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ABSTRACT 

Integrated pest management (IPM) systems utilising the use/release of the parasitoid 

Diadegma semiclausum have been developed to replace the pesticides only approach 

to diamondback moth (DBM) Plutella xylostella (L.), worldwide the worst insect pest 

of cabbage family. The successful introduction of the DBM natural enemy in Kenya 

as a biological control agent under the IPM system is a good achievement towards a 

solution to excessive insecticides use. Data collections were done for 15 months 

before the release and 36 months after release of the parasitoid in two areas; in 

Werugha, Coast Province of Kenya and Tharuni, Central Province of Kenya, 

respectively. To expand the available IPM tools for better management of the pest, 

there is need· for a model Such a tool will help in moni-toring and forecasting (early 

warning) of potential outbreaks, which will facilitate formulation of policies and 

future control strategies 

The search and development of parasitoid-host models system dynamics applicable to 

diamondback moth (DBM) and its exotic parasitoid Diadegma semiclausum was done. 

This study is similar to predator-prey systems, in which the first species (parasitoid or 

predator) is dependent on the second species (host or prey) for subsistence. The first 

phase focused on the mechanistic modelling technique. Collected datasets were used 

to test most of well-known models (Lotka-Voltera model, Leslie model, Nicholson

Bailey, Hassel & Varley, Beddington, Free & Lawton, May, Holling type 2, 3 and 

Getz & Mills functional responses, etc ... ) to find the most suitable model for the 

dynamism and interactions between DBM and its natural enemy D. semiclausum. 

Models with continuous equations were solved via a computer program written in 

CIC++ using the Runge-Kutta 4th algorithm with 0.01 step size. A loss function was 

developed, made of the square difference between the theoretical and empirical values 
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of datasets. This routine was combined as unique function and embedded in a Nelder

Mead algorithm or Pawell,s multidimensional method and minimized with randomly 

chosen initial values of parameters. An attempt to evaluate the biological control 

impact using Lotka-Volterra model was made. Knowledge based adaptive models 

using artificial intelligence technique (neural networks) was applied for the prediction 

of DBM and D. semiclausum population density. The Knowledge based method 

showed good predictions capabilities than mechanistic models. Lack of abiotic factors 

for model parameters restoration may be the reasons of poor prediction for 

mechanistic models. More realistic procedure for model parameters restoration 

(Knowledge-based fitting), which can account for all factors was developed. 

Statistical analysis and comparison between the different developed models was 

performed. The Lokta-Volterra model has measured the parasitoids impact on the 

DBM biological control through a quantitative estimate of the effectiveness of the 

newly introduced species D. semiclausum. These equations may therefore be used as 

tool for decision making in the implementation for such pests management system 

strategy. An artificial neural network was identified as the best tool for DBM and 

D.semiclausum population density prediction. 

VJ 



NOTATIONS AND ABBREVIATIONS 

Special notation s for specific chapters can be found in those chapters 

Notations and abbreviation generally used are given below: 

n: number of units in the sample size. 

nx: number of units containing x individuals. 

DBM: diamondback moth. 

R: multiple correlation coefficient. 

R2
: coefficient of multiple determination 

D. semiclausum: diadegma semiclausum. 

IMP: integrated pest management. 

ANN: artificial neural network 

FL: fuzzy logic 

MLP: multilayer perceptron 

icipe: International centre of Insect Physiology and Ecology 
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Chapter 1 

Introduction 

1.1 Models utilities in ecology 

In theoretical ecology, models are used for several purposes. Models help 

explore possibilities (Cooper, 1990) by enabling biologists to become fully aware of 

potential relations between natural phenomena during variables and parameters 

tracking exercises. They also offer scientists means through which they can 

investigate complex systems. In this case, models are used as baseline for identifying 

and recognizing the import1int ways in which more complex phenomena deviate from 

simple representations (Odenbaugh, 2005). Models provide researchers with 

conceptual framework, which help ecologists carrying out experimental investigations 

and pose questions that can lead to the construction of concepts corresponding to 

various natural properties that were not striking. Models also aid attempts to predict 

future changes and can be invaluable for management purposes. Finally, from models, 

explanations can be generated offering better understanding of the inner working of a 

system, which can lead us to making more effective decisions (Johnson and Omland, 

2004). 

From system management aspect, there are two groups of models, namely: 

(i) Strategic Models 

(ii) Tactical Models 

Strategic models are designed to explore the ramifications of general questions 

in ecology. For example, we may want to know if an interaction between species 

prey-predator with discrete generations and random search by predator give rise to 

persistent population cycles or not? 



Tactical models are specifically made for particular system and designed for 

forecasting reasons. This second group of models is intensively applied in integrated 

pest management programs to predict the likelihood success of its implementation, the 

number and appropriate time for pa rasitoid release (Godfray and Rees, 2002). 

1.2 Host-parasitoid system: Diamondback moth-Diadegma semiclausum 

Host -parasitoid system is an ecological interaction between victim (host) and 

exploiter (parasitoid) where the second species consume biomass from the first 

species (Hamish, 2000). Parasitoid is a term generally used to describe insec1s that 

develop as larva on the tissue of other arthropods (usually an insect), which they 

eyentually kill (Hassell and Waage, 1984). Adult female parasitoids forage actively 

for host and deposit their eggs, on or near host individuals. After hatching, the larvae 

begin feeding on host tissues and complete their development either within or on the 

host. Godfray ( 1994) mentioned that parasitoids are abundant in almost all terrestrial 

ecosystems and they are one of the main sources of mortality for their hosts. 

Diamondback moth (DBM), plutella xylostella L. is the major pest of Brassica 

crops worldwide, with the ability to develop resistance to all pesticides based against 

them (falekar and Shelton, 1993). For this reason, development and implementation 

of Integrated Pest Management (IPM) based on biological control is now considered 

to be the best solution to combat this highly resistant insect pest. In the past years, 

development and implementation of biological control·based IPM has made 

remarkable achievement in the management of DBM in many parts of the world such 

as Southeast Asia and United States of America (Telekar and Shelton, 1993). IPM has 

been based on the introduction and augmentation of insect parasitoids or natural 

enemies in various farms where crucifer vegetables are cultivated 
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Figure 1.1 Diamondback moth adults 
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Pupal stage, 4~ days 

Development time 
16-24 days 

Figure 1.2 Life cycle of Diamondback moth (at~ 25°C) 
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Larval stage, 7 -11 days 



Figure 1.3 Diamondback moth damage on cabbage plant 
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Figure 1.4 Diamondback moth larvae damaging the cabbage leave 
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pupa 
' adult 

Figurel.5 Diadegma semiclausum pupa and adult 
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Diadegma semiclausuni (Hellen) is an exotic parasitoid was released in 

Kenya for biological control of the diamondback moth (DBM), Plutella xylostella L, 

the worst pest of crucifers in East Africa. Population dynamics of the pest and its 

parasitoids were studied one year before and three years after the release of the 

parasitoid. 

1.3 Biology and ecology of the diamondback moth and the Diadegma 

semiclausum 

Diamondback moth adults are slender, small, 1/3 inch (833mm) long, greyish

brown moths with folded wings flaring outwards and upwards at their posterior ends 

(Figure 1.1). They are distinguished by "having" three pal~, triangular markings alortg 

the inner margin of the wings (Figure 1.1 ). Moth activity is greatest at dusk and dawn. 

They hover around plants searching for a mate or a place to deposit eggs. Male moths 

are attracted to the pheromones produced by females. During the day, moths can be 

flushed out and easily noticed by walking down between the crop rows. (Harcourt , 

1957; Telekar and Shelton, 1993). Diamondback moths lay their eggs singly or in 

groups of two or three on the underside of lower leaves near the leaf veins or on the 

lower stalks. Egg hatch in 5 to 10 days depending on the pre\lliling temperatures ( ~ 

25°C) (Figure 1.2). Diamondback larvae pass through four instars (growth stages). 

Upon hatching, they begin mining within the leaf tissue, whereas later instars feed on 

the leaves of young plants and/or the underside of the leaf surfaces of more mature 

plants (Figures 1.3-1.4). The diamondback moth larva can damage cruciferous plants 

by feeding and mining the leaves (Figure 1.4) (Velasco, 1982; Talekar and Yang, 

1991; Konig et al., 1993; Telekar and Shelton, 1993). 
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Diadegma -semiclausum (Figure 1.5) is a solitary koinobiont endoparasitoid of 

DBM, black in colour and 5-7 mm long. Females live up to 37 days when fed on 10% 

sugar solution and 73 days when fed on dilute honey and can lay eggs 28 days after 

emergence. Males can survive for a period of 40 days when fed on either sugar 

solution or dilute honey (Ooi, 1992). The four larval stages of DBM are attacked by 

Diadegma semiclausum with preference to the second and third larval instars. 

Temperature in the range 15°C-25°C results in the sex ratio of about 1:1and25°C is 

considered as the optimum temperature for parasitoid development. After pupation of 

the host larva, the parasitoid larva completes eating up the host and thereafter forms 

its own cocoon. An adult parasitoid emerges in about five days after cocoon formation 

(at 25°C). The adult parasitoid feeds on flower nectar, mates and starts laying eggs 

after emergence (Fitton and Walker, 1992). Parasitism rates of this parasitoid are host

density-dependent and super parasitism is known t> result in production of more 

female than male progeny (Koning et al, 1993). When the parasitoid is allowed to 

choose between parasitized and unparasitized DBM larvae, it is able to distinguish 

between parasitized and unparasitized host larvae, showing preference for the 

unparasitized larvae. 

1.4 Brief history of modelling methods for host-parasitoid system 

Until now, host-parasitoid dynamics have been modelled in two ways. The 

first approach uses computer simulation where virtual reality of agricultural pests with 

the explicit aim of improving pest management rather than understanding the 

underlying biology (Gutierrez and Baumgartner, 1984). The second way is based on 

pure mathematical differential equation with the assumption that birth and death are 

continuous processes as developed by (Lotka, 1925; Volterra, 1931; Turchin, 2003) or 
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discrete processes initiated by Nicholson and Bailey ( 1935) and terminated by Hassel 

(2000). 

Nicholson model was developed under the assumption that parasitoidS 

randomly search for the host. The phase analysis of the model shows divergent 

oscillation and extinction of one or both insects, what prompted the first and 

experimental studies on hosE-parasitoid. Discrepancies between model prediction and 

experimental results led to the development of more realistic models. In 1987, 

Murdoch et al. developed a host-parasitoid model made of considerable biological 

details such as age-structured and spatial processes. Spatial models are becoming fore 

in host-parasitoid models, Hassel et al. (1991) studied the behaviour of two

dimensional array of host-parasitoid populations .. There show that interesting patterns 

emerged in particular spiral structure where waves of host are chased through time by 

waves of parasitoid and in other cases; a pattern that appear to be chaotic. There has 

been some speculation that metapopulation models may be appropriate for host

parasitoid dynamics, a case of "blinking light" metapopulation in which the whole 

population is susceptible to extinction, and core -satellite met populations in which one 

core or more "mainland" populations send out the colonist to more evanescent 

"island" populations (Godfray and Shimada, 1999) 

Generally, these models offered tangible results, proving how host and their 

parasitoids srow population cycles with a period approximately equal to one host 

generation. These cycles can be explained by temporary synchronization of the host 

age structure by rare events such as droughts or hurricane. With deep biological 

knowledge, cycles can also re explained by the fact that majority of parasitoid eggs 

are laid at the peak of the host generation cycle giving rise to a burst of parasitoids 
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when host densities are at a trough in density, reinforcing the cycle (Godfray and 

Rees, 2002). 

1.5 Problem statement 

Previous studies on host-parasitoid models are limited on qualitative analysis 

and comparison of theoretical results with experimental time series data. The present 

study aims at linking equations that explain host-parasitoid dynamics and interactions 

to field time series data and in developing knowledge based model using artificial 

neural network for host-parasitoid population density. 

1.6 Objectives 

1.6.1 General Objective 

Modelling the population dynamics and interaction between the diamondback 

moth and its natural enemies, Diadegma semiclausum 

1.6.2 Specific objectives 

(i) Link existing predator -prey models with collected Diamondback moth 

and Diadegma semiclausum datasets 

(ii) Develop knowledge based adaptive models using ANN 

(iii) Comparative studies between different models and selection of the best 

model for the description of DBM fluctuations 

(iv) Propose a procedure for models fitting 
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1.7 Justification of the study 

Cabbages and kale are one of the bases of smallholder vegetable farming in 

Kenya. They are a major vegetable consumed by a large number of the population. 

DBM has been for many decades; their major pest and usually farmers sperrl a lot of 

money on the purchase of insecticides to fight against this pest. We all know the 

negative impact of insecticide to the environment and its bad effects on human health. 

The successful introduction of the DBM natural enemy in Kenya as biological control 

agent under the IPM system is a good achievement towards solving the problem of 

excessive insecti:ide use. To expand the available IPM tools for better management 

of the pest, there is need for a model capable of explaining the dynamism and 

interactions between these two organisms: the DBM and its natural enelilY· Such a 

tool will help in monitoring and forecasting (early warning) of potential outbreaks, 

which will facilitate formulation of policies and future control strategies in Kenya and 

other parts of the world where the pest is important. 
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Chapter 2 

General Materials and methods 

The first section of this chapter deals with material used and the second covers the 

methods employed in this study 

2.1 Materials 

In this section the site description and the crops growing are described 

2.1.1 Site description 

Experimental results were obtained from the pilot release areas in Werugha 

Location (03° 26' 16" S; 38° 20' 24" E) of Wundanyi Division in Taita Taveta 

District, Coast Province of Kenya and Tharuni Location (01° 08' 12" S; 036° 37' 51" 

E) Limuru Division, Kiambu District, Central Province (Figure 2.1 ). These regions 

were selected because of their isolated location. In case of any harmful effect of the 

newly introduced species in the environment, an alleviate control measures could be 

undertaken. The two sites are about 500 km apart and are renowned for vegetable 

production all year round. They are main suppliers of cabbage and kale to Kenya's 

biggest cities; Nairobi and Mombassa respectively. 

w_ erugha is located on an island mountain, Taita Hills, rising from an area of 

about 700m elevation to 2,200m. The peak of the mountain measures about 1 Ox25km 

and stretches roughly in a south/north direction. Crucifer production is concentrated 

between 1,600-1,800 m elevation and mainly rain fed. Additional irrigation during the 

dry seasons is common using buckets to draw water from shallow wells. Much of the 

land is terraced and crucifer production moves up on the terraces during the rainy 

seasons and down to the valley bottom in dry seasons, this ensures year-round 

production. The major staple crop is maize and several species of crucifers are grown 
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Figure 2.1 Kenya map showing the time series data sources 

14 



with head cabbage (Brassica oleracea var. capitata) as the main cash crop. Soils are 

mostly degraded, low in organic matter and sandy. 

Tharuni is located below the ridge along the inner slope of the eastern 

escarpment of the Rift Valley at an altitude of approx. 2000m. Located on the leeward 

side, the area receives 450-700mm of rainfall per annum. The soils are sandy loam 

soils of low to medium fertility with a generally dusty and dry environment. 

Agricultural production is characterized by mixed cropping with maize and beans as 

the major staple crops and cabbage as the main cash crop grown mainly during the 

short and long rain (October to December and March to June, respectively). Kale 

(Brassica oleracea acephala L.) is grown throughout the year by all home steadand 

provides a refuge for both diamondback moth and natural enemies during the dry 

seasons. 

2.2 Methods 

Due to the complexity, dynamism and interaction within species in a giving 

ecosystem, our modelling approach was based on several modelling techniques. 

Firstly, searcred for suitable mathematical modelling with the help of ordinary 

differential equations in continuous and discrete forms. Secondly, focus was made on 

a knowledge based adaptive modelling tool. In each part, proper statistical analysis 

was made to measure the models' efficiency. 

In mathematical modelling technique, concentration was made on the testing 

well- known continuous models of prey predator (Lotka-V oleterra, Holling-Tanner 

type 2 and type 3 and Leslie) and also some discrete time host-parasitoid systems such 

as Nicholson & Bailey and Hassel models. Continuous models equations were solved 

via a computer program written in CIC++ using the Runge-Kutta 4h algorithm with a 
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0.01 step size. A loss function was developed, made of the square difference between 

the theoretical and empirical values of datasets. This routine was combined as unique 

function and embedded in a Nelder-Mead algorithm or Pawell's multidimensional 

method and minimized with randomly chosen initial values of parameters. 

2.2.l Data collection 

The aim was to evaluate fifteen farmer-managed farms in both areas at each 

sampling date. This was possible without problems in Wemgha, where farmers used 

bucket irrigation and moved production from the terraces into valley bottoms in the 

dry season. In Thamni, a place without access to irrigation water, the number of 

cabbage fields declined so much during the height of the long dry season, that in some 

occasions only six fields could be sampled. Sampling started in April 2001 in 

Werugha and until July 2003, fortnightly samplings were conducted which were 

changed to once every four weeks from August 2003 until the end of observations in 

July 2005. In Tharuni, fortnightly sampling was conducted from July 2001 -

September 2003 followed by once every four weeks until September 2005. On July 

26th, 2002, 25 pairs of D. semiclausum were released in five fields in Werugha and 

the same number was released on September 20th, 2002 in Tharuni. 

Fields were selected at random with the help of the local extension officer in 

each area. A field was eligible for sampling from two weeks after transpanting 

onwards and the same field was visited until it was harvested. When a field had been 

harvested, a recently transplanted field in the immediate vicinity was chosen as 

replacement. Crop type and age, field management, pesticide applications and general 

conditions of the field were recorded. Ten plants were selected at random in each field 

and thoroughly checked, starting from the outer leaves towards the centre. The 
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number of small larvae, big larvae, pupae and DBM adults was counted and recorded 

separately. Other pests found on individual plants were also recorded. The damage 

caused by diamondback moth was estimated using damage score of 0-5 (see Momanyi 

et al. 2006) . Up to a maximum of five DBM larvae (3rd instar or older) or pupae were 

collected from each plant and put in individual vials for further investigations in the 

laboratory. Larvae were retained singly on a fresh cabbage leaf in labeled 30ml plastic 

vials at ambient temperatures of 21±2°C and checked daily until emergence of adult 

moths or parasitoids. Emerged parasitoids were identified, sexed and counted. 

Parasitism was calculated as the number of parasitized larvae/pupae divided by the 

total number collected. The percentage of parasitism was estimated for each 

collection. This was then multiplied by the total number of DBM population counted 

on the field and divided by 150 to estimate the number of parasitoids per plant. At the 

same time, the total number of DBM was divided by 150 to evaluate its population 

density per plant (Momanyi et al., 2006). 

A data logger (Hobo Pro Series, Onset Computer Corp. Pocasset, MA, USA) 

was used to record temperatures and relative humidity (hourly records), while rainfall 

records were obtained from the Kenya Meteorological Services. 

2.2.2 Statistical criteria for parameter estimation 

Parameter determination is a crucial phase in the analysis of empirical 

datasets. Several methods can be used for the estimation of model parameters; such as 

laboratory experiments to determine parameters like fecundity and survival. In this 

case, model parameters have concrete numerical values. An alternative for model 

parameter estimation is minimization of the value of the following function that uses 

empirical and theoretical dataset: 
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Q(a,f)=°I,[x~ -cu-' l (adbm•xo)] +°I,[y~ -G'U-ll(ads•Yo)] -7min (2.1) 
j=I j=I 11.i 

where, 

x . is the empirical value of DBM population density at time j, 
.I 

. 
y 1 is the empirical value of parasitoid population density at time j, 

G is the solution of the Cauchy problem for the respective system of 

differential equations, which describes the DBM dynamics in time, 

G Ul are the values of function G calculated at times j , 

G' is the solution of the Cauchy problem for the respective system of 

differential equations, which describes the dynamics of parasitoids, 

G'U> are the values of function G' calculated at time j, 

a= (a ,11,'" ,a",), adbm is the set of parameters for function G, 

and a ds is the set of parameters for the function G' 

I = ( x0 , y 0 ) is the initial vector of population size. 

Considering the fact that the initial values of population size x0 and y 0 are 

also used as a parameter in (2.1 ), the space dimensions of the confidence domains 

become larger than those of the model parameters. In this case, the space of model 

parameters presents its own structure that is specified by bifurcation surfaces, which 

when transited, lead to quality changes of the dynamical regime of population 

fluctuations. 
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2.23 Nelder-Mead multidimensional algorithm 

This method belongs to a class of nonlinear optimization techniques known as 

simplex searches. It uses a non-degenerate simplex as its design for function 

sampling. A non-degenerate simplex is a set of n + 1 vertices in R" that has the 

property that the set of simplex edges are acjjacent to any given vertex spans R" . A 

simplex is a line in R 1, a triangle in R2
, a tetrahedron in R3

, and so on (Gurson, 1999; 

Press et al. 1992). 

The Nelder-Mead search algorithm has four steps: reflection, expansion, 

contraction, and shrink. These four steps are labeled respectively by the coefficients: 

p (reflection), X (expansion) y(contraction) and CJ (shrink), governed by the rules: 

p>O, x>I , x>p,O<y<l,andO<CJ<l. (2.2) 

While these are general rules, they are always seen by the convention yielding the 

following value: p=l, x=2, y=.!_, (J=.!_ _ 
2 2 

(2 .3) 

0. Initially. Start with a no degenerate simplex for 9l n and calculate the function 

values at all the vertices. Then at each iteration k, k2'. 0. 

