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A B S T R A C T

Invasive plant species in eastern Africa severely impede rangeland and cropland productivity with dire con-
sequences for livelihoods of agro-pastoralist communities. We produced the first occurrence and spread map of
invasive plant species (Prosopis: Prosopis juliflora and Parthenium: Parthenium hysterophorus) for western
Somaliland (a region of eastern Africa) using vegetation productivity and phenology trends from 250 m MODIS
(Moderate Resolution Imaging Spectroradiometer) EVI (Enhanced Vegetation Index) time-series data
(2001–2014). Binomial logistic regression models were created to predict the presence or absence of the invasive
species from the MODIS EVI phenometrics and vegetation productivity trends. Model training pixels were ex-
tracted from a 30 m Landsat-based classification that mapped areas of propagation of the two invasive species
between 2001 and 2015. Field observations collected during 2014 and 2015 were used as reference data for the
Landsat classification. After optimization of the logistic regression models, a probability of occurrence map was
produced and evaluated for each of the two invasive species. The probability maps predicted that the cropland-
dominated areas in the southwestern part of Somaliland were considerably infested with Parthenium while
Prosopis was most abundant in the peri-urban zones and the central and eastern regions. Vegetation amplitude
(the seasonal cycle of vegetation between the vegetation peak and the trough) was most relevant and statistically
significant for predicting the spread of Parthenium. This highlights the importance of vegetation seasonality
variables for the wide-area mapping of herbaceous life forms in semi-arid biomes. Mann-Kendall trends based on
annual summed EVI value and seasonal EVI peak value trends were the most relevant predictors for the oc-
currence of Prosopis. Phenometric trends show immense potential to map shifts in vegetation patterns in relation
to the spread of invasive species as a consequence of global change effects, particularly in African drylands.

1. Introduction

There is growing global interest and need to study propagation
zones of invasive species in order to support containment and com-
prehensive land restoration efforts (Fatimah and Ahmad, 2009; Singh
et al., 2018). Despite the detrimental effects of invasive plant species on
ecosystem services (especially on biodiversity, see Charles and Dukes,
2017) and agricultural productivity, a few studies on modelling the
invasive plant species occurrence and spread have been conducted in
tropical Africa (e.g. McConnachie et al., 2010).

Since invasive plants tend to spread rapidly across several biomes,
wide-area assessment of their diversity, abundance and spread

pathways is challenging (Huang and Asner, 2009). Mapping accuracy is
affected by the difficulty of discriminating invasive species from co-
occurring native species due to the similarity of their phenological re-
sponses to rainfall and temperature (Cleland et al., 2007). Subtle phe-
nological responses such as flowering or abrupt greening may also
preclude accurate discrimination in image reflectance data, especially
when using satellite data with low temporal resolutions and limited
spatial coverage (Wallace et al., 2016).

In some regions, for example the eastern African region of
Somaliland (the focus region of the present study), the use of pure
ecological niche modeling approaches for invasive species spread
mapping is not always appropriate. This is due to the absence of
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historical occurrence data required for change modeling and because
localized or small-scale land use factors (such as ecological disturbances
from overgrazing or intensive cropping; Obiri, 2011) are considered to
be better descriptors of invasive plant propagation than general climate
zones and soil types (Early et al., 2016). As pure ecological niche
modeling approaches may overestimate species occurrences because
they do not consider actual land use and are biased towards climate
predictors (Makori et al., 2017), methods integrating remote sensing
may be more appropriate.

Land surface phenology, the seasonal and re-occurring variation of
vegetation productivity over the land surface, can be estimated from
remote sensing time-series data. (Zhang et al., 2006). Such pheno-
metrics include all vegetation parameters that can be estimated from
seasonal NDVI- (Normalized Differenced Vegetation Index) or EVI-
(Enhanced Vegetation Index) based vegetation curves. Changes in
phenology and vegetation productivity (as annually summed green-
ness) can be predicted using linear or Mann-Kendall trends. (Vrieling
et al., 2013). In some instances, linear regression modeling, time-series
smoothing functions using phenological markers or change vector am-
plitudes have been applied to time dependent NDVI or EVI.

The 250 m MODIS (Moderate Resolution Imaging
Spectroradiometer) remotely-sensed time-series data sets (used as input
data in the present study) are available for a period of over 15 years
(2002 to present) and are better suited than bi-temporal data (i.e. multi-
temporal Landsat satellite data) for land surface change characteriza-
tion (Dubovyk et al., 2013). Also, while coarse resolution time-series
data (> 500 m pixel resolution) on summed greenness cannot feasibly
be linked to small-scale changes in phenological events and plant spe-
cies composition (Julien and Sobrino, 2009), the use of phenometrics
from medium resolution time-series data (< 250 m) shows great po-
tential for mapping large-scale vegetation change in drylands, even
under various land use conditions (Parplies et al., 2016). The use of the
vegetation index means that methods can be applied to other regions
and periods due to the availability of spectral wavebands for the ve-
getation index on most satellite instruments.

