci. 4: 215-19.

Waterhouse, D. F. \& Norris K. R. (1987). Biological control-specific prospects. Inkata press, Melbourne, Australia.

Waudo, S.W., Seshu Reddy, K.V. and Lubega, M.C. (1998). Incidence and Distribution of Banana Nematodes and weevils in Kenya. Discov. Iinov. 10 (3/4) pp. 164-169.

Welsh, J. N. and McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic acid Research 19: 303-306.

Welsh, J., Peterson, C. and McClelland, M. (1991). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 19: 7213-7218.

Whalley, P. E. S. (1957). The Banana weevil and its control. East African Agricultural Journal. 23: 110-112.

White, P.S. and Densmore, L.D. (1992). Mitochondrial DNA isolation. Pp. 29-58 in Hoelzel, A.R. (Ed.) Molecular genetic analysis of populations: A practical approach. IRL Press, Oxford, New York.

Wilkerson, R.C., Parsons, T.J., Albright, D.G., Klein, T.A. and Braun, M.J. (1993). Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles). Insect Mol Biol 1:205-211.
Williams, J. G. K., Kubelik, A. R., Livak, J., Rafalski, J. A. and Tingey, S. V. (1991). DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531-6535.

Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531-6535.

Wilson, A.C. Cann, R.L., Carr, S.M., George, M., Gyllensten, U.B., Helm-Bychowski, K.M., Higuchi, R.G., Palumbi, S.R., Prager, E.M., Sage, R.D. and Stoneking, M. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society 26, 375-400.

Zimmerman, E.C. (1968). The Cosmopolites banana weevil (Coleoptera; Curculionidae: Rhynchophorinae). Pacific Insects 10(2), 295-299.

APPENDIX

I BACTERIAL MEDIA AND PLATES:

2x YT (per litre):

16 g bactotryptone
10 g yeast extract
5 g Nacl
Ampicillin was dissolved at a concentration of $100 \mathrm{mg} / \mathrm{ml}$ and stored at $-20^{\circ} \mathrm{C}$. When required ampicillin was added to the media at a concentration of $50 \mu \mathrm{~g} / \mathrm{ml}$.

NZCYM medium for plates (per litre):
10 g NZ amine.
5 g Nacl .
1 g casamino acids.
$1.71 \mathrm{~g} \mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
2.06 g Agar

II BUFFERS AND SOLUTIONS

CTAB extration buffer:

50 mM Tris pH 8.0
10 mM EDTA
0.7 M Nacl
1.0\% Cetyl-trimethyl ammonium bromide (CTAB)
$0.1 \% \beta$-mercaptoethanol
TE Buffer
10 mM Tris-HCL pH 8.0
1 mM EDTA
Cell suspension solution
500 mM Tris-HCL pH 8.0
10 mM EDTA
$100 \mu \mathrm{~g} / \mathrm{ml}$ RNAse A

Cell lysis solution

0.2 M NaOH

1\% SDS
Neutralization buffer (For miniprep)
2.55 M potassium acetate pH 4.8

Column wash solution
200 mM Nacl
Tris-HCL, pH 8.0
5mM EDTA
Diluted $1: 1$ with absolute ethanol.
Denaturation solution
0.5 N NaOH
1.5M Nacl

Neutralization solution (For southern transfer)
0.5M Tris-HCL, pH 7.5

3 M Nacl
20x SSC stock solution
3M Nacl
0.3 m sodium citrate, $\mathrm{pH} 7.0\left(+20^{\circ} \mathrm{C}\right)$, autoclaved)

N -Lauroylsarcosine stock solution

$10 \%(w / v)$ in $\mathrm{H}_{2} \mathrm{O}$
Filtered through a $0.2-0.45 \mu \mathrm{~m}$ membrane.
SDS stock solution
10% (w/v) in $\mathrm{H}_{2} \mathrm{O}$
Filtered through a $0.20 .45 \mu \mathrm{~m}$ membrane.

Blocking reagent stock solution

Blocking reagent is dissolved in maleic acid buffer to a final concentration of $10 \%(\mathrm{w} / \mathrm{v})$
with shaking and heating.
Standard hybridization buffer
5x SSC
$0.1 \% \mathrm{~N}$-lauroylsarcosine
0.02\% SDS
1% blocking reagent

Blocking buffer

Dilute blocking reagent stock solution 1:10 with Maleic acid buffer.
Washing solution 2x
2x SSC
0.1% SDS

Maleic acid buffer

0.1 M maleic acid
$0.15 \mathrm{NaCl} \mathrm{pH} 7.5\left(+20^{\circ} \mathrm{C}\right)$.
Adjust pH with concentrated or solid NaOH , autoclave

1II. RAPD band scoring sheet for Banana weevils from different geographic locations

O14.01 O14.02 O14.03 O14.04 O14-05 O14-06 O14.07 O1A.08 O14.0n A17-01 A17-02 A17-03 A17-04 A17.05 A17-06 A17.07 A17-08 A17-09 OI8.01 O18-02
 (120-0.4 (120.05 r)20-06 (120.07 ()20.08 020.09