1. Order. Order the vertices x~ ,xt , ...... ,x!_" x! such that 

f(x~) ~ f(x~) ~ .... ~ f (x!-1) ~ f(x,~ ) · (2.4) 

2. Reflect. After computing the centroid x* = ~ L,''-1 x~ , compute the reflection n 1=0 I 

point x,k from (2.5) 

If f (x~) ~ f (x,* ) < f(x~_ 1 ), replace x! with x,* and go to step 6. 
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a) Reflection Step. b) Expansion Step 

c) Inside Contraction d) Outside Contraction. 

Figure 2.2 Nelder-Mead algorithm geometrical Steps for a triangle 
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3. Expand. If f (x,k) < f (x~ ), calculate the expansion point x: from 

k -k ( k -k) x , = x + x x,. - x . (2.6) 

If f(x,~) < f(x,k) replace x,: with x: and go to Step 6, otherwise (f(x:);:::: f(x,k )) , 

Replace x,7 with x; and go to Step 6. 

4. Contract. If f (x;);:::: f(x,:_ 1 perform a contraction between xk and 

whichever of x,k and x,~ has the lower function value. 

a Outside. If f(x:_1) ~ .f(x~) < f(x,:), perform an outside contraction: 

Calculate k - k ( k -k) 
x nc = x + r x,. - x (2.7) 

If f(x;c):::;; f(x,k), replace x,~ with x!c and go to Step 6; otherwise perform a 

shrink (Step 5). 

b. Inside. If f (x,k);:::: f(x:) perform an inside contraction: calculate 

k -k ( k -k) 
X ie = X + y Xn - X • (2.8) 

If f (x:c) < f(x,7) , replace x,7 with x: and go to Step 6; otherwise perform a 

shrink (Step5). 

5. Shrink. Shrink the simplex around x: by replacing x: with 

-k k 1 ( k k) . 
X ; = X; + 2 Xu - X; , 1 = I, ... ,n (2.9) 

where x: is the calculated shrink value 
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6. Check Termination. Termination if any of the possible stopping criteria in 

force are satisfied. Otherwise, set k = k + 1 and return to Step 1 (Gurson, 

1999) . 

2.2.4 Powell's multidimensional algorithm 

Good numbers of methods have been developed for minimizing a mono

dimensional cost function without applying derivatives, such as the dichotomy 

algorithm, the Fibonnacci's method or the golden section method (Press et al., 1992). 

In general, to minimize a multidimensional function, it is possible to repeat 

mono-dimensional minimization successively in the direction of each parameter axis. 

If the cost function contains a valley that is not oriented along a parameter axis, this 

requires a lot of small displacements. The Powell's method rather minimizes the cost 

function by changing search direction to valley direction, thereby speeding up the 

optimization process. In another words, the Powell's algorithm is simply based on 

conjugacy relations such as, for a given cost function the iterations are repeated until a 

point sufficiently close to a minimum has been reached (Powell, 1964; Press et al., 

1992). 

The main characteristics of the algorithm are the following: Initialize the set of 

directions u; to the basis vectors, u; :::: e;, i = l, ... ,n and then repeat tl::e following 

sequence of steps until the function stops decreasing: (Powell, 1964; Press et al., 

1992). 

• Save the starting position as p 0 . 

• For i = l, .... ,n -1, move Pi=I to the minimum along direction u; and call this 

point P;. 
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• For i = l, ... .,n -1 , set u; ~ u ;+i . 

• Set u" ~ Pn-Po 

• Move p ,, to the minimum along direction u,, and call this point Po . 

This algorithm is simply based on conjugacy relations and for a given function 

f the iterations are repeated until a point sufficiently close to a minimum has been 

reached. 

2.25 Artificial Neural Networks 

This technique bebngs to a group of methods called artificial intelligence. 

Artificial Neural Networks (ANNs) are inspired by the neural network structure of the 

brain, and consist of interconnected processing units (artificial neuron) that use a 

mathematical or computational model for information processing, based on a 

connectionist approach to computation. The application of ANN for modelling 

necessitates three stages namely , the training, the validation and performance testing 

stage. 

2.3 Analysis of residuals 

The Durbin Watson test which is used for analysis of serial correlation was 

applied on the discrepancy between theoretical (obtained from the model) and 

experimental trajectories (from field datasets). Before its application, the residuals 

were subjeded to the Shapiro-Wilk W test and Kolmogorov-Smimov test for 

conformation to a normal distribution (Shapiro et al. , 1968). The Durbin Watson 

criterion (d) usually ranges in value from 0 to 4. A value near 2 indicates no

autocorrelation whereby a value toward 0 indicates positive autocorrelation and 

toward 4 indicates negative autocorrelation between residuals. The existence of 
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positive or negative correlations of residuals indicates dependence between empirical 

and model trajectories, which lead to the rejection of tre null hypothesis and the 

model validity. The case of no-autocorrelation indicates independence among 

residuals, assertion could then be made that model and data are in concern. The 

Durbin-Watson criterion (d) is calculated using the following expression: 

LI/ 2 e. -e. d = i=2 ( I 1=1) 

LI/ 2 
e. 

i=I ' 

(2. 10) 

where n is the sample size and e; the residual value at point i. 
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Chapter 3 

Fitting continuous host-parasitoid models with field time 

series data 

Summary 

Diadegma semiclausurn, an exotic parasitoid, was released in Kenya for 

biological control of the diamondback moth (DBM), the worst pest of crucifers in 

East Africa. Population dynamics of the pest and its parasitoids were studied for three 

years after the release of the parasitoid. The objective of the present chapter was to 

study host-parasitoid interactions using existing continuous equations models (Lotka-

Volterra, Holling-Tanner type 2, Holling Tanner type 3 and Leslie model) and search 

for mathematical tools that can be used to predict, on the basis of the available data, 

the likelihood of success of the biological control agent in the entire East African 

region. For each model, we estimated model parameters from the minimization of the 

loss function between the theoretical and experimental time series data following the 

Nelder-Mead multidimensional method. Initial values of population size and 

parameters were randomly chosen. Isaev' s classification of insect outbreak types was 

applied to describe the periods of DBM and parasitoid population dynamics. The 

DBM trajectory presented periods of cyclical eruptive, pulse eruptive and stability 

zones whereby the parasitoid was mainly characterized by sustainable line behaviour. 

For all sets of parameters, boundaries of confidence domains were determined. 

Carrying capacity and the coefficient of fecundity for both species were calculated. 

Levels of population stability were also determined and for almost every model, the 

population stabilized at values of 1.01 DBM per plant and approximately 0.05 

parasitoids per plant. Tests on residuals showed that they were normally distributed. 
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Application of the Durbin -Watson criteria for comparison of model outputs and 

experimental population trajectories produced a pas itive correlation with all selected 

models. Consequently, it was concluded that none of the chosen models is appropriate 

to explain the population dynamics of either species. 

3.1 Introduction 

The International Centre of Insect Physiology and Ecology (ICIPE), Nairobi , 

Kenya, embarked on a project to reduce reliance on pesticides for DBM control and 

introduced a well-known exotic parasitoid, Diadegma semiclausum (Hellen) from 

Taiwan in October 2001. The first release was made in July 2002 at Werugha in Taita 

Taveta District (Momanyi et al. 2006) .. D.iamondback moth and parasitoid population 

dynamics were studied for one year before and three years after the release Macharia 

et al. (2005) conducted an extensive ex ante impact assessment and estimated the 

effect of parasitoid introduction on pesticide use and reduction of crop damage. They 

found that investment in the DBM biological control programme was beneficial for 

Kenya and for the funding agency with a benefit cost ratio of 24: 1. The results 

obtained encouraged the extension of the project to neighbouring countries in the 

region to make optimal use of the research investment and create economies of scale. 

In this case, a mathematical model predicting the influence of different ecological 

parameters would greatly help in the prediction of the likelihood of success of similar 

parasitoid introductions in other areas where the pest is of importance. 

In ecological modelling, numerous continuous equation models have been 

developed to describe population and ecosystem dynamics (Silvert, 1993; Wilder et 

al. , 1994; Hsu and Huang, 199 5). However, very few of these models were tested 

against concrete experimental datasets on a quantitative level. Generally, researchers 
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limit their studies to qualitative comparison of treoretical results to experimental data , 

which does not allow conclusions to be drawn on the adequacy of the models to 

describe observed population dynamics. On the other hand, choosing a mathematical 

model to describe a biological process is difficult as there are no standard criteria for 

the selection of a mathematical model to describe a particular population dynamics 

(Isaev et al. 1984; 200 1). Often there are only two choices: proceed on a sequential 

check of the existing models starting from the simplest one (Lyapunov and 

Bagrinovskaya, 1975) or create a new model to describe the population dynamics of 

the species in question. 

In this study, the first approach was chosen. The applicability of differential 

equations (prey-predator or host-parasitoid) mode ls for the description of DBM 

interactions with the . parasitoid based on a time series dataset collected during the 

three-year post-release period was tested. 

Sequentially, tests were done on the simplest, the Lotka-Volterra model 

(Lotka, 1920; 1925; Volterra, 1931) followed by the Holling models with functional 

response type 2 (lsaev et al., 1984; 2001) and type 3 (Poletaev, 1966; 1973; 1975) and 

finally, the Leslie model of prey-predator systems (Leslie, 1948). These models were 

selected because they were constructed based on the assumptions of continuous birth 

and death processes and that the generations of the interacting populations overlap 

completely. Also important was that, in practice, successful parasitoid development 

always kills the host, which is similar to the well-known prey-predator system. 
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3.2 Materials and Methods 

3.2 .1 Site description and data collection 

Experimental results were obtained from the pilot release area in W erugha 

Location (03° 26' 16" S; 38° 20' 24" E) of Wundanyi Division in Taita Taveta 

District, Coast Province of Kenya as described in section 2.1.1. 

3.2 .2 Models used to fit the dataset 

A great number of mathematical models are devoted to the description of 

prey-predator or host-parasitoid system dynamics (Gilpin, 1974; Hassell, 1978; 

Hadeler and Gerstmann, 1990). Every model has its own set of dynamic regimes for 

population fluctuations, with a specific set of parameters, and also specific functions · 

that describe the processes of self-regulation and interactions retween populations. 

The models used are listed below and for easy reference; the main characteristics of 

each of the models are briefly explained. 

i) Lotka-Volterra model 

The Lotka-Volterra model is one of many differential mathematical models devoted 

to the description of prey-predator or host-parasitoid system dynamics. The following 

assumptions were made during their elaboration (Lotka, 1920; 1925; Volterra, 1931; 

Pielou, 1977; Murray, 2001; Turchin, 2003) 

(i) The prey or host grows unboundedly in a Malthusian way in the absence of 

predation and self-regulation; 
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(ii) The effect of the predation is to reduce the prey's per capita growth rate by 

the term proportional to prey and predator populations: Volterra's principle of "pair 

interaction" (Volterra, 1931 ); 

(iii) In the absence of any prey for sustenance, the predator's death rate results 

in exponential asymptotical decay; 

(iv) The prey's contribution to predator growth rate is proportional to the prey 

population. 

Within this framework interactions between populations are described by the 

law of interacting biomass as in molecular kinetics by: 

(3. 1) 

x(O) = x 0 ~ 0, y(O) =Yo ~ 0 (Cauchy problem) 

where, 

x(t) is the DBM population size at moment t, 

y(t) is the parasitoid population size at the same moment, 

a 1 is the growth rate or Malthusian parameter for the DBM population, 

a
2 
is the intensity of natural death of individuals in the parasitoid population, 

/31 and /32 are the coefficients of self-regulation in the respective populations, 

y, and y2 are the coefficients of interaction between the two populations, 

a, I /3, is the equilibrium number for DBM at the absence of parasitoid, 

x 0 is the initial value of DBM population density, and 

y 0 is the initia 1 value of the parasitoid population density. 
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For correct presentation of the Cauchy problem, non-negative initial values have 

to be used. However, in biological situations such a problem does not occur as initia l 

population sizes would always be positive. 

ii) Holling Tanner Models type 2 and type 3 

Holling (1959) modified model (3.1) taking into account the existence of the 

effect of saturation (using a 'Monad' type of function) in interaction within 

populations and obtained the fdlowing system of differential equations: 

dx 2 Y 1 xy dy 2 Y2 xy 
-=a x-/3 x --- -=-a y-/3 y +--
dt 1 1 1+8x' dt 2 2 

. I+ & 

where,8 is constant representing the sigmoidality of the function, 

y, I 8 characterizes the maximum intensity of DBM population, 

y2 I 8 is the maximum intensity of parasitoid population increase. 

(3.2) 

This function is generally called the Holling' s type 2 functional response and 

its characteristics is as follows: at low prey densities, the JJedation rate per capita 

increases approximately linearly with prey density and at high prey densities, the 

predation rate levels off (Holling, 1959; Alexeev, 197 6; Bazykin, 1985; Isaev et al. 

1984; 2001; Turchin, 2003). 

Another model (Type 3 in Holling's classification), with a different type of 

population interaction was also investigated. In the Holling's type 3 functional 

response, the predation rate initially increases faster than linearly, before levelling off 

in a manner like that of a type 2 functional response. 

dx =a x-/3 xi_ Y1X
2

Y dy =-a y-/3 Yi+ YiX
2

Y (3.3) 
dt I I 1 + &2 , dt 2 2 1 + &2 ' 

where, all parameters are the same as in (3.2). 
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iii) Leslie model 

Leslie ( 1945) assumed that the dynamics of a parasitoid depends on the 

relation between sizes of both populations. He introduced a parameter K as 

maximum intensity of parasitoid population growth, which is realized when the host 

population is large enough for maximum parasitism and obtained the following 

equations (Leslie, 1945; 1948). 

(3.4) 

3.2.3 Statistical criteria and residuals analysis for parameters estimation 

This section was carried out using the methodology described in. sections 

2.2.2, 2.2.3 and 2.3. More emphasis was given to the determination of the parameters 

borders of confidence domains. These borders (Q;) were determined by finding the 

intersections of minimized function of equation 2.1 with the plane Q = constant, 

which can be expressed as follows: 

Q(a) = Q(amin)[l+~* F(m,n-m,p)] (3.5) 
n-m 

where Fis the quantile function, which depends on sample size (n) and the number of 

parameters (m) for minimization at a chosen level of significance (p) . For 

calculation, the two nearest values of the calculated model parameter are selected as 

starting points. Small increments and decrements are made from their original value, 

and the Q-function is recalculated for each value. This process is followed until the 

boundaries of the confidence domains are determined. The results were obtained from 

a computer program written in C. In this program, model equations were solved in a 

routine using the Runge-Kutta 4th algorithm with 0.01 step size (Press et al., 1992). 
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33 Results 

DBM and parasitoid population fluctuations with time are displayed in Figure 

3.1. Examination of these trajectories under the assumption that DBM and parasitoid 

population dynamics can b.e explained based on Isaev's classification of insect 

outbreaks (Isaev et al. , 1980; 1984; 2001; Berryman, 1992; Berryman and Munster

Swendsen; 1994) leads to the following conclusions. Points 1-5 on the DBM line 

correspond to a high cyclical eruption, points 16-18 and points 37-39 both correspond 

to a pulse eruption; points 914 and 20-24 are low cyclical eruptions. Points 6- 8 

represent the decline phase boundaries of high cyclical eruption and low cyclical 

eruption. The parasitoid line presents a low sustained trajectory at point 1-14 and a 

sustained eruption trajectory at points 16-19, 24-27 and 36-39. Points 31-36 and 41-49 

in the DBM and parasitoid lines respectively correspond to sustained population 

fluctuations towards stabilization. Other parts of the DBM line and parasitoid line 

such as points 27-30 on DBM and parasitoid lines cannot be explained under the 

hypothesis that the population dynamics correspond to the regime of a proper 

outbreak. 

Evaluation of the quotients Skewness/Standard Error and Kurtosis/Standard 

Error gave values < 3. In addition, the results of the Shapiro-Wilcoxon and 

Kolmogorov-Smimov tests showed that the residuals for all models were normally 

distributed; this demonstrates the validity of application of Durbin Watson criteria for 

analysis of the sequence of deviations. The results obtained from the minimization of 

function (5) and from statistical analysis are presented in Table 3. 1. Following are the 

analysis and interpretation of these results for each model. 
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Models 

Lokta-

Table 3.1. Estimates of model parameters and values of statistical criteria for four differential population models fitted to an empirical times 
series of the diamondback moth and its parasitoid, Diadegma semiclausum, Werugha, Wundanyi Division, Taita Taveta District of Kenya 
(calculated with the help of formula (2.1 ). 

DBM Natural DBM self- Self- Interaction Interaction Carrying Sigmoidality Maximum Initial Initial Loss- Durbin- Durbin-
growth death rate regulation regulation coefficient coefficient capacity constant population population population function* Watson Watson 

ca2) coefficient coefficient < r1 > < r2) ca1 I /31) growth size ( x0 ) size (y0 ) (Qmin} criterion criterion 
rate 

</31) </32> (0) (parasitoid) (ti) (ti) 
ca1) (parasitoid) (DBM/ (parasitoid/ DBM <K> (DBM) (parasitoid) DBM parasitoid 

(parasitoid) parasitoid) DBM 

- -Volterra 
1.45 2.49 42.19 9.07 0.03 120.58 0.03 9.36 0.03 80.5 1.20 0.56 

Holling 
0.40 2.47 3.77 0.59 2.23 0.30 0.11 0.001 12.36 0.09 96.9 1.05 0.60 Type2 -

Holling 
1.72 2.00 3.51 0.41 1.75 0.75 0.49 0.022 12.40 0.24 95.6 1.11 0.49 Type3 

Leslie 
0.55 0.21 36.91 2.57 0.08 10.72 0.29 88.0 1.13 0.65 

* - squared deviations between empirical and theoretical time series 
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3.3.1 Lotka-Volterra model 

We obtained a value of 1.45 for the growth rate of DBM and 42.19 for the 

self-regulation coefficient. Figure 3.2 represents the DBM population variation with 

time. The model predicted a monotonously decreasing line starting at 9.36 as initial 

DBM population size, which stabilized at a value of 0.80 DBM/plant. The carrying 

capacity according to the model was 0.03 DBM/plant (Table 3. 1 ). 

The model estimated a self-regulation coefficient of 9.07 for the parasitoid and 

2.49 as its death rate. Parasitoid population grew from 0.05/plant following an 

increasing function for a period of 12 weeks and reached its peak at 0.41, after which 

the population decreased and stabilized at an approximate value of 0.06 (Figure 3. 3). 

Analysis of the deviations between model and experimental values produced 

d = 1.20 and d = 0.56 for the Durbin -Watson criteria of DBM and parasitoid, 

respectively. The critical values are d L = 1.32 for 1 % and d L = 1.50 for 5%. In both 

cases d <d L. Consequently, there is a positive correlation between residuals and we 

have to reject the hypothesis that this model is suitable for describing the population 

dynamics of either species. 

The behaviour of function Q on the plane (ap a
2

) and the boundaries of 

confidence domains .Qk, k = 1,2,3 for 1, 5 and 10% confidence levels are illustrated in 

Figure 3.4. These trajectories are within the plane surface with the following 

coordinates a 1= 5.90 and a 2=22.50. 

3.3.2 Holing-Tanner type 2 model 

This model generated a DBM growth rate of 0.40 and a self-regulation 

coefficient of 3.77 for DBM (Table 3.1). Figure 3.2 depicts the variation in DBM 

population density with time. The model predicted a line with a starting population of 
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12.36 DBM/plant declining monotonously at a decreasing rate and stabilizing to a 

value of 0.88. The calculated carrying capacity was 0.11 DBM/plant. 

Model predictions for parasitoid numbers began with a very small monotonous 

increase in population size starting with 0.09. This initial value increased to a 

maximum of 0.10 where the trajectory started declining at an increasing rate before 

stabilizing at 0.05/plant (Figure 3. 3). Self-regulation for the parasitoid was estimated 

at 0.59 and the death rae value was 2.47. 

Values of the Durbin-Watson criteria were determined as d = 1.05 and d = 

0.60 (DBM and parasitoid, respectively). As in the Lotka-Volterra model, d <d L, 

consequently there is a dependence between residuals and the model cannot be 

.accepted as suitable for the description of the population dynamics of either species. 

Function Q on the plane ( a 2 , y1 ) and the boundaries of confidence 

domain Q k , k = 1,2 ,3 for 1, 5 and 10% confidence levels are presented in Figure 3. 5 

This Figure shows concentric surfaces with an approximate centre at coordinate point 

2.80, 2.60). 

3.33 Holling-Tanner type 3 model 

The growth rate for DBM was calculated at 1.72 and the 1elf-regulation 

coefficient was estimated at 3.51 (Table 3.1). The model predicted a monotonous 

decline at decreasing rate starting at 12.40 as initial DBM population per plant and 

stabilizing at 1.02 (Figure 3. 2). 

