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Abstract. Smallholder agroecological subzones (AEsZs) produce an array of crops occupying
large areas throughout Africa but remain largely unmapped. We explored multisource satellite
datasets to produce a seamless land-use and land-cover (LULC) and fragmentation dataset for
upper midland (UM1 to UM4) AEsZs in central Kenya. Specifically, the utility of PlanetScope,
Sentinel 2, and Landsat 8 images for mapping coffee-based landscape were tested using a ran-
dom forest (RF) classifier. Vegetation indices, texture variables, and wavelength bands from all
satellite data were used as inputs in generating four RF models. A LULC baseline map was
produced that was further analyzed using FRAGSTAT to generate landscape metrics for each
AEsZs. Wavelength bands model from Sentinel 2 had the highest overall accuracy with short-
wave near-infrared and green bands as the most important variables. In UM1 and UM2, coffee
was the dominant cover type, whereas annual and other perennial crops dominated the landscape
in UM3 and UM4. The patch density for coffee was five times higher in UM4 than in UM1.
Since Sentinel 2 is freely available, the approach used in our study can be adopted to support
land-use planning in smallholder agroecosystems. © 2020 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.14.044513]
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1 Introduction

The fast-paced conversion of global terrestrial land into croplands, mainly attributed to the grow-
ing human population, continuously exerts pressure on flora and fauna and results in habitat loss
and disturbance of species communities and their interactions.1 In Africa, agricultural landscapes
typically vary from extensive monocrops with fragments of isolated natural vegetation to mixed
crops interspersed with remnants of seminatural vegetation that form a matrix that can impede or
facilitate species interactions.2 Unlike in Europe, where land-use policies have been developed
and implemented, Africa’s agricultural landscapes remain largely unplanned with no baseline
data that can guide sustainable development.3
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Smallholder farmers in Africa practice∼13 general farming systems. Typically, these farms form
complex and heterogeneous landscapes with farms commonly small and intercropped, particularly
in populated regions.4 Capturing the structure of these landscapes for ecological applications
requires accurate land-use and land-cover (LULC) classifications generated from high-resolution
satellite imagery with sufficient reference data. Ecological processes such as spillover edge effects
of biodiversity across adjacent LULC types,5 landscape connectivity effects on species flow6 or the
effects of fragmentation on patch size7 in sustaining a viable species population can be estimated
using LULC information.8 Thus accurate and up-to-date LULC maps are needed to capture the
dynamics and better represent the heterogeneities that characterize specific agroecological setups.

Although global initiatives such as the 300-m GlobCover 2009 and 1-km Global Land Cover
2000 have generated LULC baseline datasets, they remain insufficient in providing accurate
maps at regional to subnational scales.9 LULC legends in these global datasets are generated
to estimate global biogeochemical processes such as carbon sequestration, which have limited
application to local scale dynamics.10 Data gaps, inconsistent acquisition periods, cloud cover,
and insufficient validation data, especially in the context of Africa, increase the error margins in
using the existing global maps.11 According to Saah et al.,3 policymakers in developing countries
often use outdated maps or opt for global datasets that do not meet their specific needs.
Furthermore, their unwillingness to share the existing data across government agencies, creating
maps in silos that cannot be harmonized, low-budget allocation, and inadequate human resources
slow the creation of useful baseline datasets.

Remote sensing data are the major source of LULC information and the existing satellite
datasets have different spatial, spectral, and temporal characteristics with differing cost implica-
tions that require users to make trade-offs in their utilization as per their objectives.12 In the
tropics, continuous cloud cover most of the year limits the use of optical satellite datasets; con-
versely, the cost of using below cloud options such as drones or flight campaigns is too expensive
for extensive and wide-area mapping. A critical agroecological zone (AEZ) in the tropical regions
is the coffee-based landscapes. Coffee is grown by 25 million smallholders in over 60 countries in
the tropics and is a significant source of gross domestic product (GDP) in many developing
countries. In Kenya, for instance, coffee is produced by 700,000 smallholder farmers and
3000 large estates, contributing ∼230 Million of the GDP annually.13 Smallholder farmers grow
coffee on <2-hectare farms, either as agroforestry systems (i.e., shade coffee) intercropped with
mainly subsistence crops, or monocropping systems (i.e., full-sun coffee).14 Currently, there is no
spatially explicit map for these coffee systems because it is often generalized either as croplands
(intercropped coffee), shrublands (full-sun), or forest land (agroforest) in many tropical countries.

