
Contents lists available at ScienceDirect

Int J Appl Earth Obs Geoinformation

journal homepage: www.elsevier.com/locate/jag

Is it possible to discern Striga weed (Striga hermonthica) infestation levels in
maize agro-ecological systems using in-situ spectroscopy?
Bester Tawona Mudereria,b,*, Timothy Dubeb, Saliou Niassya, Emily Kimathia,
Tobias Landmanna,d, Zeyaur Khana, Elfatih M. Abdel-Rahmana,c

a International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, 00100, Nairobi, Kenya
bDepartment of Earth Sciences, University of Western Cape, Private Bag X17, Bellville, 7535, South Africa
c Department of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North, 13314, Sudan
d Remote Sensing Solutions GmbH, Dingolfinger Str. 9, 81673, Munich, Germany

A R T I C L E I N F O

Keywords:
Invasive weeds detection
Maize
In-situ hyperspectral data
Machine learning
Resampled Sentinel-2

A B S T R A C T

The invasion by Striga in most cereal crop fields in Africa has posed a significant threat to food security and has
caused substantial socioeconomic losses. Hyperspectral remote sensing is an effective means to discriminate
plant species, providing possibilities to track such weed invasions and improve precision agriculture. However,
essential baseline information using remotely sensed data is missing, specifically for the Striga weed in Africa. In
this study, we investigated the spectral uniqueness of Striga compared to other co-occurring maize crops and
weeds. We used the in-situ FieldSpec® Handheld 2™ analytical spectral device (ASD), hyperspectral data and their
respective narrow-band indices in the visible and near infrared (VNIR) region of the electromagnetic spectrum
(EMS) and four machine learning discriminant algorithms (i.e. random forest: RF, linear discriminant analysis:
LDA, gradient boosting: GB and support vector machines: SVM) to discriminate among different levels of Striga
(Striga hermonthica) infestations in maize fields in western Kenya. We also tested the utility of Sentinel-2 wa-
veband configurations to map and discriminate Striga infestation in heterogenous cereal crop fields. The in-situ
hyperspectral reflectance data were resampled to the spectral waveband configurations of Sentinel-2 using
published spectral response functions. We sampled and detected seven Striga infestation classes based on three
flowering Striga classes (low, moderate and high) against two background endmembers (soil and a mixture of
maize and other co-occurring weeds). A guided regularized random forest (GRRF) algorithm was used to select
the most relevant hyperspectral wavebands and vegetation indices (VIs) as well as for the resampled Sentinel-2
multispectral wavebands for Striga infestation discrimination. The performance of the four discriminant algo-
rithms was compared using classification accuracy assessment metrics. We were able to positively discriminate
Striga from the two background endmembers i.e. soil and co-occurring vegetation (maize and co-occurring
weeds) based on the few GRRF selected hyperspectral vegetation indices and the GRRF selected resampled
Sentinel-2 multispectral bands. RF outperformed all the other discriminant methods and produced the highest
overall accuracy of 91% and 85%, using the hyperspectral and resampled Sentinel-2 multispectral wavebands,
respectively, across the four different discriminant models tested in this study. The class with the highest de-
tection accuracy across all the four discriminant algorithms, was the “exclusively maize and other co-occurring
weeds” (>70%). The GRRF reduced the dimensionality of the hyperspectral data and selected only 9 most
relevant wavebands out of 750 wavebands, 6 VIs out of 15 and 6 out of 10 resampled Sentinel-2 multispectral
wavebands for discriminating among the Striga and co-occurring classes. Resampled Sentinel-2 multispectral
wavebands 3 (green) and 4 (red) were the most crucial for Striga detection. The use of the most relevant hy-
perspectral features (i.e. wavebands and VIs) significantly (p≤ 0.05) increased the overall classification accu-
racy and Kappa scores (±5% and ±0.2, respectively) in all the machine learning discriminant models. Our
results show the potential of hyperspectral, resampled Sentinel-2 multispectral datasets and machine learning
discriminant algorithms as a tool to accurately discern Striga in heterogenous maize agro-ecological systems.
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1. Introduction

In Africa, food and nutrition insecurity due to crop losses is a
chronic problem caused by insect pests, diseases, weeds and poor
agronomic and soil management practices (Sasson, 2012). This food
insecurity is likely to be worsened by the frequent unfavourable cli-
matic conditions like droughts, climate change and variability, among
others (Rakotoarisoa et al., 2012). The most important staple crops on
the African continent that secure food and nutrient to about 1.2 billion
people are maize, sorghum, wheat, millet, and rice (FAO et al., 2018).
Among these economically important crops, maize plays the major role
on the livelihood of people in sub-Saharan Africa (SSA). However, the
productivity of maize has been on the decline in the last decade in SSA,
mainly due to the emerging of invasive pests and diseases such as
stemborers, fall armyworm, maize lethal necrosis and invasive weeds
like Striga (FAO et al., 2018; Khan et al., 2014).

Striga, commonly referred to as the “witch weed” is considered to be
the most economically important parasitic weed globally (Unachukwu
et al., 2017). This parasitic weed attaches to the roots of the host plants
after germination and causes considerable photosynthetic and pro-
ductivity interference (Khan et al., 2002). Of the 23 Striga species
predominant in Africa, Striga hermonthica is the most destructive, af-
fecting a widespread range of crops including maize, sorghum, millet,
rice, and sugarcane (Ejeta and Gressel, 2007). Striga can reduce cereal
production as much as 20%–100% to more than 40 million households
every year across Africa (Atera et al., 2013; Scholes and Press, 2008).
Although these socioeconomic losses are difficult to quantify, it is es-
timated that in Africa alone, over US$ 1 billion is lost every year due to
Striga infestation (Ejeta and Gressel, 2007; Spallek et al., 2013).
Smallholder farmers are the most affected since they cannot afford the
expensive Striga control mechanisms currently available on the market.
These farmers often resort to the inefficient hand weeding aimed at
reducing the Striga seed bank within the soil, which is unsustainable.
This problem is aggravated by the viability of Striga seeds in the soil for
up to 20 years and their complex potential to spread via both me-
chanical and cultural processes (Khan et al., 2002).

Due to the destructive nature of Striga, numerous technological and
research developments have been made to help control or minimize
Striga impacts on crop production. So far, efforts to control Striga have
focused on the manipulation of genetics, chemical ecology and phe-
nology of the weed (Midega et al., 2017; Oswald, 2005; Rispail et al.,
2007; Samejima et al., 2016). However, on-farm Striga control technol-
ogies require spatiotemporal information on the weed to precisely
prioritize sites for intervention and applications of such technologies.
Usually, ground-based surveys and inspection methods are used to detect
Striga-infested farms. This approach is often expensive, has a long-time
lag, is laborious and provides incomplete information on Striga hotspots.
In contrast, remote sensing provides efficient, timely, synoptic and in-
expensive data that could effectively capture weeds spectral phenological
responses at different spatiotemporal scales (Mutanga et al., 2017).
Studies have shown that weeds distribution and abundance can be esti-
mated using diverse types of sensors and instruments such as field based
automated sensors (Smith and Blackshaw, 2003), unmanned aerial ve-
hicles (de Castro et al., 2018; Peña et al., 2013), airborne multispectral
and hyperspectral remote sensing (Mirik et al., 2013) among others. Yet,
essential baseline information for the usage of such remote sensing in-
formation is absent for many high-impact invasive parasitic weeds like
Striga (Große-Stoltenberg et al., 2016). In this study, we explored the
potential of using in-situ hyperspectral remotely sensed data at plot level,
to monitor Striga infestation in maize crops grown in an agro-ecological
landscape in Kenya. We essentially tested whether canopy level in-situ
hyperspectral data could discriminate among different Striga infestation
levels and their co-occurring maize crop and other weeds. We further
tested the potential capability of the Sentinel-2 multispectral band set-
tings to detect and predict Striga infestation intensity, at plot level, in
heterogenous cereal crop fields.

Hyperspectral instruments acquire data in numerous quasi-con-
tiguous spectral wavebands, allowing detection of the spectral features
of plant biochemical and physical characteristics like pigments, nu-
trients and water which are often masked when using the broadband
multispectral data (Abdel-Rahman et al., 2013; Landmann et al., 2015).
Hence, hyperspectral data are efficient in discriminating weed species
from their co-occurring crops based on their biochemical and physical
characteristics providing vast potential to precision farming for weed
management (Große-Stoltenberg et al., 2016; Mureriwa et al., 2016).
Additionally, in-situ hyperspectral data capture subtle spectral differ-
ences that are spectrally less distinct in airborne and spaceborne data
(Sibanda et al., 2015). Thus, in-situ hyperspectral platforms enable
quick spectral measurements of targets on the ground and offer the
opportunity for band specific indices that breakdown complexes con-
cealed in biochemical and physical characteristics of plants (Huang
et al., 2015). These in-situ hyperspectral data, are also operated under
chosen appropriate atmospheric conditions unlike when operating sa-
tellite sensors (Chen et al., 2009). This enables quality detection of
unmixed energy captured from target objects without the influence of
the bidirectional and diffuse scattering effects from other non-target
features and the atmosphere (Jia et al., 2011). Also, the in-situ hyper-
spectral platforms can acquire spectral data at finer spatial resolution
(up to a sub-metre), capturing the spectral vegetation signals at levels of
a plant or an assemblage of plants. Such fine-scale remotely sensed data
offer deeper understanding of the interaction between parasitic weeds
like Striga and the electromagnetic radiation at ground level prior to
upscaling to airborne or spaceborne platforms such as Sentinel-2
(Kumar et al., 2001).

The relatively new generation of multispectral spaceborne sensors
such as Sentinel-2, have assumed the use of relatively narrower wave-
bands (e.g. 15 nm spectral width), including those in the red-edge re-
gion of the electromagnetic spectrum (EMS) centred at 705, 740 and
783 nm that were not present in previous broadband sensors like
Landsat 7, 8 and the advanced spaceborne thermal emission and re-
flection (ASTER: Chemura et al., 2017). Therefore, there has been a
growing interest to test the Sentinel-2 data, regarding its potential to
advance precision agriculture and other operational uses, particularly
in low income regions (Dhau et al., 2018; Mudereri et al., 2019). This is
mainly because Sentinel-2 data are freely available, with a relatively
higher spatial resolution (10 m) and possess strategically placed bands
at the red-edge region of the EMS, which makes the sensor versatile for
many applications (Ochungo et al., 2019). Therefore, citing these po-
sitive characteristics, Sentinel-2 is hypothesised to be capable of pro-
viding timely data for the generation of critical products for Striga
monitoring.

