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Zeyaur Khan a, Emily Kimathia, Rachel Owinoa and Saliou Niassya

aInternational Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya; bDepartment of Earth Sciences, University of Western Cape,
Bellville, South Africa; cDepartment of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum, North Sudan; dRSS-Remote
Sensing Solutions Gmbh, Munich, Germany

ABSTRACT
Monitoring of destructive invasive weeds such as those from the genus Striga requires accurate,
near real-time predictions and integrated assessment techniques to enable better surveillance and
consistent assessment initiatives. Thus, in this study, we predicted the potential ecological niche of
Striga (Striga asiatica) weed in Zimbabwe, to identify and understand its propagation and map
potentially vulnerable cropping areas. Vegetation phenology from remote sensing, bioclimatic and
other environmental variables (i.e. cropping system, edaphic, land surface temperature, and
terrain) were used as predictors. Six machine learning modeling techniques and the ensemble
model were evaluated on their suitability to predict current and future Striga weed distributional
patterns. The mentioned predictors (n = 40) were integrated into six models with “presence-only”
training and evaluation data, collected in Zimbabwe over the period between the 12th and 28th of
March 2018. The area under the curve (AUC) and true skill statistic (TSS) were used to measure the
performance of the Striga modeling framework. The results showed that the ensemble model had
the strongest Striga occurrence predictive power (AUC = 0.98; TSS = 0.93) when compared to the
other modeling algorithms. Temperature seasonality (Bio4), the maximum temperature of the
warmest month (Bio5) and precipitation seasonality (Bio15) were determined to be the most
dominant bioclimatic variables influencing Striga occurrence. “Start of the season” and “season
minimum value” of the “Enhanced Vegetation Index base value” were the most relevant remote
sensing-based variables. Based on projected climate change scenarios, the study showed that up
to 2050, the suitable area for Striga propagation will increase by ~ 0.73% in Zimbabwe. The present
work demonstrated the importance of integrating multi-source data in predicting possible crop
production restraints due to weed propagation. The results can enhance national preparedness
and management strategies, specifically, if the current and future risk areas can be identified for
early intervention and containment
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Introduction

The genus Striga is composed of several species of para-
sitic weeds of global economic importance that cause
socioeconomic losses of over 1 billion USD in sub-
Saharan Africa (Spallek, Musembi, and Shirasu 2013).
Striga hermonthica and S. asiatica are the most prevalent
among the Striga species with S. asiatica reported affect-
ing approximately 40% of arable land in the region
(Cochrane and Press 1997). These two species thrive in
climatic conditions, which are also favorable for most
cereal crops like maize, sorghum, millet and rice (Khan
et al. 2014). These cereal crops are the most important
staple crops for the majority of the African population,
with maize being grown for food purposes by more than
300 million people out of an estimated one billion popu-
lation in sub-Saharan Africa (SSA: Sasson 2012).

Strigaweeds attach themselves to the roots of the cereal
crops, after germination and outcompete their hosts for
space, nutrients, and water. As a result, the growth and
development of the host crops deteriorate, causing con-
siderable yield reduction (Ejeta and Gressel 2007). In some
areas in Africa, the scourge of Striga has reached epidemic
magnitudes, causing a desperate scenario, mostly to poor
small-scale farmers (Mandumbu et al. 2017b). The most
common response practice in such scenarios is for farmers
to abandon the land and look for new croplands, a very
labor-intensive task that inevitably contributes to cropland
expansion and severe environmental degradation.

In the present study, we opted to predict the probability
of occurrence of Striga (i.e. S. asiatica) in Zimbabwe, using
vegetation phenology from remote sensing, bioclimatic,
other remotely sensed variables (i.e. cropping system,
edaphic, land surface temperature, and terrain), empirical
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machine learning (ML) and ecological niche modeling
(ENM) approaches. The advent of these freely available
earth observation “big data” from multiple sources and
ML algorithms permit access to a new paradigm of
immense opportunities to understand the earth and agroe-
cological systems over time and space (Cian, Marconcini,
and Ceccato 2018). This allows for comprehensive statisti-
cal analysis on large temporal resolution data using the
phenological characteristics hidden in these time-series
data (Landmann et al. 2019). These various time-series
inherent characteristics in the “big data,” are often con-
cealed in single snapshot remotely sensed imagery (Cian,
Marconcini, and Ceccato 2018; Ochungo et al. 2019).

Thus, these multi-source remotely sensed data, coupled
with advanced and efficient ML and ENM approaches pro-
vide a cost-effective, timely, robust and very accurate plat-
form to map and predict the occurrence of invasive weeds
like Striga (Thamaga and Dube 2019; Jafarian, Kargar, and
Bahreini 2019). In particular, mapping flowering Striga, i.e.
S. hermonthica using in-situ methods, high spatial resolu-
tion satellite data and ML has been proven to be largely
possible and achievable at the plot (Mudereri et al. 2020a)
and field scale (Mudereri et al. 2019a). However, the poten-
tial of using these remotely sensed data to detect and map
the risk posed by the understory Striga such as the
S. asiatica, which exists completely covered underneath
crop canopies has not been attempted anywhere, more
so at landscape scales or by using multi-source data. This
deficit in information is mainly attributable to the hetero-
geneous nature of the agro-natural landscapes in Africa
and the multiple spectral responses obtained from crop
fields that are infested with understory Striga weed, which
cause enormous errors in their detection and mapping
(Mudereri et al. 2019a).

When used in species distribution modeling, ML and
ENMs correlate the present location (“presence-only” or
“presence-absence” data) of a species with the appro-
priate predictor variables (e.g. environmental variables),
thereby providing a statistical link between the spatial
differences of the predictor variables and the dispersion
of the species in the environment, in our case Striga
(Ayebare et al. 2018). Accuracy of the ML and ENM relies
on the precision and distribution of the “presence-only”
data tied with a careful selection of ecological and cli-
matic predictor variables (Elith et al. 2010). However, it
can be inferred that there is no universally best ML
algorithm, which warrants the scoping into the best
predictive model and the best predictor combinations
for species distribution (Guo et al. 2019).

Therefore, identifying robust ML and ENM modeling
algorithms that can select the most relevant predictor
variables from multiple ecological covariates to predict

the occurrence, propagation and distribution of the
understory Striga species such as boosted regression
trees (BRT: Friedman 2001), classification and regression
trees (CART: Breiman et al. 1984), flexible discriminant
analysis (FDA: Fisher 1936), generalized linear model
(GLM: Nelder and Wedderburn 1972), random forest
(RF: Breiman 2001) and support vector machines (SVM:
Vapnik 1979), is crucial. Moreover, integrating the remo-
tely sensed and bioclimatic data in such ML and ENM has
been reported in other studies as the best way to pro-
duce reliable and accurate results by harnessing the vast
information provided by the intrinsic phenological vege-
tation metrics and the external influence of climatic
variables (Kyalo et al. 2018; Makori et al. 2017).