Existing coffee maps at the global scale are probability distributions generated from ecologi-
cal niche models generated from climate variables, environmental layers, and presence-only
data.15 These maps limit further analysis of landscape composition and configuration. LULC
maps from satellite imageries are the primary baseline data for analysis in landscape ecology.
Furthermore, LULC types and their spatial patterns vary according to different landscapes such
as AEZ and landforms (e.g., rivers, mountains, cliffs, coasts, and plateaus). They are often
generalized in probability distribution maps, yet the subtle dynamics in LULC types influence
ecological processes at varying scales.16

Herein, we hypothesize that the landscape structure varies across the agroecological subzones
(AEsZs) in the coffee-based landscape. Using a random forest (RF) classifier and FRAGSTAT, this
study aims to characterize the landscape setup in AEsZs of a coffee-based landscape in central
Kenya using an optimal satellite dataset. Both tools provide a unique opportunity to determine land-
scape patterns in small-scale farming areas. RF classifier17 can handle nonlinear effects in complex
datasets with high accuracy and speed, whereas FRAGSTAT is an efficient tool that has become a
reference in landscape ecological studies that involve highly complex agroecological systems.18

2 Study Location

This study was conducted in Murang’a County, a major coffee and tea growing region in central
Kenya. The county borders Nyeri and Kirinyaga counties in the north, Machakos and Embu
counties in the east, and Kiambu county in the south (inset of Fig. 1). Within the coffee growing
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zone, the mean annual temperature and rainfall range from 18°C to 21°C and 1000 to 1500 mm,
respectively. The rainfall pattern is bimodal, where long rains occur fromMarch to May, whereas
short rains occur from October to December.19 Consequently, this coincides with the coffee
planting, management schedules (e.g., pruning, fertilizer, and pesticides application), and har-
vesting season of the first and the main crop, respectively.13 However, the erratic rains and pro-
longed droughts due to climate variability have resulted in an inconsistency in planting seasons
as well as interfered with coffee tree physiology, which makes it more susceptible to low yields
and pest and disease infestation.20

We selected a transect of 20,240 ha that lies at latitude S 0.8295 deg and S 0.7538 deg and
longitude E 36.9472 deg and E 37.1647 deg as a representative of the entire coffee belt (Fig. 1). Our
study was conducted in the context of a bigger project that aimed to improve the coffee value chain
for smallholder farmers. This informed the choice of the study transect, which covered all the coffee
AEsZs (i.e., upper midland; UM1 to UM4). Specifically, coffee grows in four subzones that cut
across an elevation gradient of 1300 to 2000 m a.s.l. (above sea level).19 UM1 is the transition zone
for growing tea and coffee. UM2 and UM3 are the primary and marginal coffee-growing zones,
respectively. Unlike UM1 to UM3, where coffee is rainfed, at UM4, coffee is grown under
irrigation.19 In the study area, coffee is grown either as full-sun, intercrop, or under shade. Common
shade trees include macadamia (Macadamia integrifolia), avocado (Persea americana), mango
(Mangifera indica), and hedgerow trees like grevillea (Grevillea robusta), whereas intercrops
include banana, maize, bean, and sweet potato on an average farm size of 0.5 ha.21

The topography of the region is undulating with dissected hills sloping from northwest to
southeast.21 Soils on the hills and minor escarpments are cambisols and rigosols formed on the
homogenous basement system of gneiss rocks. In contrast, soils on the plateaus and foot ridges
such as nitisols developed on tertiary igneous rocks. Nitisols contain high nutrients from their
primary minerals and montmorillonite clay, which make them suitable for coffee and tea plantation.

3 Methodology

Figure 2 presents the datasets and summarizes the methods used in the study. The initial stage
involved preprocessing of the satellite images and deriving vegetation indices (VIs) and texture
variables. The second stage involved running the RF model to generate LULC maps and the final
step was the analysis of the LULCmap to generate landscape fragmentation metrics for each AEsZ.

Fig. 1 Map of AEZs of Murang’a county, Kenya, and position of the study transect.
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3.1 Datasets

3.1.1 Satellite imagery used

PlanetScope (PS) is a high-resolution satellite dataset from Planet labs that is available commer-
cially (Table 1). In contrast, Sentinel 2 (S2) (high to medium resolution) and Landsat 8 (L8)
(medium-resolution dataset) are freely available from the European Space Agency and the
United States Geological Survey, respectively. PS is a constellation of 130 CubeSat satellites
with a daily revisit time of the entire land surface, which measures the reflected energy within
the blue (B), green (G), red (R), and near-infrared (NIR) wavelengths at 3-m spectral resolution.22

S2 measures a broader range of the electromagnetic spectrum ranging from visible, NIR, and
shortwave using the MultiSpectral Instrument sensor at 10-, 20-, and 60-m spatial resolution,
with a 5-day revisit time.23 L8 measures similar wavelengths as S2 at 30-m spatial resolution
(Table 1); however, S2 has additional red edge bands, which have proven useful in various veg-
etation, agriculture, and LULC monitoring studies.24 Due to cost implications of high-resolution
images, PS was used in this study to test the utility of commercial satellites over freely available
satellites and the expected trade-offs in the overall accuracy (OA) of LULC mapping.