Despite the previously mentioned advantages posed by both hy-
perspectral and Sentinel-2 multispectral datasets, these datasets alone
might not be adequate for detecting Striga infestation in complex and
heterogenous croplands. Merging the magnitude of the detail provided
by hyperspectral data and the strength and capabilities of machine
learning algorithms provides opportunities to reveal these complex
structural and biophysical characteristics of weeds. However, one of the
prominent problems in hyperspectral data processing and analysis is the
dimensionality and multicollinearity inherent in the data (Adam et al.,
2017). Multicollinearity is associated with the limited number of
training samples (n) in contrast to the abundance of hyperspectral
wavebands (p), that often hinder the performance of the predictive
models when they are validated using independent test dataset (i.e.
overfitting) (Adam et al., 2017; Mureriwa et al., 2016). Studies have
utilized robust machine learning (ML) classification algorithms like
support vector machines (SVM, Vapnik, 1979), linear discriminant
analysis (LDA, Fisher, 1936), gradient boosting (GB, Friedman, 1999)
and random forest (RF, Breiman, 2001) to deal with both the di-
mensionality and multicollinearity problems in the hyperspectral data.
All these mentioned ML classifiers are assumption-free methods that do
not encounter variable overfitting challenges and yield a variable

B.T. Mudereri, et al. Int J Appl  Earth Obs Geoinformation 85 (2020) 102008

2



importance by-product which enables selection of fewer, yet relevant
input predictors (i.e. Striga weed). Specifically, the guided regularized
random forest (GRRF) and RF have shown to be successful methods in
reducing the dimensionality of the hyperspectral data and simulta-
neously handle the multicollinearity in the data (Adam et al., 2017;
Deng and Runger, 2013; Mureriwa et al., 2016). Nevertheless, previous
studies demonstrated no consensus on the best ML classification algo-
rithm and the best dimension reduction technique for invasive weeds
discrimination (Große-Stoltenberg et al., 2016; Maxwell et al., 2018).

In this study, our innovation hinges on the hypothesis that flowering
Striga is conspicuous from the rest of the photosynthetically green ve-
getation through their unique anthocyanins purple pigment in the
flowers. To the best of our knowledge, the use of hyperspectral data and
multivariate ML predictive models to separate different levels of Striga
infestation using specifically the floral signal have not been examined.
The present study was conducted with the following objectives:

a) To investigate the spectral uniqueness and behaviour of flowering
and non-flowering Striga owing to varying levels of infestation and
co-occurring vegetation (i.e. maize crop and other chlorophyll-ac-
tive materials), and

b) To discriminate among different levels of Striga infestations in
maize crop using the most relevant hyperspectral and resampled
Sentinel-2 multispectral features and ML classification algorithms

2. Methods

2.1. Study site

The study was conducted in Rongo subcounty which lies within the
Migori county in western Kenya. The study area is bound by the co-
ordinates 00 39’12” S; 340 35’.40” E and 00 59’16” S; 340 37’21” E
(Fig. 1) at an altitude of 1470 m above sea level. The climate in the
study area is tropical and characterized by a yearly bimodal rainfall
model with an average annual rainfall of 1600 mm across the two rainy
seasons i.e. during “long rains” season occurring between March and
June and a “short rains” season spanning November to January. The
annual average temperature is 20.60 C and the relative humidity ranges
between 50% and 70% while the soil type is loam, sandy and clay. The
agro-natural ecosystem in the study area is dominated by scattered
savanna grasslands in combination with deciduous and exotic forest
vegetation, while the agricultural activities are mainly subsistence and
small-scale farming. The crops grown in Rongo subcounty include su-
garcane as the main cash crop, maize, bean, groundnut, green gram,
cassava and some horticultural crops such as mango, banana, avocado,
pawpaw and indigenous vegetables. Maize in Rongo subcounty area is
grown as a mixed cropping system, with an average field size of 0.1 ha.
The production of the crop in the study area is constrained mainly by
rainfall variability and the invasive Striga weed. The yearly peak
flowering period for Striga occurs between December and January
during the short rains and again between May and June during the long
rains season.

2.2. Field sampling design

In total, 70 quadrats were sampled within all representative fields
for Striga infestations. We purposively sampled 14 fields during the
period 12–16 December 2017 which coincided with peak Striga flow-
ering window in the study area. Our purposive sampling procedure was
guided by the presence and intensity of Striga infestation within each
sampled maize field. In each sample maize field, we selected a plot of
30 m × 30 m and within each plot five quadrats measuring 1 m × 1 m
each were laid out along two crossing diagonal transects. Specifically,
two quadrats were laid out across each of the two diagonal transects
and 10 m away from the plot edges while one quadrat was laid in the
centre of the sample plot (Fig. 2).

In each quadrat, flowering and emerged Striga plants were counted.
Infestation levels were categorized into three main classes; namely low
(0–29 plants m−2), moderate (30–90 plants m−2), and high (>90
plants m−2) Striga infestation classes. Specifically, our Striga infesta-
tion classes were characterized according to the average Striga popu-
lation in each quadrat and the damage it causes to the maize crop;
following the procedure described in Ekeleme et al. (2014). To test the
influence of confounding features on the Striga spectral signal, we also
collected spectral samples from soil background and a combination of
maize and other weeds in the sample quadrat. This was necessary to test
the influence of background spectral endmembers on the sensitivity of
the Striga floral spectral signal. A total of seven classes of Striga in-
festation levels were assembled based on Striga floral signal sensitivity
strength (number of Striga flowers per m−2) and other EM abundances
in the quadrat. These seven classes were derived from Striga infestation
levels and corresponding combination background materials (soil or
other non-Striga photosynthetically-active vegetation) in the sample
quadrats. Firstly, we categorised three flowering Striga infestation
classes (i.e. low: LW, moderate: MW and high: HW) with other green
vegetation (maize and other weeds). The second category comprised
pre-flowering (PF) Striga infestation in combination with green vege-
tation. The third category included exclusively the green vegetation
(GV) class (maize and other weeds) with no Striga infestation. Again,
we enumerated data for exclusively Striga within soil background (SB)
with no green vegetation, and finally bare soil (SO). The spectra of
Striga classes that occurred with a soil background (SB and SO) were
collected by manually removing all non-Striga photosynthetically-ac-
tive materials (for SB) and removing all vegetative material (for SO)
from the sample quadrat. Table 1 summarises the Striga infestation
class codes and their sample sizes. The variation in sample sizes was
influenced by the availability of the different infestation levels within
the selected sample quadrats.

2.3. In-situ hyperspectral data acquisition

Canopy-level in-situ hyperspectral data were collected within the
sample quadrats using the FieldSpec® Handheld 2™ spectroradiometer
(HH2: (ASD, 2010)) under clear skies and stable wind conditions at
between 10:00 hrs and 14:00 hrs local time (Greenwich Mean Time:
GTM + 3) as recommended by Sibanda et al. (2015). The field spec-
troradiometer used for the spectral data collection captures reflected
radiation in 325–1075 nm of the EMS with a built-in 2 nm sampling
resolution (ASD, 2010). The device then resamples the spectral data to
1 nm spectral range.

The hyperspectral measurements were collected from 1 m above the
maize crop canopy using the bare optical input at nadir field of view.
This covers an area of ∼0.5 m in diameter on the target, which was
enough for capturing the spectral signal of a group of maize and Striga
plants. It is a rule of thumb that the diameter of a spot of light that is
covered by the HH2 when it is perpendicularly positioned to a target is
approximately half the distance of the instrument to any specific target
area (FieldSpec et al., 2017). The instrument was held at arm's length
(∼0.9 m) from the observer to avoid scattered light from surrounding
objects including the instrument and the operator (Kumar et al., 2013).
The spectroradiometer was set to internally and automatically collect
and average 20 spectral readings for each sample spectrum. In each of
the 70 quadrats, we measured five spectra after optimizing and cali-
brating the measured radiance using a Spectralon white reference of
∼100% reflectance. The optimization and calibration were done before
a first measurement and after collecting the spectra of each sampling
unit (i.e. quadrat), or when the instrument saturated because of chan-
ging ambient weather conditions like sun irradiance (FieldSpec et al.,
2017). The final total of averaged spectra for each respective class that
were used in this study are summarised in Table 1.

The spectral measurements acquired using the ASD were filtered
using the “noiseFiltering” function and smoothened using the
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Fig. 1. Location of Rongo subcounty in Migori county, Kenya and the distribution of the sampled maize fields (n = 14). The image in the background is a PlanetScope
image acquired on 16th of December 2017 and displayed in RGB: red (band3), green (band2) and blue (band1).
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“Savitzky–Golay” filter in the “hsdar” package (Lukas et al., 2018) in R
software (R Core Team, 2018). These filtered spectra were resampled to
the spectral configuration of Sentinel-2 using the spectral response
function, i.e. “SpectralResampling” of Sentinel-2 present in the “hsdar”
package. The Sentinel-2 multispectral wavebands description, wave-
band centres and their respective spectral wave ranges are shown in
Table 2.

Fig. 3 shows the average spectral responses of each of the seven
studied classes within the raw spectra 325–1075 nm range (i.e. 750
wavebands) of the EMS and the reflectance of the resampled Sentinel-2
spectra. Spectra at each of the wavebands were utilized as predictor
variables to discriminate among the seven Striga infestation classes.

2.4. Calculation of the narrow-waveband vegetation indices

In addition to the 750 wavebands, we also calculated fifteen
narrow-waveband vegetation indices (VIs) (Table 3) using the “hsdar”
package (Lukas et al., 2018) in R software (R Core Team, 2018) and
used them as predictor variables to discriminate among the seven Striga
infestation classes. These indices were selected based on their related-
ness to specific plant biophysical parameters (e.g. floral signal strength,
plant health condition, plant pigments and plant water content) and the
availability of the narrow-wavebands used in their formulae in our
hyperspectral data that ranged between 325 nm and 1075 nm.

