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Abstract: The use of black soldier fly frass fertilizer (BSFFF) is being promoted globally. However,
information on nitrogen (N) fertilizer equivalence (NFE) value and synchrony of N mineralization for
crop production remains largely unknown. Comparative studies between BSFFF and commercial
organic fertilizer (SAFI) were undertaken under field conditions to determine synchrony of N release
for maize uptake. The BSFFF, SAFI, and urea fertilizers were applied at the rates of 0, 30, 60,
and 100 kg N ha−1. The yield data from urea treated plots were used to determine the NFE of both
organic inputs. Results showed that maize from BSFFF treated plots had higher N uptake than that
from SAFI treated plots. High N immobilization was observed throughout the active growth stages
of maize grown in soil amended with BSFFF, whereas soil treated with SAFI achieved net N release at
the silking stage. Up to three times higher negative N fluxes were observed in SAFI amended soils as
compared with BSFFF treated plots at the tasseling stage. The BSFFF applied at 30 and 60 kg N ha−1

achieved significantly higher NFE than all SAFI treatments. Our findings revealed that BSFFF is a
promising and sustainable alternative to SAFI or urea for enhanced maize production.

Keywords: frass fertilizer; Hermertia illucens; maize; nitrogen fertilizer equivalence; nitrogen
mineralization; nitrogen synchrony

1. Introduction

Organic fertilizer inputs are one of the promising pathways for sustainably improving soil and
crop productivity [1,2]. These organic fertilizers are a good source of nitrogen, which is one of the
most limiting soil nutrients for crop production in most parts of sub-Saharan Africa (SSA) [3,4].
Organic fertilizers are an ingredient of stable soil aggregates and are known for improving soil pH,
soil organic matter, levels of secondary and micronutrients [2,5–8], as well as nutrient availability,
uptake, and utilization [9,10].

Farming systems in countries of SSA rely mostly on inherent soil fertility with very little inputs of
mineral fertilizers because of their high costs and unavailability from a local source [11]. Likewise,
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the use of organic manures is still limited largely because of their low availability due to other competing
uses on the farm such as feeding of animals [12,13] and domestic use as fuel [14]. Such competing
uses leave little or none of the organic resources for use in crop production. Therefore, improving soil
productivity using organic resources requires a venture into new organic fertilizer sources.

An increasing demand for animal feed through insect mass rearing using organic substrates [15,16]
presents an opportunity for recycling organic wastes into organic fertilizer for soil fertility management.
The black soldier fly (Hermetia illucens L.) (BSF) larvae are reared on organic wastes which produce a
nutrient-rich frass [17–19]. The high waste degradation efficiency (66–79%) [20] of BSF larvae and their
ability to significantly reduce pathogens present in waste [17] make them efficient organic cyclers that
could also benefit soil fertility. Converting BSF frass into organic fertilizer would be a fast and efficient
way of recycling nutrients present in organic wastes for soil fertility improvement.

The effectiveness of organic fertilizers for crop production largely depends on their nutrient
content, especially nitrogen (N), and rate of nutrient release [21–23]. Plant available N from organic
fertilizers is highly dependent on their composition, organic N fractions, C/N ratio, appropriate timing,
rate, and method of application [24,25]. Nitrogen mineralization rate is the single most important factor
which determines the quantity and period in which nutrients from organic fertilizers are available
for plant uptake [21,23]. For optimal crop growth and yield, N mineralization patterns should match
fluctuations in crop nutrient demands to cause synchrony, i.e., the balance between N supply and N
demand [26].

Although the mineralization and synchrony of N from different organic resources have been
widely studied [22–24,27], information on BSF frass fertilizer (BSFFF) is unknown since it is a relatively
new organic fertilizer product. However, a similar study was done by Adin Yéton et al. [28] who used
a litter bag experiment which did not incorporate the frass into the soil, thereby ignoring the soil
factors that influence N mineralization [25,29,30]. At the same time, this experiment did not involve a
crop, thus making it difficult to know whether the N mineralized from BSFFF could match the crop N
demand, because, although the N content of the organic fertilizer could be high, its release could be
hampered by soil factors such as pH, bacterial regime, and C/N ratio of the substrate after incorporation
in the soil [23,26].

While using organic fertilizers, the likelihood of meeting crop N demand during critical growth
stages depends on the ability of the crop to compete for the mineralized N with other consumption
pathways such as immobilization by microbes [30], losses through volatilization, and leaching beyond the
rooting system. Information on the dynamics and synchrony of N release from BSFFF for crop production
in any cropping system is unknown. However, such information would guide recommendations on
timing and rate of application for BSFFF for efficient N management.