For this study, we selected good quality images with <2% cloud cover. S2, PS, and L8 images
were obtained in August, October, and December 2017, respectively. Table 7 provides detailed
descriptions of the image scenes used in this study. The images were already orthorectified to
remove the topographic effects. Due to the bimodal rainfall patterns, the study area has two
annual growing seasons that overlap.25 Hence, the landscape has continuous cover crops all year
round. In the preprocessing stage, we converted the images into surface reflectance values for
further analysis. L8 bands were pansharpened to 15-m resolution using the Brovey transform
method in QGIS,26 whereas S2 bands of 20 m were resampled to 10-m spatial resolution (Fig. 2).
Out of 43 VIs, the variance inflation factor was used to select 11 uncorrelated VIs and five
biophysical variables presented in Table 2. For texture analysis, we generated 10 indices that
represent contrast, statistic, and orderliness features from the NDVI band of each satellite dataset,
as outlined in Table 2. VIs have been shown to be sensitive to chemical and morphological
aspects of the leaf organs, which are used to estimate water content, plant types, nutrients
content, pigmentation, and others.

3.1.2 Classification reference data

We used very high-resolution images from Google Earth Pro acquired in July 2017 to obtain
reference data for training and testing our classification models. These are high-spatial resolution
images (<1 m) obtained from different platforms with acquisition dates indicated, and studies
have shown that they can be used to obtain reference data.37 Although there was no field refer-
ence data to distinguish crop types, especially annual crops, prior knowledge of the study area,
interpretation of Google Earth Pro image texture, shape, canopy size, and literature on the crop
types in the study area were used to generate the LULC classes. We considered the following
LULC classes: coffee, tea, other perennial crops (herein referred to as perennials), banana,
annual crops, grassland, agroforestry, bareland, settlements, and waterbodies. The perennial

Fig. 2 Flowchart of the datasets and methods used in the study.
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crops comprised avocado, mango, and macadamia, which are plantations in the lower subzone
that also exist in the other subzones often as shade trees, whereas coffee and tea were treated as
independent perennial classes. The annual crops are mainly for subsistence and include maize,
bean, arrowroot (mostly grown along the rivers), and sweet potato. On the other hand, bareland
comprised exposed soils from quarries and unfallowed land, whereas agroforest constituted
mainly shade coffee cropping systems and clusters of woodlots. The coffee class consisted
of full-sun coffee plots, which were visible in Google Earth Pro image with no shade.

3.2 Data Analysis

3.2.1 Random forest classification algorithm

We used the RF classifier by Breiman (2001) to assess the robustness of the satellite datasets for
classifying the coffee-based landscape in the study transect (Fig. 1). RF is a collection of decision
trees, i.e., classification and regression trees that learn the characteristics of the training samples

Table 1 Summary of spatial and spectral characteristics of Sentinel 2, Landsat 8, and
PlanetScope satellite imagery. NIR = near infrared and SWIF = shortwave infrared

Band Description Wavelength range (μm) Spatial resolution (m)

Sentinel 2

B2 Blue 0.439 to 0.535 10

B3 Green 0.537 to 0.582 10

B4 Red 0.646 to 0.685 10

B5 Red edge1 0.694 to 0.714 20

B6 Red edge2 0.731 –to 0.749 20

B7 Red edge3 0.768 to 0.796 20

B8 NIR 0.767 to 0.908 10

B8a Narrow NIR 0.848 to 0.881 20

B11 SWIR1 1.539 to 1.681 20

B12 SWIR2 2.072 to 2.312 20

Landsat 8

B2 Blue 0.452 to 0.512 30

B3 Green 0.532 to 0.590 30

B4 Red 0.639 to 0.673 30

B5 NIR 0.851 to 0.879 30

B6 SWIR1 1.567 to 1.6511 30

B7 SWIR2 2.107 to 2.294 30

PlanetScope

B1 Blue 0.455 to 0.515 3

B2 Green 0.500 to 0.590 3

B3 Red 0.590 to 0.670 3

B4 NIR 0.780 to 0.860 3
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and predict similar characteristics in an unclassified dataset.38 Compared to other machine learn-
ing algorithms such as support vector machine, artificial neural network, and boosted regression
trees, RF was found to produce robust mapping results in fragmented small scale farming areas
in Africa than other methods.24 RF can handle nonlinear effects in complex datasets or few and
imbalanced training samples with high accuracy and speed better than most other algorithms.
Furthermore, the algorithm ranks the essential predictor variables negating users’ selection errors
and subjectivity.38,39 The algorithm splits the training samples into twofold, approximately