The self-regulation coefficient for the JRrasitoid was 0.41 and the death rate 

2.00. Parasitoid population density was calculated to follow a monotonously 

increasing function from 0.24 which reached its peak at 0.43 and began to decline at 

increasing rate to stabilize at 0.26/plant (Figure 13) 
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Figure 3.1 Changes in the population dynamics of diamondback moth (flutella xylostella) 
and its parasitoid, Diadegma semiclausum after introduction and release of the 
parasitoid.Werugha, Wundanyi Division, Taita Taveta District of Kenya. 
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Deviations between model and experimental values resulted in d = 1.11 and d 

= 0.49 for the Durbin-Watson criteria (DBM and parasitoid, respectively). As in the 

previous cases, d < d L' indicating a positive correlation between residuals. 

Figure 3.6 depicts the function Q on the plane (a P y
1 
)and the boundaries of 

confidence domain Q k , k = 1,2,3 for 1, 5 and I 0% confidence levels, respectively. 

These boundaries of confidence domains are annular trajectories with a common 

centre at coordinates (2.50, 2.50) and 11=2.00 , r2 = 2.40 and r3 = 3.80 as 

approximated radius values for 1, 5 and 10% confidence levels, respectively. 

3.3.4 Leslie model 

The Leslie model produced a growth rate of 0.55 for DBM and a very small 

self-regulation coefficient (0.21 ), the carrying capacity was 2.57 (Table 1 ). The model 

predicted a monotonously decreasing population line starting at 10. 72, which 

stabilized at a value of 0.60 DBM/plant (Figure 3. 2). 

The prediction for the parasitoid population was a line declining at an 

increasing rate which stabilized at a value of 0.05/plant (Figure 3 3). This model 

predicted 0.08 as intensity of parasitoid population grcwth. 

Durbin-Watson values for the deviations between model and experimental 

values were 1.13 and 0.65 for DBM and parasitoid, respectively. Again, there was a 

positive correlation between residuals and we have to reject the hypothesis that the 

Leslie model is appropriate for the fitting of DBM-parasitoid population fluctuations. 

Figure 3.7 shows the loss function Q on the plane (a1,y1)and the boundaries 

of confidence domain Q *, k = 1,2,3 for 1, 5 and 10% confidence levels respectively, 

which are concentric circles. 
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Figure 3.2 Trajectories of the diamondback moth populations predicted by various predator
prey models. Predictions are based on an empirical dataset collected after the initial release of 
an exotic parasitoid, Diadegma semiclausum Werugha, Wundanyi Division, Taita 
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Figure 3.3 Population trajectories of the diamondback moth parasitoid, Diadegma 
semiclausum predicted by various predator-prey models after an initial introduction and 
release. Predictions are based on an empirical dataset collected after initial release of the 
parasitoid, Werugha, Wundanyi Division, Taita Taveta District of Kenya. 
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Figure 3.4 Boundaries of confidence domains for estimated parameters of Lotka-Volterra 

model at fixed initial values of diamondback moth ( x 0 ) and parasitoid, Diadegma 

semiclausum ( Yo) population I plant. Q 1 is the boundary for 10% confidence level, Q
2 

- for 

5% confidence level and Q 3 - for 1% respectively. P: a.2 = 2.86a1 is the biforcation line. 
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Figure 3.5 Boundaries of confidence domains for estimated parameters of Holling-Tanner 
type 2 model at fixed initial values of diamondback moth ( x 0 ) and parasitoid, Diadegma 

semiclausum (y0 ) population I plant . .01 is the boundary for 10% confidence level, 0 2 - for 

5% confidence level and .03 . - for 1 % respectively. 
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Figure 3.6 Boundaries of confidence domains for estimated parameters of Holling-Tanner 
type 3 model at fixed initial values of diamondback moth ( x 0 ) and parasitoid, Diadegma 

semiclausum (y0 ) population I plant. .Q1 is the boundary for 10% confidence level, Q 2 - for 

5% confidence level and .Q 3 - for 1 % respectively. 
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Figure 3.7 Boundaries of confidence domains for estimated parameters of Leslie model at 
fixed initial values of diamondback moth ( x 0 ) and Diadegma semiclausum ( y 0 ) population I 

plant. .Q1 is the boundary for 10% confidence level, .Q 2 - for 5% conf:dence level and 0 3 -

for l % respectively. 
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3.4 Discussion 

The unstable cyclic eruptive pulses of the DBM population cannot be 

explained from the analysis carried out in this study, but their appearance may be due 

to favorrable envirornnental conditions and abundance in food that trigger an 

outbreak which immediately collapses due to parasitism and others factors such as 

rainfall, which have been reported as major factors of DBM population regulation 

(Gunn, 1917; Wakisaka et al., 1991). In addition, good explanation of population 

dynamics is obtained when time lag reaction of DBM intra self-regulation and effects 

of parasitoid on DBM population size are both taken into consideration. Low 

parasitoid population density at the reginning of the collection after release in Figure 

I shows the period of adaptation of this insect to its new envirornnent. An increase in 

DBM population leads to more hosts that can be parasitized and therefore causes an 

increase on the parasitoid population. Sustained population fluctuations are zones of 

stabilization where the parasitoid successfully regulates the DBM. Points on the 

trajectory that could not be explained using Isaev's classification of insect outbreaks 

can be considered as stochastic near stable (or unstable) level. 

This work explores a standard methodology for model parameter restoration. 

The analyzed models are all autonomous mathematical equations, i.e. without the 

variable time on the right hand site of their respective functions. Absence of this 

variable leads to the assumption that the time interval between measurements is equal 

to I . In other words, real values for model parameters cannot be estimated; 

nevertheless, identified parameters are proportional to real values with an unknown 

coefficient of proportionality. From the four different host-parasitoid models, best 

estimated sets of parameters for each model derived from the minimization of the loss 
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function all correspond to a regime of population stabilization at non zero level for 

both insects. 

The Lotka-Volterra model demonstrated a very strong self-regulative 

mechanism for the DBM and lesser for its parasitoid. In contrast, Holling-Tanner type 

2 and type 3 showed a weak self-regulation phenomenon especially for the parasitoid . 

This may be explained considering the fact that self-regulative intra-population 

mechanisms are strongest at big population size and their influence is negligible at 

small population size. DBM population was large enough before the release of D. 

semic/ausum, which increased in size after a brief adaptation period. 

The DBM growth rate coefficient was highest for Holling-Tanner type 3 and 

Lowest for Holling-Tanner type 2 models. The discrepancy observed among models 

may be due to the ability for each model in fitting empirical data, . or the difference in 

mathematical expression of model equations. Syed and Abro (2003) estimated an 

intrinsic rate of increase of 0.23 when DBM fed on Brassica oleracea capitata under 

laboratory conditions. Considering that the intrinsic rate of increase is equivalent to 

the growth and is defined as the difference between the birth rate and death rate, it can 

be assume that the estimated intrinsic rate value obtained by Syed and Abro (2003) 

was uniform everywhere. With these considerations the Holling's type 2 model 

estimated DBM growth rate is the closest value to the experimental result. However, 

the comparison of the intrinsic rate of increase reported by Syed and Abro (2003) with 

our estimates would not be realistic since the intrinsic rate of increase is highly 

dependant on environmental condition, especially temperature. Syed and Abro (2003) 

did not state the temperature conditions under which their experiments were 

conducted. Despite the variance on the predicted DBM growth ra1e from model to 
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model, its evaluation indicates that it still lies within acceptable range with non

negative value indicating that the DBM birth rate is higher than the death rate. 

The natural death rate of the parasitoid for all models was estimated between 2 

to 2.5, which is higher than the natural death rate obtained for DBM. Hence the 

parasitoid has to be considered an endangered insect, which is justified by its total 

dependence on DBM for multiplication and perpetuation. In the absence of DBM, 

parasitoid populations may rapidly decrease until extinction. However detailed 

evaluation of the ability of this parasitoid to thrive on its alternate hosts should be 

carried out to evaluate its potential to survive in the system without DBM. 

Another puzzling result of this study was the big divergence between 

. predicted self-regulation and interaction coefficients of DBM and the parasitoid. 

Biologically, the high value of self-regulation produced by the Lotka-Volterra model 

does not make much sense because the empirical population never reached the 

numbers where high intra-specific competition could be expected. However, the same 

model also produced a very high self-regulation coefficient for the parasitoid. This 

indicates strong competition for host larvae. Momanyi et al. (2006) showed that one 

year after release, competition between parasitoids was so strong that even first instar 

larvae that were still mining were parasitized. In contrast, all models produced a high 

positive interaction coefficient between DBM and the parasitoid. Considerable 

variation existed for DBM and parasitoid initial population sizes predicted by the 

different models. These variations could be explained by the power for each model in 

fitting empirical time series. 

The maximum calculated value of carrying capacity from these models was 

about 3 DBM/plant, which is an unrealistic result if compared to empirical datasets 

where in outbreak situations and without effective parasitism, especially in maturing 
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crops, the actual numbers recorded can surpass 10 DBM/plant (Karimzadeh et al. 

2004). However, with total effectiveness of the parasitoid in controlling the DBM, 

and during period of stabilization for both populations, with less food availability and 

unfavourable climatic conditions for DBM, this value of carrying capacity could be 

realistic. In the same line the estimated set of parameters depends on the time step 

between measurements. Knowing that the carrying capacity is obtained from relation 

between two values of estimated parameters, its value may not always be the same as 

soon as change occurs in time step value. From this perspective, it will be very 

difficult to discuss the relation between absolute value of carrying capacity to 

observed value in the field, at the same time. 

All the disparities pointed out above confirm the existence of a sizeable gap 

between a mathematical approach and its application in ecological and biological 

systems. Mathematicians and ecologists use different symbols, terms and definitions 

that are sometimes very explanatory and meaningful in mathematics and meaningless 

in biology. The models investigated in this study were pioneer work in mathematical 

biology, and generally, they do not include biological constraints, which could enable 

them map biological processes more precisely. An example would be that none of the 

models analysed considers possibilities such as nature of parasitoid (solitary or 

gregarious), inter and intra-specific competitions, impact of alternate hosts, 

physiological reactions of organism in the population, etc. The algorithm for 

parameter estimation applied then searches for the minimum of the loss function and 

generates values that result in better convergence of the equations. What may have 

also contributed to this outcome is that we applied the models in a highly unstable 

situation after the introduction of an exotic parasitoid. Such an introduction 
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purposefully intends to move the system equilibrium to a different level and therefore, 

creates instability that must have affected the outcome of the calculations. 

The boundaries of the confidence domains of all models described circular 

trajectories. These surfaces are areas where all possible combinations of model 

parameters can be found with a minimum value of the loss function Q. For the Lotka-

Volterra model, this domain was divided in to two areas by a bifurcation line P 

-
determined by the equation a 2 = 2.85a1 • The surface below the bifurcation line P 

corresponds to the regime of eliminatim of the parasitoid and the surface above this 

line is the area of stabilization of both populations. 

Generally the existence of positive or negative correlations of residuals 

between empirical and model trajectories indicates dependence. The application of the 

Durbin-Watson criteria, which is a powerful tool for testing the dependence between 

residuals, showed a positive correlation for all tested models. This leads to the 

conclusion that none of the studied models can be applied to describe the dynamics of 

the DBM/parasitoid system. More complex models, which will take into account time 

lag reaction of DBM intra self-regulation and effects of parasitoid on changes in 

DBM population size and others factors such as temperature, rainfall and diseases, 

should be investigated, as they may offer better results. In this perspective we have to 

reject our original intention for using these models for the prediction of likelihood 

success of the biological control agent in the entire East Africa region. 
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Chapter4 

Fitting discrete host-parasitoid models with field time series 
data 

Summary 

The applicability of discrete mathematical models for the description of the 

population dynamics of diamondback moth (DBM) (Plutella xylostella L.) and its 

parasitoid D. semiclausum was investigated. The parameter values for several well-

known models (Nicholson-Bailey (1935), Hassel & Varley (9176), Beddington, Free 

& Lawton ( 1976), May (1978), Holling type 2, 3 (1959) and Getz & Mills (1997) 

functional responses) were estimated The models were tested on 20 consecutive sets 

of time series data collected at 14 days interval for pest and parasitoid population 

obtained from a highland cabbage growing area in eastern Kenya. Model parameters 

were estimated from the minimization of tre squared difference between the 

numerical solution of the model and the empirical data using Powell's method, as well 

as determination of boundaries of their confidence domains. Maximum calculated 

DBM growth rates varied between 0.02 and 0.07. The carrying capacity determined at 

16.5 DBM/plant by the Beddington et a/(1975). model was within the range of field 

data. All the estimated parameter values related to the parasitoid including the 

instantaneous searching rate (0.07 to 0.28), per capita searching efficiency (0.20 to 

0.27), search time (5.20 to 5.33), handling time (0.77 to 0.90), and parasitism 

aggregation index (0.33) were well outside the range encountered empirically. 

Independence between residuals of the theoretical and experimental population 

trajectories for DBM under Durbin-Watson criteria for all tested models, except the 

May (1978) model, proved their adequacy. In contrast, the criteria applied to the 
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parasitoid residuals showed a strong correlation. Consequently, all models failed in 

estimating parasitoid dynamics. We concluded that the population dynamics of DBM 

and its parasitoid and their interactions could not .be mutually explained by any of the 

models tested. Two reasons were pointed out: the parasitoid, in this integrated 

biological control system perhaps has not played the major role on pest population 

regulation; or the models used could not encompass all factors affecting population 

behaviour within this era where human activities and climate change have seriously 

affected most ecosystems. 

4.1 Introduction 

Mathematical models play a central role in the study of host-parasitoid system 

interactions. With the help of models, we may comprehend some mechanisms of their 

interaction, and which phenomena may not be directly observed in the field (Gertsev 

and Gertseva, 2004). Difference equations are widely used for the study of dynamics 

between insect populations in temperate regions because of the discrete nature of their 

generations (Royama, 1971; Hassel and May, 1974; Hassel et al, 1976; May et al., 

1981). These models are less suitable for tropical insects where continuous 

generations and life cycles of host and parasitoid of different length are to be 

expected. However, Royama (1971) suggested that discrete models could be applied 

to inpulations with overlapping generations provided age structure and the period of 

observation is shorter than a generation. 

We used, difference equation models to the study of population dynamics of the 

Diamondback moth, Piute/la xylostella (Lep.: Plutellidae) and its parasitoid 

Diadegma semiclausum (Hellen) (Hym.: Icheumonidae). The main focus of 

population dynamic studies has traditionally been on local stability analysis, searching 
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the equilibrium points, determining the nature of their stability and spatial synchrony 

in which model parameters are obtained through trial and error (Hassel and May, 

1974; Hassel et al., 1976; May et al., 1981; Nguyen et al. , 2006; Meng et al., 2007). 

In that regard, a good number of models have been developed, and this gives us a 

possibility to compare some of the well-known host-parasitoid models with time 

series datasets collected from the field. Each mathematical model used here possesses 

a rich set of dynamical regimes. If we fail to find a model which offers good 

approximation for empirical time series, the base for the following assertions could be 

made: 1) Parasitoids in an integrated biological control system may not play the major 

role on pest population regulation. In that case, recommendation of more complicated 

mathematical models, which include some additional density-dependent or density

independent factors , should be used to fit such field data. 2) The applied models, 

originally designed to answer qualitative questions about population dynamics may 

not be capable to encompass all factors affecting population behaviour within this era 

where human activities and changes on climate have seriously affected most 

ecosystems. Therefore, new host-parasitoid models which incorporate these aspects 

may be thought of. 

4.2 Materials and Methods 

4.2.1 Site description and Data collection 

The data were obtained from pilot release areas in Werugha as previously 

described in section 2.1 .1 and the collection was done as summarised in section 2.2.1 
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4.2.2 Models used to fit the datasets 

The data were mainly used with mathematical models that studied the 

interaction between insects and their natural enemies. We concentrated, in particular, 

on models of insect parasitoids and their insect hosts. This is because much of the 

theoretical work by entomologists has centred on host-parasitoid interactions. With 

some caution, however, host parasitoid models can be extended to include interactions 

with other kinds of natural enemies. Successive tests of difference equations models 

were conducted based on the empirical time series dataset collected during three-year 

post-release period. 

Confonning to the discrete seasonality of most arthropods, the models are 

phrased finite recursive equations of the basic form: 

(4.1) 

where, N, , N,+1 , ~ , ~+t give the host and the parasitoid population densities in 

successive generations respectively, IL is the geometric growth factor for the host 

(/l = e' where r is the intrinsic rate of increase), and c is the number of parasitoid 

produced for each host individual attacked. The function f , gives host survival with 

respect to parasitoid and host densities and can be varied to reflect various parasitoid 

foraging behaviours (May et al., 1981). Two major features of the parasitoid life cycle 

well lend themselves to this model structure. First, it is the adult female parasitoid that 

searches for hosts and second, parasitoids normally oviposit in or on or near hosts 

making reproduction closely dependent on the number of host parasitized. Table 4.1 

summarise the models used. 
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Table 4.1 Mathematical expression of different models used from publications. 

Comments Model equations Authors 

Growth factor (A.) N,+1 = A,N, exp(-aP,) Nicholson Bailey 
Parasitoid per capita searching P,+1 = cN1 [1 - exp( -aP,)] 
efficiency (a) 

(4.2) (1935) 

Number parasitoid produced 
each host attacked( c) 

Parasitoid constant searching N,+1 = A,N, exp(-qP,1
-"') Hassell and 

efficiency ( q) P,+1 = cNJl - exp(-qP,1
-

111 
)] (4.3) Varley (1976) 

Slope parasitoid searching 
efficiency (m) 

Carrying capacity for host in 
[ NI N,+1 = N, exp(r I - -] - aP,) 

K Beddington et al. 
the absence of the parasitoid P,+1 = cN1 [1 - exp( -aP,)] (4.4) 

(1975) 
(K) 

aP, -k 
Nt+I = A,N,(l+k) 

Index parasitism 
aggregation (k) 

P,+1 = cN,(1-(1 +a; r k] 
May (1978) 

(4.5) 

Parasitoid instantaneous -a'TP 
search rate (a) N1+1 = A,N1 exp( , / ) 

Parasitoid search time (T) 
I+a ThN, 

Holling type 2 
-a'TP Parasitoid handling time (Th) P,+1 =cN,[1-exp( , 1 

)] (4.6) (1959) 
I+a ThN, 

-bTN,P, 
N1+, = AN, exp( · 2 ) 

Parasitoid constant for 1 +cN, +bT,,N, Holling type 3 
search rate (b) N [ -bTN,P, (1959) P,+1 = c 1 I - exp( 

2 
)] 

1 + cN, + bThN, 
(4.7) 

Upper bound encounter 
N =AN (1+ a/JP, rk 

Getz and Mills i+1 i k(/3 + aN1 ) 
rate(~) 

a/JP, -k 

(1997) 

P,+1 = cNJl - (1 + ) ] 
k(/3 + aN,) 

(4.8) 
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4.2.3 Assumptions 

The following assumptions were made: 

a) In some part of Kenya, there are two seasons with favourable and 

unfavourable weather conditions each year associated with bimodal rainfall 

distributions (Sutherst et al., 1999). This leads to the seasonality of some species such 

as DBM which become rare in the field during the rainy season. 

b) The two species (DBM and D. semiclausum) have overlapping generations 

which normally allows the use of continuous rather than discrete time and differential 

equations. Previous experience with such models showed that they could not predict 

values within the conventional biological confidence level range (5%) (Tonnang et 

al., 2006). Therefore, we chose the period of observation shorter than the generation 

of insects (Royama, 1971 ). As DBM probably has a generation time of about 3 weeks 

in coastal Kenya, the time series represents intrageneration as well as 

intergenerational dynamics. c) Insect species have an age structure (Royama, 1971 ), 

therefore sometimes both were not abundant enough to be measured by integer 

numbers thus real numbers were used; consequently a model that can be applied to 

cases with just a few individuals was chosen. 

d) In reality, three years data collection was made after the release of the D. 

semiclausum (Lohr et al., 2007). Only 20 datasets of consecutive collection, 

corresponding to period of maximum parasitism were used. 

e) Other sources of mortality which could have been responsible for the host 

population trajectory were neglected. 

e) Lohr et al. (2007) indicates 3 other parasitoids that attack DBM in the region 

before release of D. semiclausum. However, after release their parasitism rate became 

extremely low hence their effect was neglected. 
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f) Models were selected within the constraint imposed by the simplicity which 

eases the analysis and the ability for parameters to fulfil basic biological meaning. 

4.2.4 Statistical criteria for parameter estimation Analysis of residuals 

Parameter detennination was carried out using the methodology already 

described on the second chapter sections 2.2.2 and 2.2.3. Minimization of the loss 

function equation 2.1 was done by Powell's multidimensional algorithm (see section 

2.2.4) . Analysis ofresiduals was done with Durbin Watson Criteria shown in section 

2.3 

4.2.5 Model population size predictions at different DBM initial population size 

The model with Holling type 3 functional responses was used to develop a 

graph that allows predictions of future DBM population size as a function of a 

constant number of parasitoids. The choice for this model was made because it has 

shown better approximation of the empirical data for DBM and parasitoid than others. 