The quality of an organic resource is also assessed based on its performance as compared with a
standard mineral fertilizer, also known as the N fertilizer equivalence (NFE) [22,31]. Nitrogen fertilizer
equivalence also known as nitrogen fertilizer replacement value, is the amount of mineral fertilizer N
saved when using organic amendment to produce the same yield [32]. Nitrogen fertilizer equivalences
of organic resources have been found to vary with the sources [33] and application rates [32]. In real
terms, this means that there is a rate at which organic fertilizers can achieve similar yields as mineral
fertilizer. Unfortunately, the NFE of BSFFF is not known, although it would guide optimum application
rates for efficient N management. Such information would also act as a basis for integrating BSFFF
into existing cropping practices. To address these knowledge gaps, comparative studies were carried
out to determine the NFE, N release, N uptake, and synchrony of N released from soils amended with
BSFFF, and existing commonly used commercial organic fertilizer for maize production.
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2. Materials and Methods

2.1. Site Characteristics

Field experiments were set up for two seasons (April–September 2019 (short rains) and October
2019–March 2020 (long rains)) at the Kenyatta University teaching and demonstration farm (1◦10′59” S,
36◦55′34” E, 1580 m above sea level), Nairobi County, Kenya. The area receives bimodal rainfall with
annual averages of 925 mm. The first rainfall season starts from March to June, while the second season
runs from October to December. The mean monthly temperatures of the area range between 21 and
28 ◦C [34]. During the period of experiments, the average monthly temperatures ranged between 25
and 27 ◦C, with the highest values recorded during the short rain season (FS 1). The long rain season
received relatively higher mean monthly rainfall (31–102 mm) than the short rain season (40–87 mm).

Soils in the study site are acric ferralsols [35] characterized by low organic matter, shallow depths,
and low pH levels. Before the experiments, soils were sampled (0–20 cm) for determination of
total organic N, total organic carbon, available phosphorus (P), exchangeable cations (potassium (K),
calcium (Ca), and magnesium (Mg), pH, electrical conductivity, and soil texture using procedures
described by Okalebo et al. [36]. Table 1 shows selected physical and chemical characteristics of the soils
used in the experiment. Soil moisture content at different stages of crop growth in the topsoil (0–20 cm)
(Figure 1a,b) and subsoil (20–40 cm) (Figure 1c,d) was also monitored during the experimental period.
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Table 1. Selected physical and chemical characteristics of the experimental soil, and organic fertilizers.

Experimental Soil

Parameter
pH

(1:2.5 water)

Bulk density Mineral N Total N TOC SOM Available
P (ppm)

Exchangeable cations
(cmol kg−1) Sand Clay Silt Textural class

(g cm−3) (mg kg−1) (%) K Ca Mg (%)

Test value 5.9 1.35 1.81 0.04 1.3 2.3 9.7 2.07 0.91 0.07 63 20.3 16.7 Sandy loam

Organic Fertilizers

Parameters Moisture (%) pH EC
(mS cm−1)

Ammonium Nitrate TOC Total N Total P Total K Total Ca Total Mg C/N ratio

(mg kg−1) (%)

BSFFF 30.1 7.7 2.7 74.4 1.39 35.2 2.1 1.16 0.17 0.19 0.16 16.8

SAFI 29.8 6.4 6.1 39.4 92.3 45.1 3.0 1.23 1.49 0.29 0.43 15.0

Key: TOC total organic carbon; SOM, soil organic matter; EC, electrical conductivity; BSFFF, black soldier fly frass fertilizer; SAFI, commercial organic fertilizer.
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2.2. Experiment 1: Nitrogen Fertilizer Equivalence Values of Black Soldier Fly Frass Fertilizer (BSFFF)
and Commercial Organic Fertilizer (SAFI)

2.2.1. Source of Organic Fertilizers

The experiment involved the following three fertilizers: two organic fertilizers (BSFFF and commercial
organic fertilizer (SAFI)) and one inorganic N fertilizer (urea, 45% N). The BSFFF was a product
obtained from the feeding of BSF larvae on brewery spent grain (sourced from Kenya Breweries Limited,
Nairobi, Kenya) at the animal rearing and quarantine unit of the International Centre of Insect Physiology
and Ecology (icipe), Nairobi. The BSF larvae were reared in metallic trays, as described by Shumo et al. [37],
using a rearing substrate that was hydrated to approximately 70 ± 1% moisture content. The rearing
facility of BSF larvae was equipped with wooden stands (180 cm high × 66 cm wide × 420 cm long).
Each wooden stand had three shelves separated from each other by a 30 cm space, where the metallic
trays used in rearing the BSF larvae were fitted. Metallic trays used during the experiment measured
76 cm long, 27.5 cm wide, and 10 cm deep. The bottom of each tray measured 52 cm in length by 27.5 cm
width, which allowed for both edges of the tray to be inclined at an angle of 35◦.