Table 2 Summary of VIs, biophysical, and texture variables used in the study

Variable Description References

Vegetation index

RI Redness index 27

NDPI Normalized difference pond index 28

MSAVI Modified soil adjusted vegetation index 29

GEMI Global environmental monitoring index 30

BI2 Second brightness index 31

BI Brightness index 31

MTCI Modified chlorophyll absorption ratio index 32

S2REP Sentinel-2 red-edge position index 33

GNDVI Green normalized difference vegetation index 30

REIP Red-edge inflection point index 34

MCARI Meris terrestrial chlorophyll index 30

Biophysical

LAI Leaf area index 35

LAI_CW Canopy water content

LAI_CAB Chlorophyll content in the leaf

FCOVER Fraction of vegetation cover

FAPAR Fraction of absorbed photosynthetically active radiation

Texture

Contrast features Contrast 36

Dissimilarity

Homogeneity

Statistics features Gray level co-occurrence matrix (GLCM) variance

GLCM mean

GLCM correlation

Orderliness features Maximum probability (MAX)

Entropy

Energy

Angular second moment (ASM)
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two-thirds for training the model, also known as in-bag samples, and one-third for testing the
accuracy of the model, also known as out-of-bag (OOB) samples.17 The algorithm internally
assesses the accuracy of the model based on the OOB error, which averages the error frequency
of the decision trees built using in-bag samples. The OOB error is also used in ranking variable
importance based on mean decrease accuracy (MDA).40 Apart from MDA, RF also uses mean
decrease gini (MDG) to assign variable importance based on decrease in node impurity of a
variable at split node.41

In this study, we used 70% of the classification reference data to train the RF model. We used
four sets of variables for each satellite dataset to build the models: (i) wavelength bands only,
(ii) vegetation indices only, (iii) texture variables only, and (iv) combined wavelength bands with
VI and texture variables (Fig. 2). Both MDA and MDG were used to determine the important
variables for LULC classification. We implemented the model using the “randomForest”
package42 in R software.43 The default RF settings, which have been proven to be optimal for
building accurate models, were used.24 The remaining 30% of the reference data were used for
model evaluation. We generated classification confusion matrices and calculated the following
accuracy assessment metrics; OA, user’s accuracy (UA), producer’s accuracy (PA), F1 score,
and kappa coefficient (K).24 F1 score is a mean metric of precision (PA) and recall (UA), where a
value of 100% indicates that the model achieved perfect precision and recall of all the test data
and the inverse is true.44 The equations for calculating the accuracy metrics are as follows:

EQ-TARGET;temp:intralink-;sec3.2.1;116;508OA ¼ ð1∕NÞ
Xr

j¼1

nj;

EQ-TARGET;temp:intralink-;sec3.2.1;116;446PA ¼ nj
nicol

;

EQ-TARGET;temp:intralink-;sec3.2.1;116;413UA ¼ nj
nirow

;

EQ-TARGET;temp:intralink-;sec3.2.1;116;381F1 score ¼ 2 ×
PA × UA

PAþ UA
;

where N is the total number of samples in the image, r is the number of rows, nj are the samples
that are correctly classified, and nicol and nirow are the total number of samples in columns and
rows, respectively.45

3.2.2 Landscape metrics

LULC map with the highest accuracy was further analyzed using the FRAGSTAT tool46 to quan-
tify the composition of LULC types and landscape fragmentation across the four AEsZ in the
study transect (i.e., UM1, UM2, UM3, and UM4). FRAGSTAT computes several metrics mea-
sured at patch, class, and landscape levels that describe, among others, area, edge, shape, con-
tagion, contrast, and aggregation from LULC maps. In this study, we assessed the mean patch,
largest patch index (LPI), patch density (PD), splitting index (SPLIT), contagion, and landscape
percentage occupied by each LULC type across the four AEsZs at class and landscape levels. A
patch defines a homogenous area that is different from its surroundings, herein referred to as the
LULC type. Patches are computed based on the pixel size of the satellite image used to map the
LULC; hence they are subjective to scale variability or specification of minimum patch size.46

Furthermore, patch size holds ecological significance compared to all metrics. It is shown that
patch sizes can influence species richness in semiforested coffee systems,47 bird species abun-
dance in naturally heterogeneous landscapes,48 and insect pollinators in forest fragments in
shaded coffee agrosystems.49 Table 3 summarizes the description of the FRAGSTAT metrics
used in this study.
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4 Results

4.1 RF Model Accuracy Assessments

Table 4 shows the OAs obtained using the RF classifier and the various satellite image datasets.
Wavelength bands were better predictors of LULC in all the satellite datasets compared to using
either VI or texture variables. For bands only, S2 had the highest OA (95%) compared to
L8 (90%) and PS (83%). Combined with VI and texture variables, the OA for PS increased
considerably compared to using only wavelength bands (by 3%) or texture variables (by

Table 3 A description of class and landscape metrics used in the present study as defined by
the FRAGSTAT user manual.46

Level Metric Description Unit

Class Mean patch area (MPA) The average-weighted mean of the number
of patches in the class and total class area

ha

LPI The largest patch of the corresponding patch
type divided by total landscape area