Alstrala 011100110111001111001101010111101011010001111010 Alstralsa 0211001110010011010011111000001110111100111111110 Ausiralia 0.31100110011011111000111110000001011011011111110 Austratia 0 A 1001111001001011000110000000011011010001000001 Australia 0 S 11011101010011110001111000001110111100111111810 Australia 061010000000000111100100001001101010001001100100 Allstralia 07000010010000000000000000000000010100000100100 Australia 081100110011011111000111000010000011111011011110 Australia 00100111001111010110011111000000000011110111111010 Australia 101100010010000111000110000000001010000011110101 Australia I I 110111100110111111011111000100010111111111111110 Australia 1211011101101111111111111000010011011111011111110 Australia 13100111001101111111011010000001110111100111111110 Arstralia 14110011001101110.001111110100101011110011111110 Camerna 010000010000101011101111010000001100000011111111 Camerocr 021111111010101011100111110100011111000011111111 Cameren 031111110011101111101011110101011111000011111110 :3mernen 0d 1111110011111111100100010001011111000011111110 Cameren 051111111111111111111111110111011011000001111110 Cameron 06111111111111111111011111100000000000001101010 Camercorn 07111111111101111111011111111011011000011111110 Camerner $08: 111110011101111111011111100011111000011111110$ Camermen 0911111111111111111011111110011111000011111110 Camerme 101111111011101110110011111101011111000011111110 ("amermill IIIliloll1101111111011110101011011000011111110 Camerom 12 1111111010111111111011110101111111000011111110 Camerom 131111110010101111111011110111111111000011111110 Camerom 141111110011101110100011110111111111000011111110 Cameran is 1111110011101111111011110111111111000011111110 Camerem lo 1111110010101110111111110111111111000001101110 Camerom 171111110111111111111011111111111111000011111110 camerncon 181111111011111111110011111101001111100011111110 Camerean 10111110011111111111011111100111111000011111110 Camernon 201111110011101111110011111111011111000011111110 Camencon 2111111101101011111111111110111011111000011111111 Camerom 2211011110101011101111111101000111110000011111111 Camerem 270000000001101110101011111100111111000011111111 Camernm 2\$1111110011111110110011111111011111000011100111 Camernon 2511011111111011 J1110111101001111110001111111110 Camerom 20is $11011100111111111001111110111111100001\{111111$ Camernen 2701000000001011,1110011110111111111000011111110 Camernem 281101010010111.1111111111110111111000111111111 Carmermen 22 1101110010111110110111110100011111000111111111 Camerem 301111110010101110111111110111111011000111111111 Camerom 311101110010101112111111110110101111000000000000 Camerom 3211111111111011'01100111111110010110001111111111 Camermen 321111110011111110110111111101111111000111111110 Camercm 341111110010111111111111111100111111000001100000 Carrerem 35000000000011111111101111111111111000111111110 Camerom 36 11111111111111,1111111111100111111000111111111 Camernon 391111111111101111111011111110111111000111111111 Camerech 38111111101111111111101111111011111000111111111 Camernem 3011111100101111111101111111111111000111111111 Camernem 401100000001111111111111111100111111000111111111 Camerem 41 ill1110110101111111111111100111111000111111110 Camerom 121111110110111111111011111110111111000000000000 Camerem 43 11011100101011101100101101001111110000011111111 Camerom A4 1101110010111111111111111100111111000111111111 Camerom A 1101110010111111111011111101101111000011111010 Camernen 460101110000111111111011110111111111000000000000 Camerem $\$ 70100110000101111111111111111111111000000000000$ Cameren AR $0000000001101|1| 1|1111| 10111|1| 111000000000000$ C"amem $19000000000000000000011|1| 11111 \mid 111000000000000$ (:amerems 500000000000000000000111111010111111000000000000 Colembia $0111011100011110 \mathrm{Ce}^{2} 01111110001110111100101000000$ focombia 020101110001111100001111110000111011111111000000 Cedombia 010101110000111111011111000001011111011111111000 Colonithia 0411111111100111100001111100100110010100111111100 Colombia os 1111111100111101111111111101111111111111111110 Colombia 000111110000111101001011101100010100100110100000 Colombia 071111110010101119000000000000111111010111111110 Coleritha 08111111010111111001111111000000000000110110000 Colonshas 0911111110010111110010111111011111111101111111100 Colombis 101111110000111171101111111101110111111111111100
 Colombis 121111110001111101001111110100000011010101000000 Colenibia 13111111010101101000111111010111111101111111110 Colombia 140111111101101011001011110001111111111111111100 Colomhis is 150100011101111$) 11101110000011111110100110000$ Colamtia 161101110000111111101111111101111111111111111110 Colombia $17111111000011 \mid 110001111111101111111111111110000$ Colombia 181111110001111111011111110111111111111111100 Colonibis 19111111001111111110111111100111111111111111100 Colmenthis 20 [11111100010111110111111100111111111111111100 Celenilus 210100010000011010001111001100001110110100000000 Colembia 221101110000111111101011101100000000000100000000 Colembin $2311111110001111: 1101111111001111111111111111110$ Colombina 241110110100111110010001000001000111111100001000 Colnmitia 251111110000101111001111110000110000000101111110 Colnmbis 200110100000111111110011000000011001100101100000

Colombis 271111110000111110001111110001111111010111100000 Colombia 28111111000111111111111111100111111111111111110 Colombia 291101110000000000001111111110011111111111111100 Costa Rica 011111111011111111110011111010000110100001111000 Costa Rica 0211111110111111111100111111100111111100011111111 Costa Rica 03 1111111010111111110011111110111111110000000000 Costa Rica 04 1111111010111111110011111010011111110111111111 Costo Rica 05 11110111101010111100111101101111100101111111111 Costa Rics 061111111011111111110011111010111111110000000000 Costa Rica 070110111111101111110101111110111111010111111111 Costa Rica 08111111111011010010101001111001101110111111111100 Costa Rica 09111111111100111111100111100101111111111111111100
 Cesta Rica 11111111110011111110011111111011111110111111111 Costa Rica 1211110111011001111100111111001111111100111111111 Costa Rica 13 11111111101111111100111111001111111001111111111 Costa Rica 1410101111011101101101111111000111110101011111111 Costa Rics 151111111110011111110011111110111111110000000000 Costa Rico 161111111110111111110011111110111111110111111110 Cossa Rica 17 1111111010111111100111111110111111110111111110 Costa Rica 18 111111111011111111100111110101111111101111111111 Costa Rica 191111111110111111110011111010111111110111111111 Cosia Rica 201111111101111111000111101100111111110111111110 Costa Rica 211110011111100000110100100101111111100111111111 Costa Rica 220111111111100111110101111101111111111011111000 Costa Ricn 211111111010011111110011111011011111010111111111 Costa Rics 24 1111111101101111110111111110001010110111111101 Costa Rica 251111111010011111110011111010011111010000000000 Costa Rica 201111111101101101111111111100111111110000110000 Costa Rica 27 11111110100111111100111110101111111110111111111 Costa Rica 28 1111111110011111110011111110111111110111111111 Costa Rica 29111111110111111111011111100111111110011111110 Costa Rica 301111111110100101110010000110011111010101111100 Costa Rics 31 11101111100111111101111110101111111100111111111 Costa Rica 32 1111111101100101110001111100000111001001110001 Costa Rica 331011011110100100110100010010010011011011111100 Costa Rica 341111011101100100111111111110110011000011111100 Costa Rica 351111110001111101101111111110111111100000000000 Cosis Rica 36 |llllilllollllllllllllllllollllllllolllllllll Costa Rica 3711111111001111111111111110111111110111111111 Costa Rica 38 1111111110181111110101118110111111100111111111 Costa Rica 391111111111111111110001101100111111100000000000 Costa Rica 401111111010111111110011111110111111110111111110 Costa Rica 411111111110111111110011100110111011111000000000 Costa Rica 42 1111111111111101110111111110111111100111111111 Costa Rica 431111111110101111100011011100111111100000000000 Flosida 0 1 1110010101011101001111100010100001101011110010 Florida 021110010101101100111110100010101011101011110111 Florida 031101010111011100000111001000100111110011000000 Florida 04001000000001100000010000011101000110101100010 Farida 050000011101001100110101001000100111111011001111 Florila 060010110101111101111110001000100001001011011110 Florida 070001101000111111111010101100100001000011011100 Florida of 1101010001000000000110000000001011101011110110 Florida 091101110001011011000111001000011111101110100010 Florida 100010111100111111110011111111111111010011001101 Florida 110110011101111100110111001500101011101011101111 Flerid 120110110101001111111111101100100111010011100011 Forida 131100010101101100000111101000111011101111111111 Florida 140110010110101111111011001000100000000011001101 Florids is 1100010101001111110111101010101001101011111110 Florida 161110010111001100110110000010111011111011011111 Foride 171101010101101100111111000000101011101011111111 Florita 181100010100000000000101000000111111100011001110 Flerida 191100010101001110000111000000101011111111110011 Florids 20 1100010101001100000000000000001001111111111111 Floritla 2111000101010111001111110000001000011110111111110 Florids 221100010101100100100111001010110011110111101111 Florida 230000000001111111111101001101101111010110101111 Florida 240000000001001100110000001001111111010111001100 Chara 010000000000000000001101110100111110110011111100 Chana 02010110011011111101111111101111111101110111 Ghana 0301111111111111110111111111011111110111111111 Ghan 0401110011101111111111111111011111011111111111 Ghans 0501111011011111111111111111011111011111111111 Ghana 060111111111111111111111111011111111111111111 Ghano 07111111110111111111111111011111111111111110 Ghano 08111111101111111111111101111111111111111 Ghana 09 111111111111111111111111110111111111011111111 Ghana 10111111111011111111111110110011111111111111111 Ghan 110111111110111111110110001000111111111001111110 Ghans 12 111111111111111111111111110111110111011111111 Ghara 1301111311111111101111100100011110111111111110 Ghana 14111111110000001101111111110111111111111111111 Ghana 15 11111111011111111111111110111110111111111111 Ghana 1611111111111111111111111111011111111111111111 Ghars 17111111111011111111111111110111110111111111111 Glians 181111111110111111111111111101111011111111111 Ghana 191111111111111101111111111011111111111111111 Ghans 20 [11111110111111111111110100111110111111111111