The experimental room was heated using fast moving dry hot air at 28.0 ± 2 ◦C (using an Xpelair
heater, Wall Fan Heater, Peterborough, United Kingdom) with thermoregulators. Portable digital
thermo-hygrometers were placed inside each of the rearing rooms to monitor temperature and relative
humidity. Conditions in the experimental rearing room were maintained at 28 ± 2 ◦C, 60–70% relative
humidity, and a photoperiod of L12:D12. After 2 weeks, the larvae were harvested by sieving to
separate them from the frass. The frass obtained was composted inside a greenhouse using the heap
method. During composting, frass heaps of 1 m height and 4 m long were built on surfaces lined
with polythene sheets and hydrated to a moisture content of 55–65%. The heaps were covered using
polythene sheets (1000 mm gauge) to prevent moisture and heat loss. The composting materials were
turned on a weekly basis using a forked spade to ensure uniform decomposition. Compost maturity
was monitored on a weekly basis using the C/N ratio, pH, and electrical conductivity. After five weeks,
a mature and stable frass product was obtained and used in the experiments as BSFFF.

The commercial organic fertilizer (SAFI) was sourced from Safi organics limited [38] located in
Mwea town, Kirinyaga County, Kenya. It was made from composted chicken manure, biochar, and rock
phosphate. Urea fertilizer was sourced from the Kenya farmers’ association stores, Nairobi. Table 1
shows selected physical-chemical characteristics of the organic fertilizers used in the experiments.

2.2.2. Experimental Design and Data Collection

The three fertilizers were applied at three rates each, equivalent to 30, 60, and 100 kg N ha−1.
These were denoted as 30N BSFFF, 60N BSFFF, and 100N BSFFF for BSFFF treatments; 30N SAFI,
60N SAFI, and 100N SAFI for SAFI organic fertilizer treatments; and 30N UREA, 60N UREA, and 100N
UREA for urea treatments. The control treatment was not amended. To avoid any nutrient limitations
that could hinder crop response to the applied N, inorganic P (supplied as triple super phosphate
(TSP), 46% P2O5) and K (supplied as muriate of potash, 60% K2O) were applied at blanket rates of
60 kg P ha−1 and 50 kg K ha−1 [39]. For SAFI and BSFFF treatments, inorganic P and K were applied
after considering the quantities (of P and K) contained in the dry matter used to supply the different
levels of N.

The maize variety H513 (Kenya seed company, Nairobi, Kenya), which is recommended for
low and medium altitude areas of Kenya, was used as the test crop. The experiments were set
out as a randomized complete block design with split-plot treatment structure and three replicates.
Fertilizer types were the main plot factors, whereas N rates were the subplot factors. Plots measured
4 × 4 m with border widths of 0.5 m and 1 m for the plots and blocks, respectively. The TSP fertilizer
was applied at planting, whereas urea and muriate of potash were applied in two splits, i.e., 50% at
4 weeks after planting and another 50% at 7 weeks after planting. The standard crop husbandry
procedures were carried out during the experiment.
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At harvesting, yield data were collected per plot after all the ears had dried. Plants in each plot were
cut at ground level, their ears threshed to determine grain weights and weight of residues using a weighing
scale. Grain and stover samples were taken to the laboratory and air-dried to 12.5% moisture content for
determination of grain and stover yields per treatment and calculated on a hectare basis (t ha−1).

Grain yields from the urea fertilizer treatment were used to draw the N response curve that was
used to calculate the N fertilizer equivalence (NFE) values of the two organic fertilizers (Equation (1)) [31].
For easy comparison between treatments, the NFE values were converted into percentages [40,41].

NFE
(
kg kg−1

)
=

NA f=GY

NAorg
(1)

where NAf=GY represents the mineral fertilizer, N, required to obtain grain yield equivalent to those of
organic fertilizer treatments (kg ha−1). The NAf=GY for each organic fertilizer treatment was estimated
using the grain yield response curve specific to each season. NAorg represents the total N supplied by
organic fertilizer inputs.

2.3. Experiment 2: Nitrogen Mineralization and Synchrony of N Release for Maize Uptake

The BSFFF and SAFI organic fertilizers were applied at rates of 0 and 5 t ha−1, an organic fertilizer
rate that has been previously used in central Kenya [23,42,43]. Maize (H513 variety) was used as the
test crop. The experiments were set out as randomized complete block design with three replicates,
and for two seasons (April to September 2019 and October to March 2020). The plot dimensions were
like those described in Experiment 1. Table 2 shows characteristics of the soil alone and amended soils
at the start of the long rain season experiments (October 2019).

The experiments were managed according to standard agronomic practices. Data on biomass
amounts and nitrogen uptake were determined at the early vegetative stage (35 days after planting,
DAP) at tasseling (70 DAP), at silking (91 DAP), and at maturity (harvesting) (125 DAP) stages.
Two plants were randomly selected from each plot, cut at ground level, and their fresh weights
determined. Thereafter, their subsamples were oven dried at 60 ◦C for 72 h, cooled, and the dry weights
determined. The dried samples were ground into powder which was used for the determination of
total N and N uptake (Equation (2)):

N uptake
(
kg ha−1

)
=

%N × dry matter
(
kg ha−1

)
100

(2)

Grain and stover yield data were collected at the harvesting stage from a net plot area of 9 m2

which was calculated on a hectare basis (t ha−1), as described in Experiment 1 above. Part of the
grain and stover samples from each treatment were ground into powder for determination of N.
Nitrogen uptake in grain and stover was calculated using Equation (2).
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Table 2. Properties of soil alone and amended soil at the start of the long rain season experiments.