However, there is a hugedeficit in information regarding
the use of such technology on analysis and mapping of
Striga distribution and risk particularly the influence of
climate change on the distribution of Striga in Africa.
Many studies have investigated the effects of climate
change on a range of species, showing that change in
climatic conditions has a profound impact on species dis-
tribution ranges (Mbatudde et al. 2012; Wan and Wang
2019; Guan et al. 2020). To the best of our knowledge,
there is no precise spatial information or scenariomodeling
detailing the current or probable risk that climate change
will impose on the distribution, occurrence, and severity of
Striga in Zimbabwe or on the entire African continent. The
risk inflicted by these parasitic weeds is likely to be wor-
sened by climate change and the inadequate adaptive or
mitigation capacity, in addition to the limited impact doc-
umentation leading to inadequate preparedness (Niang
et al. 2014).

Thus, identifying and controlling these invasive weeds
before they can spread to new environments requires
better surveillance and constant monitoring across the
African countries with adequate, cost-effective tools and
methods . We, therefore, hypothesized that climate
change might cause restrictions or expansions on the
distribution of Striga species through altering host avail-
ability or imposing Striga intolerable or suitable climatic
conditions (Cochrane and Press 1997). Thus, the uncer-
tainties brought by these future climate scenarios neces-
sitate robust and accuratemappingmethods and relevant
environmental multi-source variables and datasets to esti-
mate and predict the potential and actual impact of cli-
mate change on the current and future distribution of the
biological niche of Striga in Zimbabwe.

Study area

We predicted the occurrence of Striga in the 10 pro-
vinces of Zimbabwe (Figure 1). Zimbabwe is
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a landlocked country in southern Africa covering a land
area of ~ 390 753 km2, which shares borders with
Botswana, Mozambique, South Africa, Zambia and partly
Namibia. It is bound within latitudes 15.6° and 22.4°
South and longitudinally between 25.2° and 33.1° East
(Kuri et al. 2018). Geographically, the central part of the
country is located on a high plateau forming
a watershed between the two major river systems, i.e.
Zambezi river in the north and Limpopo river on the
south. The country has a remarkably varied climate,
marked by the differences in latitude which charac-
terizes the wide-ranging rainfall patterns and extensive
agronomic activities. It is situated within the tropics and
experiences the short cold, dry season between May and
September, while the period November to April is

marked by heavy rainfall (Mudereri et al. 2019b).
Zimbabwe is subdivided into five agro-ecological
regions that vary in temperature, rainfall, soil and agri-
cultural potential (Table 1). These five agro-ecological
regions include regions I and II referred to as the
Highveld; region III which is Middleveld, while region IV
and V are referred to as the Lowveld (Sungirai et al.
2018). In Zimbabwe, the lowest annual rainfall is
400 mm which is received in region V and the highest
amount (1 200 mm) is received in region I. The mean
annual temperature ranges from 16°C in the regions
I and II to ~ 26–35°C in the southern Lowveld (Kuri
et al. 2019). Approximately, 11% of the country is arable
land with ~ 0.31% of that arable land being continuously
under different crops such as maize, wheat, sorghum,

Figure 1. Location of Zimbabwe in Africa and the relative location and boundaries of the five agro-ecological regions of the country
which characterize the study area. See Table 1 for a detailed description of the agro-ecological regions.

Table 1. Characteristics of the five agro-ecological regions of Zimbabwe (Mugandani et al. 2012; FAO, and ACFD 1999).
Agro-ecological
region

Average annual rainfall
(mm year−1)

Mean maximum
temperature (0C) Dominant soil type Agriculture potential and farming system

I >1000 16–19 Acrisols, Ferralsols Suitable for dairy farming forestry, tea, coffee, fruit,
beef, and maize production

II 700–1050 19–23 Cambisols, Luvisols, Arenosols Suitable for intensive farming, based on maize,
tobacco, cotton, and livestock

III 500–800 23–26 Arenosols Suitable for intensive farming, based on maize,
tobacco, cotton, and livestock

IV 450–650 19–26 Leptosols, Vertisols, Solonetz Semi-extensive region. Suitable for farm systems
based on livestock and resistant fodder crops.
Forestry, wildlife/tourism

V <450 26–32 Leptosols, Vertisols, Solonetz Extensive farming region. Suitable for extensive
cattle ranching. Zambezi Valley is infested with
tsetse fly. Forestry, wildlife/tourism
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and millet. Of these crops, maize is the most economic-
ally important and commonly grown cereal crop at both
small- and large-scales (Kuri et al. 2018).

Methodology

Figure 2 shows a flowchart that explains the entire metho-
dology adopted in the present study for modeling Striga
invasion risk.

Striga occurrence data collection

The Striga “presence-only” data were collected between
the period 12th and 28th of March 2018. The data collection
period matched with the flowering phase of Striga in
Zimbabwe. We targeted the flowering phase since this is
the best time to differentiate Striga fromother co-occurring
weeds (Mudereri et al. 2020a). Reference “presence-only”
data were gathered within maize croplands, which in our

study area were mainly mono and mixed maize cropping
systems. The mixed cropping system is mostly
a combination of maize with groundnuts, round-nuts or
beans. We employed a purposive sampling approach using
local expert knowledge (i.e. extension officers and farmers)
to assist in the identification of the Striga infested fields.
A handheld global positioning system (GPS) device with an
error margin of ±3 m was used to locate the reference
control points. We avoided the edge-effect by collecting
the Striga “presence-only” data at the center of the field
(sampling unit: 30 m x 50 m). A total of 50 “presence-only”
Striga reference data were collected covering the six dis-
tricts in Midlands and Masvingo provinces (Figure 1);
namely Bikita, Chivi, Gweru, Masvingo, Shurugwi and Zaka
(agro-ecological regions III and IV). These points were
spread across the different elevation gradients (400–1
600 m a.s.l), except for the highest elevation in the Eastern
highlands (>1 600 a.s.l). Agro-ecological region V, which
was not sampled, is the regionmainly reserved for livestock

Figure 2. Flow diagram of the methodology of Striga invasion risk modeling. The six models used are random forest (RF), generalized
linear model (GLM), support vector machines (SVM), classification and regression trees (CART), flexible discriminant analysis (FDA) and
boosted regression trees (BRT).
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production in Zimbabwe and is characterized by non-
arable land and pastures (see Table 1).

