














of datasets. This routine was combined as unique function and embedded in a Nelder-
Mead algorithm or Pawell,s multidimensional method and minimized with randomly
chosen initial values of parameters. An attempt to evaluate the biological control
impact using Lotka-Volterra model was made. Knowledge based adaptive models
using artificial intelligence technique (neural networks) was applied for the prediction
of DBM and D. semiclausum population density. The Knowledge based method
showed good predictions capabilities than mechanistic models. Lack of abiotic factors
for model parameters restoration may be the reasons of poor prediction for
mechanistic models. More realistic procedure for model parameters restoration
(Knowledge-based fitting), which can account for all factors was developed.
Statistical analysis and comparison betwe_en the different developed models was
performed. The Lokta-Volterra model has measured the parasitoids impact on the
DBM biological control through a quantitative estimate of the effectiveness of the
newly introduced species D. semiclausum. These equations may therefore be used as
tool for decision making in the implementation for such pests management system
strategy. An artificial neural network was identified as the best tool for DBM and

D.semiclausum population density prediction.
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Tactical models are specifically made for particular system and designed for
forecasting reasons. This second group of models is intensively applied in integrated
pest management programs to predict the likelihood success of its implementation, the

number and appropriate time for parasitoid release (Godfray and Rees, 2002).

1.2 Host-parasitoid system: Diamondback moth-Diadegma semiclausum
Host-parasitoid system is an ecological interaction between victim (host) and
exploiter (parasitoid) where the second species consume biomass from the first
species (Hamish, 2000). Parasitoid is a term generally used to describe insects that
develop as larva on the tissue of other arthropods (usually an insect), which they
eventually kill (Hassell and Waage, 1984). Adult female parasitoids forage actively
for host and deposit their eggs, on or near host individuals. After hatching, the larvae

begin feeding on host tissues and complete their development either within or on the
host. Godfray (1994) mentioned that parasitoids are abundant in almost all terrestrial
ecosystems and they are one of the main sources of mortality for their hosts.
Diamondback moth (DBM), plutella xylostella L. is the major pest of Brassica
crops worldwide, with the ability to develop resistance to all pesticides based against
them (Talekar and Shelton, 1993). For this reason, development and implementation
of Integrated Pest Management (IPM) based on biological control is now considered
to be the best solution to combat this highly resistant insect pest. In the past years,
development and implementation of biological control-based IPM has made
remarkable achievement in the management of DBM in many parts of the world such

as Southeast Asia and United States of America (Telekar and Shelton, 1993). IPM has
been based on the introduction and augmentation of insect parasitoids or natural

enemies in various farms where crucifer vegetables are cultivated


















Diadegma semiclausum, (Hellen) 1s an exotic parasitoid was released in
Kenya for biological control of the diamondback moth (DBM), Plutella xylostella L,
the worst pest of crucifers in East Africa. Population dynamics of the pest and its
parasitoids were studied one year before and three years after the release of the

parasitoid.

13 Biology and ecology of the diamondback moth and the Diadegma

semiclausum

Diamondback moth adults are slender, small, 1/3 inch (833mm) long, greyish-
brown moths with folded wings flaring outwards and upwards at their posterior ends
(Figure 1.1). ‘They are distinguished by “having” three palc?, triangular markings along
the inner margin of the wings (Figure 1.1). Moth activity is greatest at dusk and dawn.
They hover around plants searching for a mate or a place to deposit eggs. Male moths
are attracted to the pheromones produced by females. During the day, moths can be
flushed out and easily noticed by walking down between the crop rows. (Harcourt,
1957; Telekar and Shelton, 1993). Diamondback moths lay their eggs singly or in
groups of two or three on the underside of lower leaves near the leaf veins or on the
lower stalks. Egg hatch in 5 to 10 days depending on the prewiling temperatures (~
25°C) (Figure 1.2). Diamondback larvae pass through four instars (growth stages).
Upon hatching, they begin miniﬁg within the leaf tissue, whereas later instars feed on
the leaves of young plants and/or the underside of the leaf surfaces of more mature
plants (Figures 1.3-1.4). The diamondback moth larva can damage cruciferous plants
by feeding and mining the leaves (Figure 1.4) (Velasco, 1982; Talekar and Yang,

1991; Konig et al., 1993; Telekar and Shelton, 1993).



Diadegma-semiclausum (Figurel.5) is a solitary koinobiont endoparasitoid of
DBM, black in colour and 5-7 mm long. Females live up to 37 days when fed on 10%
sugar solution and 73 days when fed on dilute honey and can lay eggs 28 days after
emergence. Males can survive for a period of 40 days when fed on either sugar
solution or dilute honey (Ooi, 1992). The four larval stages of DBM are attacked by
Diadegma semiclausum with preference to the second and third larval instars.
Temperature in the range 15°C-25°C results in the sex ratio of about 1:1 and 25°C is
considered as the optimum temperature for parasitoid development. After pupation of
the host larva, the parasitoid larva completes eating up the host and thereafter forms
its own cocoon. An adult parasitoid emerges in about five days after cocoon formation
(at 25°C). The adult parasitoid feéds on flower nectar, mates and starts laying eggs
after emergence (Fitton and Walker, 1992). Parasitism rates of this parasitoid are host-
density-dependent and super parasitism is known b result in production of more
female than male progeny (Koning et al, 1993). When the parasitoid is allowed to
choose between parasitized and unparasitized DBM larvae, it is able to distinguish
between parasitized and unparasitized host larvae, showing preference for the

unparasitized larvae.

14  Brief history of modelling methods for host-parasitoid system

Until now, hostparasitoid dynamics have been modelled in two ways. The
first approach uses computer simulation where virtual reality of agricultural pests with
the explicit aim of improving pest management rather than understanding the
underlying biology (Gutierrez and Baumgartner, 1984). The second way is based on
pure mathematical differential equation with the assumption that birth and death are

continuous processes as developed by (Lotka, 1925; Volterra, 193 1; Turchin, 2003) or









1.7 Justification of the study

Cabbages and kale are one of the bases of smallholder vegetable farming in
Kenya. They are a major vegetable consumed by a large number of the population.
DBM has been for many decades; their major pest and usually farmers sperd a lot of
money on the purchase of insecticides to fight against this pest. We all know the
negative impact of insecticide to the environment and its bad effects on human health.
The successful introduction of the DBM natural enemy in Kenya as biological control
agent under the IPM system is a good achievement towards solving the problem of
excessive insecticide use. To expand the available IPM tools for better management
of the pest, there is need for a model capable of explaining the dynamism and
interactions between these two organisms: the DBM and its natural enemy. Such a
tool will help in monitoring and forecasting (early waming) of potential outbreaks,
which will facilitate formulation of policies and future control strategies in Kenya and

other parts of the world where the pest is important.
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with head cabbage (Brassica oleracea var. capitata) as the main cash crop. Soils are
mostly degraded, low i organic matter and sandy.

Tharuni is located below the ridge along the inner slope of the eastern
escarpment of the Rift Valley at an altitude of approx. 2000m. Located on the leeward
side, the area receives 450-700mm of rainfall per annum. The soils are sandy loam
soils of low to medium fertility with a generally dusty and dry environment.
Agricultural production is characterized by mixed cropping with maize and beans as

the major staple crops and cabbage as the main cash crop grown mainly during the

short and long rain (October to December and March to June, respectively). Kale
(Brassica oleracea acephala L.) is grown throughout the year by all home steadand
provides a refuge for both diamondback moth and natural enemies during the dry |

s€asons.

2.2 Me thods

Due to the complexity, dynamism and interaction within species in a giving
ecosystem, our modelling approach was based on several modelling techniques.
Firstly, searched for suitable mathematical modelling with the help of ordinary
differential equations in continuous and discrete forms. Secondly, focus was made on
a knowledge based adaptive modelling tool. In each part, proper statistical analysis
was made to measure the models’ efficiency.

In mathematical modelling technique, concentration was made on the testing
well-known continuous models of preypredator (Lotka-Voleterra, Holling-Tanner
type 2 and type 3 and Leslie) and also some discrete time host-parasitoid systems such
as Nicholson & Bailey and Hassel models. Continuous models equations were solved

via a computer program written in C/C++ using the Runge-Kutta 4" algorithm with a
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where,

x:. is the empirical value of DBM population density at time j,

y:. is the empirical value of parasitoid population density at time j,

G is the solution of the Cauchy problem for the respective system of

differential equations, which describes the DBM dynamics in time,
GY) are the values of function G calculated at times j,

G’ is the solution of the Cauchy problem for the respective system of -

differential equations, which describes the dynamics of parasitoids,

G’? are the values of function G’ calculated at time j,

0 = (0 gy, 0us ) > Qyp, 15 the set of parameters for function G,
and @, is the set of parameters for the function G’

I= (x,,¥,) is the initial vector of population size.

Considering the fact that the initial values of population size x,and y, are
also used as a parameter in (2.1), the space dimensions of the confidence domains
become larger than those of the model parameters. In this case, the space of model
parameters presents its own structure that is specified by bifurcation surfaces, which
when transited, lead to quality changes of the dynamical regime of population

fluctuations.
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2.23 Nelder-Mead multidimensional algorithm

This method belongs to a class of nonlinear optimization techniques known as
simplex searches. It uses a non-degenerate simplex as its design for function

sampling. A non-degenerate simplex is a set of n+1 vertices in R" that has the

property that the set of simplex edges are adjacent to any given vertex spans R". A
simplex is a line in R', a triangle in R?, a tetrahedron in R?, and so on (Gurson, 1999;

Press et al. 1992).

The NelderMead search algorithm has four steps: reflection, expansion,
contraction, and shrink. These four steps are labeled respectively by the coefficients:

p (reflection), y (expansion) y(contraction) and ¢ (shrink), governed by the rules:
p>0, ¥>1, y>p,0< y<l,and 0< o <l. ' 2.2
While these are general rules, they are always seen by the convention yielding the

following value: p =1, y=2, y=—12—, 0'=—12—. (2.3

0. Initially. Start with a no degenerate simplex for ®" and calculate the function

values at all the vertices. Then at each iteration k, k> 0.

1. Order Order the vertices  x; ,x/,.....,x* ,x* such that

=12

FGg)S () S S Fxiy) S f(x)- (2.4)
2. Refle ct. After computing the centroid x* = lz: x¥, compute the reflection
- L=

point x* from  x! =X*+ p(x* —-x}). (2.5)

If f(xf)< f(x") < f(x%,),replace x! with x* and go to step 6.
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3. Expand.If f(x})< f(x{),calculate the expansion point x* from
xt =%+ p(xf —=%h). (2.6)
If f(x¥) < f(x¥)replace x*with x* and go toStep 6, otherwise (£ (x*) > f(x*)),
Replace x* with x! and go to Step 6.
4. Contract. If  f(x')> f(x*, perform a contraction between X* and
whichever of x*and x! has the lower function value.
a Outside.If f(x! )< f(x¥) < f(x}), perform an outside contraction:

Calculate xt =7 vyt -4 (2.7

If f(xt)<f(xb), replace x* with x* and go to Step 6; otherwise perform a

shrink (Step 5).
b. Imside. If f(x') > f(x) perform an inside contraction: calculate
xf = +p(xf - 7). (2.8)

If f(xk) < f(x*), replace x! with x and go to Step 6; otherwise perform a

shrink (Steps).

5. Shrink. Shrink the simplex around x/ by replacing x/ with
ok k l k k .
x| =x +5(x" -x;),i=1,.,n (2.9)

where Xf is the calculated shrink value
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e Fori=1,..,n-1,setu; < u,,.
o Setu, & p —p,
e Move p, to the minimum along direction 1z, and call this point p, .

