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RESEARCH ARTICLE

Investigation of Maize Lethal Necrosis (MLN) severity and cropping systems
mapping in agro-ecological maize systems in Bomet, Kenya utilizing RapidEye
and Landsat-8 Imagery
Hossein Jafari Jozania, Michael Thielb, Elfatih Mohamed Abdel-Rahmanc,d, Kyalo Richardc, Tobias Landmannc,e,
Sevgan Subramanianc and Michael Hahna

aDepartment of Geomatics, University of Applied Science Stuttgart (HFT), Stuttgart, Germany; bDepartment of Remote Sensing, University
of Würzburg, Würzburg, Germany; cInternational Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya; dDepartment of
Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan Khartoum North; eRemote Sensing Solutions GmbH,
Munich, Germany

ABSTRACT
Spatiotemporal information on crops and cropping systems can provide useful insights into
disease outbreak mechanisms in croplands. In September 2011, a severe outbreak of Maize
Lethal Necrosis (MLN) disease was reported in Bomet County, Kenya. We aimed to detect
severely MLN-infected fields and discriminate mono, inter, and continuous maize cropping
systems. We collected in-situ MLN severity observations and acquired multi-date and multi-
sensor data viz., RapidEye (RE), Sentinel-1 (S1), digital elevation model (DEM), and Landsat-8
(L8) imagery. A hierarchical classification approach was used to map the cropping systems and
severely MLN-infected fields during the short rainy season (September 2014–February 2015)
using the random forest (RF), one-class support vector machine (OCSVM) and biased SVM
(BSVM) classifiers. RF showed better performance when a balanced multi-class dataset was
available. Both OCSVM and BSVM did not lead to an accurate high severity MLN class
separation. Moreover, the BSVM classifier was able to separate the mono and intercropping
systems. During the long rainy season (March–August 2015), only maize crop data were
available, hence the BSVM as one class classifiers (OCC) was used and maize fields were
successfully mapped even with high confusion rate. Furthermore, the distribution of maize
intercropping system increased in low rainfall sites, and the continuous cropping system
limited to only 31% of total maize cropland.
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1. Introduction

Maize farming is the backbone of food and nutrition
security in Kenya. The area under maize in the country
increased from 1,700,000 ha in 2008 to 2,159,322 ha in
2012, which is the highest maize area increment since
1961. Maize production in Kenya also increased from
1,382,643 tons in 2012 to 3,513,171 tons in 2014,
although the country still imports tonnes of maize
from neighbouring countries like Tanzania each year
to meet the consumption gap (Indexmundi, 2019). In
general, maize production in eastern and central
Africa is threatened by many biotic and abiotic con-
straints. One of the challenging maize production
problems in this region is the Maize Lethal Necrosis
(MLN) disease. The disease is caused by the co-
infection of Maize Chlorotic Mottle Virus (MCMV)
and the cereal viruses in the Potyviridae group such as
Sugarcane Mosaic Virus (SCMV), Maize Dwarf
Mosaic Virus, or Wheat Streak Mosaic Virus. SCMV
is prevalent in Africa for nearly 50 years, but MCMV is
much more recent and more destructive compared to
SCMV (Braidwood et al., 2017). Also, Johnsongrass

Mosaic Virus which has recently known to be present
in the eastern Africa contributes to the emergence of
the MLN disease in the region (Stewart et al., 2017). In
combination, these viruses rapidly produce
a synergistic reaction called MLN. It seriously
damages or kills the infected maize plants at any
growing stage (Kiruwa et al., 2016). MLN disease is
not particularly new and has been identified for first
time in the United States of America in 1976 (Nault
et al., 1978).

The foremost problem is the fact that MLN out-
breaks threaten food and nutrition security in eastern
and central Africa. In Kenya, first reports of an
unknown disease outbreak were observed in
September 2011 in Bomet County. Further virological
analyses identified the unknown disease as MLN. This
problem has attracted further attention, when in 2012
the maize-crop-losses due to the MLN outbreak
reached up to 90% (Mahuku et al., 2015). In 2014,
Kipsawet near Bomet County was identified as a MLN
hotspot area in Kenya. To overcome MLN outbreaks,
different agronomical, biological, entomological, and
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pathological management approaches have been
tested (Marenya et al., 2018). Planting MLN-free
maize seeds, introducing MLN-resistant maize vari-
eties, and practicing maize crop rotations have been
proposed to surmount the problems caused by MLN,
although the disease cannot be completely eradicated.
Osunga et al. (2017) studied the relevance of some
ecological variables on the spatial distribution of
MLN disease in Bomet County using spatial regression
modelling routine. With exception of temperature,
they found that soil moisture, rainfall, and slope were
the most influential variables on MLN occurrences.
MLN disease is not only influenced by ecological vari-
ables, but other factors such as maize cropping system
(i.e. mono, intercropping, continuous, and rotation
cropping) which are reported to play a major role in
the disease incidences, severity, and outbreak
(Namikoye et al., 2017). However, only a few studies
have focussed on the actual spatiotemporal distribu-
tion of MLN utilizing remotely sensed data.