In Somaliland, Ng et al. (2016) used multi-temporal Landsat ob-
servations and field data to map the distribution of Prosopis (Prosopis
juliflora) around the city Hargeysa for the year 2015 using a random
forest classifier. However, no studies of eastern African drylands have
utilized trends of phenometrics at a moderate resolution scale and lo-
gistic regression modeling to map the wide-area occurrence and pro-
pagation of invasive plant species. Studies of North American land-
scapes have used moderate resolution phenometrics and ancillary field
data (density and distribution) to exploit differences in phenology be-
tween co-existing plants to map invasive grassland species (Bradley and
Mustard, 2008; Huang and Geiger, 2008; Peterson, 2005; Wallace et al.,
2016). Huang and Geiger (2008), used temporal segmentation and
vegetation amplitudes from 250 m MODIS EVI to differentiate E. leh-
manniana from native grassland species. They exploited the fact that
natural grasses tended to grow less vigorously in wet and cooler per-
iods. For a grassland biome, West et al. (2017) integrated seasonal
vegetation vigor observations from 30 m Landsat with ecological cov-
ariates (such as slope, microclimate and fire regime) to model areas that
are prone to the invasion of Bromus tectorum (cheatgrass). Where in-
vasion occurs at a sub-canopy level and/or the landscape is more
fragmented and complex (such as within or along urban areas in North
America), Light detection and ranging (LiDAR)–based data sets have
been successfully fused with very high-resolution (< 1 m pixel resolu-
tion) satellite (IKONOS) or airborne (AISA Eagle) imagery to accurately
discriminate invasive vegetation (Singh et al., 2015; Peerbhay et al.,
2016). Also, Singh et al. (2018) utilized multi-seasonal Landsat TM
(Thematic Mapper) data to detect vegetation phenological responses in
order to accurately map the distribution of understory plant invasion in
urban forest ecosystem. In another study, Tarantino et al. (2019) em-
ployed a hybrid classification approach to map Ailanthus altissima in-
vasion using 2 m WorldView-2 multi-temporal data. While the use of

single or multi-season hyperspectral remote sensing provided accurate
results for the localized mapping of invasive plants within various ha-
bitats in North America (He et al., 2011), United Kingdom (Taylor et al.,
2013) and Brazil (Amaral et al., 2015), hyperspectral data sets are
constrained to certain narrow phenological time windows and small
detection footprints (Huang and Asner, 2009). Other studies have ex-
plored the use of unmanned aerial vehicles (UAV) with ultrahigh spatial
resolution for rapid mapping and monitoring of invasive plants (e.g.
Mafanya et al., 2017; Perroy et al., 2017).

The studies discussed all based their mapping or modeling ap-
proaches on the physiological and phenotypic characteristics of the
invasive species, and all used an integrative approach, however their
results are mostly restricted to single species, landscapes and/or time
periods (i.e. years). Thus, the main objective of the present study was to
show the usefulness of phenometrics and phenology profiles (predictors
from moderate resolution satellite data) for estimating the occurrence
and spread of two major (i.e. destructive and widespread) invasive
plant species in Somaliland. Our research approach and main objective
follows from the wide and fast spread of invasive species throughout
the region (their eco-physiology) and the known potential of moderate
resolution phenometrics trends (changes in annually summed vegeta-
tion productivity and phenology) to accurately map subtle vegetation
shifts in semi-arid regions (Broich et al., 2014). A binomial (binary)
logistic regression modeling approach (Agresti, 1996) was used in this
study to model both invasive species. The binomial model permits the
computation of accurate and comparable estimation coefficients. There
is general consensus that more sophisticated statistical modeling rou-
tines that ideally consider biogeochemical traits at the landscape (i.e.
localized) level could improve the prediction of phenological change
from time-series data as a result of changes in species composition over
time (Bradley and Mustard, 2008; Huang and Asner, 2009). Our study
design further considers that we were able to collect both presence and
absence point data for the two species in 2014/2015 and used 30 m
Landsat observations as intermediate data sets to ‘scale’ the point data
to the 250 m MODIS phenometrics data (Fisher and Mustard, 2007).

2. Methodology

2.1. Study area

The 8400 km2 study area (indicated in Fig. 1 by the dashed rec-
tangle) covers the peri-urban zone around Hargeysa, the capital city of
the Republic of Somaliland, and is part of the central plateau region
(Haud Plateau, indicated by the shaded area in Fig. 1) which exhibits
distinct soil, elevation and vegetation landscape characteristics. The
altitude of the study area ranges from 1200 to around 2100 m above
mean sea level, and the land form is slightly undulating, almost flat and
cut by several streams, with silty loam and clayey soils intermixed
(Omuto and Vargas, 2009). The dominant land covers include open
shrublands, sparse dense trees, herbaceous cover, urban and rural
clusters, bare soils and waterbodies. The woody component of the study
area is mainly sparsely distributed Acacia spp., underlain by palatable
grasses (i.e. Cenchrus ciliaris, Cynodon dactylon, Sporobolus marginatus,
Tragus racemosus and Aristida adscensionis) (Hadden, 2007).

The main weather patterns are determined by the passage of the
seasonal monsoon winds. Somaliland thus has four seasons in the year:
Gu (Spring, April to June; first wet season), Hagaa (Summer, July to
August; short dry season), Dayr (Autumn, September to November;
second wet season), and Jiilaal (Winter, December to March; long dry
season). Although the semi-arid study region receives an average of
300–500 mm of annual rainfall, it is considerably variable and rain
occurs erratically (Greenwood, 1957). This results in diverse inter-an-
nual rainfall patterns (i.e. unimodal areas often become bimodal and
vice versa).

The dominant land uses in the study region are wood collection and
livestock grazing for milk production (mostly by nomadic herders).
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However, the southern and western sections are dominated by rain-fed
(small-scale) cropping of maize and sorghum (Vargas et al., 2009).