III. RAPD band scoring sheet for Banana weevils from different geographic locations

Ghana 210111110111111111111111110111101111111111 Ghana 22111111111011111011111111111111111111111111 Chana 23111111111011111111111111110111111111111111111 (Thana 2 111111 |l|101|11|11,000000000011111111111111111
 (Thana 26111100011111111110000000000111110110111111111 thana $2711111111101111111100000000001|111| 1|1| 11|11| 11$ thana 28 11111111111111111111111111011111011111111111 Chana 29111100111011111111111111100111011111111111 Cihans 3011111111111111111111111101111111111111111 tihana 310111111101111111111111111011111111111111111 Chana 1201111111081111111111111101111111111111111 (Shana 3301111111001111111111111011111111111111
 Cithana 35010010001011011100111111110011111010111111111 Ghan 36111111080111110111111111101111111111111111

 Cihana 301111111110111111111111111011111111111111111 Ghana 100111101110011010011111011110111111111111111110 Glan st 1111000001111111-11111111011111111111111111 Chana $421111100000111|111 / 111111110111111101111| 1111$ Ghans al 1111100001111113111111010011111111111111111 Chans 4411111000011111111,11111111101111111111111111 Ghana 451111110000011111.011111011101111100111101111 Chana 461111100000111111111111011101111111111111111 Cohana 471111101110111111111111111011111011111111111 Ghana 1811110000011111111111110011111011111111111 Ghana $1911111111011111!\cdot 111111011011111111111111111$ (Ghana s \& $1111111110111111!1111111011001111111111111101$ Honchurs 0111111111100111111101111111101111111111111111 Henchuas 021111110000011111100111111100011111010111111110 Henchuras 0311111111101111111101111110010011111111111111 Hanchurs $04111011+110001111001111111011111111111111011$ Hanthras 05111111001011111111011111110011111111111111111 Annthras 06111111001111,111110111111100011111111111111110 Honthers 0711101111100111111001111110111111111111111 Henthras $0 \mathbb{R} 11111111101111111100001111100\|1111\| 11111110$ Honituras 04111111110011131101111110011011111111111111 Hinachimes 10111110110011111101011110011111111111111111
 Honthras 12 1 1111111100111:11801110110011111111111111011 Henduras 13111111111001111111011111111011111111111111111
 Henduras 151111111110011101110111111110111111111000000000 Hondiras 101111110001111111000011111000111111010111111010
 Henchras IR IIIOH11110111111110001111000111111111111111110 Henturas $19+111111110011111110011111010111111111111111110$ Henthras $20|111111110131111110011111| 1001111111111111110$ IIanthras $21 \mid 101110000001101100011001000000001010101111010$
 Honduras 2311111111001:11:110111111101111111311111111 Hmaturas 24111011110111111011111111001111111111111111 Honcturas 251111111101111110111111101111111111111111 Henchras 2 2 111011111001111110011111100111111111111111111 Honchras 27 11111100101111111101111111101111111011111190
 finnethras 201111110010011111001111111011111111111111111
 Hinchiras $31111111001001111110011111110011111111|111| 1|1|$ Henchras 32111011001011111110001111110001111111111111111 Hencturas 331111111110011111100011111100011111031111111111 Honchuras 34111011111111111100111011011111111111111 Henchras $351111111101111!111001100111011111111111111111$ Henthras 3611111111001111110111011101111111111111111 Honchras $37110111000001110: 00011111111011111111111111110$ Honchras 38111111111000110000011101111011111111111111111 Henthras $39111011111001111 / 11011|1111011111111111| 1|1|$ Henthras $4011111111100111!11001111111101111111111111111$ Indmesis $01010100000111111: 000100000001110110010000000000$ Indmesia 02 | $101110001 \mid 1111100000000000000000000000000000$ Indenesia $031110110000006^{n} 0001101000001110010101111111000$ Indmesia $04 \$ 111110001111141001101000001111111110111110100$ Indmesia $05000000000|1| 111.00111111000|111| 10000111110000$ Indcriexia 000010000001110001000000000000000000000010100000 Indernesia 071111110000000000001110010001110110100111110111 Indmesis 0811101100100000 C 0001100110000000000000111101101 Indimesa 001011000000000000001110110000110000000100100000 Indmests 100001000001111111001100000000000000000101110110 Ind Indmesia 121101110101011101001100001001111110100111111100 Indmesia 1 ! $11101100011|11010011010000011| 101|1| 1|1| 110000$ Indtresia 141100111011111111001100000001000010000110101110 inctrmexa 151001111001111111301110110001100000010100000010 Indmesan lo 1311000001111111000000000000111111110111110000 Indmesia 19110000000 | 11110100000000001100000000100001110 Indmesta 18000000000000000 1001 110010001100000000111100000 Indmesia $10000001000000000 . n 01$ 1 $100000011 / 11111010101000000$ indrnesa 201111110001111131600000000000111110010111111100 Indonesia 210111110001111110000000000000000000000111100000 Indrnesa 22 |1010|1001|11111701010000001000000000110101000 Indmesia 231101110001111101101100000001000001100111111100 Indmesia 24111111000111110 ' 301110001001010010000110100000 Indmesia 251110001001111121000000000001010000010101001000 Indmexia 201111100001011111501110010001101101100111010100 Indmesis 27 II 11000001111101000000000003000000000111100000