2.5. Predictor variables’ selection using guided regularized random forest
(GRRF) algorithm

We used GRRF to select fewer, yet the most relevant narrow-wa-
vebands, VIs and resampled Sentinel-2 multispectral wavebands to

discriminate the seven Striga infestation classes. We used the package
“RRF” in R software (Deng, 2013; R Core Team, 2018). The regularized
framework considerably reduces the training time by building a single
model (Deng and Runger, 2013). The GRRF uses the same concept of a
RF model but uses the importance scores generated from RF to guide
the variable selection process (Mudereri et al., 2019; Mureriwa et al.,
2016). The importance score of a variable in RF is obtained through the
“Gini index” over all nodes across all RF decision trees obtained, and
the variable is used to measure the purity of the feature at every node to
facilitate the voting process of RF trees (Breiman, 2002). Compared to
the variable importance feature in the ordinary RF, GRRF provides the
precise variables that are most suitable for predicting the feature from
the multiple features data set (Deng, 2013). GRRF uses a gamma value
to penalise the selection of new features over features already selected
that possess similar gain (importance). The gamma value occurs be-
tween 0 and 1 with values closer to 1 executing higher penalties, hence
selecting fewer relevant variables within GRRF. Comparatively, the
values closer and equal to 0 increase the number of potential relevant
features selected, while the value of 0 yields similar variables to those
produced when using an ordinary regularised random forest (RRF)
(Deng and Runger, 2013). In this study, we used a gamma (γ) value of
0.8 to limit the variables (i.e. narrow-wavebands or VIs) selection. Our
choice of γ= 0.8 was conservative as the highest gamma value of 1,
extremely reduced the variables to too few (n = 3). The raw importance
scores obtained from RF are normalized for each feature using Eqs. (1)
to (3) to get the score used for variable selection in GRRF. For a detailed
explanation of the theoretical and mathematical background of GRRF
and how it functions, the readers are referred to Deng and Runger
(2013).

gainG (Xi) = λi gain (Xi) (1)

Fig. 2. Example structure of the distribution of quadrats within a 30 m × 30 m
maize plot used for Striga sampling data collection.

Table 1
Striga infestation level classes, with their respective class descriptions, class codes, sample sizes, training and testing samples used for employing the classification
machine learning algorithms.

Class description Class code Sampled spectra Train Test

Maize and other weeds (green vegetation) with no Striga infestation GV 32 22 10
High Striga infestation level with other green vegetation HW 101 70 31
Moderate Striga infestation level with other green vegetation MW 71 50 21
Low Striga infestation level with other green vegetation LW 56 40 16
Pre-flowering Striga with other green vegetation PF 20 15 5
Exclusive Striga within a soil background with no other green vegetation SB 21 15 6
Bare soil devoid of any photosynthetic material SO 20 15 5

Table 2
The wavebands, waveband centres and their respective spectral width of the
Sentinel-2 multispectral sensor. The wavebands that correspond to the in-situ
hyperspectral data used in this study are shown in bold.

Waveband Waveband description Waveband centre
(nm)

Wave range (nm)

1 Coastal aerosol 443 433–453
2 Blue 490 458–523
3 Green 560 543–578
4 Red 665 650–680
5 Red-edge 1 705 698–713
6 Red-edge 2 740 733–748
7 Red-edge 3 783 773–793
8 Near Infrared (NIR) 842 785–900
8a Near Infrared narrow

(NIRn)
865 855–875

9 Water vapour 945 935–955
10 Shortwave Infrared

(cirrus)
1380 1360–1390

11 Shortwave Infrared 1
(SWIR1)

1610 1565–1655

12 Shortwave Infrared 2
(SWIR2)

2190 2100–2280
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where: gain (Xi) denote the Gini information gain of using a feature Xi
to split a tree node. And λi is calculated as:

λi= 1−γ+ γ (Impi / Imp∗) (2)

where: Impi is the importance score of Xi from RF and Imp∗ is the
maximum importance score, Therefore:

gainG (Xi)= (Impi / Imp∗) X gain (Xi) (3)

2.6. Machine learning discriminant algorithms

Four ML discriminant models namely; GB, LDA, RF and SVM were
used to discriminate the seven Striga infestation classes. We compared
the performance of these four models in discriminating the seven Striga
infestation classes using the in-situ hyperspectral data under the fol-
lowing five predictor variable criteria: (1) the clipped range
(400–1075) of the collected narrow-wavebands (n = 676); (2) all the
calculated narrow-waveband VIs shown in Table 3 (n = 15); (3) The

GRRF selected narrow-wavebands (n = 9); (4) The GRFF selected
narrow-waveband VIs (n = 6), and (5) a combination of both GRRF
selected narrow-wavebands and narrow-waveband VIs (n = 15). Simi-
larly, using the mentioned four ML discriminant models, we further
compared the performance of (a) all the resampled Sentinel-2 multi-
spectral wavebands (n = 10) and (b) the GRRF selected resampled
Sentinel-2 multispectral wavebands (n = 6).

GB, LDA, RF and SVM algorithms were selected in this study, be-
cause they have been widely used in classifying vegetation-related
classes with reasonably high classification accuracies when hyper-
spectral data sets were utilized (Abdel-Rahman et al., 2014; Dube and
Mutanga, 2015; Ramoelo et al., 2015). Further, these four classification
algorithms do not require the traditional regression assumptions which
makes them useful in many cases (Holloway and Mengersen, 2018).
They possess advantages such as: (1) easily identifying and adapting to
inherent patterns and trends in data, (2) little to no human intervention
in the running process, (3) versatile in handling ad-hoc multi-dimen-
sional and multivariate types of data and (4) mapping classes with

Fig. 3. Mean canopy-level spectra of (a) in-situ
hyperspectral reflectance and (b) resampled
Sentinel-2 multispectral reflectance of the
seven studied classes: maize and other weeds
(green vegetation) with no Striga infestation
(GV); high Striga infestation level with other
green vegetation (HW); moderate Striga in-
festation level with other green vegetation
(MW); low Striga infestation level with other
green vegetation (LW); pre-flowering Striga
with other green vegetation (PF); exclusive
Striga stands within a soil background with no
other green vegetation (SB); bare soil devoid of
any photosynthetic material (SO) measured
using Hand Held FieldSpec® 2 (HH2) spectro-
radiometer in the 325–1075 nm wave range of
the electromagnetic spectrum.

Table 3
Hyperspectral narrow-waveband vegetation indices used in this study.

Vegetation index Related to: **Equation Reference

Fluorescence ratio Blue/Red (SR7) Fluorescence R440/R690 (Große-Stoltenberg et al.,
2016)

Water band index (WBI) Water R900/R970 (Ho, 2009)
Simple ratio pigment index (SRPI) Pigments R430/R680 (Große-Stoltenberg et al.,

2016)
Double peak index (DPI) Vegetation stress (R688 × R710)/R2

697 (Große-Stoltenberg et al.,
2016)

Anthocyanin reflectance index (ARI) Anthocyanin (1/R500) – (1/R700) (Ho, 2009)
Anthocyanin reflectance index 2 (ARI2) Anthocyanin (1/R550) – (1/R700) (Ho, 2009)
Datt4 Pigments R672/ (R550 × R708) (Große-Stoltenberg et al.,

2016)
Plant Senescing reflectance index (PSRI) Leaf senescence (R678 – R500) / R750 (Große-Stoltenberg et al.,

2016)
Double difference index (DDN) Chlorophyll 2 × (R710 – R660 – R760) (Große-Stoltenberg et al.,

2016)
Modified Simple ratio (mSR) Chlorophyll (R800 – R445)/ (R680 – R445) (Sims and Gamon, 2002)
Structure insensitive pigment index (SIPI) Pigments (R800 – R445)/ (R800 – R680) (Ho, 2009)
Photochemical reflectance index (PRI) Carotenoid (R531 – R570)/ (R531 + R570) (Sims and Gamon, 2002)
Photochemical Reflection Index × Chlorophyll content

(PRI.CI2)
Carotenoid (R531 – R570)/ (R531 + R570) × (R760/R700 – 1) (Große-Stoltenberg et al.,

2016)
Transformed Chlorophyll Absorption Ratio Index (TCARI2) Chlorophyll 3 × ((R750 – R705) – 0.2 (R750 – R550) (R750/R705) (Große-Stoltenberg et al.,

2016)
Enhanced Vegetation Index (EVI) Biomass/LAI 2.5 × ((R800 – R670)/ (R800 – (6 × R670) – (7.5 × R475) + 1) (Ho, 2009)

** R is reflectance at the respective hyperspectral narrow-waveband and LAI is the leaf area index.
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complex characteristics (Maxwell et al., 2018).
The “Caret” package (Kuhn et al., 2018) in R software was used to

run and validate all the four ML discriminant models. The “Caret”
package provides a standard syntax to execute a variety of ML dis-
criminant approaches, thus simplifying the procedure of systematically
comparing different algorithms and approaches (Maxwell et al., 2018).
For consistency the tune length parameter was set to 10, so that 10
values for each parameter were assessed. Also, all the variables were
centred and rescaled for consistency prior to classification. Table 4
summarises the “Caret” packages used to execute the four algorithms:
RF, SVM, LDA and GB.

Again, for consistency purposes, the comparison of the performance
of the four ML discriminant algorithms, were evaluated using the same
dataset for all the models, split into a training set (70%) for model
training and a test set (30%) for validation of the models (Dube and
Mutanga, 2015; Qiao et al., 2017). Model performance was presented
using boxplots of overall accuracy and Kappa within the five different
predictor variable criteria mentioned for the hyperspectral data and
two variable grouping criteria of the resampled Sentinel-2 multispectral
wavebands. The inter-class prediction performances of the different
models were further assessed using confusion matrices derived from the
best performance predictor variables category for each algorithm. The
McNemar test for paired categorical data represented in contingency
tables was performed at 95% confidence interval (CI) to compare the
performance among the four models in their ability to predict Striga
severity classes using the GRRF selected variables.

3. Results

3.1. Spectral behaviour of flowering and non-flowering Striga

Fig. 4 demonstrates the variation in spectral responses of the dif-
ferent classes according to flowering compaction and colour. The near-
infrared (NIR: 750–1075 nm) revealed multiple scattering within the
leaf structure, emanating from the different compositions of the classes.
Nonetheless, the NIR displayed significant differences in magnitude
with green vegetation producing a plateau of high reflectance com-
pared to all other classes where pigments no longer absorb the radia-
tion. The patterns of Striga infestation levels low, moderate and high in
the whole spectrum were similar but differed in the magnitude (>5%
difference between high and low). This is emphasized in Fig. 4(b) in
which the pattern for the classes is the same, but the magnitude of the
reflectance differs as influenced by the Striga floral compaction and
colour. The higher the number of flowers in a plot, the more the re-
flectance magnitude increased within the region 500–700 nm. How-
ever, when compared to the other non-Striga classes, much variation
was observed in the red section (620–680 nm). The hyperspectral re-
flectance values for the “high”, “moderate” and “low” Striga infestation,
all peak around 550 nm and 670 nm which corresponded to the re-
sampled Sentinel-2 wavebands 2 and 4, respectively. However, there is
a slight depression in the reflectance values around 680 nm proceeding
to increase again in the red-edge and NIR waveband regions. When
Striga infested plots were compared to GV, they all have peaks at
550 nm but there is a marked difference at 680 nm where there is a
huge depression for the GV class. Similarly, within the blue region
(400–500 nm), Striga infestation classes show higher values compared

to the GV class. Furthermore, a similar trend is observed between
flowering Striga and PF class (Fig. 4c). Although visually the red-edge
(680–750 nm) does not show any considerable variations in the spectra,
green vegetation had the steepest gradient. The red-edge remains cru-
cial in calculating vegetation indices as the gradient of the graphs re-
veals biochemical and ecophysiological vegetation parameters.