Treatments
pH Ammonium Nitrate Bacteria Fungi Total N Available P Exchange Cations

(cmol kg−1)
Ammonium/Nitrate Ratio

(mg kg−1) CFU g−1 (%) (ppm) K Ca Mg

Soil alone 6.2 1.44 0.36 2.08 × 107 3.71 × 107 0.02 12.0 1.2 0.77 0.07 4.0
Soil + BSFFF 8.2 402.2 7.5 2.78 × 108 8.59 × 107 0.56 693.6 3.2 0.58 0.24 53.6
Soil + SAFI 5.5 171.5 197.2 6.69 × 107 5.05 × 107 0.09 331.6 9.1 0.73 0.09 0.87

Key: CFU, colony forming units; BSFFF, black soldier fly frass fertilizer; SAFI, commercial organic fertilizer.
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2.3.1. Soil Sampling and Incubation

From each plot, soil was collected from 0–20 cm depth before application of organic fertilizers.
The soil was manually sorted to remove objects, stones, and clods bigger than 2 mm. The soil was then
homogenized by hand mixing in a basin. The two organic fertilizers were mixed with the soil at the
same rate (5 t ha−1) as mentioned above and the moisture content of the mixture (soil-organic fertilizer)
was adjusted to 60% soil water holding capacity. Then, two hundred grams of the mixture were placed
in an air permeable ziplock bag that was sealed to prevent water entry. The bags were, then, buried at
10–20 cm depth in respective plots in the field. At the same time, 200 g of unamended soil from each
plot (as control) were placed in ziplock bags and buried at the same depths (10–20 cm) in each of the
respective plots.

Five bags were randomly buried per replicate, giving a total of 15 bags per treatment at the
beginning of each cropping season. The bags were retrieved at 0, 35, 70, 91, and 126 days of incubation
which corresponded to planting, early vegetative, tasseling, silking, and harvesting stages of the maize
crop. The positions of the bags were marked using pegs to avoid disturbance during weeding and for
easy retrieval. On each sampling date, the retrieved bags were labelled, placed in airtight polythene
bags, and carried in a cool box containing ice blocks to reduce microbial activities during transportation.
The samples were used for determination of mineral N content. At the same time, soil samples were
also collected from the topsoil (0–20 cm) and subsoil (20–40 cm) layers of the respective plots for the
determination of mineral N content during crop growth. A soil auger was used to collect subsamples
from eight spots within the inner four rows of each plot. The subsamples were homogenized by using
a quarter sampling approach to obtain representative samples. The soil samples were also placed in
airtight polythene bags and carried to the laboratory using cool boxes containing ice blocks to reduce
microbial activities during transportation.

2.3.2. Mineral Nitrogen Release

The mineral N released from soil alone and from soil amended with organic fertilizers at each
sampling time during mineralization was determined and calculated on a per hectare basis (kg N ha−1)
by using the bulk density of soil and Equations (3) and (4) [23]. The N release rate (kg N ha day−1) was
calculated by dividing mineral N released at each sampling date by the number of incubation days [44]:

Mineral N released
(
kg N ha−1

)
soil alone

= Mineral N t+k soil −Mineral N ti soil (3)

Mineral N released
(
kg N ha−1

)
amended soil

= Mineral N t+k amended soil −Mineral Nti amended soil (4)

where ti represents sampling times i = 0, 1, 2, 3, . . . , t + k is ti plus time k intervals where k = 1, 2, 3, 4, . . . .

2.3.3. Synchrony of Nitrogen Release and Nitrogen Uptake

To determine the N synchrony, N flux was calculated as the difference between plant N uptake
and mineral N released from the amended soils per day (Equation (5)) according to Musyoka et al. [23].
A positive N flux meant that the N released was larger than the crop’s N demand, whereas a negative
N flux meant that mineral N released was insufficient to meet the crop’s N demand.

N f lux
(
kg N ha day−1

)
= Mineral N releasedinputs

(
kg N ha day−1

)
−Daily N uptake

(
kg N ha day−1

)
(5)

where,

Daily N uptake
(
kg ha day−1

)
=

(N uptake t i+k −N uptake ti) kg ha−1

(ti+k − ti)

N uptake represents the quantity of N taken up at each crop stage (Equation (2)).
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2.4. Laboratory Analysis Methods

The pH and electrical conductivity (EC) were determined using extracts of 1:10 and 1:2.5 (w/v) for
organic fertilizer to distilled water and soil to distilled water, respectively. The contents were then
shaken for 1 h, at 180 revolutions min−1, on an orbital and linear shaker (MI0103002, Foure’s scientific,
Guangdong, China). Then, the pH and EC were read directly using a pH (AD1000, Adwa, Bucharest,
Romania) and EC meter (AVI, Labtech, Mumbai, India), respectively [36].