Predictor variables

The predictor variables that we used in the present
study were grouped into two main categories, i.e.
bioclimatic and remotely sensed variables (Tables 2
and 3). Variable spatial and temporal resolutions are
a key notion in determining a dataset’s fitness for
a given use as they influence the pattern that can
be observed during the analysis (Degbelo and Kuhn
2018). However, Csillag, Kummert, and Kertész (1992)
pointed out that there is no single best resolution
when combining environmental variables of varying
resolutions. In our case, we had variables ranging in
pixel size from 1 km x 1 km to approximately 250 m
x 250 m spatial resolution. This variation influences
the integration of multiresolution variables within
models. We, therefore, counteracted the variation by
resampling all the datasets to the lowest spatial reso-
lution of 250 m x 250 m pixel size. In addition, the
vegetation phenological variables were derived from
multidate input data, while other remotely sensed
and the bioclimatic variables were generic. Thus,
only their respective derivatives (i.e. output variables)
from the TIMESAT model were used as inputs in the
invasion risk modeling analysis to offset the effect of
the temporal variation. Therefore, we do not

anticipate any influence of spatial or temporal resolu-
tion on the accuracy of our models. It is further worth
noting that all our predictor variables are freely
available.

Bioclimatic variables
We used 19 bioclimatic variables (Table 2) that are
freely downloadable from the WorldClim platform
(www.worldclim.org) at ~1 km x 1 km spatial resolu-
tion to determine the key climatic conditions influen-
cing the distribution of Striga in Zimbabwe for both
the current and future climate scenarios. Four repre-
sentative concentration pathways (RCPs) were set by
the intergovernmental panel on climate change
(IPCC) using the total radioactive forcing of values
2.6, 4.5, 6.0 and 8.5 watt/m2 (IPCC 2014). In this
study, we only used the current bioclimatic data (-
1950–2000) and a one-time step of the future climate
data of the maximum emission (RCP8.5) for the CO2

concentrations predicted for 2050 (average of predic-
tions for 2041–2060: Guan et al. 2020). The future
climatic data were obtained from the fourth version
of the community climate system model (CCSM4),
which is one of the models that provide the most
efficient global future climate projections
(Mohammadi et al. 2019; Mudereri et al. 2020b). All
these bioclimatic variables were clipped to the
Zimbabwean country boundary and resampled to
250 m x 250 m pixel size, to match the size and
extents of the remotely sensed variables.

Remotely sensed variables
We used a total of five remotely sensed variable cate-
gories: cropping system, edaphic, land surface tempera-
ture, terrain and vegetation phenology (vegetation
seasonality characteristics) (Table 3). These variables
were selected because they were reported in several stu-
dies as key determinants of Striga distribution
(Mandumbu et al. 2017a; Oswald et al. 2001; Parker 2009;
Mudereri et al. 2019a). All the remotely sensed variables
that were not in the 250m x 250m spatial resolutionwere
standardized and resampled to this pixel size.

Cropping system variable. We used the cropping sys-
tem variable provided by the study of Landmann et al.
(2019). The variable was obtained at 30 m x 30 m pixel
size with three categorical classes: rainfed wildland,
rainfed cropland, and irrigated cropland. The cropping
system variable for Zimbabwe was derived at 97% accu-
racy (Landmann et al. 2019) using vegetation harmonics
of the time-series normalized difference vegetation
index (NDVI) derived from Landsat 8 operational land
imager (OLI) images.

Table 2. Bioclimatic variables used in the species distribution
models for Striga occurrence prediction and their variance inflation
factor (VIF) values. The variables in bold were used in the final Striga
occurrence prediction after eliminating highly correlated ones.
BioClim
Code Environmental variable description Unit

VIF
value

Bio1 Annual mean temperature 0C 7.30
Bio2 Mean diurnal range [mean of monthly (max

temp–min temp)]

0C 3.05

Bio3 Iso-thermality (Bio2/Bio7) (×100) 3.25
Bio4 Temperature seasonality (standard deviation

×100)
2.00

Bio5 Maximum temperature of the warmest
month

0C 8.21

Bio6 Min temperature of the coldest month 0C 10.23
Bio7 Temperature annual range (Bio5–Bio6) 0C 12.63
Bio8 Mean temperature of wettest quarter 0C 5.04
Bio9 Mean temperature of driest quarter 0C 1.92
Bio10 Mean temperature of warmest quarter 0C 8.73
Bio11 Mean temperature of coldest quarter 0C 1.62
Bio12 Annual precipitation mm 2.76
Bio13 Precipitation of wettest month mm 7.27
Bio14 Precipitation of driest month mm 3.91
Bio15 Precipitation seasonality (coefficient of

variation)
mm 4.32

Bio16 Precipitation of wettest quarter mm 4.70
Bio17 Precipitation of driest quarter mm 6.33
Bio18 Precipitation of warmest quarter mm 5.41
Bio19 Precipitation of coldest quarter mm 2.58
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Edaphic variables. We used four soil properties that
were downloaded from https://www.isric.org/explore
and referred to as the “AfSoilGrids250 m” (Hengl et al.
2015). Specifically, we used the Africa soil grids pro-
duced at 0–30 cm depth with a spatial resolution of
250 m x 250 m. The soil characteristics data includes
total soil nitrogen (N) (mg/kg: ppm), soil pH, soil organic
carbon (SOC) in g/kg and sand content (50–2000 µm) in
g/100 g (Hengl et al. 2015). These variables were chosen
because they broadly influence soil fertility, and thus the
potential occurrence of Striga. Several studies have
established that depleted soil fertility leads to rapid
propagation and thriving of Striga within croplands
(Ekeleme et al. 2014; Yoneyama et al. 2007).

Land surface temperature. We used “day time” Land
Surface Temperature Climate Modeling Grid (LST_Day_
CMG) available in K, simulated from Moderate
Resolution Imaging Spectro-radiometer (MODIS) data
and available at https://lpdaac.usgs.gov/products/
mod11c2v006/, (Wan, Hook, and Hulley 2015).
Specifically, we used the “multi-day” MOD11C2 LST pro-
duct of 5.6 × 5.6 km spatial resolution available from
the year 2000 to the present. We chose LST because the
cereal chemical that triggers Striga germination requires
optimal temperature (i.e. 22°–30° C) and Striga seeds
also need an optimum soil temperature range to germi-
nate (Rich and Ejeta 2007). We, therefore postulated that
the surface fluxes measured by LST would be one of the

proxy key variables that immensely predict the potential
germination of Striga seeds.

Terrain variables. The terrain variables were calculated
from the shuttle radar topographic mission (SRTM) data
which are available as 3 arc sec (~ 90 m resolution) digital
elevation model (DEM). The vertical error of our DEM was
less than 16 m, which was sufficient for our intended
purpose (CGIAR-CSI 2019). In addition to the elevation,
we derived other terrain variables (aspect, hill-shade and
slope) using the “terrain analysis” plugin in QGIS (QGIS
Development Team 2019). The influence of elevation,
slope, hill-shade and aspect on soil type, soil moisture
content, soil fertility, soil temperature and runoff among
other factors were anticipated to influence the occurrence
and propagation of Striga weed. Striga has been reported
by other studies to be tolerant of a wide range of altitudes
from sea level to ~2 480m a.s.l (Cochrane and Press 1997).

