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1.2.6.6.7 Metarhizium anisopliae

Metchnikoff conducted the first field trial in 1884 after developing a facility to mass-
produce the spores of M. anisopliae for the control of larvae of sugar beet curculio
Gieonus punctiventris (Germar) (Coleptera: Curculionidae) (Zimmermann, 2007a). To
date, many attempts have been made to develop entomopathogenous fungi as a
biopesticide for the control of a wide range of pests (Ferron, 1978; Zimmermann, 1993;
Lacey et al., 2001). The fungus is widely used for biocontrol of insect pests and many
commercial products such as Green Guard™ and Bio-Blast™ are in the market in
Australia (Milner, 2000) and the USA (Rath, 2000), respectively, or under development

(Zimmermann, 2007b).

Metarhizium anisopliae is a generalist entomopathogen that infects a good number of
non-social insect hosts. There are also some records of this fungus infecting social
insects, though for M. michaelseni, the data is limited. For instance, M. anisopliae is
virulent to most genus of termites such as Coptotermes lacteus Froggatt (Isoptera:
Rhinotermitidae) (Staples and Milner 2000) and Nasutitermes exitiosus Hill (Isoptera:
Nasutidae) (Milner ef al., 1998a). However, it does not infect humans or higher animals
(Rath, 2000; Sun et al., 2002). This species of the fungus is easy to mass-produce due to
robust conidia and is believed to be well adapted to the soil ecosystem (Milner and

Staples, 1996).
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olfactometer to facilitate easy movement of the insects on the floor of the device. A tygon
tube (5.3 mm id, 6.35 od) (Supelco, North Harrison Road, Bellefonte, USA) connected to
a vent (6 mm in diam.) at the junction facilitated airflow from each compartment to the
Y-junction and then to an aspirator. The setup ensured that the air from the three arms did
not mix until at the Y-junction. A flowmeter (Cole Parmer, Chicago, USA) connected to
the tygon tube helped to regulate the airflow at 5 mls”., Compartment “A” was
illuminated with two florescent bulbs (220 V, 13A, AC). The rest of the olfactometer,
including compartments “B and “C”, were shielded with a dark cotton cloth (shaded part
in Fig. 2.1). The combination éf brightness and darkness acted as a ‘push-pull’ set of
'visual stimuli to induce the termites to move away from the release area (compartment A)

toward the treated and control compartments. The set-up was carried out in a fume hood.
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LT50 values (Proc GENMOD and the significance was also tested (a = 0.05, p = 0.0001,

SNK test).

3.4.2. Dose-mortality responses

There were significant differences in percentage mean mortalities among the treatment
groups (F 4r (s, 1224 = 540.3, P = 0.0001, n = 1296, SNK test) of different isolates of the
two fungi. The mean percentage mortalities among the termite groups were directly
proportional to the conidial concentrations and differed significantly among fungal
isolates (F 4f (5, 1224) = 646.9, P = 0.0001, n = 1296, SNK test) (Table 3.1). There were
significant interactions between the treatment groups"and the concentrations of conidia (F
af (s, 1224y = 7.8, P = 0.0001, n = 1296, SNK test) on the mortalities of the termite groups.
The variations among the nine LCsq values of isolates of M. anisopliae and the three of
B. bassiana are shown on Table 3.2. Percentage mean mortality in the control groups
(13.1 = 1.1, mean + SE) were not significantly different among one another (Fyt (2, 15) =
4.3, n=18, P = 0.33, SNK test) but were significantly less than in all the fungal treated
termite groups (P < 0.05, SNK test) (Table 3.2). Percentage mean mortalities in time-
mortality and dose-mortality control groups were also not significantly different from one

another (Fdf(l, 3= 1.6,n=36, P=0.22, SNK test).
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5.5 DISCUSSION

A large number of VOCs are produced by the conidia of the most and the least repellent
isolates of M. anisopliae as well as B. bassiana suggesting that the compositions of
volatile blends from the different isolates of these fungi are strain specific. However,
there is also an appreciable number of compounds that are present in all the isolates of the
fungal isolates. The results confirm that different isolates of the two fungi produce
volatile mixtures that are qualitatively and quantitatively different. Earlier, olfactometric
assays showed that termites are able to detect pontentially infective fungi through
_ olfactory mechanisms from a distance and avoid them (Chapter four). The qualitative and
qﬁantitative differences in the constituent compounds of volatile blends frorﬁ the different
isolates of fungi may partly explain the different levels of repellency spectra obtained

(Chapter four) among the different isolates towards the termite, M. michaelseni.