Percent

Percentange of landscape
(PLAND)

Proportional abundance of each patch type
in the landscape

Percent

PD Number of patches in the landscape, divided
by total landscape area

Number of
patches/100 ha

Landscape SPLIT Number of patches with a constant patch
size when the landscape is subdivided into
equal sizes

None

Contagion (CONTAG) A measure of both intermixing of patch types
and spatial distribution of a patch type

Percent

Euclidean nearest
neighbor distance (ENN)

Shortest straight-line distance between the
focal patch and its nearest neighbor of the
same class

Meter

Table 4 The OA, OOB error, and kappa coefficient (K ) for
LULC maps of coffee-based landscape in Murang’a, Kenya,
using different satellite datasets and the RF classification
algorithm.

Model
OA
(%)

OOB
error (%)

Kappa
(K ) (%)

PS bands 83 19 80

PS vegetation indices 81 20 77

PS texture variables 60 39 51

PS bands, VI, and texture 86 13 83

S2 bands 95 5 93

S2 vegetation indices 91 9 89

S2 texture variables 79 23 75

S2 bands, VI, and texture 96 4 95

L8 bands 90 9 88

L8 vegetation indices 88 12 86

L8 texture variables 79 25 74

L8 bands, VI, and texture 86 17 84
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26%). For S2, there was no substantial change when using combined variables in comparison to
wavelength bands only (OA increased by 1%). For L8, the OA dropped by 4% when using
combined variables compared to the wavelength bands only. VIs were the second best predictors
in all the satellite datasets, whereas texture variables were the least. VIs from S2 had the highest
OA (91%), whereas VIs from PS had the least (81%). Similar to the OA, the OOB error estimate
showed that the texture variables from PS had the highest error rate (39%) in all the models,
indicating its poor predictive ability of the internal OOB samples.

S2 variables showed better mapping results for all the classes with more than 90% PA, UA,
and F1 scores than L8 and PS datasets (Table 5). The banana class was generally poorly mapped
in all the satellite datasets (the least PA ¼ 41% using PS, highest PA ¼ 83% using S2), whereas
the waterbodies had the highest accuracies except in L8, which had the least PA of 38%. Coffee
and agroforest classes had the highest accuracies (F1 score ¼ 94% and 97%, respectively) when
mapped using S2 datasets. However, there was an increase in efficiency for PS (by 6% for coffee
and 4% for agroforest) when the wavelength bands were combined with VI and texture variables.

4.2 Variable Importance

In the wavelength bands model, SWIR1, SWIR2, and green bands from S2 and L8 were the most
important variables contributing to a total of 36% and 53% MDA and 44% and 57% MDG,
respectively (Fig. 3). Additionally, the NIR bands from S2 and L8 contributed 10% and 18%
MDA to the model accuracy, respectively. The red-edge band from S2 and the red band from L8
contributed 13% and 16% MDG in decreasing node impurity, respectively. For VI and texture
variable models, BI, NDPI, RI, GNDVI, and additional LAI_CW and CAB from S2 were the
most important variables. At the same time, contrast, GLCM mean, variance, and correlation
were the most important texture variables in all the satellite datasets (Table 8) for mapping our
landscape classes. When all the variables were combined, the same important variables identified
in the individual models contributed more to the model (Table 9).

4.3 Landscape Fragmentation in each AEsZ

Figure 4 shows the LULC maps from the PS wavelength bands (map A), S2 (map C), and L8
(map B). Visually, PS and S2, unlike L8, mapped similar landscape structures, but with varying
levels of accuracy. L8 overestimated annual crops and grassland at the expense of coffee,
whereas agroforest appears in larger patches than in PS and S2. Across the AEsZ, the primary
coffee-growing zone is at UM2 and the lower region of UM1. At UM3, coffee is interspersed
with annual crops, which form the matrix of the landscape, whereas grasslands and other per-
ennials dominate UM4. Pockets of agroforests are evenly distributed in UM1 and UM2, but in
UM3, patches take a more linear shape. In UM2, annual crops are grown along the riverine,
whereas settlements appear in linear patches with one major town situated at UM4. L8 mapped
the extent of the town in the transect poorly compared to S2 and PS. We adopted the S2 map for
further analysis of the landscape structure given its high accuracy, which captured the landscape
physiognomy at 10-m spatial resolution better than PS, which had the highest spatial resolution
of all the datasets used at 3 m.