The mineral N (nitrate and ammonium) was extracted from organic fertilizers and soil using 0.5 M
potassium sulphate at a ratio of 1:10 (w/v). The nitrate and ammonium concentrations in solutions
after filtration were determined by colorimetric methods at 419 and 655 nm, respectively, as described
by Okalebo et al. [36]. The mineral N contents were expressed in kg ha−1 using bulk density of soil at
each depth and sampling period. Total organic carbon of organic fertilizers and soil was determined
using the wet oxidation method [45].

The total N, P, K, Ca, and Mg of organic fertilizers were extracted using acid digestion [36].
From this extract, total N, P, and K were determined using the Kjeldahl digestion and distillation
method [46], UV-Vis spectrometry [36], and flame photometry [36], respectively. The total Ca and Mg
concentrations were determined using atomic absorption spectrometry (AAS) [36] at 422.7 and 285.2 nm,
respectively (iCE 3300 AA system, Thermo Scientific, Shanghai, China). Available P and exchangeable
Ca and Mg in soil were determined using Bray 2 and AAS, respectively, whereas exchangeable K was
determined using flame photometry. Total N in soil was determined using Kjeldahl digestion and
distillation method, and soil texture was determined using the Bouyoucos hydrometer method [36].

2.5. Data Analysis

Prior to statistical analysis, data were tested for normality using the Shapiro–Wilk test. Analysis of
variance tests were performed on mineral N content, N release, and N uptake data using a linear
mixed-effect model with ”lmer” function from the package ”lme4” in R statistical software [47].
Fertilizer treatments and sampling time were kept as fixed effects, whereas replication was a random
effect. Data on grain and stover yields were analyzed using one-way analysis of variance test.
Computation of least squares means was done using ”lsmeans” package, followed by mean separation
using adjusted Tukey’s method implemented using ”cld” function from the ”multicompView” package.
Data was analyzed separately for each experiment and season. All the statistical analyses were
conducted using R software version 3.6.0 [48].

3. Results

3.1. Influence of BSFFF and SAFI Organic Fertilizer on Soil N Mineralization at Different Seasons

The different organic fertilizer inputs caused significant differences in the quantity of mineral
N released during the cropping seasons (short rains season p < 0.05 and long rain season p < 0.01)
(Figure 2a,b). Mineral N released from soil amended with BSFFF reached peak levels after 70 days of
incubation (coinciding with the tasseling stage) in both seasons, after which it decreased until the 125th
day of incubation (coinciding with the maturity stage). For SAFI organic fertilizer, the peak levels in
mineral N release were attained at 91 days of incubation which coincided with silking stage of maize
crop during the short rain season, while in the long rain season, the N release kept a decreasing trend
throughout the season.
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Figure 2. Nitrogen released by soil amended with black soldier fly (BSF) frass fertilizer and SAFI
organic fertilizer during the short (a) and long rain (b) cropping seasons.

The soils amended with SAFI organic fertilizer released significantly (p < 0.05) higher mineral N
at tasseling and at maturity stages than BSFFF amended soils during the short rain season. On the
contrary, the mineral N released from soil amended with BSFFF was significantly (p < 0.01) higher
than that released from soil amended with SAFI organic fertilizer, at the early vegetative and tasseling
stages during the long rain season.

3.2. Variation of Soil Mineral N in Two Cropping Seasons in Plots Treated with BSFFF and SAFI Organic Fertilizer

The mineral N content in the topsoil (0–20 cm) varied significantly at different stages of maize
growth during the short rain season (p < 0.05) (Figure 3a,b). The mineral N content ranged from 3 to
29 kg N ha−1 at early vegetative stage, after which the amount decreased until the end of the season.
Soil amended with BSFFF maintained significantly (p < 0.05) higher mineral N content during the short
rain season than that amended with SAFI organic fertilizer. During the long rain season, the mineral N
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amount increased to peak levels at the tasseling stage, with higher values recorded in BSFFF treated
soils than those treated with SAFI.
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Figure 3. Mineral nitrogen content in the topsoil (0–20 cm) (a,b) and subsoil (20–40 cm) (c,d)
layers following application of BSF frass and SAFI organic fertilizers during the short and long
rain season experiments.

Similarly, in the subsoil (20–40 cm), the organic fertilizer amendments also caused significant
differences in mineral N content at different maize growth stages during the short (p < 0.001) and long
(p < 0.001) rain seasons (Figure 3c,d). At the early vegetative stage (35 DAP), the mineral N content
was between 3 and 42 kg N ha−1 but increased to peak levels (9–32 kg N ha−1) at the silking stage.
From thereafter, the mineral N decreased until the end of the experiments. However, the mineral N
content of soil amended with BSFFF decreased throughout the long rain season.