This algorithm is simply based on conjugacy relations and for a given function
£ the iterations are repeated until a point sufficiently close to a minimum has been

reached.

2.25 Artificial Neural Networks

This technique bebngs to a group of methods called artificial intelligence.
Artificial Neural Networks (ANNSs) are inspired by the neural network structure of the
brain, and consist of interconnected processing units (artificial neuron) that use a
mathematical or computational model for information processing, based on a
connectionist approach to computation. The application of ANN for modelling
necessitates three stages namely, the training, the validation and performance testing

stage.

2.3  Analysis of residuals

The Durbin Watson test which is used for analysis of serial correlation was
applied on the discrepancy between theoretical (obtained from the model) and
experimental trajectories (from field datasets). Before its application, the residuals
were subjected to the Shapiro-Wilk W test and Kolmogorov-Smimov test for
conformation to a normal distribution (Shapiro et al., 1968). The Durbin Watson
criterion (d) usually ranges in value from 0 to 4. A value near 2 indicates no-
autocorrelation whereby a value toward 0 indicates positive autocorrelation and

toward 4 indicates negative autocorrelation between residuals. The existence of
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Chapter 3
Fitting continuous host-parasitoid models with field time

series data

Summary

Diadegma semiclausum, an exotic parasitoid, was released in Kenya for
biological control of the diamondback moth (DBM), the worst pest of crucifers in
East Africa. Population dynamics of the pest and its parasitoids were studied for three
years after the release of the parasitoid. The objective of the present chapter was to
study host-parasitoid interactions using existihg continuous equations models (Lotka-
Volterra, Holling-Tanner type 2, Holling Tanner type 3 and Leslie model) and search
for mathematical tools that can be used to predict, on the Basis of the available data,
the likelihood of success of the biological control agent in the entire East African
region. For each model, we estimated model parameters from the minimization of the
loss function between the theoretical and experimental time series data following the
NelderMead multidimensional method. Initial values of population size and
parameters were randomly chosen. Isaev’s classification of insect outbreak types was
applied to describe the periods of DBM and parasitoid population dynamics. The
DBM trajectory presented periods of cyclical eruptive, pulse eruptive and stability
zones whereby the parasitoid was mainly characterized by sustainable line behaviour.
For all sets of parameters, boundaries of confidence domains were determined.
Carrying capacity and the coefficient of fecundity for both species were calculated.
Levels of population stability were also determined and for almost every model, the
population stabilized at values of 1.01 DBM per plant and approximately 0.05

parasitoids per plant. Tests on residuals showed that they were normally distributed.
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Application of the Durbin-Watson criteria for comparison of model outputs and
experimental population trajectories produced a pos itive correlation with all selected
models. Consequently, it was concluded that none of the chosen models is appropriate

to explain the population dynamics of either species.

34 Introduction

The International Centre of Insect Physiology and Ecology (ICIPE), Nairobi,
Kenya, embarked on a project to reduce reliance on pesticides for DBM control and
introduced a well-known exotic parasitoid, Diadegma semiclausum (Hellen) from
Taiwan in October 2001. The first release was made in July 2002 at Werugha in Taita
Taveta District_(Momanyi et al. 2006). Diamondback moth and parasitoid population
dynamics were studied for one year before and three years after the release Macharia

et al. (2005) conducted an extensive ex ante impact assessment and estimated the
effect of parasitoid introduction on pesticide use and reduction of crop damage. They
found that investment in the DBM biological control programme was beneficial for
Kenya and for the funding agency with a benefit cost ratio of 24:1. The results
obtained encouraged the extension of the project to neighbouring countries in the
region to make optimal use of the research investment and create economies of scale.
In this case, a mathematical model predicting the influence of different ecological
parameters would gr eatly help in the prediction of the likelihood of success of similar
parasitoid introductions in other areas where the pest is of importance.

In ecological modelling, numerous continuous equation models have been
developed to describe population and ecosystem dynamics @ilvert, 1993; Wilder et
al., 1994; Hsu and Huang, 1995). However, very few of these models were tested

against concrete experimental datasets on a quantitative level. Generally, researchers
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32 Materials and Methods
3.2.1 Site description and data collection

Experimental results were obtained from the pilot release area in Werugha
Location (03° 26 16’ S; 38° 20’ 24 E) of Wundanyi Division in Taita Taveta

District, Coast Province of Kenya as described in section 2.1.1.

3.2.2 Models used to fit the dataset

A great number of mathematical models are devoted to the description of
prey-predator or host-parasitoid system dynamics (Gilpin, 1974; Hassell, 1978;
Hadeler and Gerstmann, 1990). Every model has its own set of dynamic regimes for
population fluctuations, with a specific set of parameters, and also specific functions
that describe the processes of self-regulation and interactions tetween populations.

The models used are listed below and for easy reference; the main characteristics of

each of the models are briefly explained.

i) Lotka-Volterra model
The Lotka-Volterra model is one of many differential mathematical models devoted

to the description of prey-predator or host-parasitoid system dynamics. The following
assumptions were made during their elaboration (Lotka, 1920; 1925; Volterra, 1931;

Pielou, 1977; Murray, 2001 ; Turchin, 2003)

(1) The prey or host grows unboundedly in a Malthusian way in the absence of

predation and self-regulation;
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(i1) The effect of the predation is to reduce the prey's per capita growth rate by
the term proportional to prey and predator populations: Volterra’s principle of “pair

interaction” (Volterra, 1931);

(iii) In the absence of any prey for sustenance, the predator's death rate results

in exponential asymptotical decay;

(iv) The prey's contribution to predator growth rate is proportional to the prey

population.

Within this framework interactions between populations are described by the
law of interacting biomass as in molecular kinetics by:

dx d
= —%xxriz‘azy—ﬁzyzwzxy, @3.1)

x(0)=x,20, »(0) = y, 20 (Cauchy problem)
where,
x(t) is the DBM population size at moment ¢,
y(¢) is the parasitoid population size at the same moment,
o, 1s the growth rate or Malthusian parameter for the DBM population,
., is the intensity of natural death of individuals in the parasitoid population,

B,and B, are the coefficients of self-regulation in the respective populations,

y,and y,are the coefficients of interaction between the two populations,
o, / B, is the equilibrium number for DBM at the absence of parasitoid,
x, 1s the initial value of DBM population density, and

¥, is the initia | value of the parasitoid population density.












Table 3.1. Estimates of model parameters and values of statistical criteria for four differential population models fitted to an empirical times
series of the diamondback moth and its parasitoid, Diadegma semiclausum, Werugha, Wundanyi Division, Taita Taveta District of Kenya

(calculated with the help of formula (2.1).

DBM Natural DBM self- Self- Interaction Interaction Carrying Sigmoidality Maximum Initial Initial Loss- Durbin-  Durbin-
Model growth  deathrate regulation regulation  coefficient coefficient capacity constant population population population function*  Watson Watson
ocen rate (@) coefzcwnt coet;f‘Bnc:ent (n) (72) (& /ﬂ 1) (0) (pag::;;’:; d) size (X;) size () (Quin) cm(;)rmn cnt&t;on
a (parasitoid)y (A1) (P) OBM/  (parasitoid/ ~ DBM (DBM)  (parasitoid) BN oid
(%) (parasitoid) parasitoid) DBM (K) B parasitol
Loktas 2.49 42.19 9.07 0.03 120.58 0.03 9.36 0.03 80.5 1.20 0.56
Volterra . 0 . . . . . - ‘ - . . . . .
Holli -
T;’p;"zg 0.40 247 3.77 0.59 2.23 0.30 0.11 0.001 - 12.36 0.09 96.9 1.05 0.60
¥;:)‘;"3g 1.72 2.00 3.51 0.41 1.75 0.75 0.49 0.022 ; 12.40 0.24 95.6 111 0.49
Leslic 0.55 < 0.21 = 36.91 . 2.57 - 0.08 10.72 0.29 88.0 1.13 0.65

* - squared deviations between empirical and theoretical time series
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Figure 3.3 Population trajectories of the diamondback moth parasitoid, Diadegma
semiclausum predicted by various predator-prey models after an initial introduction and
release. Predictions are based on an empirical dataset collected after initial release of the
parasitoid, Werugha, Wundanyi Division, Taita Taveta District of Kenya.
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function all correspond to a regime of population stabilization at non zero level for
both insects.

The Lotka-Volterra model demonstrated a very strong self-regulative
mechanism for the DBM and lesser for its parasitoid. In contrast, Holling-Tanner type
2 and type 3 showed a weak self-regulation phenomenon especially for the parasitoid.
This may be explained considering the fact that self-regulative intra-population
mechanisms are strongest at big population size and their influence is negligible at
small population size. DBM population was large enough before the release of D.
semiclausum, which increased in size after a brief adaptation period.

The DBM growth rate coefficient was highest for Holling-Tanner type 3 and
Lowest for Holling-Tanner type 2 models. The discrepancy observed among models
may be due to the ability for each model in fitting empirical data, or the difference in
mathematical expression of model equations. Syed and Abro (2003) estimated an
intrinsic rate of increase of 0.23 when DBM fed on Brassica oleracea capitata under
laboratory conditions. Considering that the intrinsic rate of increase is equivalent to
the growth and is defined as the difference between the birth rate and death rate, it can
be assume that the estimated intrinsic rate value obtained by Syed and Abro (2003)
was uniform everywhere. With these considerations the Holling’s type 2 model
estimated DBM growth rate is the closest value to the experimental result. However,
the comparison of the intrinsic rate of increase reported by Syed and Abro (2003) with
our estimates would not be realistic since the intrinsic rate of increase is highly
dependant on environmental condition, especially temperature. Syed and Abro (2003)
did not state the temperature conditions under which their experiments were

conducted. Despite the variance on the predicted DBM growth rat from model to



model, its evaluation indicates that it still lies within acceptable range with non-
negative value indicating that the DBM birth rate is higher than the death rate.

The natural death rate of the parasitoid for all models was estimated betw een 2
to 2.5, which is higher than the natural death rate obtained for DBM. Hence the
parasitoid has to be considered an endangered insect, which is justified by its total
dependence on DBM for multiplication and perpetuation. In the absence of DBM,
parasitoid populations may rapidly decrease until extinction. However detailed
evaluation of the ability of this parasitoid to thrive on its alternate hosts should be
carried out to evaluate its potential to survive in the system without DBM.

Another puzzling result of this study was the big divergence between
_predicted self-regulation and interaction coefficients of DBM and the parasitoid.
Biologically, the high value of self-regulation produced by the Lotka -Volterra model
does not make much sense because the empirical population never reached the
numbers where high intra-specific competition could be expected. However, the same
model also produced a very high self-regulation coefficient for the parasitoid. This
indicates strong competition for host larvae. Momanyi et al. (2006) showed that one
year after release, competition between parasitoids was so strong that even first instar
larvae that were still mining were parasitized. In contrast, all models produced a high
positive interaction coefficient between DBM and the parasitoid. Considerable
variation existed for DBM and parasitoid initial population sizes predicted by the
different models. These variations could be explained by the power for each model in
fitting empirical time series.

The maximum calculated value of carrying capacity from these models was
about 3 DBM/plant, which is an unrealistic result if compared to empirical datasets

where in outbreak situations and without effective parasitism, especially in maturing
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crops, the actual numbers recorded can surpass 10 DBM/plant (Karimzadeh et al.
2004). However, with total effectiveness of the parasitoid in controlling the DBM,
and during period of stabilization for both populations, with less food availability and
unfavourable climatic conditions for DBM, this value of carrying capacity could be
realistic. In the same line the estimated set of parameters depends on the time step
between measurements. Knowing that the carrying capacity is obtained from relation
between two values of estimated parameters, its value may not always be the same as

soon as change occurs in time step value. From this perspective, it will be very

difficult to discuss the relation between absolute value of carrying capacity to
observed value in the field, at the same time.