2.2. Characteristics of the invasive species and their effects

The simultaneous invasion of croplands and rangelands by
Parthenium and Prosopis has led to severe land degradation and bio-
diversity loss in Somaliland and the arid and semi-arid land regions in
eastern Africa (Seta et al., 2013; Tabu et al., 2013). Prosopis is an
evergreen shrub that often occurs as a mono-specific thicket along
seasonal water courses and in relatively isolated and open rangelands
with low vegetation densities (Berhanu and Tesfaye, 2006). Parthenium
is an exceedingly invasive annual herbaceous weed that replaces in-
digenous fodder grasses in rangelands (Nigatu et al., 2010) and inhibits
nitrogen fixation in soils in croplands (Tamado and Milberg, 2000).
Both invasive species are fast growing, already well established and
known to invade large tracts of both productive and already degraded
land (Shiferaw et al., 2004).

The detrimental effects of both species on land productivity are
aggravated by the lack of regional strategies for their management and
containment. In eastern Africa, invasive species propagation control
efforts are severely under-funded, disintegrated and haphazardly per-
formed (Obiri, 2011). Moreover, technical capacity to utilize predictive
models that would help to assess invasive species spread and risk areas
over national boundaries is lacking (Shitanda et al., 2014). Cost effec-
tive and wide-area monitoring routines for invasive species are urgently
needed for eastern Africa so that coherent intervention strategies can be
effectively implemented.

2.3. Processing of EVI time-series data

Fig. 2 gives an overview of the input data sets and methodology
used in the study. The input data consisted of MODIS EVI time-series
data from the MOD13Q1 product (collection 5) for the years
2001–2014. EVI was used rather than NDVI because of the relative

insensitivity of EVI to background soil reflectance (Huete et al., 2002).
The 250 m MOD13Q1 image data were provided as atmospherically
corrected 16-day composites. To account for noise artifacts, the time-
series imagery was smoothed using the Savitzky-Golay filter algorithm
(Atzberger and Eilers, 2011).

2.4. Computation of vegetation phenometrics and trends

Using the TIMESAT software (Jönsson and Eklundh, 2004), the
following EVI phenometric indicators were computed (for each year)
from the filtered EVI time-series data using a single growing season
(unimodal) setting (Fig. 3): ‘EVI trend’, ‘amplitude’, ‘small integral’,
‘large integral’ ‘peak EVI day’, ‘peak EVI value’, ‘right derivative’, and
‘left derivative’.

Some of the above phenometric variables, e.g. amplitude, small and
large integrals can be used as integrative indicators of net primary
productivity or the total vegetation production of a pixel over a specific
time period (Jönsson and Eklundh, 2004). In this study, the assumption
is made that the biological invasion of non-native species within a
certain area alters the per pixel vegetation seasonality pattern, which is
measurable by a change in phenology or total vegetation productivity
over time (Vilà et al., 2011). If intra-annual or annual summed seasonal
vegetation growth for a given area or pixel changes due to changes in
vegetation composition (i.e. plant invasion), the intra-annual vegeta-
tion spectral response over longer periods also progressively changes
(Vrieling et al., 2013). In Fig. 4, the mean annual summed EVI change
or inter-annual spectral change (as a trend) is illustrated for selected
pixels in the study area representing natural vegetation (n= 30) (nat.
veg.,) and Prosopis (n= 30). The reference pixels (areas affected by the
expansion of Prosopis and natural vegetation sites with no assumed
change or infestation) were determined from the field observations
taken in 2013 and 2014. Fig. 4 clearly shows that the two linear EVI
trends are different in magnitude and direction. The trend for natural
vegetation is slightly negative, while the trend for Prosopis is positive.
The maximum EVI for the Prosopis increases over time.

Fig. 1. The dashed rectangle shows the study area within Somaliland. Major regional boundaries are shown as black lines.
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Because of the large intra-seasonal and inter-annual rainfall varia-
bility in drylands and in Somaliland in particular, phenometrics that
utilize temporal markers pertaining to the start, end or length of the
vegetation productivity seasons were not considered in this study
(Bradley and Mustard, 2008).

A Mann-Kendall (MK) non-parametric trend analysis was applied to
each of the phenometric variables to test for monotonic changes (as

trends) over the observation period (2001–2014) (Mann, 1945). As
opposed to linear trends, non-parametric MK trends provide sig-
nificance levels for each trend while accounting for noise and season-
ality effects in the time-series data. Mann Kendall trends were also
computed using the annual summed EVI values (‘EVI trend’) (Fig. 4)
(Neeti and Eastman, 2011).

A rainfall trend test (Fig. 2) using 1 km pixel resolution monthly

Fig. 2. Study methodology illustrating input data (dashed rectangles), primary data processing steps (ellipses) and derived or predicted data sets (rectangles). Arrows
show data flow directions and tie-up points.

Fig. 3. Sample vegetation seasonality parameters for consecutive unimodal seasons generated in TIMESAT. EVI, SOS, POS and EOS are enhanced vegetation index,
start of the season, peak of the season, and end of the season, respectively.
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rainfall grids from the AFRICLIM data set (Platts et al., 2015) indicated
that rainfall could be excluded as a driver for vegetation change in the
study area over the period 2001–2014.