In Bomet, the dominant maize cropping systems
consist of mono (maize only), intercropping (maize
and legumes such as cowpea or beans) and contin-
uous or rotation cropping systems. In this region,
farmers grow different maize varieties at varying
planting dates during the growing season. Small-
scale and highly fragmented farms is also
a common practice in Bomet. These constraints
make the MLN disease control difficult in this
region. Moreover, discrimination of rain-fed crops
from natural vegetation is challenging when both
farms and surrounding vegetation are at the same
phenological stage. Kiruwa et al. (2016) reported
that the diagnosis of low and medium MLN sever-
ity based on visual symptoms is ineffective. One
limitation in visually discriminating between low
and medium MLN severity is that symptoms like
stunting and chlorosis can also resemble nutrient
deficiencies or maize mosaic disease. Because of
this potential limitation, in this paper, the focus
of detecting MLN-infected maize was only for
high severity infestation levels which could lead to
necrosis.

A possible solution to map the complex maize
cropping systems accurately in Africa and specifi-
cally in Kenya is to use a multi-sensor and multi-
temporal mapping approach coupled with robust
and effective machine learning classification algo-
rithms (Forkuor et al., 2015; Ianninia et al., 2013;
Zillmann & Weichelt, 2014). Previous studies have
emphasized that spectral vegetation indices (VIs)
can enhance the multi-source crop classification
results. Studies have also shown that the normal-
ized difference vegetation index (NDVI), for
instance, is sensitive to green vegetation and is
not highly affected by other variables such as het-
erogeneous landscapes, atmospheric and sensor

noises, soil background, or other ground elements
in the image pixels (Bannari et al., 1995). It is also
well acknowledged that, compared to other super-
vised image classification methods, random forest
(RF) is a powerful and robust classification option
to map agricultural fields. The method is a non-
parametric machine learning algorithm which has
the capability of using continuous and categorical
datasets, easy to parameterize, and can deal with
outliers in training data and is not sensitive to
over-fitting (Horning, 2010). Also, RF performs
better when dealing with multi-layers and multi-
temporal data-sets (Cutler et al., 2007).

On the other hand, in the lack of sufficient
samples, the one class classifier is a smarter choice
(Braun & Hochschild, 2015; Heinl et al., 2009;
Mack et al. 2014; Whiteside et al., 2011). The
present paper addresses the need for providing
remotely sensed spatiotemporal information of
MLN disease occurrence to develop an effective
controlling approach, what so far received less
attention in the scientific literature. We looked at
the possibility of mapping and linking maize crop-
ping systems to high severity MLN occurrences.
Specifically, this study investigated the use of
RapidEye (RE) and Landsat 8 (L8) imagery to
classify and map maize mono and intercropping
systems and areas under high MLN infestation.
For this purpose, machine learning RF (Breiman,
1996) and a one class classifier were utilized
(Mack & Waske, 2017). We analysed the map of
continuous/rotation cropping (in two continuous
cropping season) and investigated whether the
crop rotation was applied by farmers during
MLN outbreaks in the region. Furthermore, for
this study, it was of interest to establish the rela-
tionship between high severity MLN occurrence
the corresponding cropping system and rainfall
distribution in the study area.

2. Study area

Bomet County is amongst the seven most high
potential maize production zones in Kenya, and
agriculture is the main economic activity in the
County (Olwande et al., 2009). Bomet county has
a population of 875,689 (2019 census), and an area
of 1,997.9 km2. The most prevalent crops in Bomet
are maize, beans, and cowpeas, while maize plays
a major role in terms of food and nutrition security
and income generation (Nyoro et al., 2004). The
County is located in the semi-humid agro-
ecological zone of Kenya and the mean annual
maximum temperature is 28°C (Bryan et al.,
2013). Average cumulative rainfall ranges from
500 to 2000 mm. Rainfall peaks twice a year in
Bomet: in March–May (long rainy season) and in
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September–November (short rainy season). The
vast majority of farmers in Bomet consider long
rainy season to be their main maize cropping sea-
son and continuous cropping-system is known as
the dominant cropping system in Bomet for a long
time. However, during the short rainy season, fewer
farmers grow maize (Hassan, 1996). The area under
monocropping and intercropping system varies
between the short and long rainy seasons
(Ochieng et al., 2011). In regions with uncertainties
in rainfall patterns, the majority of the farmers
intercrop maize with beans. In addition, irrigated
farming is also practiced in locations neighbouring
the major rivers (Kimani et al., 2004). Specifically,
the study area (01°18′16S, 034°52′04E, 00°44′43S,
035°25′23E) (Figure 1) covers 61 × 61 km2 and
the highest elevation is 1,962 m above sea level.