All the disparities pointed out above confirm the existence of a sizeable gap
between a mathematical approach and its application in ecological and biological
systems. Mathematicians and ecologists use different symbols, terms and definitions
that are sometimes very explanatory and meaningful in mathematics and meaningless
in biology. The models investigated in this study were pioneer work in mathematical
biology, and generally, they do not include biological constraints, which could enable
them map biological processes more precisely. An example would be that none of the
models analysed considers possibilities such as nature of parasitoid (solitary or
gregarious), inter and intra-specific competitions, impact of alternate hosts,
physiological reactions of organism in the population, etc. The algorithm for
parameter estimation applied then searches for the minimum of the loss function and
generates values that result in better convergence of the equations. What may have
also contributed to this outcome is that we applied the models in a highly unstable

situation after the introduction of an exotic parasitoid. Such an introduction
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purposefully intends to move the system equilibrium to a different level and therefore,
creates instability that must have affected the outcome of the calculations.

The boundaries of the confidence domains of all models described circular
trajectories. These surfaces are areas where all possible combinations of model

parameters can be found with a minimum value of the loss function Q. For the Lotka-
Volterra model, this domain was divided in to two areas by a bifurcation line P

determined by the equation ¢, = 2.85¢;,. The surface below the bifurcation line P
corresponds to the regime of elimination of the parasitoid and the surface above this
line is the area of stabilization of both populations.

Generally the existence of positive or negative correlations of residuals
between empirical and model trajectories indicates dependence. The application of the
Durbin-Watson criteria, which is a powerful tool for testing the dependence between

residuals, showed a positive correlation for all tested models. This leads to the
conclusion that none of the studied models can be applied to describe the dynamics of
the DBM/parasitoid system. More complex models, which will take into account time
lag reaction of DBM intra self-regulation and effects of parasitoid on changes in
DBM population size and others factors such as temperature, rainfall and diseases,
should be investigated, as they may offer better results. In this perspective we have to
reject our original intention for using these models for the prediction of likelihood

success of the biological control agent in the entire East Africa region.
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Chapter 4

Fitting discrete host-parasitoid models with field time series
data

Summary

The applicability of discrete mathematical models for the description of the
population dynamics of diamondback moth (DBM) (Plutella xylostella L.) and its
parasitoid D. semiclousum was investigated. The parameter values for séveral well-
known models (Nicholson-Bailey (1935), Hassel & Varley (9176), Beddington, Free
& Lawton (1976), May (1978), Holling type 2, 3(1959) and Getz & Mills (1997)
functional responses) were estimated The models were tested on 26 consecutive sets
of time series data collected at 14 days interval for pest and parasitoid population
obtained from a highland cabbage growing area in eastern Kenya. Model parameters
were estimated from the minimization of the squared difference between the
numerical solution of the model and the empirical data using Powell’s method, as well
as determination of boundaries of their confidence domains. Maximum calculated
DBM growth rates varied between 0.02 and 0.07. The carrying capacity determined at
16.5 DBM/plant by the Beddington et al(1975). model was within the range of field
data. All the estimated parameter values related to the parasitoid including the
instantaneous searching rate (0.07 to 0.28), per capita searching efficiency (0.20 to
0.27), search time (5.20 to 5.33), handling time (0.77 to 0.90), and parasitism
aggregation index (0.33) were well outside the range encountered empirically.
Independence between residuals of the theoretical and experimental population
trajectories for DBM under Durbin-Watson criteria for all tested models, except the

May (1978) model, proved their adequacy. In contrast, the criteria applied to the
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parasitoid residuals showed a strong correlation. Consequently, all models failed in
estimating parasitoid dynamics. We concluded that the population dynamics of DBM
and its parasitoid and their interactions could not be mutually explained by any of the
models tested. Two reasons were pointed out: the parasitoid, in this integrated
biological control system perhaps has not played the major role on pest population
regulation; or the models used could not encompass all factors affecting population
behaviour within this era where human activities and climate change have seriously

affected most ecos ystems.

4.1 Introduction

Mathematical models play a central role in the study of host—parasitoid system
interacti.ons. Wifh the help of models, we may comprehend some mechanisms of their
interaction, and which phenomena may not be directly observed in the field (Gertsev
and Gertseva, 2004). Difference equations are widely used for the study of dynamics
between insect populations in temperate regions because of the discrete nature of their
generations (Royama, 1971; Hassel and May, 1974; Hassel et al, 1976; May et al.,
1981). -These models are less suitable for tropical insects where continuous
generations and life cycles of host and parasitoid of different length are to be
expected. However, Royama (1971) suggested that discrete models could be applied
to populations with overlapping generations provided age structure and the period of
observation is shorter than a generation.
We used, difference equation models to the study of population dynamics of the
Diamondback moth, Plutella xylostella (Lep.: Plutellidae) and its parasitoid
Diadegma semiclausum (Hellen) (Hym.: Icheumonidae) The main focus of

population dynamic studies has traditionally been on local stability analysis, searching
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the equilibrium points, determining the nature of their stability and spatial synchrony
in which model parameters are obtained through trial and error (Hassel and May,
1974; Hassel et al., 1976; May et al., 1981; Nguyen et al., 2006; Meng er al., 2007).
In that regard, a good number of models have been developed, and this gives us a
possibility to compare some of the well-known host-parasitoid models with time
series datasets collected from the field. Each mathematical model used here possesses
a rich set of dynamical regimes. If we fail to find a model which offers good
approximation for empirical time series, the base for the following assertions could be
made: 1) Parasitoids in an integrated biological control system may not play the major
role on pest population regulation. In that case, recommendation of more complicated
mathematical models, which include some additional density-dependent or density-
independent factors, should be used to fit such field data. 2) The applied models,
originally designed to answer qualitative questions about population dynamics may
not be capable to encompass all factors affecting population behaviour within this era
where human activities and changes on climate have seriously affected most
ecosystems. Therefore, new host-parasitoid models which incorporate these aspects

may be thought of.

4,2  Materials and Methods
4.2.1 Site description and Data collection
The data were obtained from pilot release areas in Werugha as previously

described in section 2.1.1 and the collection was done as summarised in section 2.2.1
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Table 4.1 Mathematical expression of different models used from publications.

Comments Model equations Authors
Growth factor (A) N,,, = AN, exp(-aP,) Nicholson Bailey
Parasitoid per capita searching P., =cN,[1-exp(-aP)] @2y (1935)
efficiency (a)
Number parasitoid produced
each host attacked(c)
Parasitoid constant searching N,,, = AN, exp(—gP'™") Hassell and
CfflClency (q) I)IH - CN’ [1 _ exp(_qP’l—m )] (4‘3) Varley (1976)

Slope parasitoid searching
efficiency (m)

Carrying capacity for host in

the absence of the parasitoid

X)

Index parasitism

N = N, explrll - =11 aP)
=cN,[1- exp(—aP )] (4.4)

I+l

N, =AaN, (1+3§)'k

Beddington et al.
(1975)

aggregation (k) May (1978)
P.,=cNJl1—-(1+ ) “ (4.5)
Parasitoid instantaneous -da'TP
search rate (a) N,y =4N, eXP("‘_,T N’—)
Parasitoid search time (T) Holling type 2
Parasitoid handling time (Tw) ~ p_ =cN,[1- exp( 7 )] (4.6) (1959)
'T/,N
—bIN,P
Noa = AN ex e N
Parasitoid constant for el oL N, Holling type 3
search rate (b) B, =gl [l ~expt =biIN I, 1 (1959)
1+¢cN, +bT,N,
4.7
apfP, o
Upper bound encounter Ny =4AN, (1 + k(B + c;N, )) Getz and Mills
rate (B) afP (1997)
P/+IZCN1[1—(1+ ‘ )_k]
k(B +aN,)
(4.8)
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4.2.3 Assumptions

The following assumptions were made:
a) In some part of Kenya, there are two seasons with favourable and
unfavourable weather conditions each year associated with bimodal rainfall
distributions (Sutherst ez al., 1999). This leads to the seasonality of some species such
as DBM which become rare in the field during the rainy season.
b) The two species (DBM and D. semiclausum) have overlapping generations
which normally allows the use of continuous rather than discrete time and differential
equations. Previous experience with such models showed that they could not predict
values within the conventional biological confidence level range (5%) (Tonnang et
al., 2006). Thgrefore, we chose the period of observation shorter than the generation
of insects (Royama, 1971). As DBM probably has a generation time of about 3 weeks
in coastal Kenya, the time series represents intrageneration as well as
intergenerational dynamics. c) Insect species have an age structure (Royama, 1971),
therefore sometimes both were not abundant enough to be measured by integer
numbers thus real numbers were used; consequently a model that can be applied to
cases with just a few individuals was chosen.
d) In reality, three years data collection was made after the release of the D.
semiclausum (Lohr et al., 2007). Only 20 datasets of consecutive collection,
corresponding to period of maximum parasitism were used.
e) Other sources of mortality which could have been responsible for the host
population trajectory were neglected.
€) Lohr et al. (2007) indicates 3 other parasitoids that attack DBM in the region
before release of D. semiclausum. However, after release their parasitism rate became

extremely low hence their effect was neglected.
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Table 4.2 Estimates of model parameters and values of statistical criteria for seven recurrent models fitted to an empirical times series of the
diamondback moth and its parasitoid, Diadegma semiclausum, after release in Werugha, Wundanyi Division, Taita Taveta District, Coast
Province of Kenya.

Nicholson-Bailey  Hassel & Varley Biddington et al. May Holling type 2 Holling type3 Getz and Milis_

DBM growth rate (r) 0.06 0.07 0.05 0.02 - -
DBM carrying capacity (K) - - 16.50 - - - -
Parasitoid per capita searching efficiency (a) 0.27 - 024 0.20 - - -
Parasitoid constant searching efficiency (q) = 0.28 - - - - -
Parasitoid instantaneous search rate (a) - - - 2 0.07 - 0.28
Parasitoid constant for search rate (b) - . . . 0.14

Parasitoid search time (T) - . - . 5.33 5.20 -
Parasitoid handling time (T)) = Z - E 0.77 0.90 z
Upper bound encounter rate () s > - = - = 19.29
Slope parasitoid searching efficiency (m) - 0.02 - - - - -
Index parasitism aggregation (k) - 5 = 0.33 - - 0.90
Initial DBM population size (N;) 7.58 745 8.72 9.97 6.21 453 7.61
Initial parasitoid population size (Py) 0.02 0.02 0.05 1.12 0.04 0.02 0.05
Loss-function® (Quim) 4531 44.51 47.84 104.18 52.17 61.73 51.85
DBM Durbin-Watson criterion value (dd) 2.03 2.07 1.86 0.95 1.93 1.96 1.85
Parasitoid Durbin-Watson criterion (dp) 0.24 0.23 0:20 0.15 0.20 0.46 0.18

* - squared deviations between empirical and theoretical time series.

- For each model, the number of parasitoid produced per host individual attacked is equal to 1 (¢ = 1) because Diadegma semiclausum is a solitary parasitoid
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DBM population leads to more hosts that can be parasitized and therefore causes an
increase on the parasitoid population. Sustained population fluctuations are zones of
stabilization where the parasitoid successfully regulates the DBM. Points on the
trajectory that could not be explained using Isaev’s classification of insect outbreaks
can be considered as stochastic near stable (or unstable) level.