For a random selection of DBM initial population size between 0 to 30 DBM/plant, 

the model was used to estimate the values of DBM at given time interval of 2n weeks 

(where n EN ensemble of integers) for a fixed number of parasitoids. The above 

DBM data was plotted on the plane at fixed value of parasitoid/plant. A projection for 

any given DBM population from the abscissa to the parasitoid population line will 

give an estimation of the DBM population size at the next time interval. 
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4.3 Results 

Evaluation of the quotients Skewness/Standard Error and Kurtosis/Standard 

Error gave values < 3. In addition, the results of the Shapiro-Wilcoxon and 

Kolmogorov-Smirnov tests showed that the residuals for all models were normally 

distributed This demonstrates the validity of application of Durbin Watson criteria for 

analysis of the sequence of deviations. The results obtained from the minimization of 

function (9) and from statistical analysis are presented in Table 4. 2. 

Nicholson-Bailey model predicted an oscillating trajectory composed of a 

monotonously increasing function starting with 7.5 (initial DBM population size) and 

reached the first peak between 6 to 8 weeks. After this point, the line began to decline 

at decreasing rate until the 1 gh week of collection, then recommenced increasing 

(Figure 4. la). The parasitoid population density for the model followed an increasing 

function starting from 0.02, reaching its peak at 1.69 and then declining until 

0.001 parasitoid/plant (Figure 4.1 b ). 

The Hassel & Varley (1976) model predicted a DBM and parasitiod clines 

with similar trajectory behaviour as in Nicholson Bailey model (Figures 4.1). 

The carrying capacity, according to Beddington et al.(1975) model was 16.50 

DBM/plant. The model DBM populations line started at 8.72 DBM per plant, reached 

8.80 DBM per plant, then began decreasing up to 2.64 then gained low increment. 

The parasitoid population density fluctuation also displays an oscillating trajectory but 

with small amplitude compared to the DBM line (Figures 4.2). 

The May (1978) model generated a line with a starting population of 9.97 

DBM/plant declining at a decreasing rate until 4.34 (Figure 4. 2a). The model 

predictions for parasitoid numbers began with 1.12 parasitoid per plant then decreased 

to around 0.01 parasitoid/ plant (Figure 4.2b). 
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Table 4.2 Estimates of model parameters and values of statistical criteria for seven recurrent models fitted to an empirical times series of the 
diamondback moth and its parasitoid, Diadegma semiclausum, after release in Werugha, Wundanyi Division, Taita Taveta District, Coast 
Province of Kenya. 

Nicholson-Baile;y Hassel & Varle;y Biddington et al. Ma;y Holling ~~e 2 Holling ~~e3 Getz and Mills 
DBM growth rate (r) 0.06 0.07 0.05 0.02 

DBM carrying capacity (K) 16.50 

Parasitoid per capita searching efficiency (a) 0.27 0.24 0.20 

Parasitoid constant searching efficiency (q) 0.28 

Parasitoid instantaneous search rate (a') 0.07 0.28 

Parasitoid constant for search rate (b) 0.14 

Parasitoid search time (T) 5.33 5.20 
Parasitoid handling time (Tb) 0.77 0.90 
Upper bound encounter rate (~) 19.29 
Slope parasitoid searching efficiency (m) 0.02 
Index parasitism aggregation (k) 0.33 0.90 
Initial DBM population size (N0) 7.58 7.45 8.72 9.97 6.21 4.53 7.61 
Initial parasitoid population size (Po) 0.02 0.02 0.05 l.12 0.04 0.02 0.05 
Loss-function* (Qm;n) 45.31 44.51 47.84 104.18 52.17 61.73 51.85 
DBM Durbin-Watson criterion value (dd) 2.03 2.07 1.86 0.95 1.93 1.96 1.85 
Parasitoid Durbin-Watson criterion (dp) 0.24 0.23 0:20 0.15 0.20 0.46 0.18 

* - squared deviations between empirical and theoretical time series. 

- For each model, the number ofparasitoid produced per host individual attacked is equal to 1 (c = 1) because Diadegma semic/ausum is a solitary parasitoid 
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Figure 4.1 Trajectories of the diamondback moth (a) and Diadegma semiclausum (b) 
population for empirical datasets and predicted by Nicholson-Bailey and Hassel & Valey 
models. Predictions are based on an empirical dataset collected after the initial release of an 
exotic parasitoid, Diadegma semiclausum, Werugha, Wundanyi Division, Taita Taveta 
District, Coast Province of Kenya. 
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Figure 4.2 Trajectories of the diamondback moth (a) and Diadegma semiclausum (b) 
diamondback moth population for empirical datasets and predicted by Biddington et al. and 
May models. Predictions are based on an empirical dataset collected after the initial release of 
an exctic parasitoid, Diadegma semiclausum, Werugha, Wundanyi Division, Taita Taveta 
District, Coast Province of Kenya. 
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Figure 4.3 Trajectories of the diamondback moth (a) and Diadegma semic/ausum (b) 
diamondback moth population for empirical datasets and predicted by Holling type 2 and type 
3 functional response models. Predictions are based on an empirical dataset collected after the 
initial release of an exotic parasitoid, Diadegma semic/ausum, Werugha, Wundanyi Division, 
Taita Taveta District, Coast Province of Kenya. 
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diamondback moth population for empirical datasets and predicted by Getz and Mills 
functional responses model. Predictions are based on an empirical dataset collected after the 
initial release of an exotic parasitoid, Diadegma semiclausum, Werugha, Wundanyi Division, 
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DBM and parasitiod population density predicted by model with Holling type 

2 functional responses are shown in Figures 4.3. The trajectories behaviour is similar 

to Nicholson-Bailey model. 

Among the applied models, Holling type 3 functional responses presented 

better line predictions compared to others models. In mapping empirical datasets the 

model formed an oscillating trajectory starting with 4.53 (initial DBM population 

size) increase up to 9.40 DBM/plant where the line began to decline until 1.35 then 

recommenced increasing until 4.53 and decreased again (Figure 4.3a). The parasitoid 

population density followed an increasing function starting from 0.02, reaching its 

first peak at 3.16 and then declining until O.Olparasitoid/plant and increased again 

(Figure 4.3b). 

Model with Getz and Mills functional responses population line started at 

7.61, reached 8.55 DBM I plant, and then began decreasing to 2.81 where it regained 

low increment. 

The Durbin-Watson criteria applied to the deviations between model and 

experimental values produced results for each model as shown in Table 4.1 The 

boundaries of critical values are d L = 1.20 and du = 1.41 at 5% level of significance. 

The Calculated DBM (dd) value for all models except for May (1978) model were 

outside the critical bounds interval and near to 2, meaning that there was no 

dependence between residuals. In other words, we failed to reject the hypothesis of no 

negative correlation and no positive correlation for DBM. For the parasitoid, and for 

all models, the Durbin-Watson valued was less than the lower bound of critical value 

(dp < d L), proving a positive correlation between residuals for the insect. 
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4.3.1 Outcome of model population size predictions at different DBM initial 

population 

Figure 4.5 is an example which illustrates the model with Holling type 3 functional 

response predictions for changes in diamondback moth population size at fixed initial 

values of parasitoids population (0.08, 0.46 and 1.87) respectively. The lines show 

that the DBM population size at 2 weeks interval kept increasing with an increase in 

DBM initial population size, but the rate of increase reduced with an increase in 

parasitoid number. This demonstrates the efficiency of parasitoid in reducing the 

DBM population size. The graph is a direct biological ag:ilication of the model and its 

estimated parameters. If the time interval between collections was identical to the 

duration of the insect generation time, this can lead to the estimation of the respective 

insect population size after chosen generations and the obtained results can be 

compared to what is given from life table analysis. 

4.4 Discussion 

The unstable cyclic eruptive pulses of the empirical DBM population cannot 

be clearly explained from the analysis carried out in this chapter. However, their 

appearance may be due to favourable environmental conditions and abundance in 

food that trigger an outbreak which immediately collapses due to parasitism and 

others factors such as rainfall, which have been reported as major factors of DBM 

population dynamics (Wakisaka et al., 1991). In addition, good explanation of 

population dynamics is obtained when time lag reaction of DBM intra self-regulation 

and effects of parasitoid on DBM population size are both taken into consideration. 

Low parasitoid population c.bnsity at the beginning of the collection after release may 

reflect the period of adaptation of this insect to its new environment. An increase in 
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DBM population leads to more hosts that can be parasitized and therefore causes an 

increase on the parasitoid population. Sustained population fluctuations are zones of 

stabilization where the parasitoid successfully regulates the DBM. Points on the 

trajectory that could not be explained using Isaev's classification of insect outbreaks 

can be considered as stochastic near stable (or unstable) level. 

The DBM growth rate in our models is what is usually called in biology the 

intrinsic rate of increase. Models with Holling type 3 functional responses produced 

the highest value for this coefficient whereas the May ( 1978) model estimated the 

lowest. The discrepancy observed among models may be due to the ability for each 

model in fitting empirical data, or the difference in mathematical expression of model 

equations. Samthoy et al. (1989) showed that intrinsic rate of increase for DBM is 

higher at higher temperature. With a mean temperature of 17.6 °C they obtained a 

DBM intrinsic rate of increase of 0.11 and at 29 °C this parameter value became 0.23. 

Assuming that the DBM intrinsic rate of increase was uniform everywhere where the 

same climatic conditions are applied, model with Holling's type 2 functional 

responses should have offered the best estimation. However, the comparison of the 

intrinsic rate of increase reported by Samthoy et al. (1989) with our estimates would 

not be realistic since this parameter is highly dependant on environmental conditions, 

especially temperature. The annual average temperature was 16.7 at the study site, a 

different value from what was considered by the mentioned authors in their 

experiment close to 17.6. 

Among the studied models, only one (Beddington, Free and Lawton) model 

estimated the value of DBM carrying capacity. The calculated carrying capacity is 

realistic because several experiments have shown that more than 20 DBM per plant is 
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a good measure of the steady-state density for a cabbage plant to sustainable support 

diamondback moth species (Wang and Keller, 2003 ; Karimzadeh et al. , 2004). 

Early host-parasitoid models only described the outcome of parasitoid searching 

behaviour in terms of constants (Thompson, 1924; Nicholson, 1933). As studies have 

increased in the area and more data on the population dynamics has been 

accumulated; it offers better understanding of the system and new factors that could 

influence the levels of parasitism per capita efficiency of parasitoid abundance has 

been suggested. This leads to the proliferation of models with functional responses 

that differentiate host-parasitoid for predator-prey systems. The majority of these 

host-parasitoid models incorporate parameters such as search time and handling time 

(Hassel et al., 197 6, Getz and Mills, 1997). Unfortunately, none of the authors 

properly explained the dimension in which these model parameters are measured. In 

their laboratory study, Wang and Keller (2002) evaluated the oviposition time for D. 

semiclausum between 3 to 5 seconds and total handling including the time spent 

waiting for a host of 973 s. They also enumerated ways (wriggling and dropping off 

leaf, underside feeding) by which DBM larvae can avoid parasitoids. If we assume 

the second or minute as the time unit in this study for all models, our obtained 

predictions for these parameters will still be very small compared to experimental 

results obtained by the above authors. Lack of consideration of the host defensive 

behaviour in the models could be responsible for the discrepancy between our 

obtained results and experimentation. 

A good number of authors have observed active aggregation in parasitoid and 

some have stipulated that aggregation response of parasitoids is an important factor 

that contributes to host regulation (Hassell and May, 1974; Waage, 1983; Smith and 

Maelzer, 1986; Murdoch et al., 1987; Sheehan, and Shelton, 1989). The May model 
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predicted 0.33 as the index parasitism aggregation for D. semiclausum. Experimental 

work revealed that the D. semiclausum parasitism index falls in between 0.6 and 0.9. 

The same study also demonstrated that high degree of aggregation seems to generate 

density-dependant parasitism by D. semiclausum(Wang and Keller, 2003). In almost 

every case, our estimated models parameters related to the parasitoid failed to 

approximate existing experimental results. In generaL the existence of positive or 

negative correlations of residuals between empirical and model trajectories indicates 

dependence. The application of the Durbin-Watson criteria, which is a tool for testing 

the dependence between residuals, showed a total independence (no positive and no 

negative correlation) of residuals for the DBM with all models except May model. In 

the contrary, a strong residual correlation was demonstrated by the same criteria for 

the parasitoid. At this stage it is clear that none of the studied models was capable of 

mutually capturing the dynamics and interactions between DBM and its natural 

enemies. Several reasons may be responsible for the inadequacy of the models. The 

fitting procedure which typically try to maximize fit at either very short or very long 

time scales whereas as the main measuring features for these parameters are for the 

intermediate scale which may not have been selected during the fitting. Again, the 

fitting algorithm in searching for the set of parameters that fit the model well, may 

introduce some noise to the model time series. Lack of sufficient biological 

constraints and environmental factors in the models can lead to poor predictions. 

Legaspi et al. (1996) largely discuss the possible importance of temperature and other 

diurnal events on functional response for simulation models applied to biological 

control. What may have also contributed to this outcome is that we applied the models 

in a highly unstable situation after the introduction of an exotic parasitoid. In such 

condition, the introduced species may have not played the major role on pest 

67 



population regulation. In that case, a recommendation for mathematical models, 

which include some additional density-dependent or density-independent factors, 

should be used to fit the field data. It might again be possible that, the applied models 

which, originally were designed to answer qualitative questions about population 

dynamics could not encompass this human activity coupled with actual climate 

change effects. Therefore, new host-parasitoid models which incorporate these 

aspects may be thought of. Process-based models built using the results of laboratory 

and/or field experimentation which will explicitly account for all important system 

interactions are proposed However, because of the complexity of the ecosystems, it is 

unlikely ever to be possible to include all appropriate variables and interactions in a 

model. Also, the more parameters a model has, the less are its chances in providing 

good fit to independent data. Only by combining a wide range of consensus 

methodologies well built and fitted models are likely to emerge. From other angles, 

more effort should be given in fitting procedure too. It can be improved by developing 

a likelihood function that incorporates the best information on the structure of the 

measurement and dynamic noise. 

68 



Chapter 5 

Assessing the impact of biological control of Plutella 

xylostella through the application of Lotka-Volterra model 

Summary 

Population dynamics of diamondback moth (DBM), Plutella xylostella (L.) 

and its larval exotic parasitoid Diadegma semiclausum (Hellen) were studied for 15 

months before the release of parasitoid and 36 months after release in two areas at 

Werugha, Coast Province of Kenya and Tharuni, Central Province of Kenya, 

respectively. One hundred and twenty five (125) pairs (males and females) of D. 

semiclausum were released once at each location. For the pre-release period, the 

individual counts of all parasitoid species was summed up as "indigenous parasitoids" 

whereas for the post-release period, only the D. semiclausum population density was 

accounted for; as the parasitism rate by indigenous parasitoids was extremely low. For 

each area in pre and post release periods, we estimated Lotka-Volterra model 

parameters from the minimization of the loss function between the theoretical and 

experimental time series datasets following the Nelder -Mead mu! ti dimensional 

method. The model estimated a reduction in the value of the steady state of DBM 

population from 4.86 to 2.17 at Werugha and from 6.11 to 3.76 and 3.45 (with and 

without exclusion of the time before D. semiclausum recovery) at Tharuni when 

transiting from the pre-release and post-release periods, respectively. This change is a 

consequence of the newly introduced parasitoid, in the areas. The study presents a 

detailed technique for model parameters restoration and proved that the classical 
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biological control effort with D. semiclausum, in different areas of Kenya has had a 

positive impact in reducing pest (DBM) population density. 

5.1 Introduction 

The Diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: 

Plutellidae), adults are slender, very small, 1/3 inch (8mm) long, greyish-brown with 

folded wings flaring outward and upward at their posterior ends. Trey lay their eggs 

singly or in groups of two or three on the underside of low er leaves near the leaf veins 

or on the lower stalks. Upon hatching, they begin mining within the leaf tissue, 

whereas later instars feed on heart leaves of young plants and/or the underside of the 

leaf surfaces of more mature plants. 

Hymenopteran parasitoids of the genera Diadegma (Hymenoptera: 

Ichneumonidae) are among the most effective natural enemies of DBM. The four 

larval stages of DBM are attacked by Diadegma semiclausum with preference to the 

second and third larval instars. After pupation of the host larva, the parasitoid larva 

completes eating up the host and thereafter forms its own cocoon. An adult parasitoid 

emerges in about five days after cocoon formation. Parasitism rates of this parasitoid 

are host-density-dependent and super parasitism is known to result in to production of 

more female than male progeny (Konig et al., 1993). When the parasitoid is allowed 

to choose between parasitized and unparasitised DBM larvae, it is well able to 

distinguish between parasitized and unparasitised host larvae, showing preference for 

the unparasitised larvae (Konig et al., 1993). 

Diadegma semiclausum (Hellen) and Diadromus collaris (Gravenhorst) 

(Hymenoptera: Ichneumonidae) were introduced into New Zealand from England 

(Hardy, 1938; Thomas and Ferguson, 1989) as biological control agents against 
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DBM. For the same purpose, in 1950 D. semiclausum was taken to Indonesia 

(Sastrosiswojo and Sastrodihardjo, 1986). Talekar et al. (1990) and Talekar (1992) 

reported that the introduction of D. semiclausum caused more than 70% parasitism in 

highland areas of Taiwan, providing substantial savings in DBM control. In several 

highland regions of Asia, biological control of DBM through introduction of D. 

semiclausum has been a success (Biever, 1997; Poelking, 1992). With cabbage 

growing in Kenya also predominantly concentrated in the cool highlands, the 

importation and release of D. semiclausum in the country was expected to produce 

similar results as in the highlands of tropical Asia. 

In October 2001, two pilot releases areas were created in Kenya: the first 

release at Werugha in Taita Hills on July 2002 and the second release at Tharuni in 

Central Highlands of Kenya in September of the same year (Momanyi et al., 2006) . 

DBM and parasitoid population dynamics were studied fer 15 months before and 

three years after the release in each pilot site in order to measure the effect of the 

releases on DBM population and cabbage damage as well as the effect on indigenous 

natural enemies (Lohr et al., 2007). The objective of the present work was to study the 

biological control impact of the exotic parasitoid D. semiclausum in Kenya, using the 

Lotka-Volterra prey-predator model with self-regulation mechanism. This impact 

study was done through estimation of the model steady state values before and after 

the release of the exotic parasitoid and compares 

5.2 Materials and Methods 

5.2 .1 Site description and D ata collection 

Experimental results were obtained from pilot release areas in W erugha , 

Wundanyi Division in Taita Taveta District, Coast Province of Kenya and Tharuni 
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Limuru Division, Kiambu District, Central Province. A detailed description of the 

pilot release areas was provided in section 2.1.1 . It was mention that cabbage and kale 

are the main rain fed vegetable crops in both regions, with complementary irrigation 

during the dry season from shallow wells using buckets. The model was applied as 

explained earlier, (see sections 2.2.1, 2.2.2 and2.2 .3). These paragraphs also provide 

detailed explanations for DBM and D. semiclausum population density collection. 

5.2.2 Lotka-Volerra model 

Detailed description of the The Lotka-Volterra was made in section 3.3.2. The 

models equations are expressed as follows: 

(3.1) 

x(O) = x0 ~ 0, y(O) =Yo ~ 0 (Cauchy problem) 

Where, 

x(t) is the DBM population size at moment t, 

y(t) is the parasitoid population size at the same moment, 

a 1 is the growth rate or Malthusian parameter for the DBM population, 

a 2 is the intensity of natural death of individuals in the parasitoid population, 

/J1 and /32 are the coefficients of self-regulation in the respective populations, 

y1 and y 2 are the coefficients of interaction between the two populations, 

a 1 I /J1 is the equilibrium number for DBM at the absence of parasitoid, 

x0 is the initial value of DBM population density, and 

Yo is the initial value of the parasitoid population density. 

72 



Theoretical studies of model (1) by Wangersky (1978) have shown that it has 

two dynamic regimes: elimination of the predators for all possible initial values of 

population sizes if o:ir2 > a 2/31 or stabilization of both populations at a unique, non-

zero, stable level (under the additional assumption that the Malthusian 

parameter a
1 

> O. If a
1 

< O, both populations fade asymptotically for all non-negative 

initial values). The steady state or non-trivial equilibrium of the system is given by: 

(5. 1) 

The model was applied before the release with the interacting system DBM/ 

indigenous parasitoids and with only DBMID. semiclausum interacting system after 

release. 

5.2 .3 Other considerations 

The following considerations were made: 

a) The total number of all parasitoids collected before release was lumped 

together and called "indigenous pirasitoid". The assumption was made to have a 

bigger number for parasitoids before release as their individual figure were very 

small. 

b) The two species (DBM and D. semiclausum) have overlapping generations 

which normally allows the use of continuous ra1her than discrete time differential 

equations except other assumptions are made (Royama, 1971). 

c) Insect were not abundant enough to be measured by integer numbers therefore 

real numbers were used; consequently a model that can be apply to cases with just a 

few individuals was chosen. 
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d) Choosing a model with time-delay should have been an ideal choice, but as 

our goal was to evaluate the steady state point, must of such model in the literature are 

either not stable or their steady state is difficult to evaluate (Royama, 1971 ). 

e) Other sources of mortality which could have also been responsible for the host 

population trajectory were neglected. 

f) Godfray and Rees (2002) mentioned three mam reasons that justified the 

importance of a population growth rate parameter in the study of population biology. 