3.2. Predictor variables selection

The GRRF was able to determine only 6 narrow-waveband VIs, 9
narrow-wavebands and 6 resampled Sentinel-2 multispectral wave-
bands to be of utmost relevance for discriminating the seven Striga
infestation classes (Fig. 5). The VIs that were selected by GRRF as the
most relevant predictor variables were mainly related to pigments
(Datt4, ARI, ARI2 and PRI.CI2). The most important narrow-wavebands
are well distributed across the VNIR electromagnetic spectrum. Many of
the most relevant narrow-wavebands and resampled Sentinel-2 multi-
spectral wavebands for discriminating among the infestation levels
occurred within the green (band 3) and the red (band 4) regions of the
EMS. Although most of these GRRF selected narrow-wavebands oc-
curred within the visible range, the one with the highest variable im-
portance value among them was identified within the red-edge region
of the EMS (at 677 nm).

The GRRF algorithm was able to determine uncorrelated variables
for the VIs, however most of the narrow-wavebands selected were
correlated (Fig. 6). The most correlated (>80%) among the narrow-
wavebands were those in the green region of the EMS, while Datt4 and
DDN were also negatively correlated to most of the green, red and NIR
wavebands of the EMS.

3.3. Striga infestation levels discrimination using the four machine learning
GB, LDA, RF and SVM models

The results showed that RF algorithm outperformed (overall accu-
racy of 91% and Kappa of 0.84, Fig. 7) all the other three ML dis-
criminant algorithms in discriminating among the seven Striga in-
festation classes using the hyperspectral data; and the resampled
Sentinel-2 multispectral wavebands (overall accuracy 85% and Kappa
of 0.80: Fig. 8). This performance was followed by GB, LDA, and SVM,
respectively. The use of only the selected VIs for the hyperspectral data
and the GRRF selected wavebands for the resampled Sentinel-2, re-
sulted in more accurate Striga infestation discrimination results com-
pared with the use of other predictor variables across the ML dis-
criminant algorithms, except for LDA (Figs. 7 and 8). Although RF
results showed superiority over all the other algorithms, the overlaps of
the boxplots tests showed that there was no significant difference
(p≥ 0.05) with the performance of the GB algorithm. The LDA and
SVM algorithms achieved the least accurate Striga discrimination re-
sults to predict Striga infestation, using all the predictor variable cri-
teria. Also, the Kappa statistic revealed that LDA and SVM models
performed not significantly different (p≥ 0.05) from model perfor-
mance at random, whereas both the RF and the GB models produced
high Kappa statistic values (Kappa > 0.75) for discriminating the seven
classes.

Considering the inter-class prediction accuracies (i.e. individual
producer’s accuracy (PA) and user’s accuracy (UA) metrics), RF model

Table 4
R software packages used by “Caret” that were used in this study and their respective caret syntax code.

Algorithm Caret code Package Reference

Random forest “rf” Ranger (Liaw et al., 2002)
Support vector machines “svmRadial” Kernlab (Karatzoglou et al., 2004)
Linear discriminant analysis “lda” Mass (Venables and Ripley, 2002)
Stochastic gradient boosting “gbm” gbm and plyr (Greenwell et al., 2019)
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was superior over all the other models in predicting each of the seven
classes using both the hyperspectral data or the resampled Sentinel-2
multispectral data (Tables 5 and 6). Although all the four ML dis-
criminant models were able to predict HW with a PA of at least 70%,
MW and LW were not consistent among the models. On the contrary, all
the ML discriminant models were relatively reliable in predicting GV,
SO and SB. Generally, the PA and UA metrics for LDA and SVM were
relatively poor compared to the nonlinear decision tree-based algo-
rithms (RF and GB) as shown in Table 5 and 6.

3.4. Pairwise model performance comparison using McNemar test

The performances of the four ML discriminant models in predicting
Striga infestation were significantly different (p≤ 0.05) from each
other, except the comparison between LDA and SVM (hyperspectral
wavebands) and GB and SVM (resampled Sentinel-2 multispectral wa-
vebands) when using the pairwise McNemar test (Table 7). This further
confirms the superiority of RF in the prediction of Striga infestation
when compared to GB, LDA and SVM.

Fig. 4. Comparison of spectral behaviour for:
(a) bare soil (SO), green vegetation (GV), high
Striga infestation (HW) and pre-flowering (PF)
Striga within the full spectral range
(325–1075 nm); (b) high (HW), moderate
(MW) and low (LW) Striga infestation levels
within the visible range (500–700 nm); (c)
green vegetation (GV), high Striga infestation
(HW) and pre-flowering (PF) Striga within the
visible range (500–700 nm); (d) all the seven
classes used in this study within the red-edge
spectral range (680–750 nm).

Fig. 5. Predictor variables relevance for (a)
both hyperspectral narrow-waveband vegeta-
tion indices and narrow-wavebands selected
using the variable selection measure of the
guided regularized random forest (GRRF) al-
gorithm (b) Resampled Sentinel-2 multi-
spectral wavebands selected using the variable
selection measure of the GRRF algorithm. See
Table 2 for the descriptions of Sentinel-2 mul-
tispectral wavebands.
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4. Discussion

Several studies have demonstrated the importance of managing and
controlling Striga infestation and spatial spread (Atera et al., 2013; Khan
et al., 2007; Spallek et al., 2013). This study examined the potential to
use canopy-level in-situ hyperspectral data and resampled Sentinel-2
multispectral wavebands in distinguishing Striga from other co-occurring
vegetated and non-vegetated materials within maize fields and to dif-
ferentiate among different Striga infestation levels. Results from this
current study show that Striga can accurately be discriminated from
other vegetation and soil classes in maize fields using hyperspectral
wavebands, narrow-band indices, resampled Sentinel-2 multispetral
wavebands and machine learning discrimination algorithms.

4.1. Spectral behaviour of flowering and non-flowering Striga infestation
classes and their co-occurring vegetation and soil

In this study, the results showed that the spectral behaviour of
flowering Striga, non-flowering Striga and other green vegetation
differ. This can be attributed to the diversity of plant pigments occur-
ring at different levels within the different co-occurring flora. Plant
pigments are inherently associated with the biological function of
leaves. Chlorophylls absorb light energy and allocate it to the photo-
synthetic system while, yellow pigments (carotenoids) also contribute
energy to the photosynthetic apparatus and assist in resistance to en-
vironmental stress (Blackburn, 2007). Additionally, anthocyanins (red,
pink and purple pigments) may also serve as scavengers of reactive

Fig. 6. Correlation matrix for the guided regularized random forest (GRRF) selected hyperspectral wavebands and indices. Darker shades of blue and red colors
indicate high variable correlation, while light shades indicate low correlation between variables.

Fig. 7. Striga infestation discrimination models performance
as evaluated by overall accuracy and Kappa statistics using the
clipped range (400–1075 nm) of spectral narrow-wavebands
(*fullspec), narrow-waveband vegetation indices (*indices),
all indices and all narrow-wavebands (*combined), selected
narrow-waveband indices (*selected indices) and selected
narrow-wavebands (*selected bands). RF, GB, LDA and SVM
are random forest, stochastic gradient boosting, linear dis-
criminant analysis and support vector machines, respectively.
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oxygen intermediates or as antifungal compounds (Litchenthaler and
Buschmann, 2001; Sims and Gamon, 2002). In light of the importance
of pigments for leaf and petal function, dynamics in pigment quantities
may provide details regarding their physiological state (Thenkabail
et al., 2013). For instance, chlorophylls tends to decline more rapidly
than carotenoids when plants are under stress or during leaf senescence
(Sims and Gamon, 2002). Similarly, the reflectance response to incident
radiation is influenced by the quantity and the interplay between the

ratios of these pigments (Blackburn, 2007). These could have led to the
differences observed among our flowering Striga, non-flowering Striga
and other vegetation classes.

We found that although the 530–570 nm are the portions which are
mainly inclined to the green reflectance peak, all the plants had the
highest peak at 550 nm within the visible region of the EMS, however,
they differed significantly in the range 550–680 nm. This information is
thus masked out, when using spaceborne sensors such as Sentinel-2 that

Fig. 8. Striga infestation discrimination models performance
as evaluated by overall accuracy and Kappa statistics using all
the resampled Sentinel-2 multispectral wavebands or only the
6 guided regularized random forest (GRRF) selected re-
sampled Sentinel-2 multispectral wavebands. RF, GB, LDA and
SVM are random forest, stochastic gradient boosting, linear
discriminant analysis and support vector machines, respec-
tively.

Table 5
Summarized confusion matrices and classification accuracies, overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA) of the random forest (RF),
stochastic gradient boosting (GB), linear discriminant analysis (LDA) and support vector machines (SVM) discriminant models using the guided regularized random
forest (GRRF) selected narrow-band indices.

Machine learning algorithm

RF GB SVM LDA

Class: Infestation level PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

High (HW) 94 92 93 78 82 100 72 58
Moderate (MW) 85 92 78 84 100 10 41 44
Low (LW) 88 83 74 78 36 83 44 44
Green vegetation (GV) 100 100 70 100 100 100 100 100
Soil (SO) 100 100 100 100 0 0 100 100
Soil Background (SB) 100 100 86 100 0 0 71 83
Pre-flowering (PF) 100 100 75 100 33 33 30 67
OA (%) 91 83 60 55

Table 6
Summarized confusion matrices and classification accuracies, overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA) of the random forest (RF),
stochastic gradient boosting (GB), linear discriminant analysis (LDA) and support vector machines (SVM) discriminant models using the guided regularized random
forest (GRRF) selected resampled Sentinel-2 multispectral wavebands.