The DBM growth rate in our models is what is usually called in biology the
intrinsic rate of increase. Models with Holling type 3 functional responses produced

the highest value for this coefficient whereas the May (1978) model estimated the
lowest. The discrepancy observed among models may be due to the ability for each
model in fitting empirical data, or the difference in mathematical expression of model
equations. Sarnthoyi et al. (1989) showed that intrinsic rate of increase for DBM is
higher at higher temperature. With a mean temperature of 17.6 °C they obtained a
DBM intrinsic rate of increase of 0.11 and at 29 °C this parameter value became 0.23.
Assuming that the DBM intrinsic rate of increase was uniform everywhere where the
same climatic conditions are applied, model with Holling’s type 2 functional
responses should have offered the best estimation. However, the comparison of the
intrinsic rate of increase reported by Sarnthoy et al. (1989) with our estimates would
not be realistic since this parameter is highly dependant on environmental conditions,
especially temperature. The annual average temperature was 16.7 at the study site, a
different value from what was considered by the mentioned authors in their
experiment close to 17.6.

Among the studied models, only one (Beddington, Free and Lawton) model
estimated the value of DBM carrying capacity. The calculated carrying capacity is

realistic because several experiments have shown that more than 20 DBM per plant is
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a good measure of the steady-state density for a cabbage plant to sustainable support
diamondback moth species (Wang and Keller, 2003; Karimzadeh et al., 2004).

Early host-parasitoid models only described the outcome of parasitoid searching
behaviour in terms of constants (Thompson, 1924; Nicholson, 1933). As studies have
increased in the area and more data on the population dynamics has been
accumulated; it offers better understanding of the system and new factors that could
influence the levels of parasitism per capita efficiency of parasitoid abundance has

been suggested. This leads to the proliferation of models with functional responses
that differentiate host-parasitoid for predator-prey systems. The majority of these
host-parasitoid models incorporate parameters such as search time and handling time
(Hassel et al., 1976, Getz and Mills, 1997). Unfortunately, none of the authors
properly explained the dimension in which these modél parameters are measured. In
their laboratory study, Wang and Keller (2002) evaluated the oviposition time for D.
semiclausum between 3 to 5 seconds and total handling including the time spent
waiting for a host of 973 s. They also enumerated ways (wriggling and dropping off
leaf, underside feeding) by which DBM larvae can avoid parasitoids. If we assume
the second or minute as the time unit in this study for all models, our obtained
predictions for these parameters will still be very small compared to experimental
results obtained by the above authors. Lack of consideration of the host defensive
behaviour in the models could be responsible for the discrepancy between our
obtained results and experimentation.

A good number of authors have observed active aggregation in parasitoid and
some have stipulated that aggregation response of parasitoids is an important factor
that contributes to host regulation (Hassell and May, 1974; Waage, 1983; Smith and

Maelzer, 1986; Murdoch et al., 1987; Sheehan, and Shelton, 1989). The May model
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predicted 0.33 as the index parasitism aggregation for D. semiclausum. Experimental
work revealed that the D. semiclausum parasitism index falls in between 0.6 and 0.9.
The same study also demonstrated that high degree of aggregation seems to generate
density-dependant parasitism by D. semiclausum (Wang and Keller, 2003). In almost
every case, our estimated models parameters related to the parasitoid failed to
approximate existing experimental results. In general, the existence of positive or
negative correlations of residuals between empirical and model trajectories indicates
dependence. The application of the Durbin-Watson criteria, which is a tool for testing
the dependence between residuals, showed a total independence (no positive and no
negative correlation) of residuals for the DBM with all models except May model. In
the contrary, a strong residual correlation was demonstrated by the same criteria for
the parasitoid. At this stage it is clear that none of the studied models was capable of
mutually capturing the dynamics and interactions between DBM and its natural
enemies. Several reasons may be responsible for the inadequacy of the models. The
fitting procedure which typically try to maximize fit at either very short or very long
time scales whereas as the main measuring features for these parameters are for the
intermediate scale which may not have been selected during the fitting. Again, the

fitting algorithm in searching for the set of parameters that fit the model well, may
introduce some noise to the model time series. Lack of sufficient biological
constraints and environmental factors in the models can lead to poor predictions.
Legaspi et al. (1996) largely discuss the possible importance of temperature and other
diurnal events on functional response for simulation models applied to biological
control. What may have also contributed to this outcome is that we applied the models
in a highly unstable situation after the introduction of an exotic parasitoid. In such

condition, the introduced species may have not played the major role on pest
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population regulation. In that case, a recommendation for mathematical models,
which include some additional density-dependent or density-independent factors,
should be used to fit the field data. It might again be possible that, the applied models
which, originally were designed to answer qualitative questions about population
dynamics could not encompass this human activity coupled with actual climate
change effects. Therefore, new host-parasitoid models which incorporate these
aspects may be thought of. Process-based models built using the results of laboratory
and/or field experimentation which will explicitly account for all important system
interactions are proposed. However, because of the complexity of the ecosystems, it is
unlikely ever to be possible to include all appropriate variables and interactions in a
model. Also, the more parameters a model has, the less are its chances in providing
good fit to iﬁdependent data. Only by combining a wide range of consensus
methodologies well built and fitted models are likely to emerge. From other angles,
more effort should be given in fitting procedure too. It can be improved by developing
a likelihood function that incorporates the best information on the structure of the

measurement and dynamic noise.
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Limuru Division, Kiambu District, Central Province. A detailed description of the
pilot release areas was provided in section 2.1.1. It was mention that cabbage and kale
are the main rain fed vegetable crops in both regions, with complementary irrigation
during the dry season from shallow wells using buckets. The model was applied as
explained earlier, (see sections 2.2.1, 2.2.2 and2.2.3). These paragraphs also provide

detailed explanations for DBM and D. semiclausum population density collection.

5.2.2 Lotka-Volerra model

Detailed description of the The Lotka-Volterra was made in section 3.3.2. The

models equations are expressed as follows:

dx _ a
E:alx—ﬂlxz _Vylxyaj);:'—azy_ﬁzyzdi_yzxy’ (31)

x(0)=x, 20, y(0) =y, =20 (Cauchy problem)
Where,

x(¢) is the DBM population size at moment ¢,

y(t) is the parasitoid population size at the same moment,

a, is the growth rate or Malthusian parameter for the DBM population,

a, is the intensity of natural death of individuals in the parasitoid population,

p,and B, are the coefficients of self-regulation in the respective populations,

7, and ¥, are the coefficients of interaction between the two populations,
a, / B, is the equilibrium number for DBM at the absence of parasitoid,

x, is the initial value of DBM population density, and

¥, is the initial value of the parasitoid population density.
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Theoretical studies of model (1) by Wangersky (1978) have shown that it has

two dynamic regimes: elimination of the predators for all possible initial values of
population sizes if oy, >, f, or stabilization of both populations at a unique, non-
zero, stable level (under the additional assumption that the Malthusian
parameter o, > 0. If ¢, <0, both populations fade asymptotically for all non-negative

initial values). The steady state or non-trivial equilibrium of the system is given by:

_ B, +a,y, =_ o — Bl"f.
7Y+ BB, T

=

(5.1)

The model was applied before the release with the interacting system DBM/
indigenous parasitoids and with only DBM/D. semiclausum interacting system after

release.

5.2.3 Other considerations

The following considerations were made:
a) The total number of all parasitoids collected before release was lumped
together and called “indigenous rasitoid”. The assumption was made to have a
bigger number for parasitoids before release as their individual figure were very
small.
b) The two species (DBM and D. semiclausum) have overlapping generations
which normally allows the use of continuous rather than discrete time differential
equations except other assumptions are made (Royama, 1971).
c) Insect were not abundant enough to be measured by integer numbers therefore
real numbers were used; consequently a model that can be apply to cases with just a

few individuals was chosen.
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Figure 5.6 Empirical population trajectories of the diamondback moth and its exotic
parasitoid, Diadegma semiclausum, and predictions of the Lotka-Volterra model. Predictions
are based on data collected after the first release of the exotic parasitoid without exclusion of
the initial period where no Diadegma semiclausum were recovered. Tharuni, Limuru
Division, Kaimbu District, Central Provinceof Kenya.
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Figure 5.7 Empirical population trajectories of the diamondback moth and its exotic
parasitoid, Diadegma semiclausum, and predictions of the Lotka-Volterra model. Predictions
are based on data collected after the first release of the exotic parasitoid excluding the initial
period where no Diadegma semiclausum were recovered. Tharuni, Limuru Division, Kiambu
District, Central Province of Kenya.
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5.3.7 Outcome of model population size predictions

Figure 5.8 is an example that illustrates the model predictions for changes in
diamondback moth population size at fixed initial values of the parasitoid population
(0.49, 0.69 and 1.38) respectively in Tharuni. With an average parasitoid before
release of 0.49/plant, the DBM population size at 2 weeks interval keeps on
increasing with an increase in DBM initial population size. This demonstrates the
inefficiency of the indigenous parasitoids. After release, with an average population
size of 0.69 D. semiclausum/plant, the population size of DBM after 2 weeks increase
with an increase in DBM initial population size until 12 DBM/plant where the line
slowly reduced when approaching 28 DBM/plant. Considering the maximum number
of D. semiclausum/plant equal to 1.38, similar line behaviour was obtained as for the
previous with reduction rate on the DBM population size after 2 weeks and an earlier
decrease, which started increase near 28 DBM/plant. Figure 5.8 is a direct biological
application of the model and its estimated parameters, if the time interval between
collection was identical to the duration of the insects generations time, this can lead to
the estimation of the respective insects population size after chosen generations and

the obtained results can be compared to what is given from life table analysis.

54 Discussion

In spite of the great number of mathematical models used to explain the
dynamics and interactions between host and parasitoid, (Lotka, 1920; 1925; Volterra,
1931; Hsu and Huang, 1995) and the numerous reports of success of D. semiclausum

in controlling DBM in various part of the world (Talekar er al, 1990, Biever, 1997,
Poelking, 1992), no attempt has been made to assess and predict the impact of this

parasitoid using pure mathematical models.
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climatic differences in particular higher temperature and lower rainfall at Tharuni
(Lohr et al, 2007). Momanyi et al. (2006) also point out that these factors were
responsible for the delay n the establishment of the newly introduce parasitoid at
Tharuni.

Honestly, comparison of different results requires identical time and space
scale between the studies. Unfortunately, attempts to predict species density are
usually hampered by mismatches between the spatial and temporal scales at which we

make measurements and the scale at which ecological phenomena influence patterns
of species life requirements. Each author define its own time and space scale what
make results comparison inadequate. Lack of information on natural history of the
insects severely limits the ability to confidently offer accurate population density
prediction. Which ability is further complicated by often non-linear response of
species to habitat and vice versa. Sometimes, the size and ecological context of
habitat patches influence the demography of the insects.

The model predicted higher value of self regulation coefficient for DBM in
Werugha than Tharuni, this is explained by the favourable environmental conditions
for proper DBM development in the first area rather than the latter. In other part, low
rainfall in Tharuni has lead to dusty conditions and deficit in evapotranspiration which
resulted to discontinuity of cabbage (DBM host plant) production in the area. The
model produced a high value for parasitoid self-regulation. We know from data
presented by Momanyi et al. (2006) that one year after release in Werugha,
competition between parasitoids was so strong that even first instar larvae that were
still mining were parasitized So the high self-regulation parameter may truly reflect
strong competition for host larvae. This becomes much clearer if we calculate a

parasitoid/host ratio from our dataset: while the average value before release was 0.02
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for Werugha before release, this increase to 0.06, 0.26, and 0.30 for the 1%, 7% and 3™
year after release, respectively. Corresponding values for Tharuni were much higher
(0.03 before, 0.06, 0.28 and 0.47 for the three years after release).