Indonesia 280000000000000000001110000001001110010100110010 Indonesin 291100110001111100001100000001100001100001101001 Indonesia 101111110001111101001110000001111110000111110110 Indonesia $31111111000000000000 \mid 111000001101110110111101000$ Indonesia 321101100000000000001101100000000000000101101101 Inclonesia 3311110100011111000011110000011111100001111111100 Indonesia 34 1111111001111101101101000001111111110111111000 indonesia $351|1| 110001|1| 1|100| 1000000011000100001111111000$ Indenesia 3611111000011111110011100000001000100001111111000 Indmesia 3700110000011111110011111100001110010000011100001 indenesia 3811000000011111111000110000000000010000000000000 Indmesia 391000000001111100000000000001100001100111000010 indonesis 401110100001111001000110010001111000100111010000 Indonesia 41 1 100010000000000001101100000000000000000000000 Indmesia 42 1111111000000000000000000001100101000101000000 Mhits 0 | 11 | 11111100000000001111111100000000001111111111 Mhita 021111110101111101000011001111110111111000000000 Mbila 0311111101010000010011110001010101111111000000000 Mhita 040000000001111001000011001000000000000000000000 Mhila 050000000000100101001011111110110111111111111111 Mbis 060000000001110001001111001110000000000000111010 Mbita 07000000001111111001111111110111111111111111111 Mbita 081101110001111000001111111100111111111111111111 Mbila 091111111101111111001110000000000000000011111000 Mbila $1000000000111111010011101101011 \mid 1111111111111111$ Mbia |1 |111111000000000001011111100000000000111111|111 Mbita 12 |11111011111011100111110010101111111111111111 Mbito 131111111101111100001111101000111111111111111111 Mhta 1411111111101111110011111011000000000001111111111 Mbita is 1111111111101100001010000101111111111011111111 Thita 161111111111010101001111110100111111111111111111 Mbira 17 11111111111110110011011011010111111111111111111 Mbita 18111111111111111001111100100001110111111111111 Mhita 1911111111111110000100110011101111111111111111 Mlyita 201111111011011111001111110101111111111111111111 Mhita 2101110000001111000010000000010011111100011111100 Hibita 22 11101100111111110011111001011111111101111111111 Mbita 231110111110111010011111001111111111111111111 Mbita 24 111111111111111100111111010111111111011111111! Mbita 251111110111111010001111111100000000000111111111 Mlbid 26 1110111111111111001111101100000000000111111111t Mhita 27111111111111111100111111101111111110111111111 Mhila 28 IIIII11011011111001111101101111111110011111111 Mbita 291110111111111110011101011010111111111111111 Mhita 3011111111101111100111110000000011110100111111 Mbita 31 1110111110111111001110110101111111111000000000 Mbita 32110011100111011000101111010111111111111111111 Mhila 331111111110011110101011100001111111110111111111 Mthis 3A11|11111111111110011111|01011111111101111111111 Mbita 350000000001111111000111111101011111110111111111 Embu 0101101110001111111111111111111110111101111111 Embu 0201001110001111111101111111111111011111111111 Enbu 030100001000001111110000101011110110111110011100 Embu 04111001111011111111111111111111110111111111111 Enbu 05111111111000111111111111111111111111111111100 Emluu 06 1111111110111111111111111111111111111101111111 Embu 071111111101111111111111111111111111111111 Embu 08111111110111111111111111110111111100111111 Embu $091111111101111100111111111111101111011 \mid 111$ Embu 10 1111111101111111111111111111111111111111111 Embu 11111111111011111111111111111111111111111111111 Enbu 12111111111111111111111111111011110111111111111 Embu 1311111111000000000111111111111110111111111111 Embulalllllll1011111111111111111111111111110111111 Embu IS 11111111111111111111111111111111111101111111 Enbu 16 1111111110001100011011111101111111111111111111 Embu 17 1111111110000000001111111111111110111111111111 Enim 181110111111111111111111111111011111111111111111 Embu 19 |ll|llll11111111110111111111111|1111111111111 Embu 20 III11111111111111011111111011111111111111111 Enslue 21 11111111111!111111111111111111011111101111111 Entu 22 II111111101111111111111111101110111111111111 Erubu 231111101101111111110000101111100110111110010000 Emhes 24 [111111110111111111111111111111010111111111111 Erohu 25111111111011111111111111111111111111101111111 Estibu 26 111111111011111111111111111111110111101111111 Embu 27111111111111111110111101111111110111100111111 Embu 28111111111000111110101111111111110111101111111 Eribu 29 111111101111111101111111111100110111101111111 Enibu 30 1110111111111111111111011101111010111111111111 Erihu $31+11011111111111111111111111011010111111111111$ Eruhu 3211111111111111111111110110111111111111111110 Embu 3311101111111111111111111110011111111111111 Enhu 3411111111011111111111111110111111111111111 Embu 35000000000000000000111111101111111111101111111 Puerto Rico $01 \$ 1001100001010000001111100001111111010110101100$ Puert Rien 0200010110000110100011111111111011111111000000000 Puerto Rice 03011011101100000000011101011010111111101111011100 Puerto Rico 04 \$111011100010100000011111011001111111100111010110 Puerto Rico 0500110010001110100001000000000111111101111111000 Puerto Rico 06 11101100001010000001111111101111111110101111010 Puerto Rico 0711001001011001100001111100001111111001111111010 Puerto Rico 0800100010010000000001110111010111110000111100000 Puerto Rica 09111011000010100000011111011011111111110111011000 Pierta Rica 1011111101001110010011111101010111111100000000000 Puerto Rico 11 110011000111100000011111010001|11|1110111110000 Puerto Rico 12 110011000011100000011110010001011111101111110110

011111111110111111011101111001101111010111111 p2 reqizurz 011110111110110111011101111001111001000111111 £2 reqrauez 00001111000011000010000001000000011000000111 ८z rquzurz 0111110110000010000000 ！ $1000000011|1101000101|$ Iz reqrautz 011111111000000000001111111000111111000010101102 AEqIzuqz 000111111101100110011101111100000111100000101161 12412u｜Z 001111111001111101011011100000111111110011111181 drqrzurz 001111110011111111001111110001110111101001111 Lt reqrave 000111111011111111011000111100001111100000101191 seqravez 011111110000111111011011010001111001010111011 Si mequzurz $00011111000011000000000000001000010000000011 \mid$｜ 1 Reqrave 001011110000101111010001110001011100011011111 \＆ 1 Reqrane 001111110111111111181111001111111110111112 21 reqracz 0100111010000000010000000000000001001000010011 II Jeqraucz 001111110010111111011111110000010110101101011101 reqlzuez 010111111000111011000100000100100011100000101160 seqrauez 111111101001011001000001001001110111100100001180 seqravez $0011111110101111000100010001000000000010100011<0$ s0．112uez 000011111100011001000000001000010110000010001190 salline 011111110011111100001001011011110111100101111 so rqizuez 011111111011111101001001010001111111100111111 bo seqizuez 011111100011111111010111100011011110011111 ह0 reqrant？ 0111110111101101111110111100100111101011111120 seqtzuez 011011011001011001001100101100100100000010111110 seqrzuez 000000000111111111000000000111111111001110011 os Epuc8 1 n 0111110111111111100000000000101111111011111011 of Epues n 0000000001111110100000000000111011111001100000 yp cput 月 $_{1}$ $0000000001111111110000000000111111111010010011 / 2 \mathrm{C}$ epurs 11111111111111100111011111｜11｜11100001001190 eput8 1111111111111110011101111110111111001 110011 55 epuces 1111111111111111011101111111011111001001011 by cpues 11111111111110111115101111110101111100001 1011 Ev epuean 11111111111110111001101111100101111000011011 战 Eputin