4.3.1 Class level metrics

According to the S2 LULC map [Fig. 4(c)], coffee covers 64% and 60% of the total landscape in
UM1 and UM2, respectively, whereas the annual crops occupy 43% in UM3 (PLAND in
Table 6). Other perennials and annual crops occupy 29% and 22% of UM4, respectively.
All the dominant patch types that formed the matrix in each AEsZ had the LPI as shown in
Table 6. Coffee patches in UM2 were more fragmented than in UM1. The most dominant patch
(given by LPI) in UM1 is almost twice the size of the dominant patch in UM2 (UM1 ¼ 63 and
UM2 ¼ 33). Similarly, the MPA for coffee in UM1 is more than three times the size in UM2 to
UM4 (UM1 ¼ 2.65 ha, UM2 ¼ 0.74 ha, UM2 ¼ 0.16 ha, and UM4 ¼ 0.14 ha). Agroforest
patches occupy 14% of UM1 and 17% of UM2 and UM3, with the least cover in UM4, occupy-
ing ∼5% of the landscape. Coffee intercropped with banana is more prevalent in UM2 and UM3,
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where banana patches have <0.06% of LPI. UM4 is the marginal coffee growing area charac-
terized by more settlements, grassland, and bareland than all the other subzones. Coffee
is highly fragmented in UM3 and UM4 as compared to UM1, with PDs of 157 and 120, respec-
tively (Table 6). Additionally, forest cover and bananas have a high PD in UM2 and UM3, while
for annuals, shrubs, grassland, and settlements, the PD is high in UM4.
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Fig. 3 Variable importance of wavelength bands for Sentinel 2, Landsat 8, and PS datasets con-
verted into percentage.

Fig. 4 LULC maps of coffee growing transect in Murang’a county produced using (a) PS,
(b) Landsat 8, and (c) Sentinel 2 datasets, and the RF classifier. The black lines show the boun-
daries of the UM zones.
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4.3.2 Landscape level metrics

Distinct landscape structures exist in each AEsZ. Landscape connectedness, which is measured
by the CONTAG (contagion) index is highest in UM1 and gradually declines along the altitu-
dinal gradient, with the least connectedness in UM4 (Fig. 5).

Furthermore, landscape fragmentation described by the SPLIT index shows that UM4 is
fragmented five times more than UM1. The high CONTAG index in UM1 also describes a land-
scape with low diversity in cover types. Interestingly, the distance between patches is similar
across all the AEsZ (ENN range 23 to 24 m), which means that UM4 has more cover types that
are well interspersed across the landscape, UM1 has a similar interspersion but with the same or
fewer patch types than UM4.

5 Discussion

This study explored three multisource satellite images from 3-m PS, 10-m Sentinel 2 (S2), and
30-m Landsat 8 (L8) to identify the optimum dataset for mapping LULC of a coffee-based land-
scape in the highlands of East Africa that are dominated by smallholding farming. Furthermore,
we examined the landscape composition and the level of fragmentation on each AEsZ. The
results showed that the spectral resolution of a sensor is a critical factor in delineating vegetation
types in a heterogeneous agricultural landscape and that each AEsZ has a unique landscape
physiognomy. This study fills a gap on the scarcity of detailed LULC maps, especially in
Africa, since the available maps in public databases often generalize agricultural landscapes and
are not up-to-date. We delineated detail LULC types that govern ecological processes in each
AEsZ and outlined its potential in improving production in agricultural landscapes (e.g., coffee
production) while conserving biodiversity and providing ecosystem services.

5.1 Model Accuracy Assessment

Our results showed that S2 datasets had the highest OA in all the models, followed by L8,
whereas PS had the least OA, despite having the highest spatial resolution. Htitiou et al.40 and
Shoko and Mutanga50 reported similar findings when S2 dataset outperformed other multispec-
tral datasets in mapping crops and grasslands. The different accuracies in our mapping results
could be associated with the differences in the spectral resolution (bandwidth and number of
bands) among our sensor images.51 S2 measures a broader region of the electromagnetic spec-
trum ranging from the red, green and blue to the SWIR region with additional red-edge bands, in
contrast with PS, which covers only the visible and NIR regions with lower waveband data bits.
Furthermore, the pixel depth (radiometric resolution) of S2 allows the bands to capture more
details per pixel. This could explain the observed high accuracy of the wavelength bands with
minor improvement when VI bands were added. Due to advancement of S2 sensor specifica-
tions, subtle differences in cover types can now be captured with the added advantage of shorter
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Fig. 5 Landscape metrics that describe landscape connectivity [CONTAG index (%)], landscape
fragmentation (SPLIT index), and patch isolation [ENN (m)] in UM1, UM2, UM3, and UM4.
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revisit times compared to L8. Additionally, the higher resolution in PS captures more features,
which increases spectral confusion between classes with the narrow spectral bands.