Machine learning algorithm

RF GB SVM LDA

Class: Infestation level PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

High (HW) 89 94 90 72 75 90 69 86
Moderate (MW) 87 76 70 85 50 10 76 37
Low (LW) 79 80 69 71 46 89 69 71
Green vegetation (GV) 92 100 80 90 50 100 40 33
Soil (SO) 100 100 100 100 100 100 100 100
Soil Background (SB) 95 100 94 100 100 30 83 100
Pre-flowering (PF) 75 75 78 80 0 0 40 67
OA (%) 85 81 65 55
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group these multiple narrow-wavebands into single broadbands i.e. in
this case, into wavebands 3 and 4. Using the hyperspectral data re-
vealed that the reflectance of our Striga classes within the 550–680 nm
region of the EMS remained high, whilst the other green vegetation
classes reflectance dropped considerably. This could be attributed to
the presence and concentrations of anthocyanins within the petals of
the Striga plants when flowering, because chlorophylls and carotenoids
absorbance increases whereas reflectance by anthocyanins increases
significantly in this regions of the EMS (Huang et al., 2015; Sims and
Gamon, 2002). This concurs with the results of Blackburn (2007) who
observed that, an increase in reflectance in the red region of the EMS
was linked with an increase in anthocyanins. In addition, in the analysis
among the three Striga infestation levels (HW, MW and LW), the
magnitude of this reflectance increased with increase in flower com-
paction (number of flowering Striga m−2) which confirmed the im-
portance of this region for discriminating Striga from other photo-
synthetic-active plants. Leveraging on the presence of the purple colour
pigment in the flowers proved crucial in the separation of Striga oc-
curring with other similarly co-occurring weeds and crops. S. her-
monthica flowers are purple (Ejeta and Gressel, 2007; Khan et al., 2002;
Spallek et al., 2013), hence the violet section of the EMS is very decisive
to distinguish flowering Striga from green plants’ material. However,
the downside to the violet section is the short wavelength characteristic
which is easily scattered by the atmosphere through Rayleigh scat-
tering, thus most space-based satellites including Sentinel-2 do not
consider wavebands within the violet section of the EMS (Campbell and
Wynne, 2007).

Similarly, the spectral region between 413–420 nm region in the
vegetation spectra is influenced by chlorophyll ‘a’ absorption, whereas
the band 600 nm is influenced by chlorophyll ‘b’ absorption peak
(Kumar et al., 2001; Thenkabail et al., 2013). There was a very sharp
decline in the reflectance of green vegetation in these regions compared
to the Striga classes. This decline is attributed to the absorption of
chlorophyll by chlorophyll active plants. On the other hand, the region
also demonstrates the low chlorophyll presence and the high influence
of the pigments in the flowers (Litchenthaler and Buschmann, 2001).

The spectral differences observed in this study between flowers and
green materials were anticipated in our hypothesis to positively pro-
duce reliable spectral differences between Striga and co-occurring
plants during the Striga flowering period (Ge et al., 2006). From other
studies, we know that the waveband 650 nm is the EMS region of ve-
getation pre-maxima spectral absorption, and 670 nm is sensitive to
biomass and leaf canopy (Kumar et al., 2001; Sims and Gamon, 2002;
Thenkabail et al., 2013). This was also observed in this study; however,
for Striga detection, the significance of spectral absorption at these
wavebands was not substantial enough to be useful. Although there was
multiple scattering within the NIR caused by water sensitive

wavebands, the enormous variation in the magnitude of the reflectance
is key in separation of the classes used in this study. GV had the highest
reflectance compared to all the other classes in the NIR spectral range.

Apart from chemical composition, vegetation structure can also af-
fect spectral features and influence spectral sensitivity and reflectance
(He et al., 2011; Huang et al., 2015). The ability to separate among our
studied classes, could also be attributed to flower structure that influ-
ences the spectral features associated with the angle and arrangement
of the petals. The flower structure coupled with lower water content
could have similarly aided in the differences revealed in the prediction
of the infestation classes as compared to the pre-flowering Striga which
exhibited no difference with GV plots (Ge et al., 2006). Therefore, the
best period to predict Striga presence within crop fields is during the
peak Striga flowering period. These results concur with Best et al.
(1981), who concluded that the best period to discriminate among eight
plant species that they were studying was during the flowering and
early seed development stages. It is critical to note that using spectral
signatures for detecting weeds should be used with caution, since dif-
ferent phenological stages of plants show significant variations in their
spectral reflectance depending on the flowering stage of the species
(Schmidt and Skidmore, 2003). Carvalho et al. (2013) suggested that
further studies might be necessary to analyse what could cause such leaf
and flower predictive spectral differences. Additionally, although our
results are valid at plot scale, future studies using Sentinel-2 data, air-
borne or unmanned aerial vehicles (UAV) could be used for seamless
wall-to-wall Striga mapping and upscaling from plot scale to field and
landscape scales during the peak Striga flowering season.

4.2. Most relevant wavebands and indices using the GRRF approach

Our study employed the robust GRRF for the resampled Sentinel-2
multispectral wavebands, hyperspectral wavebands and their derived
VIs variable selection for a multiclass classification. Basically, the tra-
ditional RF positively provides the variable importance parameters to
lead the GRRF variable selection procedure (Deng and Runger, 2013).
Because of the expected very high autocorrelation among the quasi-
contiguous hyperspectral wavebands (1-nm interval), the variable im-
portance values were also very similar among the different wavebands.
Hence, some of our selected narrow-wavebands for detecting Striga
were still autocorrelated. However, the GRRF algorithm decreased the
multidimensionality of narrow-wavebands (9 out of 750 were selected)
and their derived VIs (6 out of 15 were selected) as well as for the
resampled Sentinel-2 multispectral wavebands (6 out of 10) without
compromising key information relevant to our Striga and co-occurring
vegetation classes. This was in accordance with the findings of Adam
et al. (2017); Deng (2013) and Mureriwa et al. (2016) who reported a
considerably reduced hyperspectral narrow-waveband dimensionality
as a result of using GRRF algorithm. Specifically, our selected narrow-
wavebands and VIs concurred and vindicated the importance of the
already identified important EMS regions for separating the seven
Striga infestation classes. Previously used variable selection methods
like “varSelRF” and “Boruta” in R (R Core Team, 2018) are computa-
tionally expensive and may yield inexplicit variable importance outputs
compared to GRRF (Mureriwa et al., 2016). In other words, the variable
importance by-product of such RF-based variable importance proce-
dures could remain dimensionally huge and redundant without iden-
tifying a few non-correlated and the most relevant variables.

Furthermore, several plant characteristics such as biochemistry,
canopy structure and soil parameters are combined within the canopy
spectrum (Große-Stoltenberg et al., 2016). Thus, using canopy-level
spectrum rather than leaf-level data is key for further contrast with
airborne or satellite remote sensing data such as Sentinel-2 used in the
present study. Therefore, in this study we targeted to use VIs that in-
corporate these characteristics and could easily be upscaled to space-
based satellite data. Pigment indices cater for the problem of over-
lapping absorption characteristics of the different pigments rendering

Table 7
McNemar test for comparing the performance of the four machine learning
discriminant models in predicting the seven studied Striga infestation classes
using the hyperspectral wavebands and the resampled Sentinel-2 multispectral
wavebands. RF, GB, LDA and SVM are random forest, stochastic gradient
boosting, linear discriminant analysis and support vector machines models,
respectively.

Hyperspectral
wavebands

Resampled Sentinel-2 multispectral
wavebands

Comparison Chi-square p-value Chi-square p-value

RF vs GB 4.93 0.02* 5.14 0.02*
RF vs LDA 31.03 <0.001** 15.75 <0.001**
RF vs SVM 22.42 <0.001** 5.79 0.02*
GB vs LDA 19.86 <0.001** 7.84 <0.001**
GB vs SVM 10.26 0.001** 0.36 0.55
LDA vs SVM 0.21 0.64 6.05 0.01*

* Significant at 95% confidence interval (CI); ** Significant at 99% CI.
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them more informative than the raw wavebands alone. The fact, our
study showed that the most relevant VIs were related to pigments
(chlorophylls, carotenoids and anthocyanins) and water content, is at-
tributable to our sampling season which was during the peak Striga
flowering and maize crop vegetative growth stage. In addition, the
higher chlorophyll content detecting VIs (DDN and Datt4) that were
selected among our relevant VIs for Striga detection, are known fea-
tures that correlated to plant health, leaf area index (LAI) and light use
efficiency. The differences in chlorophylls, carotenoids and anthocya-
nins among our seven Striga classes are vital to the physiological re-
sponses and resilience of plants to natural episodic events or seasonal
fluctuations (Blackburn, 2007). These dynamics are captured very well
in the indices calculated at canopy level. Several studies offer credit to
the two-band VIs, which correspond to the flanks of the main chlor-
ophyll absorption feature in the red (530–630 nm) and the waveband
located at 700 nm (which resembles waveband 5 of the Sentinel-2
sensor) to be the most sensitive to pigment concentration over the
normal range (Kumar et al., 2001).

4.3. Performance of the machine learning classifiers for discriminating
among the Striga infestation classes

In general, determination of the best classifier for a particular ap-
plication case when remotely sensed data are utilized, depends on the
accuracy measure selected and the intended objective of the analysis
(Maxwell et al., 2018). In our case, we identified the RF and GB as the
best classifiers for Striga detection according to their overall accuracies.
The resampled Sentinel-2 multispectral wavebands showed good po-
tential to detect and map Striga at acceptable accuracies using the RF
and GB algorithm with overall accuracies of 85% and 81%, respec-
tively. However, the RF and GB classifiers experienced challenges by
having some false positive cases when attempting to separate the Striga
severity classes. These false positive instances are important as de-
tecting a damaging parasitic weed at early stages of invasion is also
fundamental for a real time intervention (Große-Stoltenberg et al.,
2016). In both cases (i.e. using hyperspectral data or resampled Sen-
tinel-2 multispectral wavebands), we expected the SVM to have per-
formed better than its obtained results in this study, since other studies
have shown a high performance of SVM for detecting weed infestation
using remotely sensed data (Brereton and Lloyd, 2010; Große-
Stoltenberg et al., 2016; Pal and Mather, 2005). However, a relatively
small sample size in some of our classes could have hindered the per-
formance of SVM algorithm as it is quite sensitive to imbalanced and
small sample sizes (Maxwell et al., 2018). One other reason for a re-
latively low SVM performance, could be due to the use of a default
linear hyperplane and SVM parameters; viz gamma (γ) and sigma (C).
Studies have shown that optimization of these two SVM parameters
would counter for the expected nonlinear relationship among the
classes, hence enhancing the performance of the classifier (Abdel-
Rahman et al., 2014; Maxwell et al., 2018).