Soil amended with BSFFF attained significantly (p < 0.001) higher mineral N content than that
treated with SAFI organic fertilizer, at the early vegetative stages of both seasons, and at the silking
and harvesting stages during the short rain season. At the same time, the mineral N content in soil
amended with SAFI organic fertilizer increased beyond that of soil amended with BSFFF from the
tasseling stage of the long rain season, with significant (p < 0.001) values observed at the silking stage.

3.3. The Effects of BSFFF and SAFI Organic Fertilizer on Maize N Uptake

There were significant differences in N uptake by maize grown in soil amended with organic
inputs during the short (p < 0.001) and long rain (p < 0.001) seasons (Figure 4a,b). The N uptake
increased significantly to peak levels (82–139 kg N ha−1) at the tasseling and silking stages, after which
they decreased up to the harvesting stage. Maize grown in soil amended with BSFFF, accumulated
significantly (p < 0.001) higher N levels at the silking stage of both seasons, but only at the harvesting
stage during the short rain season.
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Figure 4. Effect of BSF frass and SAFI organic fertilizers on maize nitrogen uptake (a,b), nitrogen
uptake rate (c,d) and nitrogen flux differences (e,f) during the short and long rain season.

The N uptake rates also varied significantly (p < 0.01) at different growth stages during the long
rain season only (Figure 4c,d). The trends in N uptake rates followed those of N uptake, with peak
values between 0.4 and 1.6 kg N ha day−1. The N uptake rate of maize grown in soil amended with
BSFFF decreased to negative values (−1.2 kg N ha day−1) at the silking stage of the short rain season
and the harvesting stages of both seasons. However, maize grown in soil amended with SAFI organic
fertilizer had positive N uptake rates at all stages of growth, except at the harvesting stage of the short
rain season, when uptake rates of −0.4 kg N ha day−1 were recorded.

3.4. Effects of BSFFF and SAFI Organic Fertilizer on the Degree of N Synchrony

The different organic fertilizers showed significant variations in N flux differences during the
short (p < 0.01) and long rain (p < 0.001) seasons (Figure 4e,f). Nitrogen fluxes for maize grown on soil
amended with BSFFF ranged from −16 and 7 kg ha day−1, whereas those of SAFI organic fertilizer
treatments ranged from −34 and 24 kg N ha day−1. The N fluxes for BSFFF amended treatments
increased from the early vegetative stage during the short rain season towards positive values but
decreased with higher negative values up to the silking stage during the long rain season.

Positive N flux differences for soil amended with BSFFF were attained at the harvesting stages
of both seasons. However, positive N flux differences for soil amended with SAFI organic fertilizer
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were achieved at the silking stage in both seasons. Higher positive N flux differences were recorded
during the long rain season as compared with the short rain season. Soil amended with SAFI organic
fertilizer produced significantly (p < 0.001) higher positive N flux differences than that amended with
BSFFF, in both seasons.

3.5. Effects of BSFFF and SAFI Organic Fertilizer on Maize Grain Yield

The different organic fertilizer amendments applied at various N rates caused significant differences
in maize grain yields during the short (p < 0.05) and long rain (p < 0.001) season experiments (Table 3).
Maize grain yields increased with an increase in N rates and all treatments producing higher grain
yields during the long rain season than in the short rain season. On the one hand, the BSFFF treatments
achieved higher maize grain yields than the equivalent rates of SAFI organic fertilizer. However,
maize grain yields did not vary significantly among the different BSFFF treatments. On the other hand,
plots treated with 100 kg N ha−1 supplied as SAFI organic fertilizer produced significantly (p < 0.001)
higher maize grain yield during the long rain season than where 30 kg N ha−1 of the same fertilizer
were applied.

Table 3. Maize grain yield and nitrogen fertilizer replacement values of BSF frass and SAFI
organic fertilizers.

Fertilizer
Rate

(kg N ha−1)

Season 2019A (Short Rains) Season 2019B (Long Rains)

Grain Yield
(t ha−1)

NFRV (%) Grain Yield
(t ha−1)

NFRV (%)

BSFFF
30 4.96 ± 0.21 a 229.4 ± 28.4 a 5.20 ± 0.32 ab 131.8 ± 34.3 ab
60 5.59 ± 0.40 a 165.9 ± 32.7 ab 5.95 ± 0.26 a 151.0 ± 37.5 a

100 5.72 ± 0.32 a 105.3 ± 17.7 ab 6.15 ± 0.10 a 110.6 ± 8.6 ab

SAFI
30 4.49 ± 0.52 a 178.6 ± 59.7 ab 3.68 ± 0.04 c 3.5 ± 1.3 c
60 4.00 ± 0.44 a 61.2 ± 21.9 b 4.48 ± 0.27 bc 30.4 ± 10.9 bc

100 4.51 ± 0.15 a 52.1 ± 5.3 b 5.12 ± 0.20 ab 35.6 ± 6.5 bc

p value * * *** **

Key: *** p < 0.001, ** p < 0.01, * p < 0.05. NFRV, nitrogen fertilizer replacement value; BSFFF, black soldier
fly frass fertilizer; SAFI. commercial organic fertilizer. In same column, means with the same letter are not
significantly different.