Social insect communities like the termite, M. michaelseni live in groups at high
densities (Cremer et al., 2007) with varying levels of chemical interaction. The results
confirm and document the presence of repellent conidia of the isolates of fungi studied,
which had been believed to be repellent (Milner and Staples, 1996; Rosengaus et al.,
1999b). If the spores repel termites, a barrier utilizing a formulation of highly repellent
spores may be possible around or beneath a house, resulting in protection from termite
invasion (Milner et al., 1997). However, the use of the most repellent isolates of the fungi
may also mean that there will be less horizontal transmission of the spores from infected

or contaminated termites to the other nest mates (Rath, 2000). A ‘recruitment stimulus”
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CHAPTER SIX

6.0 REPELLENCY OF DIFFERENT BLENDS OF SYNTHETIC
CONSTITUENTS OF METARHIZIUM ANISOPLIAE AND BEAUVERIA

BASSIANA TOWARDS MACROTERMES MICHAELSENI

6.1 INTRODUCTION

Odour plumes of volatile chemicals form gaseous phases of molecules that disperse from
their sources (Murlis ef al., 1992). Structures of the odours are complex, much like that of
smoke plumes carried in wind. As in the case of many ‘herbivores (Bernays and
Chapman, 1994), insects experience highly complex blends of volatile chemicals from a
multitude of sources as they forage to locate food, mates and oviposition sites under field
conditions (Bartelt and Zilkowski, 1998). The odour structure and the rate of dispersion
are some of the important factors that determine the probability of an insect contacting

the volatile blends at different locations downwind (Murlis et al., 1992).

Different infochemical blends mediate communication within and between different
trophic levels (Mayer et al., 2008). Understanding how some insect pests utilize the
coded information in volatile chemicals has been a challenge of practical importance in
pest management (Bartelt and Zilkowski, 1998), with pheromones being the most
intensively studied of these chemicals (Pickett et al., 1997). Blends of volatile
compounds emitted by host plants are known to mediate the attraction of mated female,

Cydia (Grapholita) molesta Busck (Lepidoptera: Tortricidae) (Pifiero and Dorn, 2008) to
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mgc:m'2 and 2.687 mgem™, respectively. In all the subtraction assays, the experiments
consisted of 15 replicates.

6.3 DATA ANALYSES

Repellency indices of the different blends of the full blends and those with each

constituent missing were calculated using the formula:

_1_)&:_12"_ %100
Pnc + P"‘

where P,. and P, represent the average percentage of worker termites in control and

treatment arms, respectively (Wanzala et al., 2004).

In all the tests, data for repellency were individually pooled before analyses, arcsin
transformed to normality before invoking repeated measures analysis of variance
(ANOVA) using Proc Mixed of SAS version 9.1 (SAS Institute, 2003). Means were
separated by Student-Newman-Keuls (SNK) test. The repellency doses (RDsp) that are
required to give 50% repellency indices) of each of the blend were estimated with
repeated measures logistic regression via generalized estimating equations (GEE)
(Throne et al., 1995; Stokes et al., 2000). These analyses were .carried out using
GENMOD procedure of SAS version 9.1 (SAS Institute, 2003). The level of significance

was set at 5% for all analyses to identify significant differences among the values of RDs