The performance of RF, GB and SVM in this study is in agreement
with some recent studies that have utilized leaf-level or canopy-level
hyperspectral data and one of these classifiers to detect a plant trait
(Große-Stoltenberg et al., 2016; Litchenthaler and Buschmann, 2001;
Thenkabail et al., 2013). Specifically, the two non-linear classification
algorithms (i.e. GB and RF) attained the best performance results when
using the GRRF selected variables for both selected hyperspectral wa-
vebands or when we used the selected resampled Sentinel-2 multi-
spectral wavebands. These results concur with Mureriwa et al. (2016)
who used GRRF and RF to detect Prosopis using field spectral mea-
surements data and found that reducing the number of redundant
spectral variables increased the accuracy of the detection. In all cases,
the RF classifier proved to be a very robust and reliable model for
predicting subtle differences between classes and non-linear effects
from spectral scattering between plant components. This is because RF
is robust, yet can still accomplish high prediction accuracies even when

the observation data are low or when the variables are highly correlated
(James et al., 2017; Thamaga and Dube, 2018). However, GRRF out-
performs standard RF in relevant variable selection. It can, therefore, be
concluded from our results that, if accurate detection of Striga in-
festation is to be conducted, combining RF model and GRRF would
provide the best model of choice regardless of the dimensions offered
by the prediction variables and observations or the mapping scale.

5. Conclusions

In this study, the possibilities of using canopy-level in-situ hyper-
spectral data for predicting the presence and level of Striga infestation
using their flowering characteristics are demonstrated. Prediction of
seven classes of Striga infestation is possible with satisfactory overall
accuracies (up to 94% overall accuracy), specifically during the peak
flowering period including at Sentinel-2 spatial and spectral scales.
However, due to the reliance on the flowering, it remains a challenge to
pre-detect Striga before the damage is done. For more precise results on
a global scale, remote sensing could therefore, be used to detect and
model the condition of the infested maize rather than targeting Striga
itself. The GRRF model provided an easy and accurate variable selec-
tion platform that selects a fewer and uncorrelated hyperspectral fea-
tures relevant to the features of interest like Striga infestation.
Specifically, this study shows that the selected narrow-waveband VIs;
WBI, ARI, ARI2, Datt4, DDN and PRI.CI2, narrow-wavebands (415 nm,
548 nm, 551 nm, 556 nm, 568 nm, 578 nm, 657 nm, 677 nm and
1060 nm) and Sentinel-2 multispectral wavebands (band 3, band 4,
band 9, band 1, band 5 and band 2 in order of importance), are very
relevant for Striga infestation prediction in maize fields in semi-arid
agro-ecosystem. The machine learning RF classification algorithm
emerged as a very robust and reliable model for predicting differences
among Striga occurring and other weeds and crops classes. However,
there is a need to investigate the temporal and spatial variability of the
flowering signal of Striga during the peak flowering season to explore
upscaling options for the monitoring of the floral cycle using high
spatial resolution multispectral data. Sentinel-2 data coupled with
Multiple Endmember Spectral Mixture Analysis (MESMA) which sepa-
rates spectra within image pixels by identifying the percentage con-
tribution of each class with more than one endmember could also be
explored to detect Striga infestation when large scale image data are
utilized. This would bring an immense benefit to landscape assessment
of the floral cycle and infestation. Findings from this study will be of
utmost importance in understanding Striga infestation in heterogenous
crop fields in Sub-Saharan Africa. Although the use of the field hyper-
spectral data in vegetation studies is no longer new, our results indicate
the capabilities and application of such remotely sensed data, as a tool
for excellent detection of Striga infestation and other vegetation classes.
These results provide opportunities to researchers, to apply a similar
approach in precision agriculture using airborne or UAV data and
platforms to detect the hotspots of Striga infestation at localized scales.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

We gratefully acknowledge the financial support for this research by
the following organizations and agencies: Biovision Foundation for
Ecological Development (Switzerland) and grant number (BV DPP-010/
2019); UK’s Department for International Development (DFID);
Swedish International Development Cooperation Agency (Sida); the
Swiss Agency for Development and Cooperation (SDC); Federal
Democratic Republic of Ethiopia; and the Kenyan Government. “BTM”
was supported by a German Academic Exchange Service (DAAD) In-
Region Postgraduate Scholarship. In the same way, the authors express

B.T. Mudereri, et al. Int J Appl  Earth Obs Geoinformation 85 (2020) 102008

12



their gratitude to the farmers in Rongo for their contribution through
information sharing and cooperation. We also extend our gratitude to
Mr Martin Ogola Oluoch and Mr Kennedy Okeyo Anyango for their
support in the field.

References

Abdel-Rahman, E.M., Mutanga, O., Adam, E., Ismail, R., 2014. Detecting Sirex noctilio
grey-attacked and lightning-struck pine trees using airborne hyperspectral data,
random forest and support vector machines classifiers. ISPRS J. Photogramm. Remote
Sens. 88, 48–59. https://doi.org/10.1016/j.isprsjprs.2013.11.013.

Abdel-Rahman, E.M., Way, M., Ahmed, F., Ismail, R., Adam, E., 2013. Estimation of thrips
(Fulmekiola serrata Kobus) density in sugarcane using leaf-level hyperspectral data.
S. Afr. J. Plant Soil 30, 91–96. https://doi.org/10.1080/02571862.2013.803616.

Adam, E., Deng, H., Odindi, J., Abdel-Rahman, E.M., Mutanga, O., 2017. Detecting the
early stage of phaeosphaeria leaf spot infestations in maize crop using in situ hy-
perspectral data and guided regularized random forest algorithm. J. Spectrosc 2017.
https://doi.org/10.1155/2017/6961387.

ASD, 2010. FieldSpec® HandHeld 2 User Manual. pp. 1–140. http://www.geo-informatie.
nl/courses/grs60312/material2017/manuals/600860-dHH2Manual.pdf.

Atera, E.A., Ishii, T., Onyango, J.C., Itoh, K., Azuma, T., 2013. Striga Infestation in Kenya:
Status, Distribution and Management Options 2. pp. 99–108. https://doi.org/10.
5539/sar.v2n2p99.

Best, R.G., Wehde, M.E., Linder, R., 1981. Spectral reflectance of hydrophytes. Remote
Sens. Environ. 11, 27–35. https://doi.org/10.1016/0034-4257(81)90004-3.

Blackburn, G.A., 2007. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 58,
855–867. https://doi.org/10.1093/jxb/erl123.

Breiman, L., 2002. Manual on Setting up, Using, and Understanding Random Forests v3.1.
Tech. Report. Stat. Dep. Univ. Calif. Berkeley, pp. 29 http//oz.berkeley.edu/users/
breiman https://doi.org/10.2776/85168.

Breiman, L., 2001. Randomforest2001. pp. 1–33. https://link.springer.com/content/pdf/
10.1023%2FA%3A1010933404324.pdf.

Brereton, R.G., Lloyd, G.R., 2010. Support vector machines for classification and re-
gression. Analyst 135, 230–267. https://doi.org/10.1039/B918972F.

Campbell, J., Wynne, R., 2007. Introduction to Remote Sensing, 5th ed. Guiford Press,
New York Journal of experimental psychology: General.

Carvalho, S., Schlerf, M., van der Puttena, W.H., Skidmore, A.K., 2013. Hyperspectral
reflectance of leaves and flowers of an outbreak species discriminates season and
successional stage of vegetation. Int. J. Appl. Earth Obs. Geoinf. 24, 32–41. https://
doi.org/10.1016/j.jag.2013.01.005.

Chemura, A., Mutanga, O., Dube, T., 2017. Separability of coffee leaf rust infection levels
with machine learning methods at Sentinel-2 MSI spectral resolutions. Precis. Agric
18, 859–881. https://link.springer.com/article/10.1007/s11119-016-9495-0.

Chen, J., Shen, M., Zhu, X., Tang, Y., 2009. Indicator of flower status derived from in situ
hyperspectral measurement in an alpine meadow on the Tibetan Plateau. Ecol. Indic.
9, 818–823. https://doi.org/10.1016/j.ecolind.2008.09.009.

de Castro, A.I., Torres-Sánchez, J., Peña, J.M., Jiménez-Brenes, F.M., Csillik, O., López-
Granados, F., 2018. An automatic random forest-OBIA algorithm for early weed
mapping between and within crop rows using UAV imagery. Remote Sens. 10, 1–21.
https://doi.org/10.3390/rs10020285.

Deng, H., 2013. Guided Random Forest in the RRF Package. pp. 1–3. https://doi.org/10.
1016/j.neuropsychologia.2011.12.015.

Deng, H., Runger, G., 2013. Gene selection with guided regularized random forest.
Pattern Recognit. 46, 3483–3489. https://doi.org/10.1016/j.patcog.2013.05.018.

Dhau, I., Adam, E., Mutanga, O., Ayisi, K., Abdel-Rahman, E.M., Odindi, J., Masocha, M.,
2018. Testing the capability of spectral resolution of the new multispectral sensors on
detecting the severity of grey leaf spot disease in maize crop. Geocarto Int. 33,
1223–1236. https://doi.org/10.1080/10106049.2017.1343391.

Dube, T., Mutanga, O., 2015. Evaluating the utility of the medium-spatial resolution
Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni
catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 101, 36–46. https://
doi.org/10.1016/j.isprsjprs.2014.11.001.

Ejeta, G., Gressel, J., 2007. Intergrating New Technologies for Striga control: Towards
Ending the Witch-hunt. World Scientific, Singapore.

Ekeleme, F., Jibrin, J.M., Kamara, A.Y., Oluoch, M., Samndi, A.M., Fagge, A.A., 2014.
Assessment of the relationship between soil properties, Striga hermonthica infesta-
tion and the on-farm yields of maize in the dry Savannas of Nigeria. Crop Prot. 66,
90–97. https://doi.org/10.1016/j.cropro.2014.09.001.

FAO, I.F.A.D., UNICEF, Wfp, W., 2018. The State of Food Security and Nutrition in the
World 2018. Building Climate Resilience for Food Security and Nutrition. FAO,
Rome. https://doi.org/10.1093/cjres/rst006. Licence: CC BY-NC-SA 3.0 IGO,
Building climate resilience for food security and nutrition.