Based on the self-regulation mechanism for insect population (Nicholson,
1958), the following analysis may possibly be made as tentative explanation for the
DBM and D. semiclausum population fluctuation. The continued existence of DBM is
necessarily limited to areas where all it requires for living is supplied in quantity and
quality. Inside these areas the DBM population tends to increase progressively, but

this increase automatically face some limiting factors such as climatic variations. This
is the most likely explanation for the DBM population fluctuations before release in
Werugha and Tharuni. After the release of D. semiclausum, especially in Werugha
where the establishment of the parasitoid was very fast, the newly introduced species
reduced the DBM population to such scarcity that it started to experience difficulty in
finding enough hosts to parasitize and its population also declined. This phenomenon
progressively tends to reduce the peak of DBM population density and increase the D.
semiclausum population density, which both later began to stabilize.

Wangersky (1978) defined the interaction coefficient host/parasitoid (7, ) as a
constant of proportionality, linking the parasitoid-inflicted mortality to the numbers of
host and parasitoid. The same author defined the interaction coefficient
parasitoid/host (y,) as a relation between the increase in parasitoid population density
to the number of hosts and parasitoids. In both studied areas, the values of these
coefficients changed after the rlease demonstrating different interactions between
DBM and D. semiclausum than DBM and indigenous parasitoid. This is justified by

the D. semiclausum superior host searching capability and better association with
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cabbage host plants, at least as far as its congeneric indigenous species is concerned
(Rossbach et al., 2005).

Wallner (1987) stated that natural multi-species assemblages of plants,
animals and insects may possess several steady states or non trivial equilibrium
points. The change in the steady state can be caused by a sudden shift in population
number as a consequence of a newly introduced species or changes in environmental
conditions or food availability. In both studied sites we found reduction of the steady

state of DBM population after the release of D. semiclausum, other factors (food
availability, environmental conditions etc.) remaining unchanged. Such an
introduction moves the system non-trivial equilibrium point to a different level by
decreasing the DBM population density and increasing the parasitoid ‘population
density with both populations later may converge and stabilize.

The boundaries of the confidence domains for the model in most cases
described hyperbolic trajectories in form of annular surfaces. These surfaces are areas
where all possible combinations of model parameters can be found with a minimum

value of the loss function Q. These domains were divided in two areas by a

bifurcation line P. The surface below the bifurcation line P corresponds to stable
coexistence of DBM and “indigenous parasitoids” before release, DBM and D.
semiclausum after the release respectively. The surface above the line corresponds to
elimination of the parasitoids. In the model, the DBM never go to extinction.

From the graphs, it is clear that the model after the release could not properly
capture the subtleties of ecological reality as before release. This could be due to the
shifting of the system non trivial equilibrium. This was demonstrated by the gap

obtained between the steady state of DBM population ( ¥ ) before and after release.
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Chapter 6
Host-parasitoid population density prediction using artificial

neural networks

Summary

Integrated pest management (IPM) systems utilizing the use/release of the
parasitoid D. semiclausum have been developed to replace the pesticides only
approach to diamondback moth (DBM) Plutella xylostella (L.), worldwide the worst
insect pest of cabbage family. Artificial Neural Networks (ANNs) methodology was
applied to generate predictions for the population density of diamondback moth
(DBM) Plutella xylostella (L.) and its larval parasitoid Diadegma semiclausum
(Hellén). Two data sets, each from ;¢1 different release area in the Kenya highlands,
and both collected during a three year period after release of the parasitoid, were used
in the study. Two ANN models were developed using 48 data points (Werugha) and
51 data points (Tharuni). The datasets were divided as follows: 30 were used for the
training stage, 8 for cross-validation and 10 for testing at the first pilot site. At the
latter pilot site, 30 were used for the training stage, 10 for cross-validation and 11 for
testing.

The results of developed ANNs models gave satisfactory results over the
whole range of the dependent variable values for DBM and D. semiclausum (¥’ = 0.81
and r” = 0.99), and (**=0.90 and * = 0.99) at Werugha and Tharuni respectively. The
ANNSs provided a powerful tool for host-parasitoid system modelling with few
assumptions on the data and allowed for highly accurate predictions. The successful
introduction of the DBM natural enemy in Kenya as biological control agent under

the IPM system is a good achievement towards solution on excessive insecticides use.
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To expand the available IPM tools for better management of the pest, there is a need

for a model. Such a tool will help in monitoring.

6.1 Introduction

The importance of studies of hostparasitoid systems cannot be
overemphasized, especially at this period marked by the development of integrated
pest management (JPM) systems with emphasis on the use/release of parasitoids. Such
studies date back to Lotka (1925) and Volterra (1931) where the main goal of
studying hostparasitoid systems was to understand which biological factors are
capable of generating cycle dynamics. Unfartunately such mechanistic approach had
limited accuracy especially in predicting population density.

Artificial Neural Networks (ANNs) models ar;: highly flexible function
approximators, which have shown their utility in a broad range of ecological,
environmental and engineering modelling applications (Levine et al., 1996; Tonnang,
2004; Deng, 2007). The rapid emergence of ANNs applications in many fields can be
attributed to their advantages over standard statistical approaches. Their flexibility
provides a powerful tool for forecasting and prediction, however, the large number of

parameters that must be selected only serves to complicate the design process (Maier
and Dandy, 2000). In most practical circumstances, the design of ANNs is heavily
based on heuristic trial and error processes with only broad rules of thumb for
guidance.

Many authors have used ANNs technique in ecological and environmental
modelling. For example, Levine et al. (1996) classified soil structure from soil sample
data with the help of ANNs, Zhang and Stanley (1997) adopted neural networks for

water demand forecasting. Moreau et al. (1999) embedded neural networks in Lotka-
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Volterra predator prey model. Dreyfus-Leon et al. (2006) used ANNs to model the
performance and information exchange between fishes. There are a range of papers
that illustrate phytoplankton occurrence and succession (Recknagel et al., 1997) and
their production using ANNs (Scardi, 1996, 2001; Scardi and Hardi, 1999). However,
while ANNs have been employed by several researchers in ecological modelling, no
attempts have been made on host-parasitoid population density prediction using this
technique.

The DBM been a major pest of cruciferous crops worldwide, has increasingly
developed resistance to all major classes of msecticides (Talekar and Shelton, 1993).
Iga (1985) revealed, based on the study of DBM population dynamics using life table
‘analysis, that natural enemies played an important role in regulating its population.
Harcout (1963) and Sivapragasam et al. (1988) focused on the effect of rainfail on
DBM. Wakisaka et al. (1991) made use of life table analysis and simulated rainfall to
evaluate the effect of precipitation on loss of DBM eggs from the surface of plant
leaves. Kobori and Amano (2003) later studied the effect of rainfall on a population of
DBM under artificial conditions. They tried to determine the detailed effect of rainfall
on DBM population on cabbage such as the quantity, duration and drop size of
precipitation which can lead to the washing off of DBM eggs laid on cabbage leaf
surface.

Integrated pest management systems with emphasis on the use/release of
parasitoids have been developed to replace the pesticides only approach to DBM
control. When researchers found that local natural enemies did not provide adequate
control of DBM in East Africa, a classical biological control programme was initiated
by the International Centre of Insect Physiology and Ecology @cipe) in Kenya and

neighbouring countries. Subsequently, D. semiclausum was imported into Kenya in
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2000 and released in April 2001 (L&hr e al., 2007). The population dynamics of
DBM and its parasitoids was studied for one year before and three years after release
in order to assess impact of the introduction. The present chapter was therefore geared
to developing ANNs models that would allow for more general predictions of DBM
and parasitoid populations, based on the data collected in two different pilot areas in
Kenya. It was thought that ANNs based models, adequately trained with several
parameters that affect the population density of these insects could be a better

approach with more precise predictions than differential and discrete equation models.
We further conducted some sensitivity analyses to measure the effect on rainfall on

DBM population density.

6.2 Materials and Methods

6.2.1 Sites and observed data

Experimental results were obtained from the pilot release areas in Werugha
and in Tharuni A detailed description of pilot release areas has been described

elsewhere (see section 21.1).

In Werugha the collected dataset contained 48 points and in Tharuni 51 points.
These datasets were subdivided in three groups for (training, cross-validation and

testing) in the both regions as (30, 8 and 10) and (30, 10 and 11) respectively.

A data logger (Hobo Pro Series, Onset Computer Corp. Pocasset, MA, USA)
was used to record temperatures and relative humidity (hourly records), while rainfall

records were obtained from the Kenya Meteorological Services.
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temperature, DBM and Diadegma semiclausum population density at time (t- 1)) were
considered as inputs for the developed models. The number of PEs in the hidden
layers was determined through trial and error. When the networks did not converge,
more PEs were added to the hidden layers. At Werugha and Tharuni, the ANN models
developed have two hidden layers of 10 PEs and 12 PEs respectively (Figure 6.1
(a,b)). The number of PEs in the output layer depends on the number of patterns to be
recognized. Two PEs were considered in this study, representing DBM and D.

semiclausum population density at time (t) respectively.

iv) Data normalization

In theory, the input-output data can have a very large domain of variation, so if
the domain of variation of the input-output data is large, then the ANNs tends to be
less stable. Therefore, this difficulty must be eliminated before the ANN enters its
learning phase. This was done by pre-processing or scaling the input-output data in
order to have small variation of the range of input-output data. This means that
instead of using the input-output variables in term of the ir usual physical units, they
were represented in dimensionless forms with values ranging from 0 to 1. To obtain

the dimensionless input-output data, the following formula was used (Erahaghi et al.,

1993):

Opew = M (6.2)
Omax— Omin

where, Onew, Oold, Omax and Onmiy are the newly obtained values of a parameter, the old
value of a parameter, the maximum value and minimum value among a choose set of

parameters respectively.
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v) Training phase

Training is the stage where the ANN learns the recognition task by adjusting
the weights in the links between PEs created by processing representative examples
(input and output pairs). This was done by finding of a set of suitable weights that
minimizes the error between the predicted and the actual output. The values of these
weights were first set randomly. During the training, the network error was computed
using a back propagation training algorithm following the procedure below.
1) Maximum PE error was defined, 2) The weights in all the network links were
randomized, 3) Sets of training patterns were selected (a pattern includes input and
output pairs), 4) Outputs at the output layer were evaluated by propagating the input
from the input layer to the output layer in a feed- forward manner, 5) Error at the
output layer was calculated, 6) If the sum-square error between this output and desired
output was acceptable, the calculaﬁon was stopped, 7) If step (6) was not satisfied, a
minimization of the errors was effected by adjusting the weights between the PEs in
the following manner: i) Output PEs and their weights were adjusted, ii) Propagated
backward to the layer adjacent to the output layer by calculating errors and adjusting
weights, iii) the backwards calculations were continued until all errors were calculated

and weights were adjusted (Tonnang, 2004; Deng, 2007).

vi) Cross-validation and testing phases

The cross-validation phase was divided in two steps: 1) The ANN was
subjected to data points not seen during the training phase, and the output was
predicted. 2) The ANNs was subjected to intermediate data points seen during the
training phase to ensure that oscillation (over fitting) did not occur (Deng, 2007).

Testing the ANN performance on new data sets was important to ensure
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64 Discussions

Host-parasitoid systems, such as DBM-D. semiclausum, are distinctly non-
linear, dynamic and complex. Powerful mathematical and computational -techniques
are usually required to elucidate and predict their behaviours. These tools generally
include ordinary and recurrent differential equations, which lead to the construction of
mechanistic models. The approach, which dates back to Lotka (1925) and Volterra
(1931) is typically focused to understand the causes of generic phenomenon. These
models are explicitly constructed following biological principles and contain the
major mechanisms or processes that are believed to generate the dynamic behaviour.
After the construction, the mechanistic models are parameterized. Major bottlenecks
arise during the fitting of the quels to real experimental data. On the one hand, no
explicit method with satisfactory accuracy of fitting has been developed. On the other
hand, choosing a mathematical model to describe a biological process is difficult
because of the non-existence of standard criteria for selection of a mathematical
model describing a particular population dynamics (Isaev et al. 1984; 2001).