3. Methodology

Prior to other steps, all satellite data were trans-
formed to the recommended map projection (i.e.
Universal Transverse Mercator: UTM WGS-84
ellipsoid) zone 36 south (Forkuor et al., 2014). To
map maize fields, cropping system, and high severity
MLN, a hierarchical classification approach was
applied on the multi-sensor, multi-temporal satel-
lite data using RF, one class support vector machine
(OCSVM), and biased SVM (BSVM) classifiers.
Available datasets were divided into two main crop-
ping seasons, short rainy season (first season) from
September to February and long rainy season (sec-
ond season) from March to August. The peak of the
rains is from September to November. As the first
step, a raster-stack of RE, L8, Sentinel-1 (S1) and
calculated VIs were generated for the short rainy
season. During the same season, representative
training data were collected using stratified random
sampling approach (see section I below for details).
Using the VIs, the field data and RF classifier,
a general five-class land use and land cover(LULC)
map (maize, non-maize, trees, water, and non-
vegetation) was produced. Maize pixels were
extracted from the classified map and reclassified
for high severity MLN, mono- and intercropped
maize systems using BSVM.

During the long rainy season, only maize fields’ data
were available, consequently the BSVMclassifier as aOne
Class Classifiers (OCC) was employed to classify maize
fields on L8 imagery. Classified maize pixels during both
the short and the long rainy seasons were overlaid, and
common fields were mapped as continuous maize crop-
ping system. Further, the inter-relations between-maize-
cropping-system and high severity MLN with rainfall
distribution were investigated. Figure 2 summarizes our
data processing and analysis steps and procedures.

(i) In-situ data
We conducted four field campaigns between

January to August 2015 during the short and long
rainy seasons, respectively, following a stratified
random sampling method. During the first rainy
season, three field campaigns (between January to
April 2015) were conducted to collect data on dif-
ferent LULC classes (water bodies, grasslands, soil,
houses, and tarmac roads), crop type and condi-
tions (physical condition, growth stage, and MLN
severity), cropping system (mono/intercropping)
and crop rotation (continuous/rotational). During
the long rainy season, one field campaign only was
conducted on August 2015 to collect reference data
on the location of maize fields. All in-situ data were
georeferenced using a global positioning system
(GPS) of ±3 m error. Polygons spanning
30 × 30 m and at least 5 m away from the edge
of each field were sampled to avoid the edge effect.
For further inspections of the cropping systems and
crop age in the sample polygons, geo-tagged photo-
graphs of each cropping system were recorded.
Also, in order to minimize the soil background
effect on the imagery spectral reflectance, maize
fields younger than 3 weeks were excluded from
data collection.

(ii) Satellite data
The satellite data consist of 5-meter bi-temporal RE

imagery acquired between 9 December 2014 and
23 January 2015 which covered the short rainy season.
In addition, 12 cloud-free 30-meter multi-temporal L8
images were acquired between November 2013 and
August 2015. The L8 imagery covered both the short
and the long rainy seasons. All L8 imagery were down-
loaded from the Landsat Surface Reflectance Climate
Data Records (CDRs) database as Level 1 surface reflec-
tance. Two 30-meter Shuttle Radar Topography Mission
(SRTM) digital elevation model tiles and two S1 datasets
in Interferometric wide swath mode, with dual VV (ver-
tical transmit and vertical receive)/VH (vertical transmit
and horizontal receive) polarizations were acquired for
the same time period. The S1 data were utilized to
improve classification accuracy (Forkuor et al., 2014).