The commission and omission errors of LULC types described by UA and PA, respectively,
were relatively lower when using S2 wavelengths bands. This reinforces our finding that S2
imagery is more suitable for discriminating LULC types in heterogeneous and complex land-
scapes. In our study area, where coffee and agroforest are important cover types and are often
difficult to differentiate, coffee and agroforest were mapped with a higher PA using S2 when
compared to L8 and PS. Previous studies, however, attempted to map coffee from other LULC
types using Landsat datasets; their results were comparable to what we obtained using L8. For
example, Ortega-Huerta et al.52 differentiated between the open canopy and closed canopy coffee
in Southwest El Salvador with an OA of 85.7% using Landsat Thematic Mapper while Cordero-
Sancho and Sader53 attempted to classify shade coffee and sun coffee in Costa Rica with PAs of
91.8% and 86.2%, respectively, using Landsat Enhanced Thematic Mapper. Both S2 and L8 are
freely available datasets, but our results showed more accurate mapping results from S2 as
opposed to L8. This study, therefore, elucidates the potential of using S2 with limited resources
to generate detailed LULC maps, especially for Africa, which is often missed in global LULC
datasets. Furthermore, the temporal resolution of the S2 sensor of five days means that research-
ers and other stakeholders can have access to up-to-date maps to inform their policies.

5.2 Variable Importance

Surprisingly, SWIR 1 and SWIR 2 bands were the most important variables in S2 and L8 as
opposed to NIR, red edge, red, or green bands, which are known to be the most important bands
in LULC classification of vegetation types. In coffee-based landscapes, SWIR bands have been
shown to be particularly important due to the soil background that is mixed with the spectral
signal of coffee leaves.54 Often, coffee trees are planted with spacing in between the rows.
Though these rows were not visible in our study due to smallholdings with low coffee density
and possible defoliation of coffee leaves due to leaf rust disease, they still influenced the pixel
purity. Notably also from our study the significance of the red edge band in increasing class
separation (MDG ¼ 13%). Red edge bands measure the abrupt rise in the reflectance within
the transition zone of the red and NIR regions, this region of the electromagnetic spectrum
detects subtle variability in vegetation types, which would otherwise be generalized when using
broadband widths such as the case of L8.32

The VIs (including biophysical variables from S2) models had a lower OA compared to only
wavelength bands, whereas the texture variables had the least OA in all the satellite datasets. The
most significant VIs included BI, RI, NDPI, and LAI_CW. On the other hand, contrast, corre-
lation, mean, variance, and to a lesser extent, homogeneity was the most essential texture var-
iables. When VIs and texture variables were combined with the wavelength bands, there was no
considerable change in OA for S2, but for PS, there was an increase in OA; we associate this to
the unique information that RI contributed to the model. RI and BI are soil-based indices that
measure the color properties of soil.55 These two indices further explain the particular soil back-
ground characteristics that were captured by the SWIR band in the wavelength bands model.
Given the limited spectrum and data depth of PS, RI captured similar information in the SWIR
band; hence, the utility of VIs, especially in sensors with limited spectral bands, is vital. Despite
the significance of VIs, the low OA observed in the VIs models is associated with the oversim-
plification of VIs, especially in heterogeneous landscapes where there is more than one vegeta-
tion type and species that could co-occur and occupy the same pixel.30

5.3 Landscape Fragmentation in Each AEsZ

The results further revealed that landscape composition varied according to AEsZs, which cor-
respond to various elevation zones (Fig. 4). Coffee is the dominant cover in UM1 and UM2
(elevation ranging 1900 to 1600 m), whereas in UM3 and UM4 (elevation ranging 1500 to
1300 m), the dominant cover types are annual crops and other perennials, respectively. The agro-
forest system in the study area is highly fragmented in UM3 (PD ¼ 157) with the least cover in
UM4. Visual interpretation of the LULC map showed that the landscape physiognomy of
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agroforest cover in UM3 and UM4 is mostly hedgerows; however, in UM1 and UM2, it is an
intersperse cluster in a matrix of full-sun coffee. Notably, bananas occupied a significant per-
centage of the landscape in UM2 and UM3 (5% of the landscape). Intercropping coffee with
banana is commonly practiced by many smallholder farmers to complement their food crop and
income generation in many coffee-based landscapes in East Africa.56

We showed that landscape connectivity is higher in UM1 than in UM4 (CONTAG index in
Fig. 5). LULC of UM1 can facilitate the flow of species from one patch to the other, which
increases their survival capacity, unlike in UM4, which has more fragmented patches, as shown
by the SPLIT index.57 For instance, the contiguous patches of coffee farms that form the matrix
of UM1 and UM2 can facilitate the flow of coffee pests that solely depend on coffee trees as their
primary hosts.32 For example, movements of the coffee berry borer, Hypothenemus hampei
Ferrari, may be limited where coffee farms are pockets of fragmented patches, such as in
UM3 and UM4.8 Among other factors, such as higher temperatures in UM3 and UM4,58 frag-
mentation could potentially result in overutilization of the available patches by such coffee pests,
leading to increased severity in infestation levels. With similar consequences, fragmentation may
strengthen pest life history traits involved in adaptation to changing environments, leading to a
greater chance of survival.59 More pockets of agroforest cover, as observed in UM1 and UM2
when compared to UM3 and UM4 can benefit from biodiversity conservation and ecosystem
services, such as providing habitats to birds, other pest natural enemies, and pollinators.
Ecosystem services benefit coffee production by improving yields through microclimate and
soil quality improvement and pest and disease natural regulation.60