2.5. Field data collection

Field reference data were collected using random sampling.
Reference data (‘Reference data’ in Fig. 2) were collected for areas af-
fected by the invasion of the two invasive species and for each of the
following land cover/land cover change categories (land change
classes): ‘Acacia’ (n= 144), ‘Cropland’ (n= 103), ‘Natural Vegetation’
(other than Acacia spp.; n= 63), ‘Urban’ (n= 163), ‘Bare Soil’
(n= 130), ‘Deforestation’ (n= 100), ‘Parthenium’ (n= 63), and ‘Pro-
sopis’ (n= 91). The land change classes were determined by landscape
composition and the most dominantly occurring classes, meaning that
no underrepresented classes were sampled. At least 60 random samples
for each class were collected. The maximum sample sizes for each class
were determined by practical and logistical constraints largely due to
the security situation in Somaliland. The sampling design was thus
balanced according to the landscape composition but disproportional
(with no homoscedascicity required) since no stratification was used
(Glass et al., 1972).

Fig. 5 shows the spatial spread of the reference data. Reference
points for ‘Urban’ and ‘Bare soil’ were collected through visual in-
spection of the Landsat image itself (these two classes are not shown in
Fig. 5). Just like the field reference data, the visually determined re-
ference data sets may also involve uncertainty; however, great care was
taken to visually identify pixels that were clearly visible and temporally
invariant.

Sampling was performed during the period from September 2014 to
April 2015 to cover the seasonal cycle of natural vegetation and
Parthenium, which is clearly visible in the vegetation growing season
period from April to October. Prosopis is clearly visible throughout the
year. A Global Positioning System (GPS) device with an accuracy of 3 m
was used to tag the center point of each sampling site that had a size of
at least 30 by 30 m. The following recordings were made for each
sampling point: area name, date of sampling, site location (latitude and
longitude), area size (m2), percentage of trees/shrubs per sampling site
(visually determined for ‘Acacia’ and ‘Natural Vegetation’) and homo-
geneity (also visually determined). Average homogeneity, defined as
the fractional coverage (in %) of a land cover feature or class within

pre-determined sampling areas, for ‘Cropland’, ‘Parthenium’ and
‘Prosopis’ was 95%. However, the number of trees/shrubs per sampling
area/site for ‘Acacia’ and ‘Natural Vegetation’ varied considerably (with
a mean of 20 and ranging between 4 and 44 trees/shrubs per area or
site). The field records showed that greater than 89% of sites affected by
non-native species had been invaded by the non-native species between
2000 and 2014/2015.

2.6. Landsat-based mapping of land cover change processes

Using a random forest classifier, the field reference data was used to
produce a 30 m Landsat-based (explicit) classification map for the study
area, including areas affected by the propagation of Prosopis and
Parthenium between 2001 and 2015. The Landsat classification was
then used to collect training and validation data points for logistic re-
gression modeling (Section 2.7 below). In this work a ‘study’ concept is
taken since associations between the MODIS-based phenological vari-
ables are investigated and class-specific comparisons were used for the
Landsat mapping part. This omits the need for global i.e. class-specific
proportion estimation for the reference data as well as the training and
validation data (Glass et al., 1972).

Instead of collecting field reference data and scaling it to the 250 m
MODIS-based phenometric trend data, the Landsat data were used as an
intermediate data set to reduce scaling errors between the point-based
field reference data and the relatively coarse MODIS data (Fisher and
Mustard, 2007). Moreover, the Landsat mapping results (i.e. accuracy
assessment using the reference data) were used to ascertain commission
and omission errors in mapping of the two invasive species at moderate
pixel resolutions in African drylands. Mapping the locations of invasive
species would be possible with the spatially explicit bi-temporal
Landsat data over a smaller area; however, the present study aimed to
explore the potential of phenometric profiles (as trends) to map wide-
area occurrences of the two invasive species.

The Landsat imagery data sets were resized to the spatial extent of
the study area and the field data collections (Fig. 5) to reduce whole-
scene spectral variability. MODIS-based phenometric profiles (i.e. their
trends) were extracted as predictor variables for each of the Landsat
mapped land change classes. The presence or absence of the two in-
vasive species from the Landsat map were the response variables in the
logistic regression models. The phenometrics corresponding to the
presence of each of the two invasive species were coded as ones
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(presence), while the other land change classes were coded as zeros
(absence).

Both bi-temporal Landsat image sets (Landsat 7 or the Enhanced
Thematic Mapper Plus and Landsat 8 or the Operational Land Imager
sensor) were acquired as surface reflectance corrected (Table 1). The
two Landsat data sets use different surface reflectance correction al-
gorithms (Masek et al., 2006). For each time period (2001 and 2015),
EVI and the SAVI (Soil Adjusted Vegetation Index) data layers were
computed and added to the reflectance bands.

A non-parametric random forest classifier was used to classify the
bi-temporal and multi-seasonal Landsat layer stack (‘Classification’ in
Fig. 2.). The random forest classifier is a machine learning classification
tool that uses an ensemble of classification trees to produce a result.
Each tree is built from a bootstrapped random sample containing ap-
proximately two-thirds of the training data drawn with replacement
(Breiman, 2001). The remaining third of the reference data, i.e. the out-
of-bag (OOB) samples, is used to internally evaluate the classification
performance (Rodriguez-Galiano et al., 2012). The proportion of mis-
classifications of the total number of OOB elements essentially con-
tributes an unbiased estimation of the generalization error (the OOB
estimate of error rate). The OOB error for each class was used to create

a confusion matrix for the eight classes. This confusion matrix was used
to probe the accuracy of the Landsat mapped classes from which pixels
were extracted as input for the logistic regression models. The random
forest OOB error estimate is a reliable metric for assessing mapping
accuracies, particularly when a relatively small number of field ob-
servations are available (e.g. we collected only 63 sample points for
‘Parthenium’) (Lawrence et al., 2006).