(a) Pre-processing

(iii) SAR data

The SRTM DEM (digital elevation model) arc
1-sec imagery were cropped and resampled (bilinear
interpolation) to L8 and RE imagery. These pro-
ducts were stacked with L8, RE, S1, and VIs to
provide an input for RF classifier. In addition, the
DEM was needed to perform atmospheric and topo-
graphic corrections on RE imagery to reduce the
speckles and to geometrically correct the S1 ima-
gery. A Lee filter of 7 × 7 pixels and Range–Doppler
Terrain Correction methods were applied according
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to the procedures described in Ozdarici and
Akyurek (2010). The filter was implemented by the
SNAP software (from ESA) sentinel-1 toolbox using

the post-filtering module. . Further, the backscatter
of the corrected S1 imagery was converted to decibel
(dB) units.

Figure 1. Bomet study area in Kenya and Maize Lethal Necrosis (MLN) hotspots collected in 2015.
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(iv) RapidEye
The RE tiles were atmospherically and geometri-

cally corrected using atmospheric-topographic correc-
tion (ATCOR 3) software which requires SRTM DEM
data (Richter & Schläpfer, 2005). Finally, the radio-
metric-geometric-corrected-tiles were mosaicked to
produce a two RE imagery layers’ stack for the two
different acquisition dates.

(v) Landsat 8
L8 imagery were cropped to RE image products,

resampled and co-registered. Both RE and L8 imagery
had cloud and clouds’ shadow cover which were
manually masked (Kross et al., 2015).

(vi) Vegetation indices
Previous studies have emphasized the importance of

VIs for crop classification (Bannari et al., 1995; Zillmann
&Weichelt, 2014). VIs are more sensitive to “green” that
is chlorophyll active vegetation than the single spectral
bands. In the present study, several VIs such as NDVI,
simple ratio (SR), red-edge NDVI (NDVIre), red-edge
SR(SRre), green NDVI (gNDVI), and modified triangu-
lar vegetation index (MTVI2) were calculated using the
visible, near-infrared, and red-edge bands of L8 or RE
imagery. The original bands were used in combination

with the calculated VIs as an input variables on the RF
and other classifiers (Forkuor et al., 2014). The time-
series NDVI dataset utilized in our study was extracted
from 12 cloud-free L8 images which covered the period
from November 2013 to August 2015.

(b) Classifiers
(i) Random Forest
It has been shown that RF classifier was able to

handle large-scale high dimensional data with high/
medium spatial resolution (Forkuor et al., 2014;
Whiteside et al., 2011). Previous studies have also
found that RF could perform better on multi-
temporal dataset and is capable of dealing with noisy
and highly correlated remotely sensed predictor vari-
ables (Braun & Hochschild, 2015). In this experiment,
RF was employed to classify a raster-stack of RE, L8,
VIs, and S1 which covers the short rainy season in the
study area. The RF classifier takes random boot-
strapped subsets from a training dataset and con-
structs several classification trees using each of these
subsets. Branches in the trees are often thresholds
defined for the measured (known) variables in the
dataset. Whereas, leaves are the class labels assigned
at the termini of the trees. RF classifier requires opti-
mization of two user-defined parameters, which are

Figure 2. Workflow of the hierarchical classification approach using random forest and one class classifier during the short and
long rainy seasons in Bomet, Kenya. The arrows illustrate data flow directions and dependencies, squares represent datasets while
rounded rectangles were processes.
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number of trees (n-tree) and number of variables used
to split the trees (m-try). The default value of m-try is
the square root of the total number of the predictor
variables. One-third of the training dataset which is
not included in the bootstrapped training sample are
left out as out-of-bag (OOB) subset. An OOB error for
each tree is computed by predicting the class asso-
ciated with its in-bag value. This process results in
a classification confusion matrix which can be used
to evaluate the classification results. Therefore, we
calculated overall accuracy (OA), producer’s accuracy
(PA) and user’s accuracy (UA) from the confusion
matrix to evaluate the RF classifier performance. We
set n-tree to 100, 500, and 1000 to help select the most
optimal classification result. RF variable importance
was, furthermore used to determine the optimal spec-
tral variables (Kuhn, 2007). We tested RF classification
experiments with six imbalanced classes and five
balanced classes to produce a general LULC map.
The experiment that provided a good fit to the data
with the best classification performance was chosen.