First, the population growth rate is central to population projection. Secondly, it is 

often the most natural response variable for the statistical analysis of the factors 

influencing a species population dynamics and, finally, this parameter intimately links 

population dynamics and evolutionary biology. Lotka-Volterra model predicts the 

growth rate of the insect pest (DBM) and offers straight forward means of calculating 

the steady state of population which is the leading parameter in achieving the study 

goal. 

5.2.4 Statistical criteria and residuals analysis for parameter estimation 

The statistical criteria and residual analysis for estimated parameters was 

carried out as explained in section 3.2.3. 

5.2.5 Model population size predictions 

The model was used to develop a graph that allows predictions of future DBM 

population size at fixed initial number of parasitoids. For a random selection of DBM 

initial population size between 0 to 30 DBM/plant, the model was used to estimate the 
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values of DBM at given time interval of 2n weeks (where n E N ensemble of integers) 

at fixed number of parasitoids. The above DBM data was plotted on the plane at fixed 

value of parasitoid/plant. A projection for any given DBM population from the 

abscissa to the parasitoid population line will give an estimation of the DBM 

population size at the next time interval. The same procedure could be performed with 

a chosen initial parasitoid population at fixed value of DBM/plant, leading to the 

parasitoid population prediction at given time intervals. 

5.3 Results 

5.3.1 Werugha before release 

The values of the estimated model parameters are shown in Table 5. 1. The 

model predicted an oscillating trajectory composed of a monotonously increasing 

function starting with 1.91 (initial DBM population size) and reached the first peak at 

12.22 DBM/plant where the line began to decline at decreasing rate until 2.3 before 

increased again (Figure 5.1). The indigenous parasitoids population followed a 

monotonously slow increasing function starting from 0.05, reaching its peak at 1.41 

and then declined to 0.3/plant (Figure 5.1). 

Figure 5.2 depicts the function Q on the plane (a1, /31) and the boundaries of 

the confidence domain .Qk, k = 1,2,3 for 1, 5 and 10% confidence levels, respectively. 

The boundaries of the confidence domains were hyperbolic trajectories. The trace P 

with equation /31 = 0.2 lai is the bifurcation line. 
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Table 5.1 Estimates of Lotka-Volterra model parameters and values of statistical criteria for 
Lotka-Voltera fitted to an empirical times series of the diamondback moth and its parasitoid, 
Diadegma semiclausum, before and after release in Werugha, Wundanyi Division, Taita 
Taveta District, Coast Province of Kenya and Tharuni, Limuru Division, Kiambu District, 
Central Province of Kenya. 

Werugha 
Estimated parameters Before release After rel ease Before release 

{66 weeks) (98 weeks} (66 weeks) 

DBM growth rate ( a 1 ) 27.76 27.76 27.63 

Natural death rate (a 2 ) 

(parasitoid) 33.28 l.80 58.6 
DBM self-regulation 

coefficient ( /31 ) 1.40 1.40 0.98 
Self-regulation 

coefficient ( /32 ) 

(parasitoid) 2.04 0.43 1.10 
Interaction coefficient 

( Yi ) (DBM/parasitoid) 35.14 145.19 40.69 
Interaction coefficient 

( y2 ) (parasitoid/DBM) 7.07 0.95 9.68 
Steady state population 

(DBM)(x) 4.86 2.17 6.11 
Steady state population 

(parasitoid) (y) 0.60 0.17 0.53 
Initial population size 

(X0 ) (DBM) 1.91 8.48** 5.25 
Initial population size 

( y 0) (parasitoid) 0.05 0.15 1.58 
Loss-function* 
(Qmin) 101.61 92.87 143.31 

* - Squared deviations between empirical and theoretical time series 
** -DBM population size at release 

Tharuni 
After release 1 After release2 

(104 weeks} (88 weeks) 

27.63 27.63 

74.18 58.67 

0.98 0.98 

375.25 26.77 

242.98 72.27 

29.51 19.56 

3.76 3.45 

0.1 0.33 

11.58** 9.70** 

0.05 0.04 

242.49 110.36 

Tharuni after release1
: Time series datasets made of 52 data were considered, these data 

correspond to all the post-releasing collections where the number of D. semiclausum is zero in 
the first 8 collections. 
Tharuni after release2

: Time series datasets made of 44 data were considered, these data 
correspond to 44 collections, excluding the 8 collections where no D. semiclausum was found 
on the field 
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5.3 .2 Werugha after release 

The model predicted a monotonously decreasing line starting at 8.48 as initial 

DBM population size, with stabilization starting at 0.74 DBM/plant (Figure 5.3). The 

D. semiclausum population shows a slowly oscillating line from 0.15 increases to 0.23 

and declines 0.17 /plant (Figure 5.3). 

5.3 .3 Tharuni before release 

The model predicted an oscillating trajectory starting at 5.3 as initial DBM 

population size, which reached its first minimum at approximately 2.7 DBM/plant; 

then began increasing up 10.0 where started to decline again at increasing rate and 

reached the second minimum of 4.0 DBM/plant where the line recommenced 

increasing (Figure 5.4). The indigenous parasitoids population density fluctuation 

also displayed an oscillating trajectory but with small amplitude compared to the 

DBM line. The line began with 1.58 indigenous parasitoids/plant declined at a 

decreasing rate until 0.15 where the growth commences at decreasing rate. The line 

reaches the peak at 1.03 indigenous parasitoids/plant then declined again (Figure 

5.4). 

The behaviour of function Q on the plane (a"/3
1

) and the boundaries of 

confidence domains .Qk, k = 1,2,3 for 1, 5 and 10% confidence levels are illustrated in 

Figure 5.6. P is the bifurcation line determined by: f3i = O. l 6o; . 

5.3 .4 Tharuni after release 1 

The predicted population line started with 11.58 DBM/plant and declined 

monotonously at a decreasing rate until 2.93 and then commenced increasing to later 

stabilize towards a value of3.76 (Figure 5. 6). Model predictions for D. semiclausum 
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Figure 5.1 Empirical population trajectories of diamondback moth and its indigenous 
parasitoids and predictions of the Lotka-Volterra model. Predictions are based on data 
collected before the first release of the exotic parasitoid. Werugha, Wundanyi Division, Taita 
Taveta District, Coast Province of Kenya. 
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Figure 5.2 Boundaries of confidence domains for estimated parameters of the Lotka-Volterra 
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parasitoids ( y0 ). Werugha, Wundanyi Division, Taita Taveta District , Coast Province of 
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Figure 5.3 Empirical population trajectories of the diamondback moth and its exotic 
parasitoid, Diadegma semiclausum, and predictions of the Lotka-Volterra model. Predictions 
are based on data collected after the first release of the exotic parasitoid. Werugha, Wundanyi 
Division, Taita Taveta District, Coast Province of Kenya. 

80 



13 

12 c 
tll 
ii 11 .... 
"' a. 
~ 10 
u; 
c: .g 9 

c: 
~ 8 
tll 
:; 
g. 7 
a. 

"C :g 6 

-~ 
:;; 5 
a. 
Ill 

5 4 
c: 

"' 0) 
;:; 3 
.5 
::E 2 
co 
c 

DBM experimental 

• O • Indigenous parasitoid experimental 

i 

' • ' 

-DBM model 

--Indigenous parasitoid model 

,-
_, I 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

Sampling before release (week) 

Figure 5.4 Empirical population trajectories of diamondback moth and indigenous parasitoids 
and predictions of the Lotka-Volterra model. Predictions are based on data collected before 
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Figure 5.5 Boundaries of confidence domains for estimated parameters of the Lotka-Volterra 
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Figure 5.6 Empirical population trajectories of the diamondback moth and its exotic 
parasitoid, Diadegma semiclausum, and predictions of the Lotka-Volterra model. Predictions 
are based on data collected after the first release of the exotic parasitoid without exclusion of 
the initial period where no D Uidegma semiclausum were recovered . Tharuni, Limuru 
Division, Kaimbu District, Central ProvinceofKenya. 
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Figure 5.7 Empirical population trajectories of the diamondback moth and its exotic 
parasitoid, Diadegma semiclausum, and predictions of the Lotka-Volterra model. Predictions 
are based on data collected after the first release of the exotic parasitoid excluding the initial 
period where no Diadegma semiclausum were recovered. Tharuni, Limuru Division, Kiambu 
District, Central Province of Kenya. 
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numbers began with a very small monotonous increase in population size starting at 

0.05. This initial value increased to 0.31 then decreased at around 0.98 D. 

semiclausum I plant (Figure 5.6). 

5.3.5 Tharuni after release 2 

The model prediction for the population development was an initial population 

size of 9.7 DBM/plant followed by steeply decreasing values for the first five 

samplings. Thereafter population size began oscillating with continuous peak 

reduction (Figure 5.7). For D. semiclausum numbers the Lotka-Volterra model 

predictions is an oscillation with low amplitudes (Figure 5.7). 

5.3.6 Comparison between Tharuni after release 1 and Tharuni after release2 

Table 5.1 shows that the Tharuni after release1 data set yielded in most cases 

higher model parameter values than Tharuni after release2
• In addition, the value of 

the loss function (Qmin) for Tharuni after release 1 was substantially bigger than the 

value obtained from Tharuni before release and after release2
. We compare the loss 

function of different datasets from the logic that before release, DBM was abundant in 

the field than after release. In contrary, parasitoids became abundant after release. Our 

loss function been made of the square difference between the number of these two 

insects and the theoretical results, expectation was to obtain lower value of Q . after 
m111 

the release. As intension was to measure the impact of D. semiclausum, in the 

following discussion while mentioning the post-release period in Tharuni, reference 

should be given to Tharuni after release2 
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5.3.7 Outcome of model population size predictions 

Figure 5.8 is an example that illustrates the model predictions for changes in 

diamondback moth population size at fixed initial values of the parasitoid population 

(0.49, 0.69 and 1.38) respectively in Tharuni. With an average parasitoid before 

release of 0.49/plant, the DBM population size at 2 weeks interval keeps on 

increasing with an increase in DBM initial population size. This demonstrates the 

inefficiency of the indigenous parasitoids. After release, with an average population 

size of 0.69 D. semiclausumlplant, the population size of DBM after 2 weeks increase 

with an increase in DBM initial population size until 12 DBM/plant where the line 

slowly reduced when approaching 28 DBM/plant. Considering the maximum number 

of D. semiclausumlplant equal to 1.38, similar line behaviour was obtained as for the 

previous with reduction rate on the DBM population size after 2 weeks and an earlier 

decrease, which started increase near 28 DBM/plant. Figure 5.8 is a direct biological 

application of the model and its estimated parameters, if the time interval between 

collection was identical to the duration of the insects generations time, this can lead to 

the estimation of the respective insects population size after chosen generations and 

the obtained results can be compared to what is given from life table analysis. 

5.4 Discussion 

In spite of the great number of mathematical models used to explain the 

dynamics and interactions between host and parasitoid, (Lotka, 1920; 1925; Volterra, 

1931; Hsu and Huang, 1995) and the numerous reports of success of D. semiclausum 

in controlling DBM in various part of the world (Talekar et al, 1990, Biever, 1997; 

Poelking, 1992), no attempt has been made to assess and predict the impact of this 

parasitoid using pure mathematical models. 
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Standard methodology for model parameter restoration was applied The 

model used is made of autonomous mathematical equations, i.e. without the variable 

time on the right land side of their respective functions. Absence of this variable 

leads to the assumption that the time interval between measurements is unity. In other 

words, real values for model parameters cannot be estimated; nevertheless, identified 

parameters are proportional to real values with an unknown coefficient of 

proportionality. Best estimated sets of parameters for the model in both studied sites 

before and after the release of the exotic parasitoid D. semiclausum correspond to a 

regime of population stabilization at non zero level for both insects. 

Normally, in the field of insect population, a deterministic description of 

phenomena is quite difficult, an empirical equations can only be casually adopted 

(Royama, 1971 ). The choice of these equations was hard to rationalise as there exists 

other forms of equations which could fit the same observed data. Obtaining good fit 

does not necessary imply that the chosen equations could clearly explain the type of 

interaction between the insects and well predict their population density. 

Consequently, we limited the scope on model parameters, estimation, casual 

comparison with empirical results and evaluation of the system steady states. 

The growth rate in our model equations is what is called in pure biological 

sense the "intrinsic rate of natural increase". This rate is dependant upon the genetics 

of the population and the physical quality of the environment such as temperature 

(Wangersky, 1978). Samthoy et al. (1989) estimated 0.11 and 0.25 at mean 

temperatures of 17.6 °c and 28.9 °c respectively for the Thailand DBM strain. In both 

pilot areas, temperature fluctuated between 13. 0c to 35 °c, the model predicted 

growth rate is very high compared to these values and the value obtained at Werugha 

differs from what was obtained at Tharuni. The discrepancy could be explained by the 
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climatic differences in particular higher temperature and lower rainfall at Tharuni 

(Lohr et al , 2007). Momanyi et al. (2006) also point out that these factors were 

responsible for the delay i1 the establishment of the newly introduce parasitoid at 

Tharuni. 

Honestly, companson of different results requires identical time and space 

scale between the studies. Unfortunately, attempts to predict species density are 

usually hampered by mismatches between the spatial and temporal scales at which we 

make measurements and the scale at which ecological phenomena influence patterns 

of species life requirements. Each author define its own time and space scale what 

make results comparison inadequate. Lack of information on natural history of the 

insects severely limits the ability to confidently offer accurate population density 

prediction. Which ability is further complicated by often non-linear response of 

species to habitat and vice versa. Sometimes, tre size and ecological context of 

habitat patches influence the demography of the insects. 

The model predicted higher value of self regulation coefficient for DBM in 

Werugha than Tharuni, this is explained by the favourable environmental conditions 

for prq:>er DBM development in the first area rather than the latter. In other part, low 

rainfall in Tharuni has lead to dusty conditions and deficit in evapotranspiration which 

resulted to discontinuity of cabbage (DBM host plant) production in the area. The 

mode l produced a high value for parasitoid self-regulation. We know from data 

presented by Momanyi et al. (2006) that one year after release in W erugha, 

competition between parasitoids was so strong that even first instar larvae that were 

still mining were parasitized So the high self-regulation parameter may truly reflect 

strong competition for host larvae. This becomes much clearer if we calculate a 

parasitoid/host ratio from our dataset: while the average value before release was 0.02 
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for Werugha before release, this increase to 0.06, 0.26, and 0.30 for the 151
, td and 3rd 

year after release, respectively. Corresponding values for Tharuni were much higher 

(0.03 before, 0.06, 0.28 and 0.47 for the three years after release). 

Based on the self-regulation mechanism for insect population (Nicholson, 

1958), the following analysis may possibly be made as tentative explanation for the 

DBM and D. semiclausum population fluctuation. The continued existence of DBM is 

necessarily limited to areas where all it requires for living is supplied in quantity and 

quality. Inside these areas the DBM population tends to increase progressively, but 

this increase automatically face some limiting factors such as climatic variations. This 

is the most likely explanation for the DBM population fluctuations before release in 

W erugha and Tharuni. After the release of D. semiclausum, especially in W erugha 

where the establishment of the parasitoid was very fast, the newly introduced species 

reduced the DBM population to such scarcity that it started to experience difficulty in 

finding enough hosts to parasitize and its population also declined. This phenomenon 

progressively tends to reduce the peak of DBM population density and increase the D. 

semiclausum population density, which both later began to stabilize. 

W angersky (1978) defined the interaction coefficient host/parasitoid ( y1 ) as a 

constant of proportionality, linking the parasitoid-inflicted mortality to the numbers of 

host and parasitoid. The same author defined the interaction coefficient 

parasitoid/host ( y2) as a relation between the increase in parasitoid population density 

to the number of hosts and parasitoids. In both studied areas, the values of these 

coefficients changed after the release demonstrating different interactions between 

DBM and D. semiclausum than DBM and indigenous parasitoid. This is justified by 

the D. semiclausum superior host searching capability and better association with 
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cabbage host plants, at least as far as its congeneric indigenous species is concerned 

(Rossbach et al., 2005). 

Wallner (1987) stated that natural multi-species assemblages of plants, 

animals and insects may possess several steady states or non trivial equilibrium 

points. The change in the steady state can be caused by a sudden shift in population 

number as a consequence of a newly introduced species or changes in environmental 

conditions or food availability. In both studied sites we found reduction of the steady 

state of DBM population after the release of D. semiclausum, other factors (food 

availability, environmental conditions etc.) remaining unchanged. Such an 

introduction moves the system non-trivial equilibrium point to a different level by 

decreasing the DBM population density and increasing the parasitoid population 

density with both populations later may converge and stabilize . 

The boundaries of the confidence domains for the model m most cases 

described hyperbolic trajectories in form of annular surfaces. These surfaces are areas 

where all possible combinations of model parameters can be found with a minimum 

value of the loss function Q. These domains were divided in two areas by a 

bifurcation line P. The surface below the bifurcation line P corresponds to stable 

coexistence of DBM and "indigenous parasitoids" before release, DBM and D. 

semiclausum after the release respectively. The surface above the line corresponds to 

elimination of the parasitoids . In the model, the DBM never go to extinction. 

From the graphs, it is clear that the model after the release could not properly 

capture the subtleties of ecological reality as before release. This could be due to the 

shifting of the system non trivial equilibrium. This was demonstrated by the gap 

obtained between the steady state of DBM population ( x) before and after release. 
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The estimated values at the same area in different periods, post and pre-release 

presented large reduction proving the impact of the newly released exotic parasitoid in 

the two areas. From this result, conclusion could be made that the biological control 

based on the introduction and release of D. semiclausum, in two different sides at the 

Central and Coast Provinces of Kenya has had a positive impact in suppressing pest 

(DBM) population density. The results obtained could encourage the expansion of the 

project to neighbouring countries with similar natural conditions in the entire East 

Africa region to help the farmer in controlling DBM and consequently minimize the 

unnecessary use of insecticides. 
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Chapter 6 

Host-parasitoid population density prediction using artificial 

neural networks 

Summary 

Integrated pest management (IPM) systems utilizing the use/release of the 

parasitoid D. semiclausum have been developed to replace the pesticides only 

approach to diamondback moth (DBM) Plutella xylostella (L.), worldwide the worst 

insect pest of cabbage family. Artificial Neural Networks (ANNs) methodology was 

applied to generate predictions for the population density of diamondback moth 

(DBM) Piute/la xylostella (L.) and its larval parasitoid Diadegma semiclausum 

(Hellen). Two data sets, each from a different release area in the Kenya highlands, 

and both collected during a three year period after release of the parasitoid, were used 

in the study. Two ANN models were developed using 48 data points (Werugha) and 

51 data points (Tharuni). The datasets were divided as follows: 30 were used for the 

training stage, 8 for cross-validation and 10 for testing at the first pilot site. At the 

latter pilot site, 3 0 were used for the training stage, 10 for cross-validation and 11 for 

testing. 

The results of developed ANN s models gave satisfactory results over the 

whole range of the dependent variable values for DBM and D. semiclausum (r2 = 0.81 

and r2 
= 0.99), and(/= 0.90 and r2 = 0.99) at Werugha and Tharuni respectively. The 

ANNs provided a powerful tool for host-parasitoid system modelling with few 

assumptions on the data and allowed for highly accurate predictions. The successful 

introduction of the DBM natural enemy in Kenya as biological control agent under 

the IPM system is a good achievement towards solution on excessive insecticides use . 
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To expand the available IPM tools for better management of the pest, there is a need 

for a model. Such a tool will help in monitoring. 

6.1 Introduction 

The importance of studies of host-parasitoid systems cannot be 

overemphasized, especially at this period marked by the development of integrated 

pest management (IPM) systems with emphasis on the use/release of parasitoids. Such 

studies date back to Lotka ( 1925) and Volterra ( 1931) where the main goal of 

studying host-parasitoid systems was to understand which biological factors are 

capable of generating cycle dynamics. Unfatunately such mechanistic approach had 

limited accuracy especially in predicting population density. 

Artificial Neural Networks (ANNs) models are highly flexible function 

approximators, which have shown their utility in a broad range of ecological, 

enviroomental and engineering modelling applications (Levine et al., 1996; Tonnang, 

2004; Deng, 2007) . The rapid emergence of ANNs applications in many fields can be 

attributed to their advantages over standard statistical approaches. Their flexibility 

provides a powerful tool for forecasting and prediction, however, the large number of 

parameters that must be selected only serves to complicate the design process (Maier 

and Dandy, 2000). In most practical circumstances, the design of ANNs is heavily 

based on heuristic trial and error processes with only broad rules of thumb for 

guidance. 