FieldSpec, 2017. FieldSpec HandHeld2: Light Theory and Measurements Using the
Fieldspec HandHeld 2 Portable Spectroradiometer. https://www.
malvernpanalytical.com/en/learn/knowledge-center/user-manuals/Copy_of_
fieldspec-handheld-2-light-theory-and-measurement.html.

Fisher, R., 1936. The use of multiple measurements in taxonomic problems. Ann. Eugen.
7, 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Friedman, J., 1999. Stochastic Gradient Boosting. CSIRO C, pp. 1–10 https//statweb.-
stanford.edu/∼jhf/ftp/stobst.pdf.

Ge, S., Everitt, J., Carruthers, R., Gong, P., Anderson, G., 2006. Hyperspectral char-
acteristics of canopy components and structure for phenological assessment of an
invasive weed. Environ. Monit. Assess. 120, 109–126. https://doi.org/10.1007/
s10661-005-9052-1.

Greenwell, B., Boehmke, B., Cunningham, J., Developers, G., 2019. Gbm: Generalized
Boosted Regression Models. R Package Version 2.1.5. CRAN Repos. https//cran.r-
project.org/.. .

Große-Stoltenberg, A., Hellmann, C., Werner, C., Oldeland, J., Thiele, J., 2016.
Evaluation of continuous VNIR-SWIR spectra versus narrowband hyperspectral in-
dices to discriminate the invasive Acacia longifolia within a mediterranean dune
ecosystem. Remote Sens. 8. https://doi.org/10.3390/rs8040334.

He, K.S., Rocchini, D., Neteler, M., Nagendra, H., 2011. Benefits of hyperspectral remote
sensing for tracking plant invasions. Divers. Distrib. 17, 381–392. https://doi.org/10.
1111/j.1472-4642.2011.00761.x.

Ho, P.-G.P., 2009. Geoscience and Remote Sensing. [WWW Document]. URL (Accessed
2.20.19). https://www.harrisgeospatial.com/Support/Maintenance-Detail/ArtMID/
13350/ArticleID/16162/Vegetation-Analysis-Using-Vegetation-Indices-in-ENVI.

Holloway, J., Mengersen, K., 2018. Statistical machine learning methods and remote
sensing for sustainable development goals: a review. Remote Sens. 10, 1365. https://
doi.org/10.3390/rs10091365.

Huang, J., Wei, Chen, Zhang, Y., Blackburn, G.A., Wang, X., Wei, Chuanwen, Wang, J.,
2015. Meta-analysis of the detection of plant pigment concentrations using hyper-
spectral remotely sensed data. PLoS One 10, 1–26. https://doi.org/10.1371/journal.
pone.0137029.

James, G., Witten, D., Hastie, T., Tibshirani, R., 2017. An Introduction to Statistical
Learning With Application in R, 8th ed. Springer. Springer, New York. https://doi.
org/10.1007/978-1-4614-7138-7.

Jia, K., Wu, B., Tian, Y., Li, Q., Du, X., 2011. Spectral discrimination of opium poppy using
field spectrometry. IEEE Trans. Geosci. Remote Sens. 49, 3414–3422. https://doi.
org/10.1109/TGRS.2011.2126582.

Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A., 2004. Kenlab—an S4 package for
kernel methods in R. J. Stat. Softw. 11, 1–20.

Khan, Z.R., Hassanali, A., Overholt, W., Khamis, T.M., Hooper, A.M., Pickett, J.A.,
Wadhams, L.J., Woodcock, C.M., 2002. Control of witchweed Striga hermonthica by
intercropping with Desmodium spp., and the mechanism defined as allelopathic. J.
Chem. Ecol. 28, 1871–1885. https://doi.org/10.1023/A:1020525521180.

Khan, Z.R., Midega, C.A.O., Hassanali, A., Pickett, J.A., Wadhams, L.J., 2007. Assessment
of different legumes for the control of Striga hermonthica in maize and sorghum.
Crop Sci. 47, 730–736. https://doi.org/10.2135/cropsci2006.07.0487.

Khan, Z.R., Midega, C.A.O., Pittchar, J.O., Murage, A.W., Birkett, M.A., Bruce, T.J.A.,
Pickett, J.A., 2014. Achieving food security for one million sub-Saharan African poor
through push-pull innovation by 2020. Philos. Trans. R. Soc. B Biol. Sci. 369https://
doi.org/10.1098/rstb.2012.0284. 20120284–20120284.

Kuhn, M., Wing, J., Weston, S., Williams, A., Chris, A., Engelhardt Tony, C., Mayer, Z.,
Kenke, B., The R CoreTeam, I., Michael, B., Reynald, L., Andrew, Z., Luca, S., Yuan,
T., 2018. Caret: Classification and Regression Training. R Package Version 6.0-81.

Kumar, A., Manjunath, K.R., Meenakshi, Bala, R., Suda, R.K., Singh, R.D., Panigrahy, S.,
2013. Field hyperspectral data analysis for discriminating spectral behavior of tea
plantations under various management practices. Int. J. Appl. Earth Obs. Geoinf. 23,
352–359. https://doi.org/10.1016/j.jag.2012.10.006.

Kumar, L., Schmidt, K.S., Dury, S., Skidmore, A.K., 2001. Imaging spectroscopy and ve-
getation science. In: In: van der Meer, F.D., de Jong, S.M. (Eds.), Imaging
Spectrometry: Basic Principles and Prospective Applications, Remote Sensing and
Digital Image Processing Vol. 4. Kluwer Academic, Dordrecht, The Netherlands, pp.
111–155.

Landmann, T., Piiroinen, R., Makori, D.M., Abdel-Rahman, E.M., Makau, S., Pellikka, P.,
Raina, S.K., 2015. Application of hyperspectral remote sensing for flower mapping in
African savannas. Remote Sens. Environ. 166, 50–60. https://doi.org/10.1016/j.rse.
2015.06.006.

Liaw, A., Wiener, M., Weiner, M., 2002. Classification and regression by random forest. R
news 2, 18–22. https://doi.org/10.1177/154405910408300516.

Litchenthaler, H., Buschmann, C., 2001. Chlorophylls and Carotenoids Measurement and
UV-vis Characterization. pp. 1–8. https://doi.org/10.1002/0471709085. ch21.

Lukas, W., Lehnert, Hanna, M., Joerg, B., 2018. Hsdar: Manage, Analyse and Simulate
Hyperspectral Data in R. R Package Version 0.7.2.

Maxwell, A.E., Warner, T.A., Fang, F., 2018. Implementation of machine-learning clas-
sification in remote sensing: an applied review. Int. J. Remote Sens. 39, 2784–2817.
https://doi.org/10.1080/01431161.2018.1433343.

Midega, C.A.O., Wasonga, C.J., Hooper, A.M., Pickett, J.A., Khan, Z.R., 2017. Drought-
tolerant Desmodium species effectively suppress parasitic striga weed and improve
cereal grain yields in western Kenya. Crop Prot. 98, 94–101. https://doi.org/10.
1016/j.cropro.2017.03.018.

Mirik, M., Ansley, R.J., Steddom, K., Jones, D.C., Rush, C.M., Michels, G.J., Elliott, N.C.,
2013. Remote distinction of a noxious weed (Musk Thistle: Carduus Nutans) using
airborne hyperspectral imagery and the support vector machine classifier. Remote
Sens. 5, 612–630. https://doi.org/10.3390/rs5020612.

Mudereri, B.T., Dube, T., Adel-Rahman, E.M., Niassy, S., Kimathi, E., Khan, Z., Landmann,
T., 2019. A comparative analysis of PlanetScope and Sentinel-2 space-borne sensors
in mapping Striga weed using Guided Regularised Random Forest classification en-
semble. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci XLII-2/W13,
701–708. https://doi.org/10.5194/isprs-archives-XLII-2-W13-701-2019.

Mureriwa, N., Adam, E., Sahu, A., Tesfamichael, S., 2016. Examining the spectral se-
parability of prosopis glandulosa from co-existent species using field spectral mea-
surement and guided regularized random forest. Remote Sens 8. https://doi.org/10.
3390/rs8020144.

Mutanga, O., Dube, T., Galal, O., 2017. Remote sensing of crop health for food security in
Africa: potentials and constraints. Remote Sens. Appl. Soc. Environ. 8, 231–239.
https://doi.org/10.1016/j.rsase.2017.10.004.

Ochungo, P., Veldtman, R., Abdel-Rahman, E.M., Raina, S., Muli, E., Landmann, T., 2019.
Multi-sensor mapping of honey bee habitats and fragmentation in agro-ecological