Maize grown in soil amended with 30 and 60 kg N ha−1 supplied as BSFFF produced significantly
(p < 0.001) higher grain yields than equivalent rates of SAFI organic fertilizer during the long rain
season. Plots treated with 100 kg N ha−1 supplied as BSFFF produced the highest maize grain yields,
which were 27 and 20% higher than those produced by equivalent rates of SAFI organic fertilizer
during the short and long rain season, respectively.

3.6. Nitrogen Fertilizer Equivalence Values of BSFFF and SAFI Organic Fertilizer

The N fertilizer equivalence (NFE) values of organic fertilizers applied at different N rates varied
significantly during the short (p < 0.05) and long rain (p < 0.01) seasons (Table 3). At equivalent N rates,
BSFFF achieved higher NFE than SAFI organic fertilizer. During the short rain season, the NFE of
BSFFF applied at 30 kg N ha−1 was 3.8 and 4.4 times higher (p < 0.05) than that of SAFI organic fertilizer
applied at 60 and 100 kg N ha−1, respectively. Likewise, the NFE of BSFFF applied at 60 kg N ha−1

was significantly (p < 0.01) higher than those of all SAFI organic fertilizer treatments, and two to five
times greater than the NFE of SAFI organic fertilizer applied at an equivalent rate.

The NFE of BSFFF treatments decreased with an increase in N application rates, with the highest
values observed at the rate of 30 kg N ha−1. Increasing the N rate of BSFFF to 100 kg N ha−1 decreased
the NFE by 2.2 and 1.2 times during the short and long rain seasons, respectively. However, NFE of
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SAFI organic fertilizer did not follow a consistent trend, whereby, it decreased with an increase in N
rates during the short rain season but varied proportionally with N rates during the long rain season.

4. Discussion

4.1. Effects of BSFFF and SAFI Organic Fertilizer on the Degree of N Synchrony

The net N immobilization observed at the active stages of maize growth (Figure 3c,d) has been
previously reported [23,26,44] and could be largely attributed to the quality of organic inputs applied
(Table 1). Fertilizers generated from insect frass contain high levels of labile organic carbon and
organically bound ammonium nitrogen [17,28,49,50], which requires time to be converted into a plant
available form (NO3

−) through the nitrification process. At the same time, ammonium nitrogen is a
highly preferred soil microorganisms making it prone to immobilization and denitrification pathways.
Our results are consistent with those of Li and Li [24] who established that ammonium nitrogen is
one of the major N fractions that influences the quantity of N released from organic fertilizers. Due to
the high demand for available N by microorganisms, there was a high possibility that most of the
ammonium N from BSFFF underwent rapid immobilization after soil application [44,51], thereby,
denying N supply to the plant at the early growth stages. Furthermore, some ammonium could
have also been lost through denitrification and volatilization especially in soils with pH values (>7.5)
(Table 2) and high temperature [52], thus reducing the quantity of available N for plant uptake at the
early stages of maize growth.

Biochar consists of recalcitrant organic carbon that is resistant to microbial decomposition and,
consequently, causes delays in N release [53,54]. Biochar consists of compounds such as lignin
and polyphenols [55] which have been reported to cause N immobilization [23,33]. Low total
N content, such as that observed in SAFI amended soils (Table 2), has also been reported to
stimulate N immobilization [56], thereby, reducing the quantity of available N. Furthermore, the low
ammonium/nitrate ratio (0.43) and high nitrate concentration associated with SAFI organic fertilizer
(Table 2) could have facilitated N leaching, especially during the long rain season, when moisture
content was high [44]. High nitrate leaching (80% of total N), up to 1 m down the soil profile, has been
reporting in maize cropping systems of Kenya [57] and could be attributed to the high sand content
and low organic matter levels of our experimental soil (Table 1).

It was noted that BSFFF treatments had less negative N fluxes at the tasseling stage, whereas soil
amended with SAFI organic fertilizer achieved positive N flux differences earlier (silking stage) than
where BSFFF was applied (maturity stage) (Figure 4e,f). The negative N fluxes observed during
the active growth stages could be attributed to N immobilization and leaching, as explained above.
Previous research efforts have suggested supplementation with mineral N [23,26,58] or application of
organic fertilizers before planting [24] to compensate for N immobilization during the early growth
stages and periods of peak N demand. On the one hand, the present study established that an
application of 2–16 kg ha−1 of mineral N at periods between the early vegetative and silking stages
(35–91 days after planting) was necessary to compensate for the deficits in N release observed,
while using the BSF frass fertilizer for maize production. On the other hand, 6–36 kg N ha−1 of mineral
N fertilizer would be required between the early vegetative and tasseling stages (35–70 days after
planting) to cause N synchrony for maize growth, while using SAFI organic fertilizer. However, it is
expected that with continued organic fertilizer application, mineral N release is expected to gradually
increase and consequently reduce the period of N immobilization.