Many authors have used ANNs technique in ecological and environmental 

modelling. For example, Levine et al. (1996) classified soil structure from soil sample 

data with the help of ANNs, Zhang and Stanley (1997) adopted neural networks for 

water demand forecasting. Moreau et al. (1999) embedded neural networks in Lotka -
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Volterra predator prey model. Dreyfus-Leon et al. (2006) used ANNs to model the 

performance and information exchange between fishes . There are a range of papers 

that illustrate phytoplankton occurrence and succession (Recknagel et al., 1997) and 

their production using ANNs (Scardi, 1996, 2001; Scardi and Hardi, 1999). However, 

while ANNs have been employed by several researchers in ecological modelling, no 

attempts have been made on host-parasitoid population density prediction using this 

technique. 

The DBM been a major pest of cruciferous crops worldwide, has increasingly 

developed resistance to all major classes of insecticides (falekar and Shelton, 1993). 

Iga (1985) revealed, based on the study of DBM population dynamics using life table 

analysis, that natural enemies played an important role in regulating its population. 

Harcout (1963) and Sivapragasam et al. (1988) focused on the effect of rainfall on 

DBM. Wakisaka et al. (1991) made use of life table analysis and simulated rainfall to 

evaluate the effect of precipitation on loss of DBM eggs from the surface of plant 

leaves. Kobori and Amano (2003) later studied the effect of rainfall on a population of 

DBM under artificial conditions. They tried to determine the detailed effect of rainfall 

on DBM population on cabbage such as the quantity, duration and drop size of 

precipitation which can lead to the washing off of DBM eggs laid on cabbage leaf 

surface. 

Integrated pest management systems with emphasis on the use/release of 

parasitoids have been developed to replace the pesticides only approach to DBM 

control. When researchers found that local natural enemies did not provide adequate 

control of DBM in East Africa, a classical biological control programme was initiated 

by the International Centre of Insect Physiology and Ecology ~cipe) in Kenya and 

neighbouring countries. Subsequently, D. semiclausum was imported into Kenya in 
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2000 and released in April 2001 (Lohr et al. , 2007) . The population dynamics of 

DBM and its parasitoids was studied for one year before and three years after release 

in order to assess impact of the introduction. The present chapter was therefore geared 

to developing ANNs models that would allow for more general predictions of DBM 

and parasitoid populations, based on the data collected in two different pilot areas in 

Kenya. It was thought that ANNs based models, adequately trained with several 

parameters that affect the population density of these insects could be a better 

approach with more precise predictions than differential and discrete equation models. 

We further conducted some sensitivity analyses to measure the effect on rainfall on 

DBM population density. 

6.2 Materials and Methods 

6.2 .1 Sites and observed data 

Experimental results were obtained from the pilot release areas in Werugha 

and in Tharuni A detailed description of pilot release areas has been described 

elsewhere (see section 21.1). 

In Werugha the collected dataset contained 48 points and in Tharuni 51 points. 

These datasets were subdivided in three groups for (training, cross-validation and 

testing) in the both regions as (30, 8 and 10) and (30, 10 and I I) respectively. 

A data logger (Hobo Pro Series, Onset Computer Corp. Pocasset, MA, USA) 

was used to record temperatures and relative humidity (hourly records), while rainfall 

records were obtained from the Kenya Meteorological Services. 
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6.2 .2 Development of the models 

The development of an artificial neural network model involves several phases 

namely designing, topology, data normalization, training, cross-validation and testing. 

i) Design phase 

This phase includes; selection of neural paradigm, types of processmg 

elements (PEs) or "artificial neurons", number of layers, the connectivity of the 

layers, the transfer function, the learning algorithm, momentum factor and learning 

coefficient. 

ii) Transfer function 

Schalkoff (1996) reported that ANNs PE has many inputs that are multiplied 

by a weight and then summed. A non- linear function called transfer function is 

applied to calculate each output of the PE. A commonly used transfer function is the 

sigmoid function, which was also used in this study: 

iii) Topology 

l 
f(x)= --

1 +e-x 
(6.1) 

A typical back propagation neural network consists of three or rrme layers 

namely; input, hidden and output layers. Each layer is made of a number of PEs, 

whereby each PE is connected to every PE in the preceding layer by a simple 

weighted link (Wong and Henderson, 1997). The first step to form the network 

topology is to select the number of PEs in each layer. This number in the input layer 

depends on the data points of the input data. Five PEs (rainfall, relative humidity, 
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temperature, DBM andDiadegma semiclausum population density at time (t-1)) were 

considered as inputs for the developed models. The number of PEs in the hidden 

layers was determined through trial and error. When the networks did not converge, 

more PEs were added to the hidden layers. At Werugha and Tharuni, the ANN models 

developed have two hidden layers of 10 PEs and 12 PEs respectively (Figure 6.1 

(a,b )). The number of PEs in the output layer depends on the number of patterns to be 

recognized. Two PEs were considered in this study, representing DBM and D. 

semiclausum population density at time (t) respectively. 

iv) Data normalization 

In theory, the input.output data can have a very large domain of variation, so if 

the domain of variation of the input-output data is large, then the ANNs tends to be 

less stable. Therefore, this difficulty must be eliminated before the ANN enters its 

learning phase. This was done by pre-processing or scaling the input-output data in 

order to have small variation of the range of input-output data. This means that 

instead of using the input-output variables in term of their usual physical units, they 

were represented in dimensionless forms with values ranging from 0 to 1. To obtain 

the dimensionless input-output data, the following formula was used (Erahaghi et al. , 

1993): 

Onew 
Oold -Omin 

Omax-Omin 
(6.2) 

where, Onew, 0 0 1d, Omax and Omin are the newly obtained values of a parameter, the old 

value of a parameter, the maximum value and minimum value among a choose set of 

parameters respectively. 

98 



v) Training phase 

Training is the stage where the ANN learns the recognition task by adjusting 

the weights in the links between PEs created by processing representative examples 

(input and output pairs). This was done by finding of a set of suitable weights that 

minimizes the error between the predicted and the actual output. The values of these 

weights were first set randomly. During the training, the network error was computed 

using a back-propagation training algorithm following the procedure below. 

1) Maximum PE error was defined, 2) The weights in all the network links were 

randomized, 3) Sets of training patterns were selected (a pattern includes input and 

output pairs) , 4) Outputs at the output layer were evaluated by propagating the input 

from the input layer to the output layer in a feed- forward manner, 5) Error at the 

output layer was calculated, 6) If the sum -square error between this output and desired 

output was acceptable, the calculation was stopped, 7) If step (6) was not satisfied, a 

minimization of the errors was effected by adjusting the weights between the PEs in 

the following manner: i) Output PEs and their weights were adjusted, ii) Propagated 

backward to the layer adjacent to the output layer by calculating errors and adjusting 

weights, iii) the backwards calculations were continued until all errors were calculated 

and weights were adjusted (Tonnang, 2004; Deng, 2007). 

vi) Cross-validation and testing phases 

The cross-validation phase was divided in two steps: 1) The ANN was 

subjected to data points not seen during the training phase, and the output was 

predicted. 2) The ANNs was subjected to intermediate data points seen during the 

training phase to ensure that oscillation (over fitting) did not occur (Deng, 2007). 

Testing the ANN performance on new data sets was important to ensure 
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generalization, which was defined as the ability of the ANNs to recognize patterns for 

which its networks were not specifically trained (Schalkoff, 1996). 

vii) Models implementation 

A computer program writing in object oriented C++ programming language as 

described by Jeoy (1997) was used in this research to implement the developed ANN 

models in both pilot sites. 

6.2.3 Analysis of residuals 

The Durbin Watson test was applied on the discrepancy between theoretical 

(obtained from the model) and experimental (from field datasets) trajectories as 

described in section 2.3 . 

6.2.4 Rainfall analyses 

To study the effect of rainfall on the DBM population density, a common 

approach was used. It consisted to perturb (increase or decrease) rainfall value and 

recording the response of the built model, whilst holding all other parameters constant 

at their most likely point estimates. 

6.3 Results 

The trial and error procedure to get the desired topology of the ANN models 

begins by varying the rate of learning from 0.01 - 0.1 at step 0.01 and the number of 

hidden layers from 4 - 12, (4,4), (5,5), (6,6), (7,7), (8,8), (9,9), (10,10) to (12,12). 

Several topologies were examined and the best result of the training phase was 
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obtained with (0.15) learning ate and ( 10, 10) hidden layers and (0.2) learning rate 

and (12, 12) hidden layer at Werugha (Figure 6. 1 (a)) and Tharuni (Figure 6. 1 (b)) 

respectively. 

The predicted population densities of DBM and its parasitoid in two areas of 

Kenya resulting from the ANNs developed are presented in Figures 6.2-6.6. The 

determination coefficient between experimental and ANN model prediction testified 

the predictive power of the models. Figures 6.2-6. 3 show that ANNs gave satisfactory 

results over the whole range of the cependent variable values for DBM (r2 = 0.81) and 

D. semiclausum (r2 = 0.998) at Werugha. In Tharuni, similar results with very high 

R2
- values; 0.90 and 0.99 was obtained for DBM and D. serniclausum respectively 

(Figures 6.4-6. 5). The points on these figures are well aligned on the diagonal of the 

perfect-fit line. There are more discard values for the DBM compare to D. 

semiclausum but the highest are better predicted. 

Evaluation of the quotients skewedness/standard error and kurtosis/standard 

error for residuals gave values < 3. In addition, the results of the Shapiro-Wilk and 

Kolmogorov-Smimov tests showed that the residuals for the models in both pilot sites 

were normally distributed. This demonstrates the validity of the application of the 

Durbin Watson criteria for analysis of the sequence of deviations. Successively, 2.27 

and 1.79 was obtained for Durbin Watson (d) value for DBM and D. serniclausum in 

Werugha and 2.20, 1.99 in Tharuni . These values being closer to 2 demonstrate 

complete independence of residuals and confirm the validity of the developed models. 

Figure 6.6 displays the contribution of rainfall on the DBM population density. The 

figure shows that DBM population keeps on increasing at very low rainfall value and 

drastically drop when the rainfall value become more important. Although there 

appeared to be a general trend toward increasing rainfall rate with decrease in DBM 
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population density, the DBM population reached a point where, increasing rainfall did 

not have any effect. 
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Rainfall 

Relative humidity 

DBM at (t) 

Temperature 

D. semiclausum at (t) 

DBM at (t-1 

D. semiclausum at (t-1) 

a) 

DBM at (t) 

D. semiclausum at (t) 

DBM at (t-1 

D. semiclausum at (t-1) 

b) 

Figure 6.1 Developed ANNs model for the diamondback moth and its parasitoid D. 
semiclausum in Werugha (a), Wundanyi Division, Taita Taveta District, Coast Province of 
Kenya and in Tharuni (b), Limuru Division, Kiambu District, Central Province cf Kenya 
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Figure 6.2 Relationship between experimental and ANNs model prediction for diamondback 
moth in Werugha, Wundanyi Division, Taita Taveta District, Coast Province of Kenya. 
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Figure 6.3 Relationship between experimental and ANNs model prediction for D. 
semiclausum in Werugha, Wundanyi Division, Taita Taveta District, Coast Province of 
Kenya. 
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Figure 6.4 Relationship between experimental and ANNs model prediction for diamondback 
moth in Tharuni, Limuru Division, Kiambu District, Central Province of Kenya. 
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Figure 6.5 Relationship between experimental and ANNs model prediction for D. 
semiclausum in Tharuni, Limuru Division, Kiambu District, Central Province of Kenya. 
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Figure 6.6 Effect of rainfall on DBM population density at W erugha, Wundanyi Division, 
Taita Taveta District, Coast Province of Kenya. 
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6.4 Discussions 

Host-parasitoid systems, such as DBM-D. semiclausum, are distinctly non

linear, dynamic and complex. Powerful mathematical and computational techniques 

are usually required to elucidate and predict their behaviours. These tools generally 

include ordinary and recurrent differential equations, which lead to the construction of 

mechanistic models. The approach, which dates back to Lotka ( 1925) and Volterra 

( 1931) is typically focused to understand the causes of generic phenomenon. These 

models are explicitly constructed following biological principles and contain the 

major mechanisms or processes that are believed to generate the dynamic behaviour. 

After the construction, the mechanistic models are parameterized. Major bottlenecks 

arise during tre fitting of the models to real experimental data. On the one hand, no 

explicit method with satisfactory accuracy of fitting has been developed. On the other 

hand, choosing a mathematical model to describe a biological process is difficult 

because of the non-existence of standard criteria for selection of a mathematical 

model describing a particular population dynamics (Isaev et al. 1984; 2001 ). 

In our previous studies Tonnang et al. (2006), we attempted to minimize the 

mean squared difference between the numerical solution of mechanistic model 

equations (Lotka-Volterra, Leslie, Holling type 2, 3) and the experimental data for 

model parameter restoration. The obtained parameters failed in all cases in offering a 

satisfactory prediction via the employed models . 

In the present work, the power of ANNs was verified by a very high 

determination coefficient between DBM-D. semiclausum experimental values and 

predicted values for both developed models. The results are in agreement with the 

literature, in which ANN performances have repeatedly been reported in other 

ecological modelling studies to surpass the majority of traditional methods, especially 
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referring to prediction (Brey et al., 1996; Paruelo et al, 1997, Whitehead et al., 1997). 

This may find its explaration in the predominantly non-linear relationships and 

complexity that exit between the studied variables on the one hand, and the ability of 

ANNs to take directly into account any non-linear relationship relating the dependant 

variables to each independent variable of the system (Lek et al. , 1996). Others 

parameter such as food should have been taken into consideration in this study, but its 

non-consideration was due to the fact that both pilot sites are permanent crucifer 

growing areas. Food was always ii abundance hence its subtraction as one of the 

factors influencing the DBM population density. 

The application of the Durbin-Watson criteria, showed a total independence 

(no positive and no negative correlation) of res.iduals for the DBM and D . 

semiclausu m in both pilot sites respectively. While residual testing is not a sufficient 

condition for model adequacy, it is nevertheless a necessary condition to demonstrate 

that the model has offered good approximation to the data generating process, 

particularly for ANN whose estimation procedures could be susceptible to partial 

convergence. 

The method also presents some weaknesses. For example, no information 

about the underlying biological mechanisms between interacting insects is provided, 

while abiotic factors can be taken into consideration. The ANNs usefulness for 

forecasting often is limited by problems of over fitting and the lack of rigorous 

procedures for model identification, selection and adequacy testing. 

Harcourt (1963), Sivapragasam et al. (1988) and Wakisaka et al. (1991) 

conducted studies on the effect of rainfall on DBM population. Their results only 

mention that rainfall affects the DBM population without precision on the volume and 

how. The present work make allusion of rainfall impact on DBM p:>pulation without 
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any emphasis on which stage the population of the insect is affected. More elaborate 

studies were conducted by Kobori and Amano (2003). Their work pointed that DBM 

eggs laid on the upper leaf surface were washed off with precipitation of 17.3 mm in 1 

hour with 2.5 mm diameter drop while few eggs on the lower surface were washed 

off. The results illustrated that under same conditions as for the eggs, the falling rate 

of larvae decreased with advancing larval stadium except for the first larval stage. The 

rate of falling larvae increased with increasing treatment time. Kobori and Amano 

(2003) worked with artificial rain, whereas the present study was done under field 

conditions with real precipitation. Our results show that after a certain threshold 

(around 20 mm), the rainfall volume does not have any effect on the DBM population. 

Increase in rainfall volume at this level does not lead to a reduction .in DBM 

population. This is in agreement with Kobori and Amano (2003), who pointed out that 

even a rainfall of one hour duration with volume greater than 30 mm does not lead to 

a complete removal of the larvae. Before this rainfall analysis was performed with 

ANN, an attempt to measure the level of dependence between this variable and DBM 

population density using classical method such as Pearson correlation was done. The 

obtained results could not clearly state the type and level of relationship that exists 

between these parameters. We assume it could be a non-linear dependence. However, 

lack of precise duration and drop size of the precipitations limited the full 

understanding of rainfall effects on the DBM population in field condition. 

Overall ANNs can provide a powerful tool for host-parasitoid system 

modeling with few assumptions on the data. They will allow the user to achieve 

highly accurate predictions, which can greatly assist in decision making. The method 

also provides room for sensibility analyses, which consists of the arbitrary 
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modification of a parameter value and recording the response of the built model, 

whilst holding all other parameters constant at their most likely point estimates . 
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Chapter 7 

Knowledge-based fitting technique for ecological models 

Summary 

Appropriate fitting for a model can demonstrate whether it is really capable of 

producing observed dynamics or not. Restoration of ecological model parameters 

from experimental datasets has been and remains a very difficult task. An evaluation 

of an approach to tackle this problem was conducted. The technique began by 

obtaining the time series data to be fitted into a model. Chose a model with unknown 

parameters, studied the biotic and abiotic factors which are involved in the particular 

ecological phenomena and determined the range of the model parameters . Created a 

database for model initial values by slight changes on parameter magnitude values. 

For each set of parameter initial values, numerically and repeatedly solved the model 

equations. The results were used as inputs to an Artificial Neural Network (ANN) and 

their corresponding initial parameter value as outputs. The developed ANN was 

trained with back propagation algorithm for the networks to map and memorise the 

nonlinearity of the system. When the ANN model was properly set-up, field-time 

series datasets were then introduced to estimate the corresponding parameter values of 

the designated system. 

Two models were chosen (Lotka -Volterra and Beddington, Free & Lawton) to fit pest 

and parasitoid population obtained from a highland cabbage growing area in eastern 

Kenya. Model parameters were firstly estimated from the minimization of the 

squared difference between the numerical solution of the models and the empirical 

data using Nelder-Mead and Powell's method. Secondly, knowledge -based technique 

was applied for both models. The results showed that the parameter estimates 
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obtained from ecological time series datasets were quite realistic and biologically 

acceptable. The study presents a more elaborate fitting procedure, which incorporates 

the best information on the structure of the measurement and dynamic noise, taking 

into consideration possibilities of long-term drifts in weather and environmental 

parameters. 

7.1 Introduction 

Wood (2001) stated many reasons, which could facilitate model fitting. For 

example, mortality rate being a very difficult factor to be directly measure in the field, 

and population density is easier, good fitting of the latter to model may possibly infer 

the former. Comparison between different mechanisms for ecological interactions can 

be made with the help of fed models (Carpenter et al, 1994). Appropriate fitting can 

demonstrate whether a model is really capable of producing observed dynamics cr 

not, as well as pinpointing the features of data that are not explained by theory 

embodie d in a badly fed model. A good model-based calibration of data enhances the 

predictive potential of a model. Models that fit to time series datasets can be used to 

predict changes in a given populations and for potential effects of management 

interventions (Jassby and Powell, 1990; Hilborn and Walters, 1992). They can also be 

used to infer possible causes of temporal variability and to test consequences of 

natural or deliberate perturbations (Carpenter and Kitchell, 1993). 

Most dynamic ecological models are non-linear and standard methods that can 

guarantee the finding of the best fit to experimental datasets do not generally exist 

(Wood, 2001 ). There are a series of alternative of non-linear optimisation technique to 

choose from. For some models, fitting is straightforward For others the practical 
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difficulties have substantially undermined the usefulness of model fitting for scientific 

usage. 

Thee mam factors have been associated with difficulties in model fitting 

(Wood, 2001). First, the choice of measuring function, because, complex function 

may be difficult to minimize. Second, for well-behaved measures of model fit, 

numerically calculation of model solution should be carefully performed to avoid 

slowness and unreliable convergence. Third, it is difficult to quantify the efficiency 

and reliability of a method applied it fails to make good use of the structure of the 

model-fitting problem. Others obstacles for good models include elements that are not 

derived entirely from mechanistics first principles. Sometimes, some parts of the 

models are phenomenological characterisations of a process or a relationship. These 

terms introduce incidental assumptions into a model that may have nothing to do with 

the biological or ecological mechanisms on which the model was constructed. It is 

usually assumed that these incidental assumptions will have little effect on the 

qualitative facets of the model's dynamics, but this is not always the reality (Wood 

and Thomas, 1999). Further examples arise in pure estimation problems. The fonn of 

a parameter such as mortality rate is usually not known from observed population 

time series (Wood and Nisbet, 1991 ). Carpenter et al. (1994) pointed out that 

estimation of model parameters estimation is difficult because the incidental unknown 

relation that may exist between observation and predictor. 

In view of these difficulties, a number of techniques have been explored to 

address efficient fitting of models. These include, modified likelihood estimators that 

incorporate model sensitivity to uncertain predictors (Chandler, 1972). Reilly and 

Patino-Leal (1981) proposed a Bayesian approach in which the incidental parameters 

are integrated out of the joint posterior density function. A method called direct fi t 
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whereby a relation is established between current and future values of the model state 

variables has also been used. Once relevant state variables are estimated, nonlinear 

least squares regression is applied to find the set of parameters that best fit the data 

(Carpenter et al., 1994). The direct fitting approach usually failed with majority of 

nonlinear models and a nonlinear forecasting technique that can allow fitting of model 

process-error have been proposed To detect chaos in ecological data sets, Ellner and 

Turchin (1995) developed a method based on statistical theory for parameter 

estimation in nonlinear time-series models. Conditional least squares and maximum 

likelihood were described for general ecological time series models by Dennis et al., 

(1995) and better illustration and presentation of these methods were done by Ives et 

al. (2003). Gould and . Pollock (1997) have focused on maximum likelihood 

estimation under the robust design in lieu of least squares regression. Zeng et al. 