Vegetation phenological variables. Vegetation pheno-
logical variableswere estimated from250m,MODIS 16-day
enhanced vegetation index (EVI) time-series composites.
We used a 6-year observation period between 2012 and
2018. We computed the vegetation phenological variables
using the TIMESAT software (Eklundh and Jönsson 2017;
Jönsson and Eklundh, 2002, 2004). TIMESAT enumerates
phenological harmonics that occur within a time-series
satellite dataset by superimposing localized equations to
the time-series data points. Curve smoothing functions are

Table 3. Remotely sensed variables used in the species distribution models for Striga occurrence prediction and their variance inflation
factor (VIF) values. The variables in bold were used in the final Striga occurrence prediction model after eliminating highly correlated
ones. EVI is the enhanced vegetation index.
Variable Description Units VIF Value

Cropping system
Cropping system Irrigated or rain-fed cropland/wildland Categorical 1.20

Edaphic variables
Sand content Quantity of sand in the soil g/100 g 2.44
Soil nitrogen (N) Total amount of nitrogen in the soil mg/kg 2.50
Soil organic carbon Organic matter present in the soil g/kg 1.89
Soil pH Acidity or alkalinity of the soil pH value 2.07

Land surface temperature (LST)
LST Land surface temperature K 1.07

Seasonality variables
Amplitude The difference between the maximum EVI and base value EVI value 1.09
Base value Minimum EVI value EVI value 1.60
End of season EVI value at the time of the end of season EVI value 1.02
Large integral Integral of the season from start to end 1.58
Left derivative Rate of EVI value increase at the start of the season % 1.23
Length of season Time-lapse from start to end of season Days 6.88
Maximum EVI Maximum EVI value in season EVI value 1.05
Middle of season Absolute value at the middle of the season EVI value 2.19
Right derivative Rate of EVI value increase at the end of season % 1.99
Small integral Integral of the season and base value from start to end of season 2.47
Start of season EVI value at the beginning of the season EVI value 1.04

Terrain variables
Aspect Slope direction Degrees 1.15
Elevation Ground height above sea level m 4.46
Hillshade Shading the sun effect 1.22
Slope Ground steepness % 1.76
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thereafter applied to the model to extract the seasonal
vegetation phenological parameters from these vast multi-
temporal data dimensions. This consecutively reduces the
influence of residual signal noise produced by the variation
in the raw EVI time-series data (Hentze, Thonfeld, andMenz
2016; Makori et al. 2017). For this study, we employed
a Savitzky-Golay filter to smoothen the fitting curves and
removed outliers using a 3- and 5-point window over 2
fitting steps, 3.0 adaptation strength without spike or
amplitude cutoffs, a 0.0 season cutoff and a 20% threshold
for the beginning and end of the season following
a procedure described in Makori et al. (2017). Using this
protocol, we extracted 11 vegetation phenological vari-
ables (Table 3). For a detailed explanation of the calculated
variables and how the TIMESAT algorithmoperates, readers
are referred to Eklundh and Jönsson (2017) for elaborate
information on TIMESAT variables.

Collinearity test of variables used in the Ecological
Niche Modeling (ENM)

We used 2-stage variable elimination criteria using the
variance inflation factor (VIF) and the Person correlation
coefficient. VIF detects multicollinearity by taking each

predictor and regressing it against the other variables in
a multiple linear regression analysis (Plant 2012). The
resulting R2 value obtained from this multiple regression
analysis is then replaced in the VIF calculation formula as
shown in Equation 1.

VIFi ¼ 1
1� R2i

(1)

Where i is the predictor
In this study, we chose to use the “vifcor” function in

the “usdm” package available in R (Naimi et al. 2014;
R Core Team 2019). The “vifcor” function iteratively
selects pairs of variables with high linear correlation,
then eliminates the one with the highest VIF. We set
the threshold at th = 0.7, which represents a Pearson
correlation coefficient (r ≥ 0.7) following Kyalo et al.
(2018) recommendation. In principle, a VIF value greater
than 10 is evidence of the collinearity problem within
a model (Dormann et al. 2013). Although some of the
variables from the VIF calculation process showed low
VIF values, the correlation matrix (Figure 3) revealed
further correlations among some of the variables.
Therefore, from the variables with low VIF, we selected
the variables that have been reported in the literature to

Figure 3. Collinearity matrix for ecological niche models’ predictor variables. Darker shades of blue and red color indicate high variable
collinearity, while lighter shades indicate low collinearity. Similarly, the smaller the circle, the lower the correlation value.
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be of ecological significance (Mandumbu 2017). Our
variable elimination procedure resulted in a selection
of 21 eligible variables from 40 bioclimatic and remotely
sensed variables. The 21 variables that were used in the
final modeling procedure are highlighted in bold in
Tables 2 and 3.

Collinearity amongst the predictor variables in most
ENM causes instability and volatility of the model para-
meterization and performance (Dormann et al. 2013).
The variables correlation matrix using the Pearson cor-
relation coefficient is shown in Figure 3.

Species distribution models implementation

We built Striga occurrence predictive models using the
“sdm” package (Naimi and Araújo 2016) performed in
R (R Core Team 2019). We used the 50 “presence-only”
points data that we collected in the field against 1 000
pseudo-absence points generated using the “sdmdata”
function inherent in the “sdm” package. Stockwell and
Peterson (2002) concluded that when using ML methods
for species niche predictions, the accuracy for predicting
the occurrence of a species at a location, was 90% of
maximum within 10 sample points, and was near maximal
at 50 data points. Therefore, our Striga “presence-only”
sample size (i.e. 50) was within the sufficient sample size
required for accurate predictions when an ENM is
employed at a national scale (Stockwell and Peterson
2002). Often, obtaining real “presence-absence” data is
logistically impractical; however like other ENMs, “sdm”
allows for the use of background pseudo-absence data
(Guan et al. 2020). The package “sdm” combines diverse
executions of ENMs (n = 15) within a single platform and
uses the same “presence-only” and pseudo-absence data
by applying an object-oriented reproducible and extensi-
ble framework for ENM in R (Naimi and Araújo 2016). In the
present study, we selected and inter-compared only 6 of
the 15modeling techniques in “sdm” as follows: CART, BRT,
RF, FDA, GLM, and SVM.