2.7. Selecting and extracting training pixels for logistic regression models

Model training and validation pixels that corresponded to the pixel
values from the MODIS phenometric profiles for presence and absence
of the two invasive species (according to the Landsat classification,
response data) were selected and extracted for each land change class.
The Landsat pixels were randomly and disproportionally selected
around the class-specific field sampling points that were randomly se-
lected in the field (Section 2.6). Essentially, pixels that were within a
three by three Landsat pixel buffer area around the corresponding field
data point were selected. If pixels from the entire Landsat map would
have been selected and extracted, uncertainty errors would have been
introduced due to re-sampling errors and class-specific Landsat

Fig. 5. Sampling sites (colored dots) of individual field (reference) data points belonging to each respective land change class collected randomly in the field during
2014 and 2015. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Characteristics of the two bi-temporal Landsat data sets used for generating the Landsat-based classification (ETM+ – Enhanced Thematic Mapper Plus, OLI –
Operational Land Imager sensor, SR – Surface Reflectance).

Characteristics Landsat-7 ETM+ Landsat-8 OLI

Processing level (original) Level-1 Level-1
SR algorithms (6S) radiative transfer model Landsat Surface Reflectance Code (LaSRC) (internal algorithm)
Julian dates (season) 97 (dry); 305 (wet) 64 (dry); 288 (wet)
Acquisition years used 2001 2015
Mapping grid Universal Transverse Mercator (UTM) Universal Transverse Mercator (UTM)
SR bands used Visible (1–5, 7) bands Visible (1–7) bands
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classification inaccuracies over larger and spectrally inhomogeneous
areas (Fisher, 1997). Spatial majority resampling (most common value)
was used within an 8 by 8 pixel window to match the Landsat thematic
data to the pixel resolution of the MODIS phenometrics data. The fol-
lowing total numbers of training and validation pixels were extracted
from the re-sampled Landsat-based map: 90 for ‘Parthenium’, 194 for
‘Prosopis’, 347 for ‘Deforestation’, 146 for ‘Croplands’, 155 for ‘Acacia’
and 135 for ‘Natural vegetation’. 70% of the total number of pixels for
each class were used for training and the remaining 30% for validating
the logistic regression model prediction results (Adelabu et al., 2015).

2.7.1. Logistic regression modeling
In logistic regression modeling, a linear relationship is generalized

that relates a response variable to predictor variable(s) using a link
function (McCullagh and Nelder, 1989). Before we fitted the logistic
regression models, the phenometric trend variables were analyzed for
co-linearity or multi-collinearity to improve model robustness (Fox,
2015). A factor analysis matrix (Tabachnick et al., 2001) was produced
between each of the predictor variables, and a regression coefficient
threshold of 0.7 was determined as a cut-off point. Using this coefficient
threshold, no correlations between the phenometric trends (predictors)
were found using the factor analysis matrix.

The use of a binomial logistic probability link function was chosen
because of its ability to deal effectively with categorical variables and
both normally and non-normally distributed predictor variables (e.g.
data matrices of excessive smaller values or in some cases zeros as was
the case in some of our data). The linear model is, in essence, the linear
combination of a collection of predictor variables Xi to predict the re-
sponse variable Y;

= + + + + +Y X X Xi i0 1 1 2 2 (1)

where 0 is the regression coefficient for the intercept and i represents
the regression coefficient estimates for the explanatory variables 1 to i,
computed between the response variable and the predictor variables Xi
and ε is the error term.

The probability of occurrence for each phenometric variable (trend)
in the logistic regression model is estimated as;

= =
+

+

+
P y X e

e
( 1 | )

1
i

x

x

0 1

0 1 (2)

where P is the probability of occurrence of an invasive species Xi be-
tween 0 and 1, and 0and 1 are the regression coefficient estimates for
each variable.

In our case, model coefficients were estimated for each invasive
species class separately by setting the to-be-investigated invasive spe-
cies class to 1 and the other classes to 0 in the independent (predictor)
variable data column. An approach using separate logistic regression
models for each invasive species was preferred over a single

multinomial classification model since we aimed to produce separate
accurate prediction probability maps for the two invasive plant species.
Specifically, the prediction probability classes of both Parthenium and
Prosopis were mapped using the natural breaks (Jenks) classification
method (see Murray and Shyy, 2000), which assigns distinct break
points to the values in the data set based on their natural grouping.

2.7.2. Model calibration and validation
The logistic regression models were initially calibrated using all

phenometric trend variables for the Landsat-based training pixels or for
only the field data. In a second iteration step, the models were opti-
mized/re-calibrated (Fig. 2) using only the three most relevant (i.e.
variables with the highest log odds ratios) and statistically significant
(p < 0.05) variables contributing to the model fit (p-values and mag-
nitudes of the regression coefficients) (Schwarz and Zimmermann,
2005). The p-values indicate the incompatibility between the data and
the model used (Wasserstein and Lazar, 2016).