5.4 Study Implications and Limitations

In this study, we showed the robustness of RF and S2 in capturing subtle changes within such
landscapes. This methodology can be adopted in other coffee growing regions in East Africa,
Asia, and South America. The generated LULC maps can be used as baseline data to guide the
restoration of degraded landscapes, development of land use policies such as the agri-environ-
ment scheme adopted in Europe, and model ecosystem services, especially from shade coffee
generating integrated land management systems. The LULC maps developed in this study could
also be integrated with crop phenological and climatic variables to understand the occurrence,
abundance, and spread of coffee pests and diseases.

A potential limitation to this study was the use of reference datasets obtained from very high-
resolution Google Earth Pro (GE) images in lieu of field reference data. This limitation is also a
growing opportunity for using GE alongside crowdsourced data from mobile apps,61 Global
Biodiversity Information Facility62 and Open Street Map63 to provide reference data for clas-
sification, especially in the era of big data.44 Landmann et al.64 mapped rain-fed and irrigated
lands in Zimbabwe using reference data obtained from GE, which showed the effectiveness of
these new data sources for validation of LULC classification in data-scarce environments.
Furthermore, our study area (i.e., the transect) was somewhat small, but as previously mentioned,
the transect was chosen as part of a bigger project to essentially cover the four coffee AEsZs. In
future, the methods employed in this study should be applied in larger geographical areas to test
its up-scalability. Since our study transect covers a gradient of 1300 to 2000 m a.s.l, this could
have influenced our LULC mapping results. Further studies should include topographic vari-
ables such as elevation and slope to reduce their expected confound effect in coffee mapping
experiments in areas of varying topography.44

6 Conclusions

In this study, we have shown that S2 is a reliable satellite data to map LULC types with a high
level of accuracy in heterogeneous landscapes, such as coffee growing areas dominated by small-
holder farms. This is due to a high number of spectral bands that delineate vegetation-based and
other LULC types better than other satellites. The SWIR bands were the most important in the
LULC classification. Since S2 is freely available, the approach used in this study can be repli-
cated in a resource-constrained context. We studied a coffee growing area to highlight the
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complex landscape dynamics in agrosystems that varied within an AEZ. Land-use policies on
agricultural landscape management should recommend landscape-specific practices instead of
blanket recommendations to improve landscape resilience and connectivity. For future studies,
we recommend that detailed studies be conducted to quantify the ecological significance of
unique landscape structures in each AEsZ.

7 Appendix

Tables 7–9 provide scene description for satellite images used in the study and variable impor-
tance for vegetation and texture variables when used independently and when combined with
wavelength bands, respectively.

Table 8 Variable importance (%) for vegetation indices and texture variables (described in
Table 2) from Sentinel 2, Landsat 8, and PS datasets.

Vegetation indices Texture variables

Variable

Sentinel 2 Landsat 8 PS

Variable

Sentinel 2 Landsat 8 PS

MDA MDG MDA MDG MDA MDG MDA MDG MDA MDG MDA MDG

BI 25 42 16 22 26 27 MAX 9 8 9 7 9 7

BI2 18 14 11 8 15 14 Homogeneity 11 7 11 8 8 8

GEMI 12 10 9 8 10 12 GLCM variance 11 16 12 18 13 16

GNDVI 10 15 14 18 11 11 GLCM mean 8 13 10 15 11 16

MSAVI 10 9 8 12 11 14 GLCM correlation 11 12 11 12 11 13

NDPI 29 30 28 20 — — Entropy 8 8 9 7 8 7

RI 19 20 16 12 28 22 Energy 8 8 7 7 8 8

MCARI 13 10 — — — — Dissimilarity 10 8 10 9 10 7

MTCI 14 6 — — — — Contrast 15 11 14 11 14 9

REIP 11 4 — — — — ASM 9 8 7 7 7 8

S2REP 11 4 — — — —

LAI 11 19 — — — —

LAI_CW 15 19 — — — —

LAI_CAB 10 16 — — — —

FCOVER 7 10 — — — —

FAPAR 7 11 — — — —

Table 7 Scene description for each satellite dataset

Satellite
imagery Scene identity (ID)

Date of
acquisition

Cloud
cover (%) Source

PS Analytic Ortho Tile no.807181 03/10/2017 0 https://www.planet.com/

Sentinel 2
(S2)

S2A_MSIL1C_20170827T075211_
N0205_R092_T37MBV

27/08/2017 2 scihub.esa.int/dhus/

Landsat 8
(L8)

LC08_L1TP_168061_20171228_
20180103_01_T1

28/12/2017 0 https://earthexplorer.usgs.gov/
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