The CART model grows a single decision tree based
on the binary partitioning algorithm, which splits the
data until it is homogenous, using a hierarchical struc-
ture and regression tree (Breiman et al. 1984).
Similarly, the BRT model uses the same decision tree
approach but improves from the use of a single
regression tree by combining multiple decision trees
in a process called boosting (Elith, Leathwick, and
Hastie 2008). On the other hand, the RF uses these
multiple decision trees and randomly grows a forest of
decision trees, then predictions are conducted through
majority voting for the class with the highest number
of votes among these multiple grown trees (Bangira
et al. 2019). FDA is a non-parametric multiple

regression and additive technique and the GLM uses
a linear regression approach (Nelder and Wedderburn
1972), while SVM uses a hyperplane to estimate the
divergence of class groupings for the prediction
(Hastie, Tibshirani, and Buja 1994; Vapnik 1979).
These six algorithms were selected in this study
because they are widely used in conducting complex
output predictions with relatively high modeling
accuracies for regression and classification (Abdel-
Rahman, Ahmed, and Ismail 2013; Abdel-Rahman
et al. 2016; Makaya et al. 2019; Mosomtai et al. 2016;
Tesfamichael et al. 2018). A summary of these models’
execution syntax and their corresponding packages
used by “sdm” in the parallel model simulations is
provided in Table 4.

An ensemble projection approach was used to harmo-
nize the variations produced by the different model pre-
dictions. Ensembles have been reported to have superior
predictive performance as compared to individual models
(Hao et al. 2019). The ensemble modeling fits and max-
imizes the prediction accuracy with higher reliability as it
binds together the highest performance of all the models
that have the most acceptable precision and accuracy. In
the present study, the function “ensemble” within the
“sdm” package was used to harmonize the results of our
Striga occurrence prediction amongst our six modeling
algorithms using the true skill statistic (TSS) weighted aver-
age approach (Naimi and Araújo 2016). Compared to using
the most intuitive approach, which applies the mean or
median, the weighted average improves the model’s pre-
dictive ability (Naimi and Araújo 2016; Jafarian, Kargar, and
Bahreini 2019). However, the weighted average requires
validation of the selected modeling algorithms before
inclusion in the “sdm” (Hao et al. 2019). For the present
study, we set the threshold to TSS = 0.7 for the models to

Table 4. R software packages used by “sdm” in the parallel
execution of the six models; namely (a) boosted regression
trees (BRT), (b) classification and regression trees (CART), (c)
flexible discriminant analysis (FDA), (d) generalized linear
model (GLM), (e) random forest (RF) and (f) support vector
machines (SVM).

Algorithm
Syntax code
in “sdm”

Package
used Reference

Boosted regression
trees

“brt” gbm Elith, Leathwick, and
Hastie (2008)

Classification and
regression trees

“cart” rpart Breiman et al. (1984)

Flexible
discriminant
analysis

“fda” earth Hastie, Tibshirani, and
Buja (1994)

Generalized linear
regression

“glm” glmnet (Friedman, Hastie, and
Tibshirani (2010)

Random forest “rf” randomForest Liaw and Weiner
(2002)

Support vector
machines

“svm” Kernlab Karatzoglou et al.
(2004)
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qualify for inclusion in the ensemble as generally a TSS
score of > 0.7 points to high agreements between the
predictor variable and the independent data (Allouche,
Tsoar, and Kadmon 2006).

For consistency, we used the same approach to per-
form the Striga occurrence predictions for both the cur-
rent and future climate scenarios. Since our study was
more focused on the influence of climate change on the
distribution of Striga, we only varied the selected cli-
matic variables, but all the other variables were assumed
to remain constant in the future and if they would be
differences, we assumed that they would not to be sig-
nificant enough to cause major variances to the results
we obtained.

We further calculated the predicted suitable area for
the probability of Striga occurrence for both the current
and future scenarios using an average thresholding
value of all the models. Using this value, we created
a binary raster image of the presence (occurrence) and
absence classes for the whole study area. We used the
total number of pixels to estimate the total coverage of
the predicted area against the unsuitable area.

Models’ accuracy validation

The accuracy and variable importance of the models
were tested using a 10-fold cross-validation approach.
We used the relative variable contribution to the model
using the inbuilt randomly split “independent test data
set” option available in the “sdm” package. This was
automated to universally apply to each of the six models.
We further measured the performance of the six models
using the receiver operating curve (ROC) by analyzing
the area under the curve (AUC) and TSS(Allouche, Tsoar,
and Kadmon 2006; Guan et al. 2020). The ROC is
a graphical representation of how well the model fits
the data points. The values for the AUC range between 0
and 1. Models whose predictions are 100% inaccurate
have an AUC of 0, while those with perfect prediction
have an AUC of 1. In general, AUC values ≥ 0.7 demon-
strate high model prediction performances
(Mohammadi et al. 2019). On the other hand, TSS
(Equations (2)–(4)) combines sensitivity and specificity
to explain the model commission and omission errors
(Kyalo et al. 2018). The values of TSS range between −1
to +1, where +1 demonstrates a perfect agreement
between the observed and the predicted Striga occur-
rence, while values ≤ 0 indicates no agreements or that
most of the predictions for the Striga occurrence were
produced by chance (Allouche, Tsoar, and Kadmon
2006). We, therefore, used the weighted average of the
TSS to perform the ensemble predictions. We chose TSS

since it is a relatively reliable measure instead of the AUC
and chi-squared (X2) statistics which are somewhat
biased and highly sensitive to the proportional extent
of the predicted presence observations (Kyalo et al.
2018). The ensemble model merges the strengths of
these ENM approaches while minimizing their weak-
nesses (Araújo et al. 2019; Guan et al. 2020)

TSS ¼ Sensitivity þ Specificity � 1 (2)

Sensitivity ¼ a
aþ b

(3)

Specificity ¼ d
cþ d

(4)

where a is true positive, b is a false negative, c is false
positive, and d is true negative.

The output maps from the six models and their respec-
tive ensembles were imported into a geographical infor-
mation system (GIS) environment for further analysis.
Based on a suggestion by Abdelaal et al. (2019), we
reclassified our probability maps into five classes of
Striga probability of occurrence. These classes were: (i)
very low probability (≤ 0.05), (ii) low probability (0.051–-
0.10), (iii) moderate probability (0.11–0.30), (iv) high prob-
ability (0.31–0.50), and (v) very high probability (≥ 0.50).

Results

Models’ accuracy, comparison, and validation

The VIF statistic of the predictor variables that were
included in the modeling approach using the six
models is summarized in Tables 2 and 3. The lowest
values of VIF were related to remotely sensed vari-
ables i.e. end of season (1.02), start of season (1.04),
LST (1.07) and amplitude (1.09), while bioclimatic
variables had higher values of VIF such as Bio5
(8.21), Bio1 (7.30), Bio18 (5.41) and Bio15 (4.32).
However, these values were not large enough to
warrant these variables to be eliminated from the
modeling. On the other hand, the VIF values for
Bio6 and Bio7 were 10.23 and 12.63, respectively.
These variables had VIF values greater than 10, so
they were excluded from our modeling analysis.