(ii) One Class Classifier
Previous studies have emphasized that OCC algo-

rithms have the advantage of coping with incomplete
training data to map only one specific class of inter-
est. In contrast to RF, OCC just classifies the target
class. In the present study, at the long rainy season,
the available sample data were constrained to maize
fields. In addition, only one class such as monocrop-
ping or high severity MLN were targeted at the short
rainy season, which makes the OCC classifier as an
optimum classification option. On the other hand,
a careful manual interpretation of the diagnostic
plots such as the class separation and suitability of
a specific threshold is necessary for parameter-setting
and evaluation which makes the OCC classifier to be
less suitable for operationalization (Mack et al. 2014).
In this study, OCSVM as a P-classifier (P represents
positive labelled pixels as class of interest) was
employed to cope with incomplete datasets at long
rainy season. Because of the lack of complete valida-
tion samples, the so-called performance metrics are
unidentifiable in OCSVM approach. High severity
MLN (target class) was employed to train the
OCSVM classifier (P samples) for the short rainy
season period. In contrast to a common supervised
classifier, OCC classifiers reject the classification of
a pixel if it does not sufficiently match one of the
known classes. Consequently, the map production
cost can be significantly reduced. This is particularly
important, if a complete reference data are missing
and the user is interested in only one or few classes.
A serious disadvantage in the case of OCSVM, is the
absence of a confusion matrix, because the labelled
samples are only available for the “Positive class” of
interest, but not for the other classes (Mack, 2017).

OCSVM has been performed in both automatic and
manual model-selection mode. P-classifiers such as
OCSVM performances are based on 1) similarity
measure like the distance between the positive train-
ing samples and the target pixel to be classified and 2)
the threshold of the similarity measure to identify the
target class membership. Insignificant class overlap
or uniform distribution of negative and positive
classes can lead to an optimum OCSVM classification
results. In this experiment, PU-performance metrics
(puF) diagnostic plots were extracted and data eva-
luation performed manually. The puF is based on the
true positive rate (tpr) which estimates the probabil-
ity of classifying positive samples (true positives) out
of the positive training samples (the total actual posi-
tives). puF plots are based on two parameters: 1) “nu”
which sets an upper bound on the fraction of outliers
(training examples regarded out-of-class) and a lower
bound on the number of training samples used as
support vector. Setting “nu” to a large value results in
a higher number of outliers. This can cause large false
positives rate. 2) “Sigma” is the radial basis function
(RBF) kernel that is used in various kernelized learn-
ing algorithms, specifically in SVM classification.
Gaussian kernel function (K) as a non-linear function
of Euclidean distance is:

K x; x0ð Þ ¼ exp � x� x0j jj j2
2σ2

 !

SVM classifier tries to find similarities between
x (positive training sample) and x’ (pixels to be clas-
sified) where x� x0j jj j2, is the Euclidean distance
between x and x

0
and σ is a standard deviation

which determines the width for Gaussian distribu-
tion. For a larger σ2 the Gaussian function will tend
to fall off slowly and cause low variance and high bias.
For a smaller sigma, the decision boundary tends to
be high variance and less biased and cause over-
fitting. “nu” and “Sigma” parameters should be set
manually and changed from one classification to
another. Also, manual model selection table provides
tpr and Probability of Positive Prediction (ppp). The
ppp estimates the probability of classifying a sample
as positive out of the unlabelled samples which are
derived at the threshold 0 (Ө0). This paper utilized
Bayes’ rule for OCC with positive and unlabelled
(PU) data. The PU-performance metrics (puF) is
related to the F-score and can be derived from PU
data. PU area under the curve (puAuc) is related to
the area under the receiver operating curve. The
model selection table parameters such as puAuc
(positive/unlabelled area under curve) and perfor-
mance metrics were utilized to choose an optimal
model. On the other hand, puAuc is a threshold
independent parameter, which calculates the perfor-
mance over the whole range of possible thresholds.
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Thus, it also considers unsuitable thresholds. It com-
prises the density histogram of the predicted image
(dark grey), the distribution of positive (dark blue
box), and unlabelled predictions (light grey box).
These are the predictions of cross-validated, positive,
and unlabelled training samples. The light-blue box
shows the calibration predictions (the prediction on
the positive training data with the model, which
trained on the full training data).

BSVM uses training with the class of interest as
a positive class, and other class as unlabelled class.
With the test set (±test), an accuracy assessment for
the binary classification results over the whole range of
possible thresholds can be performed.

In this study, confusion matrices and accuracy mea-
sures for the given classes were provided for two types
of thresholds: 1) Ө0 which was obtained by the BSVM,
and 2) the Өopt which is the highest K. There was
a third map threshold (Өmap) which can be obtained
by Bayes’ rule, but it is not discussed in this study.
Usually, Ө0 leads to very high PA (less omission or
high true positive rate) and very low UA (high com-
mission or false-positive rate), while Өmap improves it.
PU-classifiers overcome P-classifier problems by bring-
ing into account the unlabelled data. It gives the target
classes a label “Positive” and the remaining classes the
label “Negative/Unlabelled.” With too few unlabelled
training samples it will be impossible to get close to the
optimal decision boundary.