 01111101111111111111011111001111111010101111 of cppren 11111111111111101011100111111111111110111110118 8 cpucs 1111111110011011110111011111111111111100111111 LE cpuces
 111111111111111100111011111111111110011110115E epue8 1111110111111111111101111111111111001110011 pe cpuct 111111111111111100111111110111011111001101011 ce epued 111111111！1111！101010110110111011111000180011 ZE cpues 11111111111111110111101111111111111001101011 Is cpuex 11！1111111111110111101111111111111100111111 of gpueza 1111111110110000100111011111111111111110111111 oz cpucg 1111111111111111010110111111111111111111111182 cputern
 11111110111111111111111111111111101011011192 cpuc8n 1111111111111110111111111111111111010110011 sz epucs 1111111111111101101110001111001000000001000011 vz epueèn Illlllllllllllllollllllll1000011110000101011 č cpucen 111111111111111011111111111101111000000000 zqucen 111111611111111101111111111101111100111101112 ⿷匚uc8 1111111111111111011101111000111111111111011 oz 다u48 11111111111111110111111111001111111011111111 61 ธpuct 1111111111t110110t111111110011：111101111111181 epucs 1111111111111111111101111111111111011110111 4 t tpues 111111111111011101111111100101111101111111191 epucy I111！ 0111111111111110011111111001111111001110011 ｜ 11111111111111111111111111111011111001110011 है $\mathrm{Epuc} 8_{\text {月 }}$ 1111111111111111111101111100111111100111101121 epue8 （1111111111111110111111111111111100111101111 epuedn IIIII 101111111111111111111111111011111101 cpued 1111110111111111011111111011111111111011011160 tyutifn 111111111111111111111011111011111111011011180 4．pucy 1111111111111111111101111111111111110110111 20 cpucin 1111111111111111111111111100111111101011111190 cpuc合 111111111111111101110111111111111100111001150 c！puren 11111111111111111111011111111011111001111011 to cpucen 11111110111111111111111111111111111001110011 60 upucs 111111111111111111111111111111111100111101120 cpucs 1101111011111111011111111111111111000110011 10 mpusen 000000000111111101101001111100000000011111111105 erutzach 0000000000111101111100000011000000000110100100 op e！Mezue 00000000011111110101100111110000000001011111118 Br eruczue 1 0000000000110000100000000011000000000111111010 LP CIUEZVE ］ 00000000010111101001001111110000000000110111109 p 01uzzued 001011011111111111100000000000011110110111111150 vickevid 1111111111110111111010011111000101110111111111 pr enezues
 11111111111！111110110011！110001011111111001112p EREZRD
 111111111111111110110011111000101111111111111 of Bnezuel 111111111111111110110：11111000101111111111111 65 Engeve 11111111111111110110011111000111110111111118 8E Enuzare］ 111111111111111111011001111100111111011111111 LE emezued
 1111111111011111110000000000001111101111100111 SE EREZUT 0011110111111110011100110011111111111000001110 DE EREZUE
 $1111111111111101100111111101111111111112 \varepsilon$ ornezue 01111111110000000100100［111100000000011111｜1｜IE 0RERUE
 01111111111111111101001111100000000011111111162 arnezue 01111111111111111101001111100000001100000010082 enczuw

11111111111111111010111111011111111000000100 L2 cruezue 11111111110111111000000000011！111111011111111 02 Elutze 0111111111111110000101111111111111101100111 s2 cluczue 510居屋 andill 1111

 $11111111111110001101111101111111011111121801^{2}$ $11111111111101000000000101111110111110^{1}$
 11111111 11 1010 （600110101111111111111111111111 そ1 enezuc」
 11111111111101100111110111111111111111101 encerues左信 11111111111111101001001111001：18110101110111 80 emezuel 11111111100111100011001111011，11100011111111120 encerve 0111111111111111001001111161011111101110111190 cuczue 011111111111110101100011110111111100000000050 cutauts 201
 （ol1001111011：1 111011111111120 ciuczut 1 $10111110000000000000000000011[1110000000000010$ ELuEzUE \downarrow millinill
 11111111011111110011110111111101111000011011118 conv pros 00101111011111101100000000101111110010110111 op culf
 1111！1111！11111111011110111111111：10010111111188 mujv qrios 11111111111111111111111111110．1111101110011 LE cong ynus
 111111111111111110111111111111，11011111011 se exulv unos
 1H0！
 1111111111111111001111111111111 110111110111 if cכujv ゅ！los
 1011111110111111110010110000111111111000110111 o？cout pinos 111111010101101111001100100011111110100011011182 coujv 4nics 11111111111111100011011000111111111100110011 L2 collv 乡inos 11111111111111110001100100011111111011011101192 csub 4nos
 $1111111101111110001_{1001110111111110110111011 \text { pz caub ipnos }}^{1011}$ 1111111101111110001001111111111100110110011 \＆cellv ipnos 11111110111111100000000011111100011111001122 colyv phos 1111110011110000000000000111111000110110011 IZ callv ynos $11111111011111111001_{100100011111111000011001102 \text { catgy yilus }}^{1011}$ 1011111110011111100101001000111111101000110011 ol mulv pims 101011111000111001100000111011111100000111101181 cotlv ymios 1111111110111111100011001110111111．10011111011 \＆1 calfV ゆilus
 $00+11111011111111001101111011111111000110011$ s1 csulv ifrios 00011110000011111100001111011111111000110011 s1 c5ujv iflics 001111101111111000100000111010010000100011 I 1 cayd mirus 100001110011001100001011000111111010010100011 ह1 coujv prous造 01111110001111110001100111011101000001011101111 Leyg wirs 11110101010011010101101100001111111011111001101 cewjV 4nols 0111111000111111000111111111111111010111011100 EJulv pros 111100011001111010000100100011111111110111111180 EDJJV Iphos $10010111100111111100010010001111111011000111011 \angle 0$ E．2HV ゆ1HOS $100000110110000100010010000011111 \cdot 01010111101190$ E．JHY thus 11101111101111110001111111111111．11011111001150 coujv prios 101111110111111100011011001111111111111110011 क0 cousv צilus $001111100000001111: 0110011110111$ co expl （1） 111111100111110001110111100000000011111001110 cJujv trios 01001111100101110111011001110011019000000110010 of ojry unaly 2001 11100100110151000110110000001010000110011 yi onty uland 0． and 1001111101110000100010111110001000010000010011 sc 0018 0）unind 0000111101110111100010111110000001010001000011 Hi usey outhy 1111111000100110110011101110100000110011010011 Et－yound d and 0011011111011100100111010101000000001000000100 0i 03n urond 00001011100111110100110001110000100011110110111 at uer uurnd 000110101011111110011101111100010111111111111182 virg unand 0000001000011111100111111111000110010011101011 l？ 020 ournd 000100010001111111110110111101000010001011101109 oard ountel 0101111110111101110000010111100000101100111101152005 a 000111110011110110111111110000001000011101110 vz uty unand 00010111000010000001101111100000010011001010 to ez ury unand 00001011101111110100000111110101110011011000011 z2 oary ounsid
 1001011101110100000111010010000011010111102 way ulund 000001110101110110011111110001111180010001111 of visy usird 0001011011111111001110111100111011111000111 bl bly 0000011111111111100110011110000101111100010111 L1 UFry unand 00000111100111011100000 ｜ 1111000011111000000000091 ury ulxind 000111110111101110011111110001101001111000000 \＄1 038 unaly 0110111111011111110011111110000000010101101111 in wiy ulsend