Using the ROC, the patterns of the smoothened
graphs of the ten replicated ROCs showed that RF and
GLM were relatively consistent in their prediction
amongst the model replicates compared to the other
models (Figure 4). Some of the replicated graphs using
different sets of data folds for the CART, FDA and BRT
models were below or closer to the one-to-one line (the
black dotted line in Figure 4).
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All the models generally showed relatively high
accuracy in predicting Striga occurrence in
Zimbabwe, with all the models producing accepta-
ble accuracies viz., AUC > 0.85 and TSS > 0.70.
Further, the models’ predictive performance, as indi-
cated by AUC and TSS values revealed that RF had
the highest values of AUC (0.98) and TSS (0.92)
(Figure 4). The FDA model produced the lowest
AUC (0.87) and TSS (0.72) scores. We, however,
observed variations where models such as the GLM
had a higher AUC, but lower TSS in comparison to
other models such as CART. Nonetheless, the FDA
performed the least using the AUC and the TSS
accuracy measures.

Variable importance using the current climate
scenario

A total of 5 out of the 21 predictor variables appeared in
the tenmost relevant variables for all six models. The five
predictor variables regarded as very relevant by all the
models are “base value,” “start of season,” “temperature
seasonality” (Bio4), “maximum temperature of the warm-
est month” (Bio5), and “precipitation seasonality” (Bio15).
The respective variable contributions in the different

models are summarized in Figure 5. The Bio5 variable
appeared twice as the most relevant variable i.e. for the
RF and BRTmodels, while the Bio1 variable also appeared
twice as the most relevant variable for the GLM and FDA
models. Bio4 and Bio15 were also selected as important
predictors for the CART and SVM models, respectively.

Further analysis of the variable importance revealed
that the bioclimatic and seasonality parameters domi-
nated the most relevant list while the edaphic, terrain,
LST and cropping system were not particularly relevant
across the six algorithms tested. Terrain variables
appeared in all the models at different contribution
levels; however, elevation appeared more frequently
than the other terrain variables. Similarly, regarding the
edaphic variables, soil organic carbon and sand content
dominated their category with varying contributions
across the six models. The cropping system variable
appeared once under the BRT model, however, with
a very low contribution to the entire model. LST did
not appear among the ten most important variables for
the six models. RF, which had the highest accuracy
(AUC = 0.98) amongst the other models, selected Bio5,
Bio4, and Bio15 as the most relevant predictor variables
for the estimating occurrence probability of Striga in
Zimbabwe (Figure 5).

Figure 4. Results of the receiver operating curve (ROC) for the six machine learning and ecological niche model algorithms used to
predict Striga occurrence in Zimbabwe; namely: (a) random forest (RF), (b) support vector machines (SVM), (c) classification and
regression trees (CART), (d) generalized linear model (GLM), (e) boosted regression trees (BRT), and (f) flexible discriminant analysis
(FDA). The red curve represents the smoothened mean area under the curve (AUC) using the training data, while the blue curve
depicts the smoothened mean AUC using the test data from the 10-fold cross-validation sampling. The cyan curves show the 10-fold
replicated model runs using the training data.
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Ecological nichemodels for predicting the occurrence
of Striga using the current climate scenario

The six ENMs using the 21 predictor variables exhibited
varied results for predicting Striga probability of occur-
rence (Figure 6). However, all six models predicted the
ecological niche and Striga occurrence to be within the
central plateau (mainly ecological region II, III, and IV) of
the country’s main watershed as shown by the warmer
colors (yellow, orange and red) in Figure 6. Areas close to
the boundaries of Zimbabwe (ecological region V) repre-
sented by the cooler colors (green) were predicted to be
relatively safe and free from potential Striga infestation
using SVM and CART, while in the eastern highlands of
Zimbabwe (i.e. ecological region I and II), the occurrence
of Striga was predicted using RF, FDA, and BRT.

Ensemble projection for predicting the occurrence
of Striga using the current climate scenario

The results of the ensemble projection of the six models
using the current climate scenario (1950–2000) combined
the best predictions of all the models and estimated the

overall Striga probability of occurrence (Figure 7). The
highest prevalence and probability of occurrence was
predicted to be in the Midlands and Masvingo provinces
which are in regions III and IV that are regions with very
low intensity of irrigation agriculture. However, some rela-
tively similar predictions were also observed in
Matabeleland North province toward the Kariba dam
which has climate characteristics of ecological region III.
Similarly, parts of the provinces of Manicaland (ecological
region I and II), Bulawayo (ecological region IV) and
Mashonaland East (ecological region II and III) exhibited
moderate, high to very high probabilities of potential
Striga incidences. The highest probability of occurrence
was observed in agro-ecological regions I, II, III, and IV,
whereas very little to none Striga probabilities of occur-
rence were predicted in region V. Interestingly, the
ensemble model was precise (AUC = 0.98) in predicting
Striga occurrence following the boundaries of region
V where the Striga occurrence is predicted to be very
low. The area toward the west of region IV was predicted
to have very low Striga probability of occurrence, whereas
the central and eastern areas within region IV were pre-
dicted to have high to very high incidences of Striga

Figure 5. The ten most important variables for the six ecological niche model algorithms used to predict Striga occurrence in
Zimbabwe; namely (a) random forest (RF), (b) support vector machines (SVM), (c) classification and regression trees (CART), (d)
generalized linear model (GLM), (e) boosted regression trees (BRT), and (f) flexible discriminant analysis (FDA).
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occurrence. In general, the warmer colors also showed
that the Striga probability of occurrence is skewed toward
the central and eastern regions of the country with

relatively high-altitudes (800 m–1 600 m a.s.l) compared
to the low-altitude areas (< 800m a.s.l) on the west, south,
and north (Figure 7).

Figure 6. Striga probability of occurrence using the current remotely sensed and bioclimatic variables and the six ecological niche
model algorithms: (a) random forest (RF), (b) support vector machines (SVM), (c) classification and regression trees (CART), (d)
generalized linear model (GLM), (e) flexible discriminant analysis (FDA), and (f) boosted regression trees (BRT).

Figure 7. Current Striga probability of occurrence predicted using ensemble projection and the weighted average of the true skill
statistic (TSS) of the six prediction models, viz. random forest, support vector machines, classification and regression trees, generalized
linear model, flexible discriminant analysis, and boosted regression trees ecological niche model algorithms.
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Comparison of the ensemble predictions using the
current and future climate scenarios

Wedetected slight differences in the suitable area between
the current and future climate scenarios for Striga occur-
rence in Zimbabwe. We observed that Striga occurrence
would shift toward the North, i.e. Mashonaland West and
East, which are in ecological region II (Figure 8) and will be
reduced on the southern regions of the country, i.e.
Matabeleland North and South occurring in ecological
region IV (Figure 8). The future model predicted a very
high increase in the area that shall be suitable for Striga,
particularly for Masvingo and Midlands provinces which
are in the ecological region III. We noted that the intensity
of the severity as evidenced by the increase of most areas
from the moderate class to very high probability was parti-
cularly in ecological region III.