In our previous studies Tonnang et al (2006), we attempted to minimize the
mean squared difference between the numerical solution of mechanistic model
equations (Lotka-Volterra, Leslie, Holling type 2, 3) and the experimental data for
model parameter restoration. The obtained parameters failed in all cases in offering a
satisfactory prediction via the employed models.

In the present work, the power of ANNs was verified by a very high
determination coefficient between DBM-D. semiclausum experimental values and
predicted values for both developed models. The results are in agreement with the
literature, in which ANN performances have repeatedly been reported in other

ecological modelling studies to surpass the majority of traditional methods, especially
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referring to prediction (Brey et al., 1996; Paruelo et al, 1997, Whitehead et al., 1997).
This may find its explamtion in the predominantly non-linear relationships and
complexity that exit between the studied variables on the one hand, and the ability of
ANNS to take directly into account any norrlinear relationship relating the dependant
variables to each independent variable of the system (Lek et al., 1996). Others
parameter such as food should have been taken into consideration in this study, but its
non-consideration was due to the fact that both pilot sites are permanent crucifer
growing areas. Food was always n abundance hence its subtraction as one of the
factors influencing the DBM population density.

The application of the Durbin-Watson criteria, showed a total independence
(no positive and no negative correlation) of residuals for the DBM and D.
semiclausum in both pilot sites respectively. While residual testing is not a sufficient
condition for model adequacy, it is nevertheless a necessary condition to demonstrate
that the model has offered good approximation to the data generating process,
particularly for ANN whose estimation procedures could be susceptible to partial
convergernce.

The method also presents some weaknesses. For example, no information
about the underlying biological mechanisms between interacting insects is provided,
while abiotic factors can be taken into consideration. The ANNs usefulness for
forecasting often is limited by problems of over fitting and the lack of rigorous
procedures for model identification, selection and adequacy testing.

Harcourt (1963), Sivapragasam et al. (1988) and Wakisaka et al. (1991)
conducted studies on the effect of rainfall on DBM population. Their results only
mention that rainfall affects the DBM population without precision on the volume and

how. The present work make allusion of rainfall impact on DBM population without

110



any emphasis on which stage the population of the insect is affected. More elaborate
studies were conducted by Kobori and Amano (2003). Their work pointed that DBM
eggs laid on the upper leaf surface were washed off with precipitation of 17.3 mm in 1
hour with 2.5 mm diameter drop while few eggs on the lower surface were washed
off. The results illustrated that under same conditions as for the eggs, the falling rate
of larvae decreased with advancing larval stadium except for the first larval stage. The
rate of falling larvae increased with increasing treatment time. Kobori and Amano

(2003) worked with artificial rain, whereas the present study was done under field
conditions with real precipitation. Our results show that after a certain threshold
(around 20 mm), the rainfall volume does not have any effect on the DBM population.
Increase in rainfall volume at this level does not lead to a reduction in DBM
population. This is in agreement with Kobori and Amano (2003), who pointed out that
even a rainfall of one hour duration with volume greater than 30 mm does not lead to
a complete removal of the larvae. Before this rainfall analysis was performed with
ANN, an attempt to measure the level of dependence between this variable and DBM
population density using classical method such as Pearson correlation was done. The
obtained results could not clearly state the type and level of relationship that exists
between these parameters. We assume it could be a non-linear dependence. However,
lack of precise duration and drop size of the precipitations limited the full
understanding of rainfall effects on the DBM population in field condition.

Overall ANNs can provide a powerful tool for host-parasitoid system
modeling with few assumptions on the data. They will allow the user to achieve
highly accurate predictions, which can greatly assist in decision making. The method

also provides room for sensibility analyses, which consists of the arbitrary
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Chapter 7

Knowledge-based fitting technique for ecological models

Summary
Appropriate fitting for a model can demonstrate whether it is really capable of

producing observed dynamics or not. Restoration of ecological model parameters
from experimental datasets has been and remains a very difficult task. An evaluation
of an approach to tackle this problem was conducted. The technique began by
obtaining the time series data to be fitted into a model. Chose a model with unknown
parameters, studied the biotic and abiotic factors which are involved in the particular
ecological phenomena and determined the range of the model parameters. Created a
database for model initial values by slight changes on parameter magnitude values.
For each set of parameter initial values, numerically and repeatedly solved the model
equations. The results were used as inputs to an Artificial Neural Network (ANN) and
their corresponding initial parameter value as outputs. The developed ANN was
trained with back propagation algorithm for the networks to map and memorise the
nonlinearity of the system. When the ANN model was properly setup, field-time
series datasets were then introduced to estimate the corresponding parameter values of
the designated system.

Two models were chosen (Lotka -Volterra and Beddington, Free & Lawton) to fit pest
and parasitoid population obtained from a highland cabbage growing area in eastern
Kenya. Model parameters were firstly estimated from the minimization of the
squared difference between the numerical solution of the models and the empirical

data using Nelder-Mead and Powell’s method. Secondly, knowledge-based technique

was applied for both models. The results showed that the parameter estimates
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obtained from ecological time series datasets were quite realistic and biologically
acceptable. The study presents a more elaborate fitting procedure, which incorporates
the best information on the structure of the measurement and dynamic noise, taking
into consideration possibilities of long-term drifts in weather and environmental

parameters.

7.1 Introduction

Wood (2001) stated many reasons, which could facilitate model fitting. For
example, mortality rate being a very difficult factor to be directly measure in the field,
and population density is easier, good fitting of the latter to model fnay possibly infer
the former. C omparison between different mechanisms for ecological interactions can
be made with the help of fed models (Carpenter et al, 1994). Appropriate fitting can
demonstrate whether a model is really capable of producing observed dynamics o
not, as well as pinpointing the features of data that are not explained by theory
embodie d in a badly fed model. A good model-based calibration of data enhances the
predictive potential of a model. Models that fit to time series datasets can be used to
predict changes in a given populations and for potential effects of management
interventions (Jassby and Powell, 1990; Hilborn and Walters, 1992). They can also be
used to infer possible causes of temporal variability and to test consequences of
natural or deliberate perturbations (Carpenter and Kitchell, 1993).

Most dynamic ecological models are non-linear and standard methods that can
guarantee the finding of the best fit to experimental datasets do not generally exist

(Wood, 2001). There are a series of alternative of non-linear optimisation technique to

choose from. For some models, fitting is straightforward. For others the practical
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whereby a relation is established between current and future values of the model state
variables has also been used. Once relevant state variables are estimated, nonlinear
least squares regression is applied to find the set of parameters that best fit the data
(Carpenter et al, 1994). The direct fitting approach usually failed with majority of
nonlinear models and a nonlinear forecasting technique that can allow fitting of model
process-error have been proposed To detect chaos in ecological data sets, Ellner and
Turchin (1995) developed a method based on statistical theory for parameter
estimation in nonlinear time-series models. Conditional least squares and maximum
likelihood were described for general ecological time series models by Dennis et al.,
(1995) and better illustration and presentation of these methods were done by Ives et
al. (2003). Gould and. Pollock (1997) have focused on maximum likelihood
estimation under the robust design in lieu of least squares regression. Zeng et al
(1998) applied the Kalman filter and likelihood function to estimate their model
parameters. Wood (2001) proposed partially specified models construction with part
of the structure represented by unknown function, with other parts containing
conventional model elements with only unknown parameters. Ellner ez al. (2002)
described a method of fitting population dynamics models to time series data by
gradient matching. The technique involves smoothing the population time series, in
order to estimate the gradient, and then fitting rate equation using penalized

regression splines.

7.2  Models
Relative to temporal representation of the dynamics of the system, ecological
models can be written as system of delay differential equations with a finite number

of continuities and discontinuities which include ordinary and discrete time equations.
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Consider x, as the value of the ith state variable and xas the vector of all state

variables at time . Similarly x,_, is the value of state variable at -7, then,

id)ftL = f;(x ’x/—r,,’xt—rzr"zt) forall ¢> O:t ¢{TlaTZ""}’ (71)

where {T,T,,...}1s the points at which the state of the system changes discontinuously
(the elements of this set may be state variable dependant). Assuming that f; does not
actually depend on the system state prior toz =0, so that initial state, x,(0), rather

than initial histories, are required to integrate the models. In other words, f;is subject
o the restriction that its partial differential with respect to any element of x,__ is zero
if ¢ <1,.The models may be supplemented by discontinuities as follows (Wood, 2001)
x(T7)=d(x(T}), )) (72)
where 7is the instant after 7,and 7 the instant before. The particular models given
above and in Examples provide illustrations from the class of models.
Majority of discrete time models and all ordinary differential equation models are
special cases of this class of models. For example, by setting f;(.) = Ofor all, we get
the general class of models that can be written as systems of difference equations:
% (T) =d (:(T,),T}).- (7.3)
This class includes matrix models and discrete difference equation models.

Similarly, by having no discontinuities and no lags the general model becomes a

model written as a system of ordinary differential equations.

Yoo fixn)- 74)
dt

The class of models chosen covers a high proportion of models actually used

in ecology.
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73 Example: host-parasitoid system (diamondback moth-Diadegma
semiclausum)

The example presented here used field data for an insect diamondback moth
(DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae) and its exotic parasitoid
Diadegma semiclausum. The system dynamic is the one which has been studied
throughout this work. Good explanation of the system was done in the introduction.

This section utilized the time series data collected after release of the parasitoid in

Werugha.

7.3.1 Reasons for models selection

a) Godfray and Rees (2002) mentioned three main reasons that justified the
importance of a population growth rate parameter in the study of population biology.
First, the population growth rate is central to population projection. Secondly, it is
often the most natural response variable for the statistical analysis of the factors
influencing a species population dynamics and, finally, this parameter intimately links
population dynamics and evolutionary biology. In this context, the Lotka-Volterra and
Beddington et al. (1975) models both predicted the growth rate of the insect pest
(DBM).

b) The two species (DBM and D. semiclausum) have overlapping generations
in Kenya, which normally allows the use of continuous (Lotka, 1920; Volterra, 1931
model equations) rather than discrete time and differential equations except some
considerations are made (Royama, 1971). Among those, are the periods of
observation, which must be shorter than the generation of insects (Royama, 1971). As

DBM probably has a generation time of about 3 weeks in coastal Kenya (Rossbach ez
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al., 2005), only 20 datasets of consecutive collection, corresponding to period of
maximum parasitism and exactly 14 days interval between collections was used with
Beddington et ¢l(1975) model.

¢) Models were selected within the constraint imposed by the simplicity
necessary to their analysis and the ability for parameters to fulfil basic biological

meaning.

After models selection, the follow ing assumptions were made: 1) other sources
of mortality which could have also been responsible for the host population trajectory
were neglected. ii) Lohr et al (2007) indicates 3 other parasitoids that attack DBM in
the region before release of D. semic lausum. However, after release their parasitism

rate became extremely low hence their effect was neglected.

7.3.2 Ordinary differential equation: Lotka-Volerra model

The Lotka-Volterra model has already been very well developed and

explaine d in section 3.2 of chapter (see equation 3.1).

7.3.3 Discrete equation: Beddington, Free and Lawton model
Conforming to the discrete seasonality of most arthropods, their models are

phrased finite recursive equations of the basic form

X0 =26, 0, 3,) 5 YV =cx[1=f (%, )], (7.5)
where, x,, x,,,» ¥,» Vn 8ive the host and the parasitoid population densities in
successive generations espectively, A is the geometric growth factor for the host

(A =e" where r is the intrinsic rate of increase), and c is the number of parasitoid

produced for each host individual attacked. The function f(x, y,), gives host survival
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= w080 s, (7.7)

W,

k

where, w;" stands for the weights of the connection fram unit i in layer  to unit ;

in layer k+1,7 is a small constant called the learning rate, §,* is the signal error, |,

is input vector to the network, f' () is the derivative of the network transfer function
and s is the sum of all the weights.