III. Rapid band scoring sheet for Banana weevils from different geographic locations

Zauzalar 25 1111110101111111000101111101110110111111111110 Zingihar $2011111100111110000011011011011111111 \mid 111100000$ Zanzihar 2711111111111111100111111100111111111111100110 Zanzibar 281110111001111111000111101101111111100111100110 Zanzahar 291111110111111110000111000101111111101111101111 Zanzahar 301111110001111001101101001001111010101111111110 Zanzilhar 311101111001011010000101001101110011101110111110 Zanzshar 32 11110!1011111011101101101111110111110111111110
 Zanzikar 3.8111110001111111100111001101110011100011111110 Zanzihar 351111010100111111 701111101011111110110010101110 Zanzihas 36111111001100101001111101001111111100011111110 Zanzihar 37111111000111100.101111001100100000100000100000 Zanzihar $3811118100011011: 1100101101101010010101111111110$ Zarzabar $30111111100111111: 10011111100011111111011111110$ Zonzibar $401111111101111 \cdot 10: 00101100101111111111111111110$ Zanzebar $411101011000000150000101101101|111111| 1000000000$ Zanzihar $42111111110111101 \cdot 901101100011111110100111100010$ Zanzihar 43110000000001100 C 000100001001010110000110100000 Zanzil?ar 4.11100100100000060001100001000010110100111101110 Zanzilar 451111111001111111101101101100110110101111111110 Zanzalas A6 1111110101081115000101101101111118111111111110 Zanzihar A7 1111110011181010000110110100110111110110110100 Zarzilar 4811110100111110109011111110111111110011111110

IV. RAPD band scoring sheet for Banana weevils from various locations in Uganda

UPA17.01 OPA17.02 OPA17.03 OPA17.04 OPA17.05 OPA17.06 OPA17.07 OPAI7-08 UPA17.09 OPOI8.01 OPO18.02 OPOIB 03 OPOI8.04 OPOI8-05 OPOI8.06

 Nengeru 021111111001111111101110110011101110 Nengeru 03111111101111111110111011111011111110 Nengeru 041111111011111011110111011101111111110
 Nengeru n6 11111110111111111011111111111111110 Nengeru $17711111180111: 1011010111111101111111110$ Niengeru 118111111101111111111011111011111111110 Niengeru 0911111101111101011011101110111111110
 Niengera $11111111100111 \cdot 11111011111101111111110$ Niengeru 12 $11111110011: 11111101111110101111111$

 Ntengere 1611111110011 blllllollllllllllllllllll Nengery 17 fononomolllllllll!oll1011101111111110 Nienger 18 Il 11111001111110110111011100111111110 Nengeru 191111111001111111110111011101111111111 Nengeru 20111110101111111111011111101111111111 Ntengera 21 11111010011111101101110110011100000 Niengeru 22 Inollollnilllunonllilllillllllomono Nenger 2311011110111111111011111111111111110 Niengeru 24 11 111010011611010111111110111101010
 Niengeru 26111111101111111110111011111011111111 Nhengeru 27 D11111101111111111011101111111111110 Nengeru 28 111111100111111111011101111111111110 Niengery 29 מ00 Kawanda 1901 (x) 10000011111111011100101001011111100 Kawanda n2 nol011111111111010101 1010100011111110 Kawanda 03 Dl0001011011100001111110100111100000 Kawands 0401101110 Ollllllllolllol0110111011110
 Kawanda le 1111111111 111100111011110111111110 Kaswanda 07 ח100101111111111101011011100111111100 Kawanda 08 [1] $11111111111111(x)+1111111101111011(x)$ Kawanda 09 1111111101111111101111111100000 onox Kawanda 100110111101,1 (00)|01011111100)1111111 Kawanda 11011111111111100101111111110111111111

 Kawanda 14 1010111101111810101011111110011111111
 Kamanda 161110101001111101101111011110111111110 Kawanda 17 (81101110611 1111110111111111001111110 Kawanda 18011811100111111110111111110011111111 Kawanda 19 nolol 100001111111011111111001111000 Kawanda 20111111111111111101111101110011111010
 Kawand 22 (0w ono Kawanda 23101110100111101110011111110011111011 Kawanda 240000000001111111101111111110011101011 Kawanda 2s 1111101001110011001111111110011100006 Kawanda 26011111110111101111111111110011011110

 Namunyonyi of $111010110111111100111111111100 n 000000$ Namunyonyi 02 1111!01011001111111111011111111111110 Namunyonyi 03 111H1|t;n|001111111111011111111101110 Namunyonyi 04111110191101111110001000000111111110 Namunynnyi 05 lolliotch 110111110111111111111111110 Namunyonyi 06 11 $11101(4) 1011111101111011111111101110$ Namunyonyi 071100101611001010001111011111111111110
 Namunyonyi 09 111110101-101011101111111111111111110 Namunynnyi 10 1011101m: "1011111011110111111111t1110 Namunynny If © Namunynnyi 12110110111110010()$_{1} 11001111111011110$ Namunyonvi $13111110161110111110+11111111111011100$
 Namunynnyi 1511110106,11111006111101111111111110 Namunynnyi $161111100 \mathrm{x} 11111110001111011[1110111110$ Namunyonyi 17 1111101001111111111111011111111111111
 Namunynnyi 1911011011010011111111111111111011110

Namunyonyi 2011111011010011111111101111111111110 Namunyonyi 21 1100101101111110101111111111111111110 Namunyonyi 220111101001110010001111011101111111110 Namunyonyi 23 O111000000000000001111011101111111110 Namunyonyi 241000000001111110111000000000011110100 Namunyonyi 25110010111100000001118011111111011110 Namunynnyi 260111101101111111111110111111111110 Namunyonyi 27 1011100001|l101000|1110111|1|l|l|0000 Namunyonyi 28111110100111111010111111111111100000 Namunyonyi 29001110100101111111111111111000000000 Nlungamo 010001111001000110001011111100111001100
 Nlungamo 031111111101111111111101111101111111 Ntungamo 041111111111111111101111011101111110 Ntungamo 051011111100001100001011110101110001111 Ntungama 06111111101011101111111111111011111111 Ntungamo 071111111011111011111111111111011111111 Ntungamo 081111111111111001101011011111111111111 Ntungamo 0910111111111111111101111111011101111 Niungamo 101111111011111010111111011111011111111 Ntungamo 11111111101111101011101101111011111111 Ntungamo 120111111011101010111111111111111111111 Ntungamo 131011111011111010111011111111111111111 Ntungamo 1411111110111111101111111111111111111 Ntungamo 150111111011101110110011011111111111111 Neungamo 161111111111111010111111111111111111111 Niungamo 171101111111101010111111111111111000010 Ntungamo 181111111001111111111111011111011111111 Nungamo 190911111011111010111111011111111111111 Ntungamo 20111111111111111011000000000011101111 Ntungamo 21 111111100110111111111111111011111111 Neungamo 221111111111111111111111111111011111111 Ntungamo 230111111101101110110011111111011101111 Ntungamm 24011111111111110111111101111100000000 Neungamo 25 101111101011011111011111111111111111 Neungano 260 0n11111000101110101011111111111111111 Ntungamo 27 1011101110000010000011011111011111111 Nungamo 280011111001111110100111011111111111111 Ntungamo 29000000000000000001110111111111011111 Aundagara 01 1111111101101011111111110101000100100 Bundogara 02111111111111110110111010100011011011 Rundagara 03 11t1111111111101101110111101t011/11 Esundagara 04 1111111111111110111111111110011111111 Bundagara 05 1111111111111011111011011110111011111 Bundagnra 0600000000111111110111011111011111111 Bundagara 071111111101111110110111011001011111100 Bundagara 08111111111111111110111011111011111110 Bundagara 091111111111111110110111111111011111114 Bundagara 10110111100111111111111101111111111100 Rundagara 11 noc0000001111011111111010111011011110 Bundagara 121111111011101111111111100111111110 Bundagnra 131111111101111111110111111100111111011 Bundagara 141101010001111010101111110100111011000 Bundagara 151111100101110000101110110100111111000 Bundagara 161111113501111110111010110110111111010 Bundagara 171111111001111111110111011110111111110 Bundagara 181111111100000000000111011111011111110 Bundogara 191110101111111110111111011110011011111 Rundagara 201111111101110111111111011100111011111 Bundagara 211011011101111110110000000000011011011 Bundagara 22 1111111001111110111111110110111111010 Bundagara 23111111111111110110011011110011111111 Bundngara $24 \mid 1111110011111111111111110000000000$ Bundagara 2511111111011111011011101111111011111 Bundagara 26111111100111110110111011110111111111 Bundagara 271011011101111110110119011111011011110 Bundngara 281001011001111110110110101010011011110 Bundagara $2911110111011011101101101001!1001100000$ Namubiru 01 111111110111111110000000000111111111 Namubiru 020000000011111111111111011011111111 Namubiru $03000000001|1| 1|11101011110000| 11111 \mid 1$ Namubinu 04 1111111011111111111111111111111111 Namubiru 05 11111110111111111111111111111111111 Namubiru 060000000000000000011111111011000000000 Namubiru 0711111111000000000111111111111111111 Namubin 08000000001111111111111111111111 Namubiru 09111110100111111110111111111011111111