B.T. Mudereri, et al. Int J Appl  Earth Obs Geoinformation 85 (2020) 102008

13

https://doi.org/10.1016/j.isprsjprs.2013.11.013
https://doi.org/10.1080/02571862.2013.803616
https://doi.org/10.1155/2017/6961387
http://www.geo-informatie.nl/courses/grs60312/material2017/manuals/600860-dHH2Manual.pdf
http://www.geo-informatie.nl/courses/grs60312/material2017/manuals/600860-dHH2Manual.pdf
https://doi.org/10.5539/sar.v2n2p99
https://doi.org/10.5539/sar.v2n2p99
https://doi.org/10.1016/0034-4257(81)90004-3
https://doi.org/10.1093/jxb/erl123
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0040
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0040
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0040
https://link.springer.com/content/pdf/10.1023%2FA%3A1010933404324.pdf
https://link.springer.com/content/pdf/10.1023%2FA%3A1010933404324.pdf
https://doi.org/10.1039/B918972F
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0055
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0055
https://doi.org/10.1016/j.jag.2013.01.005
https://doi.org/10.1016/j.jag.2013.01.005
https://link.springer.com/article/10.1007/s11119-016-9495-0
https://doi.org/10.1016/j.ecolind.2008.09.009
https://doi.org/10.3390/rs10020285
https://doi.org/10.1016/j.neuropsychologia.2011.12.015
https://doi.org/10.1016/j.neuropsychologia.2011.12.015
https://doi.org/10.1016/j.patcog.2013.05.018
https://doi.org/10.1080/10106049.2017.1343391
https://doi.org/10.1016/j.isprsjprs.2014.11.001
https://doi.org/10.1016/j.isprsjprs.2014.11.001
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0100
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0100
https://doi.org/10.1016/j.cropro.2014.09.001
https://doi.org/10.1093/cjres/rst006
https://doi.org/10.1093/cjres/rst006
https://www.malvernpanalytical.com/en/learn/knowledge-center/user-manuals/Copy_of_fieldspec-handheld-2-light-theory-and-measurement.html
https://www.malvernpanalytical.com/en/learn/knowledge-center/user-manuals/Copy_of_fieldspec-handheld-2-light-theory-and-measurement.html
https://www.malvernpanalytical.com/en/learn/knowledge-center/user-manuals/Copy_of_fieldspec-handheld-2-light-theory-and-measurement.html
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0125
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0125
https://doi.org/10.1007/s10661-005-9052-1
https://doi.org/10.1007/s10661-005-9052-1
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0135
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0135
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0135
https://doi.org/10.3390/rs8040334
https://doi.org/10.1111/j.1472-4642.2011.00761.x
https://doi.org/10.1111/j.1472-4642.2011.00761.x
https://www.harrisgeospatial.com/Support/Maintenance-Detail/ArtMID/13350/ArticleID/16162/Vegetation-Analysis-Using-Vegetation-Indices-in-ENVI
https://www.harrisgeospatial.com/Support/Maintenance-Detail/ArtMID/13350/ArticleID/16162/Vegetation-Analysis-Using-Vegetation-Indices-in-ENVI
https://doi.org/10.3390/rs10091365
https://doi.org/10.3390/rs10091365
https://doi.org/10.1371/journal.pone.0137029
https://doi.org/10.1371/journal.pone.0137029
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1109/TGRS.2011.2126582
https://doi.org/10.1109/TGRS.2011.2126582
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0175
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0175
https://doi.org/10.1023/A:1020525521180
https://doi.org/10.2135/cropsci2006.07.0487
https://doi.org/10.1098/rstb.2012.0284
https://doi.org/10.1098/rstb.2012.0284
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0195
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0195
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0195
https://doi.org/10.1016/j.jag.2012.10.006
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0205
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0205
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0205
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0205
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0205
https://doi.org/10.1016/j.rse.2015.06.006
https://doi.org/10.1016/j.rse.2015.06.006
https://doi.org/10.1177/154405910408300516
https://doi.org/10.1002/0471709085
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0225
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0225
https://doi.org/10.1080/01431161.2018.1433343
https://doi.org/10.1016/j.cropro.2017.03.018
https://doi.org/10.1016/j.cropro.2017.03.018
https://doi.org/10.3390/rs5020612
https://doi.org/10.5194/isprs-archives-XLII-2-W13-701-2019
https://doi.org/10.3390/rs8020144
https://doi.org/10.3390/rs8020144
https://doi.org/10.1016/j.rsase.2017.10.004


landscapes in Eastern Kenya. Geocarto Int. 0, 1–22. https://doi.org/10.1080/
10106049.2019.1629645.

Oswald, A., 2005. Striga control - technologies and their dissemination. Crop Prot. 24,
333–342. https://doi.org/10.1016/j.cropro.2004.09.003.

Pal, M., Mather, P.M., 2005. Support vector machines for classification in remote sensing.
Int. J. Remote Sens. 26, 1007–1011. https://doi.org/10.1080/
01431160512331314083.

Peña, J.M., Torres-Sánchez, J., de Castro, A.I., Kelly, M., López-Granados, F., 2013. Weed
mapping in early-season maize fields using object-based analysis of unmanned aerial
vehicle (UAV) images. PLoS One 8, 1–11. https://doi.org/10.1371/journal.pone.
0077151.

Qiao, C., Daneshfar, B., Davidson, A.M., 2017. The application of discriminant analysis
for mapping cereals and pasture using object-based features. Int. J. Remote Sens. 38,
5546–5568. https://doi.org/10.1080/01431161.2017.1325530.

R Core Team, 2018. R: A Language and Environment for Statistical Computing. URL. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rakotoarisoa, M.A., Iafrate, M., Paschali, M., 2012. Why Has Africa Become a Net Food
Importer? Explaining Africa Agricultural and Food Trade Deficits, Trade and Market
Division. Food And Agriculture Organisation of the United Nations, Rome, FAO.

Ramoelo, A., Cho, M., Mathieu, R., Skidmore, A.K., 2015. Potential of Sentinel-2 spectral
configuration to assess rangeland quality. J. Appl. Remote Sens. 9, 094096. https://
doi.org/10.1117/1.JRS.9.094096.

Rispail, N., Dita, M.A., González-Verdejo, C., Pérez-De-Luque, A., Castillejo, M.A., Prats,
E., Román, B., Jorrín, J., Rubiales, D., 2007. Plant resistance to parasitic plants:
molecular approaches to an old foe: research review. New Phytol. 173, 703–712.
https://doi.org/10.1111/j.1469-8137.2007.01980.x.

Samejima, H., Babiker, A.G., Takikawa, H., Sasaki, M., Sugimoto, Y., 2016. Practicality of
the suicidal germination approach for controlling Striga hermonthica. Pest Manage.
Sci. 72, 2035–2042. https://doi.org/10.1002/ps.4215.

Sasson, A., 2012. Food security for Africa: an urgent global challenge. Agric. Food Secur.
https://doi.org/10.1186/2048-7010-1-2.

Schmidt, K.S., Skidmore, A.K., 2003. Spectral discrimination of vegetation types in a
coastal wetland. Remote Sens. Environ. 85, 92–108. https://doi.org/10.1016/S0034-

4257(02)00196-7.
Scholes, J.D., Press, M.C., 2008. Striga infestation of cereal crops - an unsolved problem in

resource limited agriculture. Curr. Opin. Plant Biol. 11, 180–186. https://doi.org/10.
1016/j.pbi.2008.02.004.

Sibanda, M., Mutanga, O., Rouget, M., Odindi, J., 2015. Exploring the potential of in situ
hyperspectral data and multivariate techniques in discriminating different fertilizer
treatments in grasslands. J. Appl. Remote Sens. 9, 096033. https://doi.org/10.1117/
1.JRS.9.096033.

Sims, D.A., Gamon, J.A., 2002. Relationships between leaf pigment content and spectral
reflectance across a wide range of species. Remote Sens. Environ. 81, 337–354.
https://doi.org/10.1016/S0034-4257(02)00010-X.

Smith, A.M., Blackshaw, R.E., 2003. Weed: crop discrimination using remote sensing: a
detached leaf experiment. Weed Technol. 17, 811–820. https://doi.org/10.2307/
3989767.

Spallek, T., Mutuku, M., Shirasu, K., 2013. The genus Striga: a witch profile. Mol. Plant
Pathol. 14, 861–869. https://doi.org/10.1111/mpp.12058.

Thamaga, K.H., Dube, T., 2018. Remote sensing of invasive water hyacinth (Eichhornia
crassipes): a review on applications and challenges. Remote Sens. Appl. Soc. Environ.
https://doi.org/10.1016/j.rsase.2018.02.005.

Thenkabail, P., Mariotto, I., Gumma, M., Middleton, E.M., Landis, D.R., Huemmrich, F.K.,
2013. Selection of hyperspectral narrowbands (HNBs) and composition of hyper-
spectral twoband vegetation indices (HVIs) for biophysical characterization and. Sel.
Top. Appl. EARTH Obs. Remote Sens. 6, 427–439. https://doi.org/10.1109/JSTARS.
2013.2252601.

Unachukwu, N.N., Menkir, A., Rabbi, I.Y., Oluoch, M., Muranaka, S., Elzein, A.,
Odhiambo, G., Farombi, E.O., Gedil, M., 2017. Genetic diversity and population
structure of Striga hermonthica populations from Kenya and Nigeria. Weed Res. 57,
293–302. https://doi.org/10.1111/wre.12260.

Vapnik, V., 1979. Estimation of Dependences Based on Empirical Data. Nauk. Moscow,
Transl, vol. 27. Springer Verlag, New York, pp. 5165–5184 1982.

Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics With S, fourth edition.
Springer, New York ISBN 0-387-95457-0.

B.T. Mudereri, et al. Int J Appl  Earth Obs Geoinformation 85 (2020) 102008

14

https://doi.org/10.1080/10106049.2019.1629645
https://doi.org/10.1080/10106049.2019.1629645
https://doi.org/10.1016/j.cropro.2004.09.003
https://doi.org/10.1080/01431160512331314083
https://doi.org/10.1080/01431160512331314083
https://doi.org/10.1371/journal.pone.0077151
https://doi.org/10.1371/journal.pone.0077151
https://doi.org/10.1080/01431161.2017.1325530
https://www.R-project.org/
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0290
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0290
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0290
https://doi.org/10.1117/1.JRS.9.094096
https://doi.org/10.1117/1.JRS.9.094096
https://doi.org/10.1111/j.1469-8137.2007.01980.x
https://doi.org/10.1002/ps.4215
https://doi.org/10.1186/2048-7010-1-2
https://doi.org/10.1016/S0034-4257(02)00196-7
https://doi.org/10.1016/S0034-4257(02)00196-7
https://doi.org/10.1016/j.pbi.2008.02.004
https://doi.org/10.1016/j.pbi.2008.02.004
https://doi.org/10.1117/1.JRS.9.096033
https://doi.org/10.1117/1.JRS.9.096033
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.2307/3989767
https://doi.org/10.2307/3989767
https://doi.org/10.1111/mpp.12058
https://doi.org/10.1016/j.rsase.2018.02.005
https://doi.org/10.1109/JSTARS.2013.2252601
https://doi.org/10.1109/JSTARS.2013.2252601
https://doi.org/10.1111/wre.12260
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0360
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0360
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0365
http://refhub.elsevier.com/S0303-2434(19)30568-9/sbref0365

	Is it possible to discern Striga weed (Striga hermonthica) infestation levels in maize agro-ecological systems using in-situ spectroscopy?
	Introduction
	Methods
	Study site
	Field sampling design
	In-situ hyperspectral data acquisition
	Calculation of the narrow-waveband vegetation indices
	Predictor variables&#x02019; selection using guided regularized random forest (GRRF) algorithm
	Machine learning discriminant algorithms

	Results
	Spectral behaviour of flowering and non-flowering Striga
	Predictor variables selection
	Striga infestation levels discrimination using the four machine learning GB, LDA, RF and SVM models
	Pairwise model performance comparison using McNemar test

	Discussion
	Spectral behaviour of flowering and non-flowering Striga infestation classes and their co-occurring vegetation and soil
	Most relevant wavebands and indices using the GRRF approach
	Performance of the machine learning classifiers for discriminating among the Striga infestation classes

	Conclusions
	mk:H1_19
	Acknowledgments
	References




