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Abstract 

Rule-based classifiers have one major advantage over other classes of supervised learning 

algorithms: interpretability.  They provide a means to read into a model and find how the 

features co-act in order to come to a classification outcome. This in turn enables the 

researcher to visualize the feature interactions and evaluate the key features that discern 

between different decision classes. The rules generated from these algorithms, however, 

can be very many and their analysis is not trivial. This is where proper visualization 

techniques enable the researcher to filter out clutter and see only important relationships. 

In addition, the next natural step for genomic data is to find out relationships between the 

interacting genes and biological networks is always a good starting place. In this study, we 

introduce VisuNet, a highly interactive, web-based tool for visualization of feature 

interactions in rule-based classifiers as well as annotation of genomic data with information 

on biological networks involved. VisuNet can be used with any rule-based classifiers such as 

decision trees and Rough-Sets, or any model from which rules can be extracted. The tool is 

hosted online at http://bioinf.icm.uu.se/~visunet/.  

http://bioinf.icm.uu.se/~visunet/
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A huge explosion of genomic data has been witnessed in the field of molecular biology due 

to low-cost of sequencing data with the emergence of new technologies such as Next 

Generation sequencing (NGS). This has necessitated the use of novel techniques to analyze 

this kind of data for disease studies and other kinds of research. Classification methods, 

which are initially trained using data whose outcome/classes are known, produce a model 

(or classifier) which is then able to assign an unknown object to a class with a certain level of 

certainty. These algorithms have found wide application in the field of computational 

biology and medicine. For example, predicting whether a patient will have breast cancer 

given their DNA is a typical classification problem. This study developed a tool which focuses 

on one class of such algorithms: rule-based classifiers.  

Rule-based classification uses Boolean logic to ascertain whether an object belongs to one 

set or another (probability 1 or 0) and assuming a probability measure for the cases that are 

vague. This makes them simple to understand but more importantly allows them to be 

easily interpreted by domain experts. One common way of interpreting them is by 

extracting the rules into IF…THEN statements which can be easily understood by most 

molecular biology experts. The challenge is that these algorithms may produce a lot of rules 

and hence reading the textual representation is not always plausible. Also, the interactions 

between the features in the rules are not clear from text and hence the need for proper 

visualization.  

VisuNet has been developed in this study for this specific purpose: It enables the user to 

interactively view the feature interactions in the classification model as a network whose 

nodes are features and whose edges are interactions between these features. The user can 

additionally provide a mapping file, if the data is genomic in nature, and VisuNet will 

annotate the network diagram with biologically relevant data. The features are specifically 

annotated with data from KEGG Metabolic Pathways and Gene Ontology terms. These 

provide an overview of how the function(s) of the genes represented by the features in the 

network and how they could possibly be interacting within the internal cell network. This is 

a very important overview since genes relating to a particular pathway (e.g. a cancer 

pathway of interest to the study) or genes that share certain ontology terms form a good 

starting point of further investigation. The tool is hosted online as a web application for 

general use by the scientific community. 
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Abbreviations 
AJAX – Asynchronous JavaScript and XML 

ANN – Artificial Neural Network 

CART – Classification and Regression Trees 

CSS – Cascading Stylesheets 

GIS – Geographical Information System 

GO – Gene Ontology 

JSON – JavaScript Object Notation 

KEGG – Kyoto Encyclopedia of Genes and Genomes 

HTML – Hyper-Text Mark-up Language 

RNA – Ribonucleic Acid 

MCFS – Monte Carlo Feature Selection 

MCFS-ID – Monte Carlo Feature Selection and Interdependency Discovery 

RF – Random Forests ™ 

SVG – Scalable Vector Graphics 

SVM – Support Vector Machine 

UI – User Interface 
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1 Introduction 

Data visualization has become a critical part of analysis and by extension research. A good 

visualization tool is able to draw the attention of the researcher to critical details not easily 

visible or clear in the numerous amount of textual data normally output in the process. For 

instance, it is easy to visualize patterns of high expression in a graphed microarray output 

presented as a heat map rather than as a matrix of numbers (gene expression levels). 

Similarly for machine learning algorithms, it is the norm rather than the exception to have a 

clustering algorithm output the result in a visual plot in addition to the textual data. This 

speeds up the process of analysis but making subtle clues pop up. A good visualization tool 

should, in addition to showing the diagram, include a level of interactivity to allow the user 

explore what they are seeing to some level of detail. For biologists and other domain 

experts, this ability to visualize your data and interact with it markedly cuts down the time 

spend in analysis of results. For presentation purposes, the need for good visualization tools 

cannot be stressed enough.  