Namutra 1013111111111111111111111111011111111 Namubirs 1111111111111111111111111111011111111
 Namuhirs $131111111111111 \mid 1111111111011111111$ Namubiru 14111111111111101110111111111011111111 Namubiru is 11111111111111111111111111011111111 Namubirs 16 111111111111111111111111111011111111 Namubiru 1700000000111111111111111111011111111 Namuhiru $181 / 11111101,111111000000000111111111$

 Namubru 23100110100111111111111111111011111111 Namubiru 24111111100111111010111111111011111111
 Namubiru 26 1011111501111110101111111111011111111

 Namuhiru 29 (0) (0) [tuzaya 01101111100111 abd 111111011110111111110
 Exuzaya 03 1111111111111111110nlmonlfolollll1110 Eazaya 04 |111111111, ?11111111011111111110111

 Ruzayn 071111111101111111111101101111111111 Ruzaya 9 (1111111011,1111101111011011110111111 Ruzaya 0911111110111111111111011111010110110 Buzayn IS |111111111111111111101111101111011 Ruzaya 11 |111111111111:1111111111101011111110
 Huzaya 13 1111101(x)f11:11111110n1111110110111
 Ruzaya 15 |lllll|lolll111111111011101011111111 Huzaya 16 1011111111111111111111011101111111110 Buzaya 171111111111111111111101111011111111 Buzayn 1811111110111101111111011111110110010 Ruzaya 1910111110111311111111111111010110011 Euzaya 20 10111110111110m0n!111111110|1111111
 Ruzayn 2211111110010018001001111011111011110100 Ehuzaya 23 111111111111111111111101011101111011 Suzaya 24 11111111111111101(x)11111111011110100 Buzaya 25 100110100111101111111111111010111011 Buzaya 26111111110111,111101111011111010111111 Buzaya 2711111110111111111111010111111000000 Huzayn 28 111111|(א)11:1 11!01111010111011111111 Kuzaya 29111111111111111111110111100000000 Kahukye 01 101010 01011111101111111000201100000
 Kahukye $031111111101, \cdot 1111101111111111111111110$ Kabukye (14 |11110110111"110191110100(6)1111111||

 Kahukye 1971111011011111011111111101011111110 Kabukye 18 111110110) $11!10111111011101111116010$
 Kabuky 101111111011111101111101110111111111
 Kahuk 12111110110111111011111110111111111110 Kabukve 13111111101111101111191111111110111 Kabukye H111111110111111110110111111011111110 Kahukye 151111101101111110111110110101111111110 Kahukye 161111111011111800111111010111111111 Kabukye $17111111110111: 11011011111010111111111$ Kahukye 18 10110 (x)000111110101111111010111111111 Kahuke f9 111110t1011!11101!1!1!11110111111111 Kahukye 20 1100101000111110111111001100111110111
 Kahukye 22 111000110111111011111010nionoll101110 Kabukye 23 10!0000101111111110110011111111110111 Kahukye 241011000 K 1111110111111011100011110100 Kabukye $2511111111010100(0000 \mid 1000) 11100100101000$ Kabulye $261100000 n 0116111011110 r \times 00000011001110$ Kabukye $27111111100 \mathrm{~b}_{2} \mathrm{n}$ w(\%)KJOII 1011111111111100
 Kahukye 29 1111111101111111111111111011111111 Kalegweri ol 1111111101 wimoxnol 11101010111110110