Conversely, the positive N flux difference observed at the silking stage (91 DAP) (Figure 4e,f)
associated with SAFI organic fertilizer amendment could be explained by the increase in mineral N
release (Figure 2a,b) at 91 days of incubation. Such excesses in N could have resulted into N leaching to
deeper subsoil layers [57]. However, the higher N uptake achieved by maize grown on soil amended
with BSFFF as compared with SAFI organic fertilizer (Figure 4a,b) could be partly attributed to the
higher mineral N content in topsoil (Figure 3a,b). It was also noted that peak N uptake by maize
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grown on soil amended with BSFFF did not coincide with periods of positive N fluxes, indicating
asynchrony. This mismatch has been previously attributed to N uptake from deeper soil layers or
acquisition from N rich microsites in soil [23,44]. Deeper plant root growth and spread due to the
presence of plant growth promoting organisms and growth hormones, such as auxin and gibberellins,
have been reported, while using insect frass as a biofertilizer [59]. Such behavior of root growth could
have been crucial in nutrient acquisition by maize grown using BSFFF. In addition, the higher N release
and uptake in the second season (long rain season) could be attributed to residual effect of inputs
applied in the first season and higher rainfall during the long rain season [23,53].

4.2. Nitrogen Fertilizer Equivalence Values of BSFFF and SAFI Organic Fertilizer

The higher grain yields associated with BSFFF at all N rates (Table 3) indicate the high quality of
this fertilizer as compared with the commercial organic fertilizer, SAFI. Our results are supported by
previous studies which have reported improved drought tolerance, disease suppression, and higher
crop growth yield, while using insect frass fertilizer [49,50,59]. Furthermore, the chitin contained in
BSF frass fertilizers has been reported to improve plant health by stimulating disease resistance in
crops [60]. Such additional benefits provided by BSF frass fertilizer could have been responsible for
the higher grain yields achieved from maize grown in soil amended with this fertilizer. The minimal
and nonsignificant increase in grain yields at rates beyond 30 kg N ha−1 (Table 3), suggests that the
low rate of BSFF fertilizer (30 kg N ha−1) is enough for maize production. However, economic studies
are required to assess whether the increases in grain yield obtained at rates higher than 30 kg N ha−1

were profitable.
The significantly higher nitrogen fertilizer equivalence values of BSFFF applied at 30 and

60 kg N ha−1 as compared with all SAFI organic fertilizer treatments during the short and long
rain seasons (Table 3), respectively, indicate the high quality of BSFFF. The SAFI organic fertilizer
is made of biochar and organic inputs with high recalcitrant carbon which are associated with N
immobilization [23]. Furthermore, the SAFI organic fertilizer has a high nitrate concentration, that
could have been lost through leaching especially during the long rain season [57]. The nitrogen
fertilizer equivalence values (105–229%) of BSFFF obtained in this study are comparable to those
obtained by Kimetu et al. [33], while using tithonia as organic fertilizer, but higher than those reported
for calliandra and senna during the same study. Furthermore, the nitrogen fertilizer equivalence values
of BSFFF reported, in the present study, are higher than those previously reported for Lucerne [61],
poultry litter and yard waste compost [22], as well as slurry from cattle [31,58,61], and pigs [41]. On the
contrary, the low and inconsistent nitrogen fertilizer equivalence recorded from SAFI organic fertilizer
could be improved by combining it with a mineral N fertilizer to increase the N supply [23].

Contrary to previous studies where nitrogen fertilizer equivalence values of different organic
amendments were found to increase with an increase in N rates [32], this study established that the
nitrogen fertilizer equivalence values of BSFFF decreased with an increase in N application rates.
The high value of nitrogen fertilizer equivalence obtained at low N rates implies that even at low
application rates, the BSFFF can perform equally well or even better than the mineral N fertilizer and
highlights its high quality as an organic fertilizer input [60]. Findings from the present study are crucial
in changing attitudes towards organic fertilizer use, with the advantage of less bulkiness and high
nutrient quality. Subsequently, the heavy reliance on the highly expensive mineral N fertilizers could
be lessened by adopting high-quality organic fertilizers such as BSFFF.

5. Conclusions

The findings of this study show that N release from both the BSFFF and SAFI organic fertilizers
during the early crop growth stages was slow which led to insufficient N synchrony at periods of peak
N demand. Nevertheless, soil amended with BSFFF had more mineral N in the topsoil which resulted
in higher N uptake and grain yield than the soil amended with SAFI, the commercial organic fertilizer.
This means that inorganic N supplementation could be necessary to compensate for N immobilization
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observed at the early growth stages. The high grain yields and nitrogen fertilizer equivalence values
associated with BSFFF indicate great potential for improving crop productivity. Future studies would
be necessary to determine the N accumulated in root biomass and N associated with microbes to be
able to accurately estimate N fluxes in soils amended with BSFFF.
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