The current area suitable for Striga occurrence in
Zimbabwe is 7.4% of the total area, while an increase of ~
0.73% is likely by the end of 2050 due to climate change.
Therefore, the approximate area currently suitable for the
occurrence of Striga is 28 916 km2, while we expect it to
increase to 31 768 km2 (8.13%) by the year 2050 using the
maximum carbon emission scenario (RCP8.5). Our esti-
mated increase of the area occupied by Striga due to
climate change by the year 2050 is 2 852 km2 which is an
estimated gradual increase rate of ~95 km2/yr−1 over
30 years.

Discussion

In this study, we used six ML and ENM models to predict
the current Striga probability of occurrence in Zimbabwe.

We followed the best practice standards for ENM by asses-
sing the quality of the response variables, predictor vari-
ables, model evaluation ideals and building multiple
models using the same data following the protocols sug-
gested by Araújo et al. (2019). Although we used
a sufficient sample size required for accurate predictions
when using ENMs at a national scale (Stockwell and
Peterson 2002), the performance of some models like
FDA and GLM which require a relatively large sample size
could have been reduced.

Model performances

Generally, predictive models with AUC and TSS values
larger than 0.7 suggest plausible predictive and simula-
tion performance (Elith et al. 2010). In our study, AUC
and TSS values for all the six models as shown by the
ROCs, were above the 0.7 threshold, demonstrating that
the models performed well in simulating the distribution
of Striga in Zimbabwe. As expected, the model accura-
cies and the predicted areas differed across the six mod-
els, since models depend on different mathematical
functions and tuning parameters (Araújo et al. 2019).
Using AUC and TSS, our results pointed to RF as the
best predictive model, which was consistent with our
hypothesis. Based on the obtained AUC and TSS results
from this study, we recommend the use of the ensemble,
RF, SVM and CART for Striga predictive modeling using
multi-source data. These recommended methods have
also been used and suggested by many researchers as
the best for simulating predictions for invasive weed
species occurrence and mapping their geographical

Figure 8. Striga probability of occurrence predicted using the representative concentration pathway (RCP:8.5), ensemble projection
and the weighted average of the true skill statistic (TSS) of six ecological niche model algorithms, viz., random forest, support vector
machines, classification and regression trees, generalized linear model, flexible discriminant analysis, and boosted regression trees. (a)
Current (1950–2000) and (b) future (2041–2060) climate scenario.
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niches (Mudereri et al. 2019a; Tesfamichael et al. 2018;
Landmann et al. 2020; Guan et al. 2020).

Importantly, we, however, noted that there were huge
overlaps and similarities in the areas anticipated to be
suitable for Striga occurrence. These varied outputs and
accuracy results are in agreement with other studies that
have used multiple models approach in ENM (Hao et al.
2019; Jafarian, Kargar, and Bahreini 2019; Mohammadi
et al. 2019; Guan et al. 2020). Jafarian, Kargar, and
Bahreini (2019) used four predictive models to simulate
the occurrence of five dominant plant species in Iran and
concluded that the ensemble method yielded high pre-
dictive power compared to the individual models. On the
other hand, Mohammadi et al. (2019) also compared
MaxEnt and “sdm” to predict two rodent species and
they established that all models were comparable and
demonstrated high predictive power. Similarly, in our
study, there is no convincing indication to prove that
one model is significantly better than the other.
Therefore, regarding the future investigations that will
focus on the accuracy of Striga occurrence and prediction,
it is recommended to include several models in an ensem-
ble approach to reduce the modeling uncertainties.

Striga probability of occurrence in the current
climate scenario and under climate change

Fundamentally, input data preparation is key to deter-
mine and improve the accuracy and dependability of the
outputs derived from predictive models (Araújo et al.
2019). ENMs reflect the deep interrelationships and
interactions among species and their environmental
parameters. Using the package “usdm” and the “vifcor”
function provided an easy and practical way of eliminat-
ing the correlated variables systematically (Jafarian,
Kargar, and Bahreini 2019). Specifically, the use of VIF
as a measure of collinearity and elimination of conflating
variables improved the accuracy of our modeling results.
This is per other studies that have successfully employed
VIF to select a few noncorrelated predicted variables
(Muposhi et al. 2016; Abdelaal et al. 2019). The non-
conflating variables (n = 21) that were finally used in
the modeling experiments were crucial in explaining the
occurrence of the Striga weed. Notwithstanding, the
important variables that were selected by our models
for mapping Striga occurrence were local and not global.
That means the variables were only relevant for model-
ing Striga in Zimbabwe and not somewhere else on the
globe. As anticipated, our results showed that the inter-
relationship between temperature (Bio1, Bio4, and Bio5)
and precipitation (Bio15) was central in defining the
ecological niche of the Striga weed. This concurred
with the results reported by Cotter and Sauerborn

(2012), who alluded to the variation in the current and
future distribution of Striga in the entire African conti-
nent to be influenced by mean annual temperature
(Bio1). However, our future Striga prediction models
should be interpreted with some caution as they were
not yet validated.

Striga requires both optimum rainfall and temperature
for germination, growth, propagation and simultaneously
the growth of its hosts i.e. cereal crops (Mandumbu et al.
2017a). However, extreme temperature and heavy rainfall
conditions limit the propagation of Striga (Rich and Ejeta
2007); hence, the very low probability of Striga occurrence
in ecological region V of Zimbabwe. Region V, which is
mostly on the borders of Zimbabwe, experiences very high
temperatures and low rainfall making it unsuitable for crop
production, hence the unavailability of cereals that are
Striga hosts. However, with the increase in temperatures
anticipated through climate change, most farmers in all
agro-ecological regions of Zimbabwe are likely to shift to
planting C4 crops like sorghum and millet which are
drought-resistant but are attractive to the occurrence of
Striga (Mandumbu 2017). Agro-ecological regions I–IV
experience very high to moderate rainfall and temperature
compared to the ecological region V (Mugandani et al.
2012). This could have been the reason for the high pre-
diction of Striga occurrence in these regions. These regions
have varied climatic conditions, but our modeling and
mapping results showed that ecological regions II, III, and
IV have the most optimum climatic conditions for the
germination, growth, reproduction, and spread of Striga
species. Because of the immense dependence on the dis-
tribution of Striga on climatic variables, future climate con-
ditions may greatly determine the suitable niche for Striga
(Mandumbu et al. 2017a; Cotter and Sauerborn 2012).