for the different blends of synthetic constituents.
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Figure 6.2 Representative gas chromatogram of the least repellent isolate of
Metarhizium anisopliae (ICIPE 69). Numbered peaks are the major components used in
evaluating blend effects in the subtraction bioassays: 1 (hexanol), 2 (ethylacetamide), 3
(butyrolactone), 4 (1-ethyl-2-methylbenzene), 5 (1-octen-3-ol), 6 (3-octanol), 7 (2-
propyl-1-pentanol), 8 (2-pyrrolidinone), 9 (phenylethylalcohol), 10 (cedrene) on the
chromatogram. Some of the peaks that are unnumbered appeared on the control

chromatogram. IS indicates the peak for methyl salicylate (MS), the internal standard.
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of the resulting blend towards the termite (Table 6.3 and 6.4). On the other hand,
exclusion of 3-nonen-2-one, 2-nonanone, 4-nonanone, 3-octanone, acetic acid, 3-
nonanone, borneol, ethylacetamide, cedrene, 2-propyl-pentanol, camphor, phenol and
(E)-o-bergamontene in the corresponding blends where they occurred, significantly
reduced the repellency indices of the resulting blends (Table 6.3 and 6.4). Moreover,
combinations of six best repellents identified in subtraction assays, significantly resulted
in higher repellency indices than those of the corresponding full blends, indicating special
potency of some of the mixtures (Table 6.3 and 6.4). Thus, two variants of blend effects
may be noted from this study: enhancement of the activity of inherent active components
by less active constituents and synergism between moderately potent repellent
compounds to produce a mixture that is more active than a linear summation of the
individual activities of the constituents. The first variant is illustrated by the high
repellency indices of different odours of the 10 major constituents of the corresponding
isolates of M. anisopliae and B. bassiana. The second variant and probably the most
expected, is illustrated by combination of the first six best major repellent components
identified in the subtraction assays, which resulted to significantly higher repellency
indices than that of the corresponding full blends by 1.21, 1.29, 1.39 and 1.63 times for
ICIPE 51, ICIPE 69, ICIPE 276 and ICIPE 278, respectively. The responses of M.
michaelseni to these synthetic constituents individually or in blends had not been

determined until the results obtained from this study.
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The avoidance behaviour of the termite in the Y-olfactometer in the presence of the blend
mixtures suggests that the termite has olfactory sensory neurons to detect these repellent
constituents. However, the insects’ odorant receptor complex (Ditzen et al. 2008) that
code information of detection of repellent signals from these ‘entomochemicals’ are
unknown. The insect deciphers the coded information from the volatile signatures and
behavourally respond for its adaptive fitness. The results stress the importance of
evaluating the components in blends to elucidate their individual full potency in a given

bioactivity (Bekere and Hassanali, 2001).

The study collates and accummulates important information as evidence of the presence
of diverse entomochemicals which play a role in ecological interaction between the
termite, M. michealseni and infective fungi. Different blends of identified constituents of
the selected fungal isolates validate the hypothesis that repellency of M. anisopliae and B.
bassiana to the termite results from blends of some major components of the volatile
emissions. There is need to determine the interactions between the termite and the

repellent constituents (and perhaps other termite species) in push-pull tactics in nature.
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infection of each of the ﬁve’ doses (3, 24, 48, 72 and 96 hours post-infection) were used.
Control compartment had a group of 10 healthy termites. The data was recorded after
every five minutes for 25 minutes and repeated four times to give 20 readings for each
replicate dose.

7.3 DATA ANALYSES

Data on attraction behaviour of healthy termites towards infected conspecifics were

. P, —P.
calculated using the formula: ——"i——;‘—x 100
+

m T Lne
where Py, and Png represent the average percentage of worker termites in the treatment
(arms containing»'infected termites) and control (arms with healthy termites), respectively
(Wanzala et al., 2004). In all the tests, data for attraction were individually pooled within
the infection time levels before analyses. In attraction behavioural tests, data were arcsin
transformed to normality (Gomez and Gomez, 1984) before invoking repeated measures
analysis of variance (ANOVA) using Proc Mixed of SAS version 9.1 (SAS Institute,

2003). Means were separated by Student-Newman-Keuls (o = 0.05, SNK) test.
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