The recursive formula (7.8) is the key to back propagation learning. It allows

the error signal of a lower layer (5,*) to be computed as linear combination of the

error signal of upper layer (§,**'"). In this manner, the error signals (§,°) are back

propagated through all the layers from the top to the down. This also implies that the
influences from an upper layer to a lower layer (and vice versa) can only be affected
via the error signals of the intermediate layer. The MLé received .inputs and predicts
outputs. The error between the desired outputs and the obtained outputs are used to
validate the effectiveness of the model and fine-tune the weights to more accurately

map the process dynamics.

7.5  Fitting Lotka-Volterra and Beddington ef al. models by direct
minimization
Previous chapters (3, 4) have largely shown how to fit such models by direct
minimization. For each model, the technique was rigorously follows in restoring their
parameters. Nelder-Mead and Powell’s methods for minimization were used

respectively in each model. Analysis of residual was carried out with Durbin Watson

criteria.
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Table 7.1 Descriptive steps of the knowledge -based fitting technique

Rule of procedure

Step 1
Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Obtain the time series data to be fitted into the model.
Choose a model with unknown parameters.

Study the biotic and abiotic factors which involve in the ecological
phenomena, this will he Ip figure out the boundaries of the model parameters

Create a database of model initial values (by slight change on parameter) in
respective of the biological and physical inference range obtained from step 3

For each set of parameter initial values, numerically and repeatedly solve
the model equations and saved the results x(¢)and y(¢) obtained

Build an artificial neural network model (ANN) with multilayer perceptron
(MLP)

Optimisation of the network architecture, the number of hidden layers and
the number units in the hidden layers are determined and conduct an
independent test on the model to verify model prediction and accuracy.

Fed the ANN with time series data to estimate the salues of parameters
corresponding to your system.
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Step 3. The physical and biological environments factors, which involve the
diamondback moth and its parasitoid, population fluctuations, were studied. Life
cycle for both insects were properly understood, this help in choosing the ranges of
the model parameters. For example, the DBM growth rate was chosen to belong at
[0.20, 0.34] (Shirai, 2000, Shu-Sheng et al, 2002) and the Parasitoid death rate at
[3.00, 6.00] (Fitton and Walker, 1992; Konig et al., 1993).

Step 4. Created a data base by slightly change on parameter values in respective of
the ranges obtained from step 3 for each parameter.

Step 5. With each set of parameters initial values, we numerically and repeatedly

solve the model equations and saved the results x(z)or x,and y(z)or y,obtained.

Step 6. Built an artificial neural network model (ANN) with multilayer perceptron

(MLP). The MLP modelling process generally proceeds as follows: we began by
determine the form of the pre- and postprocessing of the data x(z)or x,and y(¢)or y,

that will be used as inputs to ANN and their corresponding initial parameter value as
outputs. These values were standardized so that they are all on the same order of
magnitude. After standardization, determination of the network parameters such as

learning rate and momentum was done.

Step 7. The developed MLP uses back propagation as training algorithm. The
network architecture consists of three layers. The input layer was made of two

neurons numerical values for x(¢) , y(¢) (Lotka-Volterra model) and x, and

y, (Beddington et al. model).

The training was done by finding a set of suitable weights that minimizes the

error between the predicted and the actual output. The values of these weights were
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first set randomly. During the training, the network error was computed using a back-
propagation training algorithm.

The cross-validation phase was divided in two steps: a) The MLP was
subjected to data points not seen during the training phase, and the output was
predicted. a) The MLP was subjected to intermediate data points seen during the
training phase to ensure that oscillation (over fitting) did not occur. Sensitivity
analyses and independent test on the MLP to verify its prediction and accuracy was
conducted.

Step 8. Fed the MLP with field time series data to estimate the values of parameters

corresponding to DBM-D. semiclausum.

7.8  Parameter estimates

The sum of squared deviation between empirical and theoretical time series
with Nelder-Mead and Powell’s methods and knowledge-based parameter estimates
for Lotka-Volterra and Beddington et al. models are given in Tables 7.2 and 7.3. The
models both estimated the value of DBM growth rate. This parameter is equivalent in
pure biological sense to the “intrinsic rate of natural increase”. This rate is dependant
upon the genetics of the population and the physical quality of the environment such
as temperature (Wangersky, 1978). Sarnthoy et al. (1989) estimated 0.11 and 0.25 at
mean temperatures of 17.6 OC and 289 °C respectively for the Thailand DBM strain.
In our pilot area, temperature fluctuated between 13. °C to 35 %C, it was found that the
models predictions for this parameter were rather too high or too low when estimated
by minimization of the sum of squared deviations between emprrical and theoretical
time series. With reference to Sarnthoy et al. (1989) laboratory results and some

knowledge about the genetic variation of the Kenya DBM strain (Rossbach et al.,

125



2005), the proposed knowledge based fitting technique estimated a DBM growth rate
of 0.30 for both models. The obtained result is quite realistic and biologically
acceptable.

The natural death rate of the parasitoid was high with Nelder-Mead and very
low with Powell’s method. From biological point of view Rossbach et al, 2005,
Momanyi et al., 2006) the parasitoid is a solitary insect, which is justified by its total
dependence on DBM as its host for multiplication and perpetuation. In the absence of
DBM, parasitoid populations may rapidly decrease until extinction.

Biologically, a self-regulation greater than 1 does not make much sense
because the empirical population never reached the numbers where high intra-specific
competition could be expected. We however, expected a self-regulation coefficient:
close to 1 for the parasitoid, which can explain the strong competition for host larvae
in the field. Momanyi et al. (2006) showed that one year after release, competition
between parasitoids was so strong that even first instar larvae that were still mining
were parasitized. Some studies conducted in the pilot site has shown that the D.
semiclausum host searching capability is high and the insect better association with
cabbage host plants, at least as far as its congeneric indigenous species is concerned
(Rossbach et al. 2005). This justified the strong interactions between this parasitoid
and its host and vice versa.

The estimated value of carrying capacity from Beddington et /. model (Table
7.3) was about 160, 16, and 9 DBM/plant with Nelder-Mead, Powell and Knowledge
based method respectively. The problem is the estimated first two values, which are
an order of magnitude higher than the value suggested from field data. Nevertheless,
in outbreak situations and without effective parasitism, especially in maturing crops,

the DBM numbers recorded can surpass 16 DBM/plant (Karimzadeh et al., 2004).
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From the studies made by Rossbach et al. (2005) and Momanyi ez al. (2006)
we deduced that the parasitoid per capita searching efficiency might be greater than
the values predicted by NelderMead and Powell’s methods, what justify the value
obtained with knowledge - based technique.

The observed time series together with the model outputs are sketches in
Figures (7.1-7.4). Most of these figures presented poor fitting of the models to data,
especially for parasitoid. Good fitting was observed for DBM with Beddington et al.

model. To confirm the suitability of the models, Durbin-Watson test for

autocorrelation between residuals was conducted. The Durbin-Watson criteria applied
to the deviations between model and experimental values produced results for each
model as shown in Tables 7.2 and 7.3. The closest these values are to 2, the greater
independence exists between residuals. Knowledge based technique has shown an
improvement in fitting the models. For both models, the gap between the Durbin-
Watson criteria values @d and dp) and 2 are considerably reduced. The reductions
were very high with DBM than the parasitoid at the point that parameters estimates

with our propose technique shown perfect fit to Beddington et al. model (Figure 7.3).
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7.9  Discussion

The approach described in this work provides a way of fitting ecological
models, which estimates parameters that precisely accounts for the physical and
biological environments factors involve in the system. More importantly, it provides a
practical means of connecting models to data with inferential knowledge through
proper mapping of nonlinearity and good prediction. Knowledge based technique
stands on two major computing stages: 1) Numerically solve the models equations to
obtain the database for initial values and corresponding model parameters, 2)
Develop, train test and make use of the MPL for prediction. The first stage is obvious
to majority of theoretical ecological modeller. In the contest of mapping and
predicting nonlinear systems, the superiority of MLP over standard statistical méthods
is 'well known (Paruelo and Tomasel 1997; Karul and Soyupak, 2006). MLP are
highly flexible function approximators, which provide a powerful tool for forecasting
and prediction.

The method described has several practical benefits in fitting ecological
models. For example, missing values, uneven sampling, and unobserved state
variables present no major difficulties. Generally, at the second stage of computing,
when training a MLP, our goal is to find an optimal set of connection weights. But we
can go one step beyond. After the trained weights are found, we can find optimal
input patterns, which produced any desired output pattern by, simply imagine that the
input neurons are actually a new hidden layer at the front of the MPL network. By
doing this, the fitting method becomes efficient, reliable and makes it possible to have
some confidence in the notion that differences in model fit reflect real differences in
model performances. Rather than differences in how much help was given to the

fitting routine. Going one step beyond also, provides the means, of new parameter
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estimates to be done in case a change in environmental factors that occur over year or
generation time scale is inferred. Sometimes ecological models present chaotic
behaviour with certain set of parameters. Fitting chaotic system with method such as
trajectory matching is problematic, but knowledge based technique offer no nuisance
features. The approach make use of data collected at any appropriate scale of the
system, bypassing the assumptions and uncertainties that could have arise when
parameters are imported from other systems or small-scale of field collections.

In general, puzzling results from our examples at some part of this study are

the big divergence between estimated parameters from one technique to another and
especially within difference minimization methods. Firstly, a query may arise to the
fitting procedure, whichin this case, typically tries to maximize fit at either very short
or very long time scales. The minimization may be following this direction whereas
the main measuring features for the parameters are for the intermediate scale, which
mnitially may not have been selected. Secondly, the fitting algorithm with sum of
square minimization in searching for the set of parameters that fit the model well, may
introduce some noise to the model time series. Thirdly, these algorithms once applied
search for the minimum of the loss function and generates values that result in better
convergence of the equations. Two type of minimum usually exist (local and global),
the latter means the truly lowest function value has been found. But, finding global
minimum in reality § a very difficult problem that is why the loss function Q has
different values for the two methods. For each value of the loss function Q
corresponds a set of parameters. With knowledge-based technique, the issue of global
and local minimum is overcome by ANN, which powerfully optimizes the function.
Fourthly, the application of the models in a highly unstable situation after the

introduction of an exotic parasitoid could have also contributed to the discrepancy
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Chapter 8

General discussion, Conclusion and Prospects

8.1  General discussion

Relatively few attempts have been made to fit predator-prey models to field
time series directly. A major challenge in fitting such models is that these data usually
include process error, which is random variation in the actual numbers of organism
present, and observation error, which occurs because the data are estimates only from
those numbers. The presented work in chapters 3, 4and 5 is a detailed technique for
restoration of parameters. A loss finction, which measures the discrepancy between

the models values and observed vaiues, was defined, and a numerical process was
used to select the parameters which minimize this function. Results from the fitted
mechanistic models were unable to identify a suitable model that could mutually
explain the dynamics of Diamondback moth and its exotic parasitoid, Diadegma
semiclausum.