It is on this premise that this study presents a web-based and highly interactive tool for 

visualization of networks for rule-based classifier models. With a focus on feature 

interactions and annotation of genic information with data of biological networks, VisuNet 

provides a platform for discovery of key drivers for the classification. VisuNet is available 

online at http://bioinf.icm.uu.se/~visunet for public access. 

Following this introduction into the problem, the remaining sections will flow as follows:  

Section 2 will review some literature and provide a background on machine learning, 

Section 3 will cover a definition of terms and key formulae used in the application and the 

report, describe the overall architecture of the tool and how performance was assured, 

Section 4 will evaluate the key elements of the features of the software and a basic 

introduction to its working as well as a validation of the tool in comparison to two different 

studies, Section 5 will be a discussion of possible applications of the tool and a caveat on 

feature selection followed by a conclusion in Section 6. Finally, Section 7 will preempt some 

future work. 

http://bioinf.icm.uu.se/~visunet
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2 Background: Visualization in Machine Learning 

Machine learning is the field of artificial intelligence in which a computer is programmed to 

learn. Machine learning has grown over recent years in algorithm design and techniques for 

data pre-processing and visualization, due to an influx of data in many fields including 

astronomy, biology, and social media among others. From datasets of few attributes in the 

70s to petabytes of data in the recent past, the influx has led to many researchers scraping 

through to identify patterns and automate tasks that would not be possibly done by 

humans. Generally, there are two areas of machine learning: supervised and unsupervised 

learning. There exist other paradigms such as reinforcement learning [1] and semi-

supervised learning [2,3] although this document will not go into any further detail of these.  

Over the past 10 years, there has been a great push in machine learning hand-in-hand with 

the data explosion. In the field of biology, the sequencing of the first human genome and 

the massive decline in the cost of sequencing have both contributed majorly to the genomic 

data explosion. Molecular biologists have been overwhelmed by this surge of data and the 

field of bioinformatics has gained a new leash of life as they work with the biologists to dig 

deep into the overwhelming data to discover elusive patterns. Machine learning gives hope 

that the vast amount of unlabeled data can be grouped/clustered into some functionally or 

structurally similar cohorts (unsupervised learning), or domain experts can continue with 

the work of labelling as machines learn and further classify unknown objects off of the 

experts’ work (supervised learning).  

2.1 Unsupervised Learning 

If the objects being studied have no predefined or known labels, the problem is a case for 

unsupervised learning. The aim of the machine learning algorithm is thus to identify in the 

object set, distinct clusters of objects based on some similarity measure of features or 

attributes. Clustering is the most common example of unsupervised learning. Clustering 

algorithms can primarily be categorized into two groups: Partition methods and tree-type 

methods.  

Partition methods create a family of clusters (partitions) where each object belongs to just a 

single partition [4]. To generate such partitions the ideal requirement is that distances 

between pairs of objects belonging to the same cluster are smaller than distances between 

pairs of objects in different clusters although this is not usually possible all the time. The k-
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means clustering algorithm is the most common partitioning method. The algorithm 

calculates distances between objects starting from centroids, the number of which is 

provided by the user. The number of centroids is the same as the number of clusters to be 

obtained. By calculating distances between the objects and the centroids, as well as 

recalculating the centroids as the mean of distance from all its cluster points, the algorithm 

is able to group objects into the specified number of clusters. Hierarchical clustering is the 

most common type of tree-type clustering methods. Tree methods build a tree of clusters 

that includes all the objects and for which any two clusters are either disjoint or one cluster 

is a superset of the other.   

Clustering has found numerous applications in the field of bioinformatics with clustering of 

gene expression data being an almost de facto example in which genes with similar 

expression levels are clustered together. Applications in the field of biology have been 

many, for example: clustering of metagenomics shotgun sequences [5] and clustering of 

lipid biomarkers in lipidomics [6] among many others. This document will not focus more on 

unsupervised learning techniques other than this brief introduction as the tool applies only 

to supervised learning algorithms. 

2.2 Supervised Learning  

Although unsupervised learning is very useful and possibly the only way of handling 

unlabeled data, there are enough scenarios in which there exists some information on the 

labels. This information can be sufficient to train a classifier from. This type of machine 

learning, in which the algorithm is first trained with data of known discrete outcomes and 

tested on how well it can classify previously unseen objects in the testing phase, is termed 

supervised learning, also commonly referred to as classification.  

The procedure for classification begins with acquisition of the dataset. A general outline is 

shown in Figure 1. For genomic datasets, this could be thousands of attributes (features). A 

domain expert can assist in the selection of requisite fields to reduce the dimension of the 

dataset [7]. Alternatively, an appropriate feature selection algorithm can be employed to 

reduce dimensionality. A mix of the two (domain expert after or before an automated 

algorithm) is also common.  Section 2.3 will cover the issues with high-dimensional datasets 

in slightly more details. After the features to be used have been selected, depending on the 

algorithm, the data may optionally be discretized or passed as-is into a classifier. 
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Discretization helps to prevent overfitting of the data which tends to reduce classifier 

accuracy considerably. A review [7] details the most common steps involved in the pre-

processing of the dataset including ways of handling missing data. The data at this stage is a 

set of features and a label for each object (also referred to as a decision class or outcome). 