The optimized models were intrinsically evaluated using the accu-
racy of predicted fit and area under the curve (AUC) of Receiver
Operating Curves (Fig. 2). The accuracy of the predicted data points is
the percentage of the correctly predicted presence (coded as 1 in our
model) as a result of the model fit (i.e. predicted fit); while the AUC
measures if the probability of presence versus absence of a particular
invasive species was correctly estimated by the logistic binary classifi-
cation model (Powers, 2011). The AUC ranges between 0 (insignificant
model) and 1 (model with good predictive ability).

3. Results

3.1. Spatially explicit Landsat mapping

The overall accuracy for the random forest classification result using
all eight land change Landsat-based classes (including the invasive
species classes) was 83% which can be considered an accurate result.
The confusion matrix showed that 28% of the test pixels for
‘Parthenium’ were confused with pixels belonging to the class
‘Cropland’ (Table 2; User’s accuracies), while there was also some
confusion between the ‘Prosopis’ and ‘Acacia’ classes. The producer’s
accuracies showed good results for both species i.e. 78% and 91%, re-
spectively. Given the relatively high user’s, producer’s and overall ac-
curacies for the two invasive species classes, the Landsat-based training
pixels and their corresponding phenometrics values could be used with
confidence within the logistic regression model. Fig. 6 shows the im-
portance of the Landsat bands stack (i.e. 2001 and 2015) for mapping
the eight land change classes. The figure illustrates that blue and near
infrared (NIR) bands were the most important predictor variables for
mapping the land change classes in both the wet and dry seasons.

Table 2
Confusion matrix for the eight explicit land cover/land use and land cover change classes (land change classes) predicted from the bi-temporal Landsat data (Def –
‘Deforestation’, Nat. Veg – ‘Natural vegetation’, Parth – ‘Parthenium’, Pros – ‘Prosopis’).

Ground truth

Predicted Acacia Cropland Def. Nat. Veg Parth Pros Soil Urban User’s accuracy (%)

Acacia 110 9 2 3 0 9 6 0 79.1
Cropland 1 120 6 4 3 1 0 0 88.9
Def 1 2 85 0 0 0 0 0 96.6
Nat. Veg 11 21 3 54 0 5 0 0 57.4
Parth 1 25 0 1 59 1 0 0 67.8
Pros 14 3 4 4 1 71 4 2 68.9
Soil 6 3 0 0 0 4 120 0 90.2
Urban 0 0 0 0 0 0 0 161 100.0
Total 144 183 100 66 63 91 130 163
Producer’s accuracy (%) 76.4 65.6 85.0 81.8 93.7 78.0 92.3 98.8
Overall accuracy (%) 83
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3.2. Logistic regression model estimates

Table 3 shows the regression coefficient estimates (log odds, re-
gression estimates, and p-values) for all phenometric trend variables in
the two models.

In general, the regression log odds, the regression coefficient esti-
mates (‘Estimates’ in Table 3 and 4) and the corresponding model fit
significance levels (p-values) for the Parthenium model showed that the
covariate ‘amplitude’ was statistically relevant for the propagation of
Parthenium (log odds 262 and 533, p < 0.001 and a regression coef-
ficient > |5| using Landsat-based training pixels or only field data, re-
spectively). This implied that ‘amplitude’ is a valid determinant to map
the spread of Parthenium over the observation period (2001–2014). For
the Prosopis models (i.e. for Landsat-based training pixels and only field
data), the most relevant covariates were ‘EVI trend’ and ‘Peak value’
(for both covariates: log odds > 200, regression estimates > |3| and
p < 0.001).

3.3. Probability mapping using the phenometric trends

Fig. 7 (a, b) shows the probability results (maps) for the two opti-
mized logistic regression models using the predicted probability of
occurrences (P(y= 1 | X) from (2)). The two occurrence probability
maps in Fig. 7 (a, b) were optimized using only variables that were most
relevant and significantly contributed to the model fit (log odds > 20,
p < 0.001 and greater (absolute) regression coefficient values, re-
spectively, for both models). The optimization step was performed to
increase the explanatory power of the prediction estimates and essen-
tially attain better prediction results.

For Parthenium, higher probability areas were mostly the cropland-
dominated regions (see inset in Fig. 7a around the town of Kalabayadh).
The grayscale probability image was classified into three classes based
on the Jenks natural breaks algorithm; values in the range 0.01–0.10
were classified as low probability, values in the range 0.11–0.30 were
classified as medium probability and values in the range 0.31–0.93
were classified as high probability. The Prosopis prediction results
(Fig. 7b) showed similar patterns but there were also higher probability
areas in peri-urban areas (e.g. Hargeysa). Values in the range 0.06–0.18
were classified as low probability, values in the range 0.19–0.56 were
classified as medium probability and values in the range 0.57–0.99
were classified as high probability. There were also clear indications of
severe infestation levels along major seepage lines and within riverside
vegetation (see inset in Fig. 7b around the town of Aw Barkhadle).
Prosopis was also most abundant in the rangeland areas in the eastern
and central parts of the study area.