Also, in some extends, a user-oriented strategy used
to support the handling of OCC according to the work
of Mack et al. (2014). The detailed evaluation of the
results as it has been described by Mack et al. (2014) is
out of the objectives of this study.

4. Results and discussion

The imbalanced model of classifying the six classes
(maize, grassland, tree, non-vegetation, water, and
non-maize crops) using RF resulted in an OA of
65.1%, K of 0.58, and OOB error of 1.64% with 500
RF trees. When 100 trees were used, the model yielded
an OA of 63% and K of 0.56. In theory, more RF trees
should produce a better classification result, but the
improvement in RF model performance decreases as
the number of trees increases (Oshiro et al., 2012). It is
worth noting that the gain in the classification accu-
racy is lower than the cost of computation time when
learning more RF trees. To avoid negative effect of the
imbalanced classes, we combined the non-maize and
grassland classes in one class. On the other hand, the
RF model with five balanced classes and 500 trees
resulted in an OA of 89.63% and K of 0.74. The
individual class accuracy was 83.57% for maize,
92.75% for non-maize, 98.59% for tree, 85.15% for
non-vegetation, and 92.65% for water. Overall, the
balanced model performed better than the imbalanced

model for producing an accurate LULC map. In addi-
tion, analysing the RF variable importance by-product
indicated that S1 layer had the highest mean decrease
in accuracy as compared to other layers.

The results of the LULC classification were limited
by cloud cover as such it was difficult to acquire
a complete set of multi-temporal NDVI dataset.
Figure 3 shows that correlation between NDVI tem-
poral profiles is higher at the adjacent maize develop-
ment phases in each season. For instance, between
May and June which are maize tasselling and matura-
tion development stages, respectively, the correlations
between NDVI profiles were high (Figure 3). These
correlations dropped towards September, which is the
maize harvesting stage. Interestingly, the correlation
between NDVI profiles between June 2015 and over-
lapped area at June 2014 is only 0.39 which is consid-
ered very low (Figure 3).

The performance metrics of the OCSVM as
P-classifier model that were used to map the high
severity MLN maize is presented in Table 1 and
Figure 4. In the present study, the results of the
P-classifier without manual model selection showed
that the positive hold-out predictions (dark blue box)
are located at the far right and separated from the
negative hold-out predictions (light grey box) at the
far-left side (Figure 4). Nevertheless, the confusion is
high as some of the positive holdout predictions
located at negative region. Additionally, there was
no discriminative low-density region between these
two classes. Our results demonstrated that a model
based on the high puAuc did not show better perfor-
mance comparing to the default model and leaded to
high confusion rate. The grid (Figure 4(a)) shows
that the puF dropped sharply at “Sigma” values smal-
ler than 0.11 and greater than 1.4 and “nu” higher
than 0.3. However, it is possible to find a finer grid
(Figure 4(b)) around “Sigma” = 0.11 to achieve a bet-
ter model. The diagnostic plot implies that the posi-
tive-labelled target class (high severity MLN) and the
negative-labelled class (all other MLN severity levels)
in both try (before and after manual interpretation
and selection) can hardly be separated without high
confusion rate.

With the test set (±test), an accuracy assessment
for the binary classification results over the whole
range of possible thresholds was performed (Table
2). Because of limited number of available training
samples, it was not possible to provide bigger
P training samples to cover wider spectral ranges.
Low-density area in a histogram usually interprets
as a good class separation. From the BSVM classi-
fication results, it was clear that high confusion rate
existed between high severity MLN and healthy
maize fields even after thresholding (Figure 5). It
is important to highlight the fact that a clear low-
density area does not exist between positive and
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unlabelled region in the produced histogram. This
demonstrates that training the model with a few
numbers of training samples were not leaded to an
optimal classification result.

The OA at Ө0 and Өopt for classifying high severity
MLN was 96%, K = 0.88 and 97%, K = 0.93, respectively.
AtӨopt, the UA increased 7%which was a result of lower
commission or lower false-positive rate. Similarly, PA at
positive test set remained unchanged which means the
true positive rate was not reduced. Since it was not easy
to determine an optimal threshold, visual inspection was
performed too. Finally, Өopt was chosen because of its
less false-positive rate (Mack et al. 2014). The result of
the high severity MLN classification based on BSVM
classifier is displayed in Figure 6.