(1998) applied the Kalman filter and likelihood function to estimate their model 

parameters. Wood (2001) proposed partially specified models construction with part 

of the structure represented by unknown function, with other parts containing 

conventional model elements with only unknown parameters. Ellner et al. (2002) 

described a method of :fitting population dynamics models to time series data by 

gradient matching. The technique involves smoothing the population time series, in 

order to estimate the gradient, and then fitting rate equation using penalized 

regression splines. 

7.2 Models 

Relative to temporal representation of the dynamics of the system, ecological 

models can be written as system of delay differential equations with a finite number 

of continuities and discontinuities which include ordinary and discrete time equations. 
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Consider x1 as the value of the ith state variable and x as the vector of all state 

variables at time t. Similarly x,_r, is the value of state variable at t-r, then, 

dx; = J;(x ,x,_r ,x,_. , .. . ,t) for all t> O, t :;t{I; ,T?,. .. }, 
dt I I • '2 -

(7.1) 

where {7; ,T
2

, .•• }is the points at which the state of the system changes discontinuously 

(the elements of this set may be state variable dependant) . Assuming that J; does not 

actually depend on the system state prior tot = 0, so that initial state, x1 (0), rather 

than initial histories, are required to integrate the models. In other words, J;is subject 

to the restriction that its partial differential with respect to any element of x,_r, is zero 

if t < r, .The models may be supplemented by discontinuities as follows (Wood, 200 1) 

(7.2) 

where T/ is the instant after T1 and r1- the instant before. The particular models given 

above and in Examples provide illustrations from the class of models. 

Majority of discrete time models and all ordinary differential equation models are 

special cases of this class of models. For example, by setting J; (.) = Ofor all, we get 

the general class of models that can be written as systems of difference equations: 

(7.3) 

This class includes matrix models and discrete difference equation models. 

Similarly, by having no discontinuities and no lags the general model becomes a 

model written as a system of ordinary differential equations. 

dJ; -' = J; (x, t) . 
dt I 

(7.4) 

The class of models chosen covers a high proportion of models actually used 

in ecology. 
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7.3 Example: host-parasitoid system (diamondback moth-Diadegma 

semiclausum) 

The example presented here used field data for an insect diamondback moth 

(DBM), Piute/la xylostella (L.) (Lepidoptera: Plutellidae) and its exotic parasitoid 

Diadegma semiclausum The system dynamic is the one which has been studied 

throughout this work. Good explanation of the system was done in the introduction. 

This section utilized the time series data collected after release of the parasitoid in 

Werugha. 

7.3 .1 Reasons for models selection 

a) Godfray and Rees (2002) mentioned three main reasons that justified the 

importance of a population growth rate parameter in the study of population biology. 

First, the population growth rate is central to population projection. Secondly, it is 

often the most natural response variable for the statistical analysis of the factors 

influencing a species population dynamics and, finally, this parameter intimately links 

population dynamics and evolutionary biology. In this context, the Lotka-Volterra and 

Beddington et al (1975) models both predicted the growth rate of the insect pest 

(DBM). 

b) The two species (DBM and D. semiclausum) have overlapping generations 

in Kenya, which normally allows the use of continuous (Lotka, 1920; Volterra, 1931 

model equations) rather than discrete time and differential equations except some 

considerations are made (Royama, 1971). Among those, are the periods of 

observation, which must be shorter than the generation of insects (Royama, 1971 ). As 

DBM probably has a generation time of about 3 weeks in coastal Kenya (Rossbach et 
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al., 2005), only 20 datasets of consecutive collection, corresponding to period of 

maximum parasitism and exactly 14 days interval between collections was used with 

Beddington et al(1975) model. 

c) Models were selected within the constraint imposed by the simplicity 

necessary to their analysis and the ability for parameters to fulfil basic biological 

meaning. 

After models selection, the following assumptions were made: i) other sources 

of mortality which could have also been responsible for the host population trajectory 

were neglected. ii) Lohr et al (2007) indicates 3 other parasitoids that attack DBM in 

the region before release of D. semic lausum. However, after release their parasitism 

rate became extremely low hence their effect was neglected. 

7.3 .2 Ordinary differential equation: Lotka-Volerra model 

The Lotka-Volterra model has already been very well developed and 

explained in section 3.2 of chapter (see equation 3.1). 

7.33 Discrete equation: Beddington, Free and Lawton model 

Conforming to the discrete seasonality of most arthropods, their models are 

phrased finite recursive equations of the basic form 

(7.5) 

where, x, , x,+, , y, , Yi+t give the host and the parasitoid population densities m 

successive generations £spectively, A is the geometric growth factor for the host 

() .. =er where r is the intrinsic rate of increase), and c is the number of parasitoid 

produced for each host individual attacked. The function/(x,y,), gives host survival 
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with respect to parasitoid and host densities and can be varied to reflect various 

parasitoid foraging behaviours (May et al., 1981 ). The Nicholson-Bailey model, one 

of the pioneer models of this class, stipulates that, in the absence of parasitoids, the 

host population will grow geometrically, which is not realistic. Beddington et al. 

(1975) modified the Nicholson-Bailey model by introducing intraspecific competition 

between hosts after the reproduction phase and came out with the proposed equations: 

x,+1 = x, exp(r[I-..5..]-ay,), Yi+i = cx,[1-exp(-ay,)], 
K 

(7.6) 

where K is the "carrying capacity" for the host in the absence of the parasitoid and (a) 

the parasitoid per capita searching efficiency. This model implies that host density-

dependence acts at a particular time in the life cycle in relation to the stage attacked 

by the parasitoids. 

7.4 Multilayer Perceptron (MLP) using the Back propagation algorithm 

There are different types of artificial neural networks (ANN). The most widely 

used ANN is known as Multilayer Perceptron (MLP) using the Back propagation 

algorithm. This type of ANN is excellent at prediction and classification tasks. This 

type of network has two modes of operation during the training or learning phase: 

Feed forwocd computation and the weights updating operation. In feed forward 

computation, when an input pattern is presented to the input layer, the units in the 

next layer use the weighted sum of inputs and the activation function to calculate their 

outputs. These outputs are passed forward for computation in the next layer until the 

output layer is reached. During the weight updating operation, an error signal, which 

is based on the discrepancy between the desired response and the actual output of the 

network, is rack propagated through the network for the updating of weights. The 

back propagation algorithm is generally represented by: 
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w/+1 =w;/+178/J'(s), (7.7) 

where, w/ stands for the weights of the connection fran unit i in layer k to unit j 

m layer k + 1 , T\ is a small constant called the learning rate, 8/ is the signal error, I; 

is inptt vector to the network, f () is the derivative of the network transfer function 

ands is the sum of all the weights. 

The recursive formula (7. 8) is the key to back propagation learning. It allows 

the error signal of a lower layer ( 8 j k ) to be computed as linear combination of the 

error signal of upper layer ( 8/+ 1
). ln this manner, the error signals ( 8/ ) are back 

propagated through all the layers from the top to the down. This also implies that the 

influences from an upper layer to a lower layer (and vice versa) can only be affected 

via the error signals of the intermediate layer. The MLP received inputs and predicts 

outputs. The error between the desired outputs and the obtained outputs are used to 

validate the effectiveness of the model and fine-tune the weights to more accurately 

map the process dynamics. 

7.5 Fitting Lotka-Volterra and Beddington et al. models by direct 

minimization 

Previous chapters (3, 4) have largely shown how to fit such models by direct 

minimization. For each model, the technique was rigorously follows in restoring their 

parameters. Nelder-Mead and Powell ' s methods for minimization were used 

respectively in each model. Analysis of residual was carried out with Durbin Watson 

criteria. 
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7.6 Knowledge-based fitting technique 

Ecological models are made of parameters. Fitting these models to time series 

involve finding values of the parameters and usually the initial values that best 

matched the data according to some modeller defined criterion. We implemented an 

iterative framework (Table 1). 

7.7 Fitting Lotka-Volterra and Beddington et al. models by Knowledge-based 

technique 

To demonstrate the procedure above, the fitting of Lotka-Volterra and 

Beddington et al. models with time series data was conducted for the diamondback 

moth and its parasitoid, D. semiclausun. The procedure began with step3 as the data 

was already available and the model chosen. 
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Table 7 .1 Descriptive steps of the lrnowledge-based fitting technique 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

Step 7 

Step 8 

Rule of procedure 

Obtain the time series data to be fitted into the model. 

Choose a model with unknown parameters. 

Study the biotic and abiotic factors which involve in the ecological 
phenomena, this will help figure out the boundaries of the modei parameters 

Create a database of model initial values (by slight change on parameter) in 
respective of the biological and physical inference range obtained from step 3 

For each set of parameter initial values, numerically and repeatedly solve 
the model equations and saved the results x(t)and y(t) obtained 

Build an artificial neural network model (ANN) with multilayer perceptron 
(MLP) 

Optimisation of the network architecture, the number of hidden layers and 
the number units in the hidden layers are determined and conduct an 
independent test on the model to verify model prediction and accuracy. 

Fed the ANN with time series data to estimate the 'alues of parameters 
corresponding to your system. 
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Step 3. The physical and biological environments factors, which involve the 

diamondback moth and its parasitoid, population fluctuations, were studied. Life 

cyde for both insects were properly understood, this help in choosing the ranges of 

the model parameters. For example, the DBM growth rate was chosen to belong at 

[0.20, 0.34] (Shira~ 2000, Shu-Sheng et al., 2002) and the Parasitoid death rate at 

[3.00, 6.00] (Fitton and Walker, 1992; Konig et al., 1993). 

Step 4. Created a data base by slightly change on parameter values in respective of 

the ranges obtained from step 3 for each parameter. 

Step 5. With each set of parameters initial values, we numerically and repeatedly 

solve the model equations and saved the results x(t) or x
1 
and y(t) or y

1 
obtained. 

Step 6. Built an artificial neural network model (ANN) with multilayer perceptron 

(MLP). The MLP modelling process generally proceeds as follows: we began by 

determine the form of the pre- and post-processing of the data x(t) or x
1 
and y(t) or y

1 

that will be used as inputs to ANN and their corresponding initial parameter value as 

outputs. These values were standardized so that they are all on the same order of 

magnitude. After standardization, determination of the network parameters such as 

learning rate and momentum was done. 

Step 7. The developed MLP uses back propagation as training algorithm. The 

network architecture consists of three layers. The input layer was made of two 

neurons numerical values for x(t) , y(t) (Lotka-Volterra model) and x, and 

y, (Beddington et al. model). 

The training was done by finding a set of suitable weights that minimizes the 

error between the predicted and the actual output. The values of these weights were 
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first set randomly. During the training, the network error was computed using a back

propagation training algorithm. 

The cross -validation phase was divided in two steps: a) The MLP was 

subjected to data points not seen during the training phase, and the output was 

predicted. a) The MLP was subjected to intermediate data points seen during the 

training phase to ensure that oscillation (over fitting) did not occur. Sensitivity 

analyses and independent test on the MLP to verify its prediction and accuracy was 

conducted. 

Step 8. Fed the MLP with field time series data to estimate the values of parameters 

corresponding to DBM-D. semiclausum 

7.8 Parameter estimates 

The sum of squared deviation between empirical and theoretical time series 

with Nelder-Mead and Powell's methods and knowledge-based parameter estimates 

for Lotka-Volterra and Beddington et al. models are given in Tables 7.2 and 7.3 . The 

models both estimated the value of DBM growth rate. This parameter is equivalent in 

pure biological sense to the "intrinsic rate of natural increase" . This rate is dependant 

upon the genetics of the population and the physical quality of the environment such 

as temperature (Wangersky, 1978). Sarnthoy et al. (1989) estimated 0.11and0.25 at 

mean temperatures of 17.6 °c and 28.9 °c respectively for the Thailand DBM strain . 

In our pilot area, temperature fluctuated between 13 . 0c to 35 °c, it was found that the 

models predictions for this parameter were rather too high or too low when estimated 

by minimization of the sum of squared deviations between empirical and theoretical 

time series. With reference to Sarnthoy et al. (1989) laboratory results and some 

knowledge about the genetic variation of the Kenya DBM strain (Rossbach et al., 
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2005) , the proposed knowledge based fitting technique estimated a DBM growth rate 

of 0.30 for both models. The obtained result is quite realistic and biologically 

acceptable. 

The natural death rate of the parasitoid was high with Nelder-Mead and very 

low with Powell's method. From biological point of view (Rossbach et al. , 2005, 

Momanyi et al., 2006) the parasitoid is a solitary insect, which is justified by its total 

dependence on DBM as its host for multiplication and perpetuation. In the absence of 

DBM, parasitoid populations may rapidly decrease until extinction. 

Biologically, a self-regulation greater than 1 does not make much sense 

because the empirical population never reached the numbers where high intra-specific 

competition could be expected. We however, expected a self-regulation coefficient 

close to 1 for the paras itoid, which can explain the strong competition for host larvae 

in the field. Momanyi et al. (2006) showed that one year after release, competition 

between parasitoids was so strong that even first instar larvae that were still mining 

were parasitized. Some studies conducted in the pilot site has shown that the D. 

semiclausum host searching capability is high and the insect better association with 

cabbage host plants, at least as far as its congeneric indigenous species is concerned 

(Rossbach et al. 2005). This justified the strong interactions between this parasitoid 

and its host and vice versa. 

The estimated value of carrying capacity from Beddington et al. model (Table 

7.3) was about 160, 16, and 9 DBM/plant with Nelder-Mead, Powell and Knowledge 

based method respectively. The problem is the estimated first two values, which are 

an order of magnitude higher than the value suggested from field data. Nevertheless, 

in outbreak situations and without effective parasitism, especially in maturing crops, 

the DBM numbers recorded can surpass 16 DBM/plant (Karimzadeh et al., 2004). 
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From the studies made by Rossbach et al. (2005) and Momanyi et al. (2006) 

we deduced that the parasitoid per capita searching efficiency might be greater than 

the values predicted by :Nelder-Mead and Powell's methods, what justify the value 

obtained with knowledge -based technique. 

The observed time series together with the model outputs are sketches in 

Figures (1.1-7.4). Most of these figures presented poor fitting of the models to data, 

especially for parasitoid. Good fitting was observed for DBM with Beddington et al. 

model. To confirm the suitability of the models, Durbin-Watson test for 

autocorrelation between residuals was conducted. The Durbin-Watson criteria applied 

to the deviations between model· and experimental values produced results for each 

model as shown in Tables 7.2 and 7. 3. .The closest these values are to 2, the greater 

independence exists between residuals. Knowledge based technique has shown an 

improvement in fitting the models. For both models, the gap between the Durbin -

Watson criteria values rpd and dp) and 2 are considerably reduced. The reductions 

were very high with DBM than the parasitoid at the point that parameters estimates 

with our propose technique shown perfect fit to Beddington et al. model (Figure 7.3). 
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Table 7.2 Estimates of Lotka-Volterra model parameters fitted to an empirical times series of 
the diamondback moth and its parasitoid, Diadegma semiclausum, after release in Werugha, 
Wundanyi Division, Taita Taveta District, Coast Province of Kenya using sum squared 
deviations between empirical and theoretical time series and Knowledge-based fitting 

Sum squared deviations between empirical 
and theoretical time series with: Knowledge-based 

Estimated Parameters Nelder-Mead method Powell's method technique 

BM growth rate ( a 1 ) 27.76 8.71 0.30 

Natural death rate ( a 2 ) (parasitoid) 1.80 0.08 5.25 

DBM self-regulation coefficient ( /31 ) 1.40 0.25 0.86 

Self-regulation coefficient ( /32 ) 0.98 
(parasitoid) 0.43 9.84 

Interaction coefficient ( y1 ) 23.45 
(DBM/parasitoid) 145.19 69.59 

Interaction coefficient ( y 2 ) 1.55 
(parasitoid/DBM) 0.95 0.35 

Initial population size ( x 0 ) (DBM) 8.48 10.66 10.74 

Initial population size ( y 0) 
0.17 

(parasitoid) 0.1 5 0.25 

Loss-function* ( Qmin) 92.87 87.79 

DBM Durbin-Watson criterion (dd) 1.05 1.13 
1.27 

Parasitoid Durbin-Watson criterion (dp) 
0.79 0.73 0.84 

* - Squared deviations between empirical and theoretical time series 
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Table 7.3 Estimates of Bedington et al. model parameters fitted to an empirical times series 
of the diamondback moth and its parasitoid, Diadegma semiclausum, after release in 
Werugha, Wundanyi Division, Taita Taveta District, Coast Province of Kenya using sum 
squared deviations between empirical and theoretical time series and Knowledge-based 
fitting. 

Sum squared deviations between empirical 
Estimated Parameters and theoretical time series with: Knowledge-based 

Nelder-Mead method Powell's method technique 

DBM growth rate (r) 0.07 0.05 
0.30 

DBM carrying capacity (K) 160.15 16.50 9.00 

Parasitoid per capita searching 0.37 

efficiency (a) 0.27 0.24 

Initial DBM population size (x0) 7.60 8.72 
8.48 

Initial parasitoid population size (y0) 0.02 0.05 
0.004 

Loss-function* ( Qmin ) 45.25 47.84 

DBM Durbin-Watson criterion (dd) 2.08 1.87 
2.05 

Parasitoid Durbin-Watson criterion (dp) 0.22 0.21 0.37 

* - Squared deviations between empirical and theoretical time series 
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Figure 7.1 Population trajectories of diamondback moth estimates of Lotka-Volterra model 
parameters fitted to an times series after release of its parasitoid, Diadegma semiclausum in 
Werugha, Wundanyi Division, Taita Taveta District, Coast Province of Kenya using sum 
squared deviations between empirical and theoretical time series and Knowledge-based 
fitting. 
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Figure 7.3 Population trajectories of diamondback moth estimates of Beddington et al model 
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7.9 Discussion 

The approach described in this work provides a way of fitting ecological 

models, which estimates parameters that precisely accounts for the physical and 

biological environments factors involve in the system. More importantly, it provides a 

practical means of connecting models to data with inferential knowledge through 

proper mapping of nonlinearity and good prediction. Knowledge based technique 

stands on two major computing stages: 1) Numerically solve the models equations to 

obtain the database for initial values and corresponding model parameters, 2) 

Develop, train test and make use of the MPL for prediction. The first stage is obvious 

to majority of theoretical ecological modeller. In the contest of mapping and 

predicting nonlinear systems, the superiority of MLP over standard statistical methods 

is well known (Paruelo and Tomase\ 1997; Karul and Soyupak, 2006). MLP are 

highly flexible function approximators, which provide a powerful tool for forecasting 

and prediction. 

The method described has several practical benefits in fitting ecological 

models. For example, missing values, uneven sampling, and unobserved state 

variables present no major difficulties. Generally, at the second stage of computing, 

when training a MLP, our goal is to find an optimal set of connection weights. But we 

can go one step beyond. After the trained weights are found, we can find optimal 

input patterns, which produced any desired output pattern by, simply imagine that the 

input neurons are actually a new hidden layer at the front of the MPL network. By 

doing this, the fitting method becomes efficient, reliable and makes it possible to have 

some confidence in the notion that differences in model fit reflect real differences in 

model performances. Rather than differences in how much help was given to the 

fitting routine. Going one step beyond also, provides the means, of new parameter 
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estimates to be done in case a change in environmental factors that occur over year or 

generation time scale is inferred. Sometimes ecological models present chaotic 

behaviour with certain set of parameters. Fitting chaotic system with method such as 

trajectory matching is problematic, but knowledge based technique offer no nuisance 

features. The approach make use of data collected at any appropriate scale of the 

system, bypassing the assumptions and uncertainties that could have arise when 

parameters are imported from other systems or small-scale of field collections. 

In general, puzzling results from our examples at some part of this study are 

the big divergence between estimated parameters from one technique to another and 

especially within difference minimization methods. Firstly, a query may arise to the 

fitting procedure, whichin this case, typically tries to maximize fit at either very short. 

or very long time scales. The minimization may be following this direction whereas 

the main measuring features for the parameters are for the intermediate scale, which 

initially may not have been selected. Secondly, the fitting algorithm with sum of 

square minimization in searching for the set of parameters that fit the model well, may 

introduce some noise to the model time series. Thirdly, these algorithms once applied 

search for the minim um of the loss function and generates values that result in better 

convergence of the equations. Two type of minimum usually exist (local and global), 

the latter means the truly lowest function value has been found. But, finding global 

minimum in reality i; a very difficult problem that is why the loss function Q has 

different values for the two methods. For each value of the loss function Q 

corresponds a set of parameters. With knowledge-based technique, the issue of global 

and local minimum is overcome by ANN, which powerfully optimizes the function. 

Fourthly, the application of the models in a highly unstable situation after the 

introduction of an exotic parasitoid could have also contributed to the discrepancy 
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outcome. Because, such an introduction purposefully intends to move the system 

equilibrium to a different level and therefore creates instability that must have 

affected the outcome of the calculations. In this case appropriate methods, which can 

easily map nonlinearity, have to be applied. 