Kalegweri 03011111111111110111111111101111111111 Kalegweri 040000100001111110111111111110000000000 Kalegweri os 111111100111111011111111111111111111 Kalegweri 06111111110000000001111111111101111111 Kalegwer 071111111111111011111111111111111110 Kalegweri 08 0111111101111110111111111111111111111 Kalegweri 09111111001011100110111111100111111111 Kalegweri 10111111111111110111111111110111011111 Kalegweri 11 1111111111111110111111111110011011111 Kalegweri 12 11111111111181t0101111111110111011111 Kalegweri 13001110100111111110000000000111011111 Kalegweri 14 1111111311111110101111111100111111111 Kalegweri 151111111111111111111111111111110111111 Kalegweri 16 1111111011111110101111111111111011110 Kalegweri 170000000001111111101111111111011111111 Kalegweri 18111111100000000001111111110111111111 Kalegweri 19000000000100000001111111111111111110 Kalegweri 2011111111111111010111111110011011110 Buwnma 011011011000111100101111111110001101111 Buwama 02111101100111110010111111111001111111 Ruwama 03111101100111110010111111110111111111 Buwama 041111011000111110101111111110011111111 Buwama 051111111000111111101111111110000000000 Buwama 061011111000111100101111110110011101111 Euwama 07101111110111111010111111110011111111 Ruwama of 1011111000111110101111111110000000000 Buwnma 09111111110011110010111111110011111111 Buwama 101111111100111100101111111110011111111 Buwama 111111111000111110101111111110011111111 [Buwnnin 121111111001111110101111110110000101110 Buwamn 13111111100111110101111110110011011111 Buwama 141111100000111110101111110110011101111 Buwama 151111111000111111101111111110011110111 Buwama 16 10111100111111101111111110001011111 Buwama 171111111001111111101111111110011111111 Euwamn 181111111000111110101111110110010011111 Ruwama 191011111001111111101111100110000000000 Buwama 2011111111011111110111111110010111111 Ruwama 2111111110111111110111100110011001011 Buwama 221111011001111111101111110110000000000 Buwama 231111111100111000101111111110000000000 Buwamn 241111111101111111101111111110000000000 Buwama 251111111101111111101111001110000000000 Ruwama 26111101100011111110111111110011111111 Buwams 27 1111111100111000001111111110111111111 Buwama 28 1111111001111011101111011110111110000 Buwansa 29 |l11|l|l|l|l|0|l|00000000000000000000 Kukanga 01101111100111111100000000000111011111 Bukanga 02111111100111111110111111111111011011 Bukanga 0300011111011111111111111011111111001 Buknnga 04111111101111111111111011111111111 Bukanga OS 1111111001001100101111110111111011011 Bukanga 060000111001001110101111111110111111001 Bukanga 071111111101111001100000000000111111001 Bukanga 081111111011111111101111110111111011111 Eukanga 090011111001111111101111111111111011111 Rukanga 100011111001000001101111111111111011101 Bukanga 11111111101111111110111111111111111001 Bukanga 1211111111111111111111111011110001000 Eukanga 1300000100011110111111111111111011011 Bukanga 1410111111011111111111111111111111111 Bukanga 151110111101111101011111111111111111001 Bukanga 16100110100111101111110011111110111011 Buxanga 17101111111111111110111110111111111111 Bukangn 18 10111111011111111111111111111111111001 Bukangn 19 11111111111111011111111111111111111 Bukanga 20000000000101101110011110101111111101 Bukanga 21 101111111111110110111111111111111111 Bukanga 22 1011111110000000001111111111111111111 Buknnga 23 1111111101111101001311111110111111001 Bukanga 24 1111111101111111101111111111111111011 Bukanga 2510111111011110001 (x) 111110110111111111 Bukangn 26 11111111011111111111111111111111111 Bukanga 271011111101111110110111111101111111111 Bukanga 281011111111111111011111111100010000000 Bukanga 29010111110100001000011111111111111111 Bunyaruguru 011011011101011011110000001100001000000 Bunyaruguru 021011001000101111100010111001011100000 Eunyarugura 031111111011111110111010101111111111 Bunyanuguru 041111111111011111111001110101001101100

IV. RAPD band scoring sheet for Banana weevils from various locatoons in Uganda

 [Bunyarugura 07110111110101111111101011111001110 In

 tunyaruguru ll 11111110011111111100000000111011111 Ituny raguru 121111111101111011111011111110010011100 Bunyaruguru 131111111101111111100000111001101111100

 Bunyarugura 1610111110 1011011111080111111001010100 Bunyaruguru $17111111100!111101101001111111101111111$ Runynaguru 1811111110.1111011010011111011101111110 Runyarugurs 191111111 i 01011011011011111111001010110 Hunyarugury 20 0nonernann! (0) 001110111111111001110010 Bunyaruguru 211111011111110111101111111111111110 Aunyarugura 22011101110111101100011111111111111110
 Bunyaruguru 24 $11111110: 1101111111101111111101111110$ Bunyarugurs $251111101011110101 \mid 10111111111111110010$ Bunyaruguru 26 I 1111111111111111000000000111001010 Runyaruguru 2711111111111111110010111111111111111 Runyarugure 28 0nosononn!11111110n11111111111111111

 Ntinkalu 16 1 111111101111001101110111011100111 in
 Noink alu ne $11101010 n+1111110111111111110111110$ Ninkalu $1991|1| 111111111001101111011 \mid 11111111010$ Ninkalu 10111110110111101110111111111010111111 Ntinkalu ll Ol $101011011111110101(400110110111010$ Noink alu 12101111101111011101011210111110011010 Nainkniu $1311111011011110 \mid 110111111111111111110$

 Nunk alu 171010111101119611101111111001111111010 Nunkalu $181111111011111110|1| 111111111111111$ Nenkalu $19011111101111.1110111101111101111111:$
 Nhinkalu $211111101 \mid 01111,1110111111111111111110$ Ninkalu 22 1|l0|11|011110111011|l111111111101110 Nunkalu 23 (101010100 1 11 : 0 00 1111110111101101000000 Ntinkalu 241111111011111601111111111111111111

 Neink alu $2811110110111(11000100011000010900101110$
 lkurwe 0111111110111111000111111111111111111 lkurve 02 1111111001111,1111000000000111111110 kurwe 031111111101111111110110110101111111110 Ikurwe $0411111:: 111: 1111111000000000111111111$ Ikurwe $0511111111101111111111111111111001110 n$ lkurve 06 1 111111111111111111000000000111111110 kurwe 07 1111111011111111111111111111111111110 kurve 081111101100111111011100011110110001100 Jkurwe 091111111111111111100000 onnollllllllo
 lkurwe II 111111100111111111111011111111111110 Ikurwe 12 (moxyoronol $1111 \cdot$. 1011111011111111111111 tkurwe 131111111011111111111101111111111111 lkurwe 14 111111101|lllillllllllloll|lltlllll
紋we 16111111111111111111111111111111111 lkurwe $171111111111111: 11111111011111111111$ kurwe 18 1111111011111! !111111111111111111111 lkurwe 191111111111111111111111111111111111 kurwe 20111111110 oll111111111111111111111111 lkurve 21111110100111111111111110111111111011
 Ikurwe 23 1111111101111111111111111111111111111 lkunve 24111111101111111111111111111111111 Ikurwe 25111111111000100000111111111111111111 ikurwe $2611111111101110(0) 0111011111111111111$

Ikruwe 271111111110111110001110011111111111111 Ikruwe 28 |111111111111111111100011111111011111 Ikruwe 291111111111111110110000000000111001110 Lakeshores 01111111100111111010111110110111101101 Lakeshores 02 1100101011111000101010111110111111100
 Lakeshores 041111111011111110100111111110111111111 Lakeshores $051111111111111101011101111101 \mid 1111111$ Lakeshores 061111111101111110101111111111111101111 Lakeshores 07 Il11111111111110101111111110111111111 Lakeshores 08 1111111001111110101111111110111|11111 Lakeshores 09 ! 111111111111101011111111111101111 Lakeshores 100111111111111101011111111111111111 Lakeshores || 101111100111110111111111110111101111 Lakeshores 121111101001111101011111111111101111 Lakeshores 131111111111111010111111111111111111 Lakeshores 14111111001111101011111111111111111 Lakeshores 150010101001111110101110111110111111111 Lakeshores 16111111100111111010111111111111111111 Lakeshores 17101111110111100101111130110111111111 Lakeshores 180011111101111110101011111111011101111 Lakeshores 190111111101111110111110111111111111111 Lakeshores 200111111011111010111111110111111111 Lakeshores 21 noll111101111110101111111111111111111 Lakeshores 22 D1001010000000000001 10010000111100000 Lakeshores 23 מ11111110111111010111111111011101111 Lakeshores 240011110011111101111111111011101111 Lakeshores 25000000000111111010101111111111101111 Lakeshores 26 1 111111101111110100110101110111111111 Lakeshores 271011101000111110100100000000111111111 Lakeshores 280011101001111110110100000000111111111 Lakeshnres 291001101100000000000111010000111110001