The classification of the maize field at the long rainy
season was challenging due to insufficient (only maize
fields) ground truth samples. BSVM was chosen to
classify maize fields on L8 imagery at long rainy season.
It is important to note that a random sampling
approach on the whole training dataset could be used
to build unlabelled training samples. In this study, the
manual U training sample selection was conducted to
build up more representative U training samples.
BSVM classification’s histogram (Figure 7) showed

high confusion between P and U classes and the Zu
and Zp did not show a better separation among the
classes. A very tiny break was detected at theӨopt (0.93)
of diagnostic histogram as presented in Figure 7. The
confusion matrices and diagnostic plot indicated that
the large part of the Zu samples was located at low
z-values and some (i.e. 26) of the unlabelled samples
located at Z ≥ 0. This indicates that unlabelled samples
were located wrongly where the optimal decision (posi-
tive) should be. Practically, a high number of U samples
at the P region can indicate the negative effect of imbal-
anced training samples, which is expected with OCC
classifiers. Tax (2002) and Dreiseitl et al. (2010) dis-
cussed the outliers issue in detail which is out of the
boundary of this work. This misclassification was
reduced by choosingӨopt during manual interpretation
and thresholding. Our study showed that 31% of the
maize fields in Bomet were under continuous cropping
system (Figure 8).

Next step, BSVM classifier was used to classify mono
and intercropping maize system in the study area.
Figure 9 presents the diagnostic plot out of a balanced
P and U training samples. This resulted to an OA of
85% at Ө0. However, the balanced training samples
resulted in a high OA, but analyses of diagnostic plot
indicated that 26% of pixels were misclassified at an
optimal side for the classified pixels. Notwithstanding,
the imbalanced training sample resulted in a lower
density region between P and U classes. However,
33% of the unlabelled samples were misclassified. This
indicates that imbalanced (Larger U) training samples
reached a better separation but also more confusion.

Figure 3. Correlation between maize normalized difference vegetation index (NDVI) profiles (2013–2015) during the short and
long rainy seasons at Bomet, Kenya. Numbers indicate the correlation between NDVI profiles. (-): No data were available.

Table 1. Manual model selection for one class support vector
machine (OCSVM) classification of Maize Lethal Necrosis (MLN)
severity, model parameters, and performance metrics.
Row sigma nu tpr puP ppp puAuc puF puF1

11 0.11 0.05 0.93 0.41 0.344 0.93 2.6 0.57
12 0.11 0.10 0.88 0.42 0.316 0.92 2.5 0.57
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Classification with imbalanced P and U training sam-
ples resulted with lower OA accuracy of 70% at Ө0

(Figure 11). In addition, visualized raster showed that at
Өopt a lot of salt and pepper effects were produced
(Figures 10 and 12). After different threshold setting
and visual inspection, the threshold 0.4 to 0.5 showed
acceptable accuracy. In an optimal situation, larger
P and U training samples can cover more complete
spectral ranges and consequently the confusion
between P and U should be reduced (Khan &
Madden, 2014). Bigger training samples here have
increased the computational cost. Consequently, the
model with smaller but balanced taring samples was
chosen to reduce the misclassifications.

The average-rainfall analysis showed that towards the
eastern side of the study area, the precipitation decreased
gradually. Whereas, 26% of the study area with relatively
higher average rainfalls was under maize intercropping
system (Figure 10). At the same period, in the region with
lower rainfall, 45% of farmers performedmaize intercrop-
ping system (Figure 12). Further, our results showed that
60% of high severity MLN occurred at region with lower
rainfall (Makone, 2014). Figure 13 presents high severity
MLN occurrences, intercropping system, and average
rainfall at the western and eastern sides of the study area.

To date, several questions remain unanswered. There is
a raising concern about the effectiveness of crop rotation
to control MLN outbreak especially in those regions with

Figure 4. Default one class support vector machine (OCSVM) positive (P) classifier results for mapping Maize Lethal Necrosis (MLN)
severity. (a) is the corresponding puF diagnostic plot, and (b) is the MLN severity classification after puF manual model selection.
Zp: distribution of positive prediction, Zu: distribution of unlabelled predictions, Zpu: density histogram of the predicted image.

Table 2. Confusion matrices for high severity Maize Lethal Necrosis (MLN) classification using the biased support vectors machine
(BSVM) classifier at Ө0 and Өopt thresholds. The + Prediction row of the table corresponds to samples which predicted to be
positive (+Pred./high severity MLN). Correctly predicted under +Test (high severity MLN test set) and called the true positives (TP).
Inaccurately classified under -Test (low severity MLN test set) and were called the false positives (FP). Similarly, the second row
contains the predicted negatives (-Pred./low severity MLN predicts) with true negatives and false negatives (FN). Low severity MLN
correctly predicted under -Test (low severity MLN test set) were called the true negatives. Inaccurately classified under +Test (high
severity MLN test set) were called the false negatives (FN).