Poor fitting may be due to many reasons :

1. The population dynamics of these insects are inherently nonlinear. The rate of
population change may be affected not only by the current population density but also
by lagged density. Consequently specific mechanisms may involve either intrinsic or
extrinsic factors. This lag structure of population may be too complex and can

incorporate several delays on the population rate of increase. In such situation, direct

model parameters restoration becomes extremely studious.
2. The critical issue when applying methods that estimate parameters associated with

interacting populations such as Diamondback moth and Diadegma semiclausum at a

138



particular time in models is to ensure that they are the most appropriate parameters for
the specific question the model is intended to address. For example, the survival rate
of Diamondback moth measured in the field at a particular time for a specific period
might not be a good description for the same population at different period. It would
then be inappropriate to use the same measurement for all period. This is the result
from how complex the situation in nature.

3. When fitting models to our ecological data, we find ourselves in the situation where
the functional form of the model is not known, and then the only task is the estimation
of its parameters. From theory several alternative models were chosen, and each one
was contracted with the data in order to determine which one offered the best fit.
Owing to the fact that good number of models explaining dynamics between host and
parasitoid has been developed, it is challenging to choose the exact one for a
particular time series.

However, te fitting exercise is full of merits. The effort of fitting models is
exemplified by the information that it provides about the dynamics. First, the form of
the fitted model may suggest underlying mechanism, or narrow the range of possible
mechanisms, so that the model is a step toward obtaining an improved model. Second,
the fitted model can be used to characterize the significant features of the system
dynamics. Such features of interest for population and epidemic dynamics are the
overall extent of chaos versus stability, the level of predictability versus unpredictable
noise in the dynamics, and how both of these varied as a function of current state of
the system. Finally the fitted model can be used to evaluate a proposed mechanistic
model, or compare alternative proposed models, by fitting the same model to output

from the mechanistic model and comparing with the model fitted to data.
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The polar alternatives of fitting simple mechanistic model, is purely
descriptive statistical model, which has been the dominant approach for modelling
and quantifying population fluctuations. While it & recognized that both approaches
have limitations, both are widely used. Our research suggests that a combination of
mechanistic and statistical population modelling, reflecting the actual state of
knowledge about the system, can be useful in practice for improved forecasting and
characterization of population dynamics. Moreover, the fitted model can provide
information on the mechanisms driving the observed dynamics. By applying this
approach it is thought that, an improvement in the model parameter estimates has
been made. The remarkable achievement is that parameters ranges coincide with
biological borders.

Another successful result from this study was the development and
implementation of an adaptive model using artificial neural network for host-
parasitoid population density prediction. It was shown that artificial neural network
can provide a powerful tool for host-parasitoid system modelling with few
assumptions on the data. It will allow the user to achieve highly accurate predictions,
which can greatly assist in decision making. The method also provides room for
sensibility analysis, which consist of the arbitrary modification of a parameter value
and recording the response of the built model, whilst holding all other parameters

constant at their most likely point estimates.

8.2 Conclusion
It would be unrealistic to expect any mechanistic model to perfectly fit census
field data because of the irregularities in nature, since parameter values are expected

to change. It is also generally accepted that field collected time series data are never
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100% accurate and may show a deviation of up to 20%. Thus our estimated
parameters are only well-informed guesses at best. Stanfield and Bleloch (1986) sum
it up with: “We can never really validate the sort of model that we have built, we can
only hope to gain confidence in it” In the present work was successful in the sense
that: 1) This provide s guidance on the possibilities that most actual mechanistic host-
parasitoid model may not be accurate in the full prediction of DBM and Diadegma
semiclausum population dynamics. 2) This elucidates a useful application of models
for impact assessment of the effect for a newly introduce species within the region.
3) It proves and demonstrates the predictive power of artificial neural network for
host-parasitoid population density. 4) The work proposes and elucidates an interface
- between model and data which may be helpful toward making new ;theories for
models to become more accountable to experimental data. Our wishes is that let this
practical exercise become useful to modellers, either in terms of mathematical
interpretation of ecological information or stimulating innovative thinking about an

old field of research.

83 Prospects

From this study, the following suggestions were made

8.3.1 Recommendations directed to the fitting of mechanistic models
1. Before fitting, the model parameters should be considered as variable which may
depend on abiotic factors such as climate (rainfall and temperature).

2. Laboratory studies and field experiments should be conducted if possible to

determine value of some parameters before the fitting exercise.
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3. Direct estimation of parameters from time series for predator-prey or host-
parasitoid are rarely done in practice and would be advisable for good understanding
and studies of the systems.

4. Fitting models to time series has significant advantages for estimatng and
forecasting parameters. Data can be collected at appropriate scales for the system of
interest, thus by passing the assumptions and uncertainties that arise from small-scale
experiments. Parameter estimates could be improved by accounting for observation

erras. However, even modest observation errors cause substantial difficulties in

model identification.

8.3.2 Considerations which may help modek end users in terms of management
and making policies

1. The first problem is scale which could be considered general to all ecologists.
When time comes to apply results from models in management and policy, the main
challenge is to deal with the wide array of scales that are often incompatible with one
another. Frequently, management and policy are exercises that operate at different
scales of ecology. Management scales are determined by administrative boundaries,
land ownership, and policy is developed at even broader scales. To think that Nature,
which follows its own scaling rules, can somehow be made to fit within the arbitrary
scales of management and policy is fantasy. To argue further based on the present
work, organisms such as insects follow their own algorithms in responding to their
respective habitat and this determines the scales at which they operate and over which
variation in environmental conditions may be relevant to them.

2. It is important to be clear about the goals and objectives both within a study

and, among subjects studied. A model developed for our purpose is not immediately
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Appendix B: Sample Computer program in C/C++ programming language for

Lotka-Volterra model parameter restoration with NerlderMead Algorithm

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include <windows.h>

#define MP 22

#define NP 21 //Maximum value for NDIM=20

typedef double MAT[MP][NP];
MAT P;

double Y[MP], PT[MP];

//int  LITER,J,NDIM;

int LITER,JNDIM,;

double FTOL;

double Random()

{
float x;
/* Set evil seed (initial seed) */
srand( (unsigned)time( NULL ) );
X = (float) rand()/RAND_MAX;
return x;

}

/*********** Lotka Volterra Equaﬁons *****************/
double prey(double t, double h, double p, double r, double ¢, double a)
{

double result;
result=r *h -c*h*h -a* h * p;
return result;

}
double predator(double t, double h, double p, double m, double e, double b)
{

double result;

result=-m*p -e*p*p+b*p*h;

return result;

}
/* Utility function */
double square(double value)

{

return value * value;

}

// user defined function to minimize .by chep
double FUNC(double *P)
{

it i;
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*ITER=0;
el:1ILO=1;

i (Y[1]> Y[2])

IHI=1;
INHI=2;
1
else
{
IHI=2;
INHI=1;

}
for (I=1; I<=MPTS; I++)

{
if (Y[1] < Y[ILO]) ILO=I;
if (Y[I] > Y[IHI})
{
INHI=IHI;
IHI=I,
}
else if (Y[1] > Y[INHI})
if (I '=1HI) INHI=I;
}

//Compute the fractional range from highest to lowest and return if
//satisfactory.

RTOL=2.0*fabs(Y[IHI] - Y[ILO])/(fabs(Y[IHI])+fabs(Y[ILO]));
if (RTOL < FTOL) return; //mormal exit
if *ITER = ITMAX)

{
printf(" Amoeba exceeding maximum iterations.\n");
return,

}
*ITER= (*ITER) + 1;

for (J=1; J<=NDIM, J++) PBAR[J]=0.0;
for (I=1; I<=MPTS; I++)

if (I !=1IHI)

for (J=1; J<=NDIM; J++)
PBAR[J] += P[I][]];

for (J=1; J<=NDIM; J++) {

PBAR[J] /= 1.0¥*NDIM,;

PR[J]=(1.0+ALPHA)*PBAR[J] - ALPHA*P[IHI]{J];

}
YPR=FUNC(PR);
if (YPR <= Y[ILOJ)
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{
for (J=1; J<=NDIM; J++)
PRR[J[=GAMMA*PR[J] + (1.0-GAMMA)*PBAR[J];
YPRR=FUNC(PRR);
if (YPRR < Y[ILOJ)

{
for (J=1; J<=NDIM; J++) P[IHI][J]=PRR[J];
Y[IHI]=YPRR;

else {
for (J=1; J<=NDIM; J++) P[IHI][J]=PR[J];
Y[IHI]=YPR;

}
}
else if (YPR >= Y[INHI])
{

if (YPR < Y[IHI])

{
for J=1; J<=NDIM; J++) P[IHI][J]=PR[J];
Y[IHI]=YPR;

} _
for (J=1; J<=NDIM; J++) PRR[J]=BETA*P[IHI][J] + (1.0BETA)*PBAR[J];
YPRR=FUNC(PRR);

if (YPRR < Y[IHI])

{
for (J=1; J<=NDIM; J++) P[IHI][J]I=PRR[J];
Y[IHI]=YPRR;
}
else
for (I=1; I<=MPTS; I++)
if (I !=1L0O)
{
for (J=1; J<=NDIM; J++)
{
PR[J}=0.5*(P[I][J] + P[ILOIJD;
P][J]=PR[J];
}
Y[I]=FUNC(PR);

}

else {
for (J=1; J<=NDIM,; J++) P[IHI][J}=PR[J];
Y[IHI]=YPR;

}

goto el;

¥

void main()

{
NDIM=8; // 2 variables
FTOL=1e-8; // User given tolerance
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//define NDIM+1 initial vertices (one by row)

P[1][1]=.07; P[1][2]=.5; P[1][3]=.01; P[1][4]=.03;
P[1][5]=.02; P[1][6]=.01; P[1][7]=12.41; P[1][8]=1.7;

P[2][1]=.09; P[2][2]=.17; P[2][3]=.05; P[2][4]=.29;
P[2][5]=.02; P[2][6]=.02;P[2][7]=15.6; P[2][8]=2.9;

P[3][1]=.32; P[3][2]=.04; P[3][3]=8; P[3][4]=.073;
P[3][5]=.09; P[3][6]=.053; P[3][7]=9.8; P[3][8]=0.22;

P[4][1]=.03; P[4][2]=.02; P[4][3]= .013; P[4][4]=.85;
P[4][5]=.045; P[4][6]=.03; P[4][7]= 5.00; P[4][8]=2.3;

P[5][1]=1.0; P[5][2]=.052; P[5][3]=.01; P[5][4]=.029;
P[5][5]=.01; P[5][6]=.02; P[5][7]=7.41; P[5][8]=2.9;

P[6][1]=.72; P[6][2]=.044; P[6][3]= .048;P[6][4]=.093;
P[6][5]=.02;P[6][6]=.083;P[6][7]=4.5:P[6][8]=0.22;

P[7][1]=.008; P[7][2]=.083; P[7][3]= .097; P[7][4]=.703;
P[7][5]=.071; P[7][6]=.03; P[7][7]= 8.98; P[7][8]=0.03;

P[8][1]=.23; P[8][2]=.72; P[8][3]= .53; P[8][4]=.025;
P[8][5]=.045; P[8][6]=.053; P[8][7]= 2.9; P[8][8]=5.23;

P[9][1]=.8; P[9][2]=.02; P[9][3]= .03; P[9][4]=.05;
P[9][5]=.045; P[9][6]=.93; P[9][7]= 9.60; P[9][8]=1.9;

//Initialize Y to the values of FUNC evaluated
//at the NDIM+1 vertices (rows] of P

for (I=1; I<=NDIM+1; I++)

{
for (int v=1;v<=8;v++)
{

/PT[1J=P[I][1]; PT[2]=P[1][2];
PT[v]=P[1][v];
}
Y[II=FUNC(PT);
}
/ffor (I=1; I<=NDIM+1; I++) printf(" %14.10\n", PT[I]);
//call main function

for (I=1 ; I<=NDIM+1; I++)

{
for (J=1; J<=NDIM,; J++) printf(" %f", P[I][J]);
printf("\n");

}
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