3.4. Model validation results

The reduced (optimized) model for Parthenium had a prediction
accuracy of 0.89 (the prediction accuracy for the non-optimized model
was 0.86) and an AUC score of 0.85 (AUC for the non-optimized model
was 0.83), while for Prosopis the optimized and non-optimized model
accuracy scores were slightly greater (prediction accuracy = 0.94 and
0.87; AUC = 0.93 and 0.89 for the optimized and non-optimized
models, respectively). The acceptable prediction accuracies and AUC
scores for both optimization models (Fig. 8) suggested a very high
predictive accuracy for each modeled species. The above-mentioned
accuracy scores were estimated using the validation pixels (samples)
from the Landsat-based sampling (see Section 2.7). When only field
data were used, the prediction accuracy for the optimized models was
0.93 for both Parthenium and Prosopis. While, the AUCs were 0.95 and
0.94 for Parthenium and Prosopis, respectively.

4. Discussion

4.1. Overall approach and suitability of variables

In this study, we aimed to show the potential of using phenometric
profiles for predicting the occurrence of two major invasive plant spe-
cies in African drylands. In particular, we investigated the use of 250 m
MODIS time-series data and optimized logistic regression models for
mapping the two invasive plants.

Overall, the relevance and statistical sensitivity of the phenometric
trends (covariates in Tables 3 and 4) and the acceptable prediction
accuracies of the two optimized models (prediction accuracies > 0.89
for both optimized models) highlights the suitability of phenometrics
for invasive plants occurrence and propagation mapping in drylands.
The suitability of phenometric trends from moderate resolution time-
series data to map subtle biome shifts (also as a result of large-scale land
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Fig. 6. The importance of Landsat bands for mapping the land cover/land cover
change classes in the study area as measured using the random forest classifi-
cation algorithm. LS7 and LS8 are Landsat 7 (in 2001) and Landsat 8 (in 2015),
respectively. Wet and Dry are the wet and dry seasons during which the Landsat
images were acquired. Blue, Green, Red, NIR and SWIR1 are the blue, green,
red, near infrared and shortwave infrared 1 bands of LS7 and LS8.

Table 3
Logistic regression model coefficient estimates for the eight MODIS-based phenometric trends (covariates) in the two models using Landsat-based training pixels.

Parthenium Prosopis

log odds Regression Estimates p-value log odds Regression Estimates p-value

(Intercept) 0.04 −3.13 0 * 0.05 −3.02 0. *
EVItrend 2.21 0.79 0.39 . 203.36 5.36 0. *
amplitude 262.16 5.57 0 * 0.04 −1.54 0.16 .
sintegral 0.00 −6.25 0 * 41.32 3.53 0.03 *
lintegral 3.33 1.20 0.33 . 38.40 3.81 0.01 *
Peakday 17.94 2.89 0.02 * 53.93 3.88 0 *
Peakvalue 0.01 −4.31 0 * 462.72 6.03 0 *
rderivative 21.29 3.06 0 * 0.40 −0.93 0.38 .
lderivative 44.83 3.80 0 * 0.02 −4.13 0 *

Significance codes: < 0.05 ‘*’ > 0.05 ‘.’
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management regimes) in heterogeneous semi-arid landscapes has been
confirmed by several studies (Dubovyk et al., 2013; Senf et al., 2013;
Wessels et al., 2012; Singh et al., 2018).

The positive regression coefficient estimates for vegetation ampli-
tude in the Parthenium model (5.57 and 6.28; Tables 3 and 4, respec-
tively) and the relatively large log odds values (262 and 533; Tables 3
and 4, respectively) highlight the relative importance of this variable
for the spread of Parthenium in the study area. An increase in seasonal
accumulated vegetation activity likely occurred due to the successive
invasion of degraded sites alongside or within croplands by this annual
weed (Zuberi et al., 2014). Vegetation amplitude, as a phenometric
variable, is a good indicator for seasonal accumulated vegetation pro-
ductivity, and if rainfall can be excluded as a vegetation productivity
determinant over time, it is a good measure of vegetation productivity
change for herbaceous vegetation communities (i.e. annual grasses,
crops or weeds) in semi-arid landscapes (Mosomtai et al., 2016). The
importance of mean seasonal annual EVI trend and increase in the
largest EVI over time to Prosopis (Tables 3 and 4) was not surprising
since substantial tree cover increases result in an increase in the cu-
mulative vegetation productivity signal over time (annual greenness
measurable by EVI or NDVI) (Runnström, 2000) (Fig. 5). It is worth
noting that we used only three, yet relevant variables (selected ac-
cording to their log odds ratios and p-value < 0.05) to generate the
invasive species risk and propagation maps (Fig. 7). In general, models
with a few predictor variables are more reliable, unbiased and do not
overfit (Reunanen, 2003; Abdel-Rahman et al., 2013). Our models that
developed using only three variables outperformed (AUC was 0.95 and
0.94 for Parthenium and Prosopis, respectively) models that generated
using all the variables (AUC was 0.83 and 0.89 for Parthenium and
Prosopis, respectively). This supports the suitability of our variable
selection approach. Notwithstanding, our empirical approach of se-
lecting only three variables, which essentially based on expert knowl-
edge (Hurlbert, et al., 2019; Wasserstein et al., 2019), could be sub-
jective, hence needs further investigation.