Because of climate change, the increase in carbon
dioxide and temperature changes are likely to lead to
an increase in the germination and spread rates of Striga
in areas that were once non-Striga occurrence areas. Our
results agreed with the perception reported by
Mandumbu et al. (2017a), who argued that the future
increase in temperature would increase the breaking of
dormancy of Striga seeds, thereby increasing its germi-
nation rate. As could be seen from our results, Striga
shall occupy new adjacent areas to the already infested
areas, mostly in regions III and IV of Zimbabwe. These
areas are predicted to have temperature ranges
between 20° C and 35° C. This phenomenon is likely to
result in increased areas occupied by Striga and enhance
the intensity and severity of the crop losses caused by
this weed. Additionally, as the temperature continues to
increase in the future, crops that are currently not
affected by Striga such as the winter wheat may even-
tually become susceptible to the weed infestation
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(Mandumbu et al. 2017a). Therefore, any efforts targeted
at curbing the spread of Striga in the future should focus
on areas with the likelihood of temperature increase and
a reduced amount of rainfall.

Soil N is reported to constrain the germination of
Striga seeds by reducing the production of
Strigolactones, the chemical that is produced by the
host plants to simulate the germination of Striga seeds,
while soil N also increases the vegetative growth of the
host plant (Ekeleme et al. 2014). Notwithstanding, our
results indicated that the edaphic factors that we tested
(i.e. soil N, soil pH, soil organic C, and soil sand content)
had little effects on our Striga modeling accuracy, prob-
ably because of the interplay between them and preci-
pitation (i.e. Bio15). To the best of our knowledge, soil
moisture affects nutrient motility, particularly nitrogen,
which is mostly unstable and susceptible to leaching
(Yoneyama et al. 2007). It is worth noting that precipita-
tion could be a proxy for soil moisture that is an impor-
tant predictor variable for triggering the germination of
Striga seeds. It is expected that the edaphic factor vari-
ables and precipitation are intimately interlinked. Hence,
they tend to result in low performance of each other in
predictive modeling, due to the relatively high correla-
tion. However, various studies argue that degraded soils
of high acidity promote the growth and proliferation of
Striga weed (Midega et al. 2017; Larsson 2012;
Yoneyama et al. 2007). On the other hand, it is reported
that the degradation of soils and increasing its soil pH is
expected to worsen with the change in climate
(Mandumbu et al. 2017b). As earlier mentioned, in
response to the low soil fertility and drought, farmers
are likely to shift to C4 plants which are more tolerant of
droughts and high temperatures but are more suscep-
tible to the Striga infestation.

Our study also shows that “start of season” and EVI
“base value” were among the most important predictor
variables in all the six ENM algorithms. Striga depends on
the availability of the host cereal crops for its germina-
tion, survival, and propagation. The minimum level of
greenness in the whole season and the level of green-
ness at the start of the season can be described by the
EVI values which foretell crop planting date and crop
health (e.g. Striga infestation rate). Similarly, the mini-
mum value of EVI during the season signifies the crop
health status. Thus, the start of season and EVI base
value can be very relevant variables to predict the occur-
rence of Striga in semi-arid environments.

Implications of our study

Modeling the potential distribution of weeds such as
Striga is useful in agricultural management systems in

areas most likely to be susceptible to invasion and colo-
nization. Our study supports national scale preparedness
and management strategies for the protection of key
crops from diseases and pests, especially in the face of
climate change and variability. Furthermore, results from
the present study show that using ENM is one of the
most reliable and central tools for determining the funda-
mental and realized niche of Striga within a geographical
space. Our study showed that Striga spread and propa-
gation is likely to be within the adjacent areas in the
ecological region III of Zimbabwe. Although this cannot
precisely be empirically derived from our current models,
we infer and anticipate that wind, water, animal and
human movement shall be the main modes of Striga
seed spread. Striga plants are highly productive with
the potential to produce between 10 000 and 200 000
seeds per plant (Ejeta and Butler 1993). These seeds are of
lightweight (~ 4–7 µg per seed), which makes them easy
to disperse by wind water or animals (Mandumbu et al.
2017a; Wan and Wang 2019). Similarly, farmers within the
same or adjacent areas are likely to exchange farming
equipment, thereby promoting the spread of Striga
seeds. Additionally, since the soils in the ecological region
III of Zimbabwe are deep Kalahari sands, we anticipate
further degradation of these soils which leads to losses in
soil fertility and ultimately could promote the spread of
Striga (Yoneyama et al. 2007). To combat Striga occur-
rence and spread particularly in regions II, III and IV of
Zimbabwe, our study can be utilized for guiding the
implementation and upscaling of “push-pull” technology
(PPT). PPT is a climate-smart integrated farming system
that uses the legume Desmodium as an intercrop to
combat the reproduction cycle of Striga and repel insect
pests i.e. stemborers and fall armyworm (Khan et al.
2014). Desmodium secretes a set of compounds that
promote the suicidal germination of Striga and effectively
inhibits the possibilities of the Striga to attach their roots
to the roots of the host plant. Interested readers are
referred to Khan et al. (2006) and Pickett et al. (2014),
for elaborate information on the PPT farming system.

Conclusions

We compared ML ENMs i.e. RF, CART, SVM, BRT, GLM,
FDA and their respective ensemble for predicting the
probability of Striga occurrence in Zimbabwe using
multi-source bioclimatic and remotely sensed data. We
established that RF, CART, SVM and the ensemble
approach, yield the most accurate Striga occurrence
prediction results in Zimbabwe. Our results showed
that temperature and precipitation are the key drivers
of the occurrence of Striga. In addition, the Striga epi-
demic in Zimbabwe is highly likely to worsen and spread
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into new areas where it was not initially found, particu-
larly in the ecological regions I to IV of the country.
Therefore, immediate and palliative action is critical to
contain and manage the spread and intensity of Striga in
Zimbabwe. Our results could help researchers, policy-
makers, extension officers and various other stake-
holders to employ and implement effective and early
Striga management options to contain and eradicate
the weed. Because our study employed a synoptic
approach at a national scale using datasets at a coarse
spatial resolution (250 m x 250 m pixel size), future
studies should focus on developing localized early warn-
ing advisory platforms and high resolution (i.e. sub-
meter) remotely sensed observations to detect and
monitor Striga infestation and density. Specifically, the
use of unmanned aerial vehicles (UAVs) should be inves-
tigated for appropriate use to early detect Striga occur-
rence and suitable habitats before its flowering stages.
Although we used Zimbabwe as a case study, our mod-
eling results can be upscaled in other African countries
that possess similar agro-ecological characteristics.

Highlights

● We developed ecological suitability models for Striga asia-
tica, an invasive cereal crop weed

● Key input predictors were climatic, edaphic, phenology,
terrain and cropping system

● Striga occurrence is more pronounced in the agro-
ecological regions I–IV in Zimbabwe

● Striga will spread into formerly non-striga areas because of
climate change
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