Ө0 Өopt

+Test -Test SUM UA (%) +Test -Test SUM UA (%)
+ Pred. (TP)218 (FP)40 258 84 + Pred. (TP)218 (FP)22 240 91
- Pred. (FN)1 (TN)658 659 100 - Pred. (FN)1 (TN)676 677 100
SUM 219 698 917 SUM 219 698 917
PA (%) 100 94 PA (%) 100 97
OA (%) 96 OA (%) 97
AUC (*100) 99 AUC (*100) 99
K (*100) 88 K (*100) 93
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traditional small-size fields and absence of real cropping
calendar. This is particularly important to be investigated
that in which extends “long term” crop rotation can be
effective to control MLN outbreak in a heterogeneous

small-size farming system. Furthermore, distribution of
mono and intercropping systems under different rainfall
levels revealed that the intercropping system was more
common at regions with lower rainfall. The results

Figure 5. Biased support vectors machine (BSVM) classification diagnostic plot for mapping high severity Maize Lethal Necrosis (MLN).
Zp: distribution of positive prediction, Zu: distribution of unlabelled predictions, Zpu: density histogram of the predicted image.

Figure 6. Classification of high severity Maize Lethal Necrosis (MLN) fields using biased support vectors machine (BSVM) classifier
and RapidEye data (January 2015).
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Figure 7. Biased support vectors machine (BSVM) classification diagnostic plot for mappingmaize fields in August 2015 using Landsat
8 data. Zp: distribution of positive prediction, Zu: distribution of unlabelled predictions, Zpu: density histogramof the predicted image.

Figure 8. Overlay of classified maize fields in January 2015 and August 2015 obtained using random forest and biased support
vectors (BSVM), respectively.
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confirmed that uncertainties in rainfall patterns have
encouraged intercropping system in the low rainfall
region.

5. Conclusions

This study utilized medium and high spatial resolu-
tions optical (i.e. L8 and RE, respectively), and SAR

(i.e. S1, SRTM DEM) datasets towards a better under-
standing of maize cropping system and high severity
MLN occurrences in heterogeneous landscape in
Bomet county, Kenya.

Using representative training samples and balanced
classes in RF, a LULC map with OA of 89.63% was
achieved. We have found a high correlation between
maize fields’ NDVI at the adjacent maize development
phases such as tasselling and maturation in the same

Figure 9. Biased support vectors machine (BSVM) classification diagnostic plot trained with balanced samples for mapping maize
mono and intercropping systems. Zp: distribution of positive prediction, Zu: distribution of unlabelled predictions, Zpu: density
histogram of the predicted image.

Figure 10. Maize mono and intercropping systems mapped during the high rainy season (western side of Bomet, Kenya).
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cropping season. The correlation between maize fields’
NDVI in June 2015 and overlapped area at 2014 was
only 0.39 which can imply the effect of MLN outbreak
on maize crop in the region. Classification of maize
fields during long rainy season using L8 imagery and
BSVM classifier have been successfully performed. In
contrast, RF classifier did not show any outstanding
performance with only two classes (i.e. maize and
non-maize). This indicates that in the presence of
only one known class as training sample, OCC

classifiers performed better comparing to RF, which
is known as a multi-class classifier.

Classifying high severity MLN and also maize crop-
ping systems (mono and intercropping) using BSVM,
performed successfully even the results showed a high
confusion rate. Investigating the high severity MLN
distribution under different rainfall levels indicated
a relatively higher MLN-infected area under lower
rainfalls. At the same time, more farmers tended to
practice intercropping at lower rainfall levels.

Figure 11. Biased support vectors machine (BSVM) classification diagnostic plot trained with imbalanced samples for mapping
maize mono and intercropping systems.

Figure 12. Maize mono- and intercropping systems mapped during the low rainy season (eastern side of Bomet, Kenya).
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To have a better understanding of ecological variables’
influence onMLN occurrences, further studies should be
performed utilizing long term, constant, and accurate
data collection methods. In other words, it is important
to analyse MLN outbreak trends from the initial year of
observation to a longer period to provide a better under-
standing of MLN occurrences and distribution. Further
studies are certainly required to determine presence/
absence, alternative hosts, vectors, seasonality of viruses
like MCMV and SCMV, and other related ecological
factors causing MLN specifically in East Africa. Overall,
it will be important to investigate the role of climate
change on MLN outbreak to get a better understanding
of its effect on food security in Africa.
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