It is unfortunate that the models selected to illustrate knowledge fitting 

technique could not all offered perfect prediction for the trajectories of the collected 

data. This just demonstrates the critical reality that exists in choosing a mathematical 

model to describe a particular population fluctuation. Isaev et al. (2001) stated clearly 

that there is no standard criterion for a mathematical model selection. Often, we can 

only proceed on a sequential check of the existing models starting from the simplest 

or create a new model to describe the population. We opted for the first option, 

because, during the process of developing a new mechanistic model for the collected 

time series data, we may be confronted by three issues: i) what are the state variables? 

ii) How are the states variables functionally interrelated? iii) What are the numerical 

values of model parameters? These should have brought news challenges that are not 

in the scope of the study. 

An elaborate fitting procedure was proposed, which incorporates the best 

information on the structure of the measurement and dynamic noise, taking in 

consideration possibilities of long-term parameters drift (weather, environmental and 

evolutionary). Our approach demonstrated an ability to improve parameter estimates 

by accounting for observation errors. Nevertheless, let acknowledge the fact that, even 

modest errors cau,se substantial difficulties in model identification. Perfect 

manipulation and understanding of a system within an ecosystem, can substantially 

increases the probability of detecting the underlying model, reduces uncertainty in 
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parameter estimates and yields models capable of predicting wider range of system or 

the entire ecosystem state. 

The approach presented is net a panacea. Let not intend to say that any model 

well fitted will be good to explain an ecological or biological phenomenon. Before 

any fitting attempt, the model must incorporate some ecological factors, including 

freak catastrophic events and density dependence, which can be important in 

particular circumstances. Bad fit may be consequence of lack of these factors and not 

the fitting procedure performance. Nonetheless it is believed that part of the 

difficulties in ecological modelling stems from lack of explicit connection tools 

between models and data. Most often, theoretical models in ecology tend to 

emphasize on qualitative dynamics. In normal situation, the end product of such 

investigation should have been a broad map of the phase parameter space, which 

should have lead to perfect understanding of the system and offer guideline for 

decision -making. In this context, we think the interface between model and data 

presented here, will be helpful toward making new theories more accountable to 

experimental data. 
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Chapter 8 

General discussion, Conclusion and Prospects 

8.1 General discussion 

Relatively few attempts have been made to fit predator-prey models to field 

time series directly. A major challenge in fitting such models is that these data usually 

include process error, which is random variation in the actual numbers of organism 

present, and observation error, which occurs because the data are estimates only from 

those numbers. The presented work in chapters 3, 4 and 5 is a detailed technique for 

restoration of parameters. A loss function, which measures the discrepancy between 

the models values and observed values, was defined, and a numerical process was 

used to select the parameters which minimize this function . Results from the fitted 

mechanistic models were unable to identify a suitable model that could mutually 

explain the dynamics of Diamondback moth and its exotic parasitoid, Diadegma 

semiclausum. 

Poor fitting may be due to many reasons : 

1. The population dynamics of these insects are inherently nonlinear. The rate of 

population change may be affected not only by the current population density but also 

by lagged density. Consequently specific mechanisms may involve either intrinsic or 

extrinsic factors. This lag structure of population may be too complex and can 

incorporate several delays on the population rate of increase. In such situation, direct 

model parameters restoration becomes extremely studious. 

2. The critical issue when applying methods that estimate parameters associated with 

interacting populations such as Diamondback moth and Diadegma semiclausum at a 
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particular time in models is to ensure that they are the most appropriate parameters for 

the specific question the model is intended to address. For example, the survival rate 

of Diamondback moth measured in the fie Id at a particular time for a specific period 

might not be a good description for the same population at different period. It would 

then be inappropriate to use the same measurement for all periods. This is the result 

from how complex the situation in nature. 

3. When fitting models to our ecological data, we find ourselves in the situation where 

the functional form of the model is not known, and then the only task is the estimation 

of its parameters. From theory several alternative models were chosen, and each one 

was contracted with the data in order to determine which one offered the best fit. 

Owing to the fact that good number of models explaining dynamics between host and 

parasitoid has been developed; it is challenging to choose the exact one for a 

particular time series. 

However, 1he fitting exercise is full of merits. The effort of fitting models is 

exemplified by the information that it provides about the dynamics. First, the form of 

the fitted model may suggest underlying mechanism, or narrow the rITTl?;e of possible 

mechanisms, so that the model is a step toward obtaining an improved model. Second, 

the fitted model can be used to characterize the significant features of the system 

dynamics. Such features of interest for population and epidemic dynamics are the 

overall extent of chaos versus stability, the level of predictability versus unpredictable 

noise in the dynamics, and how both of these varied as a function of current state of 

the system. Finally the fitted model can be used to evaluate a proposed mechanistic 

model, or compare alternative proposed models, by fitting the same model to output 

from the mechanistic model and comparing with the model fitted to data. 
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The polar alternatives of fitting simple mechanistic model, is purely 

descriptive statistical model, which has been the dominant approach for modelling 

and quantifying population fluctuations. While it is recognized that both approaches 

have limitations, both are widely used. Our research suggests that a combination of 

mechanistic and statistical population modelling, reflecting the actual state of 

knowledge about the system, can be useful in practice for improved forecasting and 

characterization of population dynamics. Moreover, the fitted model can provide 

information on the mechanisms driving the observed dynamics. By applying this 

approach it is thought that, an improvement in the model parameter estimates has 

been made. The remarkable achievement is that parameters ranges coincide with 

biological borders. 

Another successful result from this study was the development and 

implementation of an adaptive model using artificial neural network for host

parasitoid population density prediction. It was shown that artificial neural network 

can provide a powerful tool for host-parasitoid system mode Hing with few 

assumptions on the data. It will allow the user to achieve highly accurate predictions, 

which can greatly assist in decision making. The method also provides room for 

sensibility analysis, which consist of the arbitrary modification of a parameter value 

and recording the response of the built model, whilst holding all other parameters 

constant at their most likely point estimates. 

8.2 Conclusion 

It would be unrealistic to expect any mechanistic model to perfectly fit census 

field data because of the irregularities in nature, since parameter values are _expected 

to change. It is also generally accepted that field collected time series data are never 
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100% accurate and may show a deviation of up to 20%. Thus our estimated 

parameters are only well-informed guesses at best. Stanfield and Bleloch (1986) sum 

it up with: "We can never really validate the sort of model that we have built, we can 

only hope to gain confidence in it" In the present work was successful in the sense 

that: 1) This provides guidance on the possibilities that most actual mechanistic host

parasitoid model may not be accurate in the full prediction of DBM and Diadegma 

semiclausum population dynamics. 2) This elucidates a useful application of models 

for impact assessment of the effect for a newly introduce species within the region. 

3) It proves and demonstrates the predictive power of artificial neural network for 

hosf.parasitoid population density. 4) The work proposes and elucidates an interface 

. between model and data which may be helpful toward making new theories for 

models to become more accountable to experimental data. Our wishes is that let this 

practical exercise become useful to modellers, either in terms of mathematical 

interpretation of ecological information or stimulating innovative thinking about an 

old field of research. 

8.3 Prospects 

From this study, the following suggestions were made 

8.3.1 Recommendations directed to the fitting of mechanistic models 

1. Before fitting, the model parameters should be considered as variable which may 

depend on abiotic factors such as climate (rainfall and temperature). 

2. Laboratory studies and field experiments should be conducted if possible to 

determine value of some parameters before the fitting exercise. 
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3. Direct estimati:m of parameters from time series for predator-prey or host

parasitoid are rarely done in practice and would be advisable for good understanding 

and studies of the systems. 

4. Fitting models to time series has significant advantages for estimating and 

forecasting parameters. Data can be collected at appropriate scales for the system of 

interest, thus by passing the assumptions and uncertainties that arise from small-scale 

experiments. Parameter estimates could be improved by accounting for observation 

errcrs. However, even modest observation errors cause substantial difficulties in 

model identification. 

8.3.2 Co11siderations which may help model> end users in terms of management 

and making policies 

1. The first problem is scale which could be considered general to all ecologists. 

When time comes to apply results from models in management and policy, the main 

challenge is to deal with the wide array of scales that are often incompatible with one 

another. Frequently, management and policy are exercises that operate at different 

scales of ecology. Management scales are determined by administrative boundaries, 

land ownership, and policy is developed at even broader scales. To think that Nature, 

which follows its own scaling rules, can somehow be made to fit within the arbitrary 

scales of management and policy is fantasy. To argue further based on the present 

work, organisms such as insects follow their own algorithms in responding to their 

respective habitat and this determines the scales at which they operate and over which 

variation in environmental conditions may be relevant to them. 

2. It is important to be clear about the goals and objectives both within a study 

and, among subjects studied. A model developed for our purpose is not immediately 
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transferable to some other purpose, even if it is a "good" model. Investigations may 

be conducted for multiplicity of purposes and at a variety of levels. 

3. It must be noted that the species scientists wishes to predict the dynamics, 

interactions and fluctuations are nature dependant entities and any conclusions or 

actions are bound to be accompanied by uncertainty as the nature self . 
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Appendix A: Runge-Kutta algorithm 

The Lotka -volterra model is made up of nonlinear ordinary differential equations that 

cannot directly be solved. For finding approximate solutions, numerical methods are 

generally used. The Runge-Kutta algorithm belongs to a family of numerical methods 

which use several intermediate points with lxk , x k + h J to make a better prediction 

Of yk+I . 

(A.1) 

where / 0 , J.. , f 2 ••. ; are the intermediate points being used and h the step size . 

Because of its fast convergence, the fourth order Runge-Kutta algorithm was applied 

in this work, its iterations are as follow: 

k h k h 
f 1 = f(x +-,y +....,.. fo), 

2 2 

k h k h 12 = f(x +-,y +- f1), 
2 2 

/ 3 = f(x k +h , yk +hf2 ), 

Yk +I = Y k +!!..Uo +2f, +2/2 + / 3). 
6 
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Appendix B: Sample Computer program in CIC++ programming language for 

Lotka-Volterra model parameter restoration with NerldeF-Mead Algorithm 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <time.h> 
#include <windows.h> 
#define MP 22 
#define NP 21 //Maximum value forNDIM=20 

typedef double MAT[MP][NP]; 
MATP; 
double Y[MP], PT[MP]; 
//int I,ITER,J,NDIM; 
int I,ITER,J,NDIM; 
double FTOL; 
double RandomO 
{ 

} 

float x; 
/* Set evil seed (initial seed) */ 
srand( (unsigned)time( NULL)); 
x =(float) rand()/RAND_MAX; 

return x; 

/*********** Lotka Volterra Equations*****************/ 
double prey( doublet, double h, double p, doubler, double c, double a) 
{ 

} 

double result; 
result= r * h - c*h*h - a * h * p; 
return result; 

double predator( double t, double h, double p, double m, double e, double b) 
{ 

} 

double result; 
result= - m * p - e*p*p + b * p * h ; 
return result; 

/* Utility function */ 
double square( double value) 
{ 

return value * value; 
} 
II user defined function to minimize .by chep 
double FUNC(double *P) 
{ 

inti; 
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double preyPopulationDensity, predatorPopulationDensity; 
double qht, qpt; 
double a,b,c,e,r,m,A,B,H,Pp,T,Wl,W2,Xl l,X12,X21,X22,X31,X32,X41,X42; 
double n, s; 
double populationPrey[49]; 
double populationPredator[ 49]; 
double result; 

double dbm[49] = {}; 

double NaturalEnemy[ 49] = {}; 

double q = 0.0, step = 0.01; 

r=P[l]*Random(); 
c=P[2]*Random(); 
a=P[3]*Random(); 
m=P[4]*Random(); 
e=P[5]*Random(); 
b=P[6]*Random(); 
H=P[7]*Random(); 
Pp=P[8]*Random(); 
Wl=H; 
W2=Pp; 

A=O; 
B=49; 
s = l; 

II The Runge-Kutta Method of order four for systems of differential equations 
n = (B-A) Is; 
T=A; 

for (i = O; i < n; i++) 

{ 
Xl 1 = s * step * prey(T, Wl, W2, r, c, a); 
X12 = s *step* predator(T, Wl, W2, m, e, b); 

X21 = s * step * prey(T + sl2.0, Wl + Xl 112.0, W2 + X1212.0, r, c, a); 
X22 = s *step* predator(T + sl2.0, Wl + Xl 112.0, W2 + Xl212.0, m, e, b); 

X31 = s *step* prey(T + sl2.0, Wl + X21/2.0, W2 + X2212.0, r, c, a); 
X32 = s *step* predator(T + sl2.0, Wl + X21/2.0, W2 + X2212.0, m, e, b); 

X41 = s *step* prey(T + s, Wl + X31, W2 + X32, r, c, a); 
X42 = s *step* predator(T + s, Wl + X31, W2 + X32, m, e, b); 

Wl = Wl + (X11+2.0 * X21+2.0 * X31 + X41) I 6.0; 
W2 = W2 + (X12 + 2.0 * X22 + 2.0 * X32 + X42) I 6.0; 

T = A + (i + 1) * s; 
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populationPrey[i] = Wl ; 
populationPredator[i] = W2; 

qht = qpt = 0.0; 

for (i = O; i < 49; i++) 

} 

} 

{ 
preyPopulationDensity = populationPrey[i] - dbm[i]; 
preyPopulationDensity *= preyPopulationDensity; 
qht += preyPopulationDensity; 

predatorPopulationDensity = populationPredator[i] - NaturalEnemy[i]; 
predatorPopulationDensity *= predatorPopulationDensity; 
qpt += predatorPopulationDensity; 

result=qht + qpt; 
printf("Q: %t\n", result); 

return result; 

void AMOEBA(MAT P, double *Y, int NDIM, double FTOL,int *ITER) 
{ 

/*-------------------------------------------------------------------
!Multidimensional minimization of the function FUNC(X) where Xis 
'an ND IM-dimensional vector, by the downhill simplex method of 

Nelder and Mead. Input is a matrix P whose NDIM+l rows are NDIM
dimensional vectors which are the vertices of the starting simplex 
(Logical dimensions of P are P(NDIM+ 1,NDIM); physical dimensions 
are input as P(NP,NP)). Also input is the vector Y of length NDIM 
+ 1, whose components must be pre-initialized to the values of FUNC 
evaluated at the NDIM+ 1 vertices (rows) of P; and FTOL the fractio
nal convergence tolerance to be achieved in the function value. On 
output, P and Y will have been reset to NDIM+ 1 new points all within 
FTOL of a minimum function value, and ITER gives the number of ite
rations taken . 

. -------------------------------------------------------------------*/ 
II Label : e l 
const NMAX=20.00, ITMAX=S0000000000.00; 
//Expected maximum number of dimensions, three parameters which define 
II the expansions and contractions, and maximum allowed number of 
//iterations. 

double PR[MP], PRR[MP] , PBAR[MP]; 
double ALPHA=l.0, BETA=0.5, GAMMA=2.0; 
int I,IHI,ILO,INHI,J,MPTS; 
double RTOL,YPR,YPRR; 

MPTS=NDIM+ 1; 
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*ITER=O; 
el:ILO=i ; 

if (Y[l] > Y[2]) 
{ 

} 

IHI=l; 
INHI=2; 

else 
{ 
IHI=2; 
INHI=l ; 

} 
for (I=l; I<=MPTS; I++) 
{ 
if (Y[I] < Y[ILO]) ILO=I; 

if (Y[I] > Y[IHI]) 
{ 

INHI=IHI; 
IHI=I; 

} 

} 

else if (Y[I] > Y[INHI]) 
if (I !=IHI) INHI=I; 

//Compute the fractional range from highest to lowest and return if 
//satisfactory. 

RTOL=2.0*fabs(Y[IHI]-Y[ILO])/(fabs(Y[IHI])+fabs(Y[ILO])); 
if(RTOL < FTOL) return; //normal exit 
if(*ITER = ITMAX) 

{ 
printf(" Amoeba exceeding maximum iterations.\n"); 
return; 

} 

*ITER= (*ITER) + 1; 

for (J=l; J<=NDIM; J++) PBAR[J]=O.O; 
for (I=l; I<=MPTS; I++) 

if (I !=IHI) 
for (J=l; J<=NDIM; J++) 

PBAR[J] += P[I][J]; 
for (J=l ; J<=NDIM; J++) { 

PBAR[J] /= 1.0*NDIM; 
PR[J]=(l .O+ALPHA)*PBAR[J] -ALPHA *P[IHI][J]; 

} 
YPR=FUNC(PR); 
if (YPR <= Y[ILO]) 
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{ 

} 

for (J=l; J<=NDIM; J++) 
PRR[J]=GAMMA *PR[J] + (1.0-GAMMA)*PBAR[J]; 

YPRR=FUNC(PRR); 

} 

if (YPRR < Y[ILO]) 
{ 

for (J=l; J<=NDIM; J++) P[IHI][J]=PRR[J]; 
Y[IHI]=YPRR; 

else { 
for (J=l; J<=NDIM; J++) P[IHI][J]=PR[J] ; 
Y[IHI]=YPR; 

} 

else if (YPR >= Y[INHI]) 
{ 

} 

} 

if (YPR < Y[IHI]) 
{ 

for (J=l; J<=NDIM; J++) P[IHI][J]=PR[J]; 
Y[IHI]=YPR; 

fot(J=l; J<=NDIM; J++) PRR[J]=BETA *P[IHI][J] + (1.0.BETA)*PBAR[J]; 
YPRR=FUNC(PRR); 

} 

if (YPRR < Y[IHI]) 
{ 

for (J=l; J<=NDIM; J++) P[IHI][J]=PRR[J]; 
Y[IHI]=YPRR; 

else 

} 

for (I=l; I<=MPTS; I++) 
if (I!= ILO) 
{ 

for (J=l; J<=NDIM; J++) 
{ 

PR[J]=0.5*(P[I][J] + P[ILO][J]); 
P[I][J]=PR[J]; 

} 
Y[I]=FUNC(PR); 

} 

else { 

} 

for (J=l; J<=NDIM; J++) P[IHI][J]=PR[J]; 
Y[IHI]=YPR; 

goto el; 

void mainO 
{ 
NDIM=8; II 2 variables 
FTOL=le-8; //User given tolerance 
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//define NDIM+l initial vertices (one by row) 

P[l][l]=.07; P[1][2]=.5; P[1][3]=.01; P[1][4]=.03; 
P[1][5]=.02; P[1)[6]=.01; P[1][7]=12.41; P[1][8]=1.7; 

P[2][1]=.09; P[2][2]=.17; P[2][3]=.05; P[2][4]=.29; 
P[2][5]=.02; P[2][6]=.02;P[2][7]=15.6; P[2][8]=2.9; 

P[3][1]=.32; P[3)[2]=.04; P[3][3]=.8; P[3][4]=.073; 
P[3][5]=.09; P[3][6)=.053; P[3][7]= 9.8; P[3][8]=0.22; 

P[4][1]=.03; P[4][2]=.02; P[4][3]= .013; P[4][4]=.85; 
P[4][5]=.045; P[4][6]=.03; P[4][7]= 5.00; P[4][8]=2.3; 

P[5][1]=1.0; P[5][2]=.052; P[5][3]=.01; P[5][4]=.029; 
P[5][5]=.0l; P[5][6]=.02; P[5][7]=7.41; P[5][8]=2.9; 

P[6][1]=.72; P[6][2]=.044; P[6)[3]= .048;P[6)[4]=.093; 
P[6)[5]=.02;P[6][6]=.083;P[6][7]=4.5;P[6][8]=0.22; 

P[7][1]=.008; P[7][2]=.083; P[7][3]= .097; P[7][4]=.703; 
P[7][5]=.071; P[7][6]=.03; P[7][7]= 8.98; P[7][8]=0.03; 

P[8][1]=.23; P[8][2]=.72; P[8][3]= .53; P[8][4]=.025; 
P[8][5]=.045; P[8][6]=.053; P[8][7]= 2.9; P[8][8]=5.23; 

P[9][1]=.8; P[9][2]=.02; P[9][3]= .03; P[9][4]=.05; 
P[9][5]=.045; P[9][6]=.93; P[9)[7]= 9.60; P[9][8]=1.9; 

//Initialize Y to the values of FUNC evaluated 
//at the NDIM+l vertices (rows] of P 

for (I=l; I<=NDIM+l; I++) 
{ 

} 

for (int v=l;v<=8;v++) 
{ 

//PT[l]=P[I][l]; PT[2]=P[I][2]; 
PT[ v ]=P[I][ v]; 
} 

Y[I]=FUNC(PT); 

//for (I=l; I<=NDIM+l; I++) printf(" %14.lOf\n", PT[I]); 
//call main function 

for (I=l ; I<=NDIM+l; I++) 
{ 
for (J=l; J<=NDIM; J++) printf(" o/of', P[I][J]); 
printf("\n"); 

} 
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} 

AMOEBA(P,Y,NDIM,FTOL,&ITER); 

//print results 
printf(''\n Number of iterations: %dm \n", ITER); 
printf(" Best values of Parameters ~n"); 

for (I=l ; l<=NDIM+l; I++) 
{ 

for (J=l; J<=NDIM; J++) printf(" %5.4£'', P[I][J]*Random()); 
printf("\n"); 

} 

printf(''\n Best mimimum values of the Q function:\n"); 
for (I=l; I<=NDIM+l; I++) printf(" %5.4f\n", Y[I]); 
printf(''\n "); 
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