4.2. Statistical modeling and reference data

Binomial logistic regression modeling is seldom used in remote
sensing studies. However, in some studies it has been found to be su-
perior to currently established machine learning approaches, such as
random forest, which tends to ignore error distributions such as
asymmetry and heteroscedasticity in the response variables (e.g. count
data) (Lopatin et al., 2016). In our case, the use of logistic regression
modeling can be justified by the data characteristics and data dis-
tribution. Essentially, a higher number of absence than presence points
were used in this study (Section 2.7), which mitigates model over-
estimation, while the data were non-normally distributed and the pre-
dictor variables were found to be non-collinear (Singh et al., 2015). By
using model training and validation data with known accuracies from
the 30 m Landsat data (Landsat and field based), this study aimed to

reduce scaling effects in transferring point data to large pixel sizes
(i.e. > 250 m) with inherent large spatial variabilities (Foody, 2002).
For the Landsat mapping and comparative modeling, reference data
were collected in the field using a probability-based (random) sampling
design. Since we employed a study concept, and not a survey-adjusted
approach with a need for global estimates, a sample subset of the whole
study area would suffice, given permissible and known accuracies of the
reference data. As such, we also did not consider error propagation per
strata over the whole study area (Glass et al., 1972).

4.3. Comparable studies

There are no comparable studies that investigated the use of several
phenometrics and their trends from moderate-resolution time-series
data to map invasive species occurrence and propagation zones in
eastern Africa. The modeling results in this study, however, confirmed
what other localized field surveys found. Both species occur widely
within the cropland areas in south-western Somaliland, near or within
urban areas, in sites dominated by deep soils (such as along water
courses) and in areas where rainfall is relatively abundant (Mills et al.,
2015; Ng et al., 2016). The propagation of Parthenium in croplands can
be largely explained by agriculture intensification (i.e. transport and
spread of seeds through farming equipment, etc.). In regions in which
the capacity to control or mitigate invasive plants is low, such as
eastern Africa, agricultural intensification is a particularly important
factor as a spread mechanism (Early et al., 2016).

Many studies in the Americas have shown the potential of individual
phenological variables to predict invasive species infestation rates for
specific landscapes by temporally assessing subtle differences in green-
up responses between native and non-native vegetation communities
(Huang and Geiger, 2008; Peterson, 2005; Wallace et al., 2016; Singh
et al., 2018). In some studies, vegetation greening in moderate re-
solution data (30–250 m resolution) measured by NDVI or EVI, was
linked to synoptic climate observations within unimodal rainfall dis-
tribution settings (Huang and Geiger, 2008; Wallace et al., 2016), with
overall mapping accuracies ranging from 49% to 66%. However, in
most cases the occurrence of only one invasive species within a certain
landscape was investigated (Xie et al., 2008; Wallace et al., 2016;
Peerbhay et al., 2016).

5. Conclusions

In this study, we assessed the applicability of MODIS-based phe-
nometrics and logistic regression modeling for mapping propagation
areas of two important invasive species in Somaliland. The results
confirmed the potential of phenometric trends measurable from mod-
erate resolution time-series data for wide-area assessment of invasive
species in drylands given the integration of accurate contextual in-
formation (i.e. field data). The relevance and statistical contribution of
the phenometric trends to the logistic regression model varied

Table 4
Logistic regression model coefficient estimates for the eight MODIS-based phenometric trends (covariates) in the two models using only field data.

Parthenium Prosopis

log odds Regression Estimates p-value log odds Regression Estimates p-value

(Intercept) 0.01 −4.46 0.00 * 0.04 −3.20 0.00 *
EVItrend 3.22 1.17 0.07 . 43.12 3.76 0.00 *
amplitude 533.79 6.28 0.03 * 0.02 −4.16 0.22 .
sintegral 0.89 −0.14 0.96 . 5.60 1.72 0.60 .
lintegral 40.04 3.69 0.00 * 83.42 4.42 0.07 .
Peakday 21.54 3.07 0.01 * 25.59 3.24 0.03 *
Peakvalue 0.00 −12.59 0.00 * 862.64 6.76 0.00 *
rderivative 609.10 6.41 0.00 * 0.38 −0.98 0.51 .
lderivative 7.69 2.04 0.56 . 0.02 −3.86 0.02 *

Significance codes: < 0.05 ‘*’ > 0.05 ‘.’
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according to the invasive species being mapped: vegetation amplitude
was the most relevant variable for Parthenium while MK trends based
on annual summed EVI value and seasonal EVI peak value trends were
the two most relevant for the propagation of Prosopis. Given the as-
similation of well-processed covariates that are not auto-correlated and
occurrence data sets that are binary or ordinal, the use of logistic re-
gression modeling for mapping the probability of occurrence and pro-
pagation of non-native species, is highly recommendable.

Predictive maps like those presented here can be used to identify
risk, buffer and containment zones in support of natural resources and
invasive species management strategies. Likewise, they can be used to
create awareness of the extent of invasive species that may not be
currently well recognized as pertinent environmental issues but have
dire consequences for biodiversity and agricultural productivity in
many parts of Africa. With the advent of better available synergetic
time-series observations from 30 m Landsat and 10–20 m Sentinel-2

Fig. 7. Predicted probabilities for Parthenium (Parthenium hysterophorus) in (a) using the phenometric trend variables ‘amplitude’, ‘right derivative’ and ‘left deri-
vative’, and in (b) for Prosopis (Prosopis juliflora) using the variables ‘EVI trend’, ‘peak day’ and ‘peak value’. Red areas correspond to high occurrence probabilities,
while the yellow-orange colors represent medium probabilities. The blue rectangles show the location of the insets. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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data streams, there is need to further investigate the use of spatially
more explicit phenometrics to map subtle changes in vegetation dy-
namics and gradients in relation to invasive species propagation and
global change effects.
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