The set of outcomes is mostly a discrete finite set and it is common in the biological field to 

have binary outcomes e.g. Infected or not, Susceptible to Cancer or not, spliced or not etc. It 

is also possible to have labels of few options that are not necessarily binary e.g. type of 

cancer under study (Breast, Lung, and Pancreas). The data is then fed into the algorithm to 

produce a classifier (or model). The data fed in is called the training data.  

Figure 1: A common classification process flow. 

The applications of supervised learning in the field of molecular biology are numerous, from 

classification of novel coding genes and small RNA, to differential gene expression studies in 

genome-wide association studies, among many others. In this field, it is important for 

researchers to explicitly consider the aim of the classification tasks: Performance versus 

interpretation. In many other areas of application like business or even medicine, predictive 

power seems like a logical choice over interpretation. For instance, a model should be able 

to correctly diagnose a patient other than wrongly do so and provide an explanation on how 

it arrived at the decision. Nevertheless, in research, it is prudent that the algorithm be 

readable. For instance, if a classifier can identifier an object with 99.9% accuracy as 

Data acquisition

Data pre-processing: scaling, 
discretization, handling missing 
values etc

Feature subset 
selection

Selection of learning 
algorithm and  
training a classifier 

Testing classifier, cross validation

Visualization/Analysis of 
classifier output
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susceptible to breast cancer, it is indeed a very desirable classifier; if it can go into the 

details of how it arrived at the conclusion – for example: “if Gene1 is upregulated and 

Gene6 downregulated and Gene 8 unchanged then breast cancer susceptibility” – then the 

research has a more precise target(s) to work with. For the purposes of this document, we 

consider two groupings of supervised learning algorithms: Black-box vs White-box 

algorithms. 

2.2.1 Black-box classification algorithms 

Black-box classification methods are able to produce a model which can classify unknown 

objects but their working is usually hidden in the algorithm implementation and hence one 

cannot extract the mechanism by which they decide on the class of an object. They tend to 

outperform white-box in terms of accuracy but are not quite feasible for most biological 

research scenarios where the researcher would like to read into the model to know what 

are the features, for example genes, that are responsible for specific outcomes and how 

they interact in making up the decision. This paper focuses on classification methods that 

can produce such rules that make up the classifier rather than black-box methods.  

Nevertheless, there has also been considerable effort in research to unravel these black-

boxes. In this section we will cover three examples of these algorithms that are common: 

Support Vector Machines, Artificial Neural Networks and Random forests. 

2.2.1.1 Support Vector Machines (SVMs) 

SVMs have gained widespread fame because of their high performance as multi-class 

classification algorithms. Although initially used for binary classification [8], they have been 

adapted for use in multi-class problems and have recorded very good performance and 

hence been adopted widely in the biological field. They have been applied in functional 

annotation of fungal genomes [9], longitudinal studies [10] just to name a few.  

The SVM algorithm uses kernel functions to project data sets into higher-dimensional space 

representations in which a linear separation of positive and negative training instances is 

feasible [11]. The major challenge with SVMs has been their perception as black-boxes for 

which no explanation on why classification fails or succeeds. Nevertheless, there have been 

attempts to modify the kernel to allow interpretations [11–15].  
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2.2.1.2 Artificial Neural Networks (ANNs) 

Created to mimic biological neural network, ANNs provide a fast and well-performing 

algorithm for classification. Neural networks consist of an input layer of neurons or nodes, 

one or more hidden layers and an output layer of neurons [16]. Neural networks have found 

much application in numerous fields of computational biology [4,17]. A list of applications 

and potential areas are covered by [18,19]. Like SVMs, they are largely considered black-

boxes and there is much effort [20,21] to look inside the hidden layers and possibly extract 

information that can be used to unveil the workings of the output models  

A rising category of neural networks are deep learning algorithms [22] that model 

hierarchical abstractions in input data with the help of multiple layers. They can have a huge 

parameter space and therefore can be compute intensive [23]. In addition to computer 

vision, speech recognition and natural language processing, they have also found application 

in the fields of genomics [22,24,25] and drug-discovery and continue to show great promise 

even though they still face the challenge of interpretation.  

2.2.1.3 Random Forests (RFs) 

According to Breiman (2001), RFs are a combination of tree predictors such that each tree 

depends on the values of a random vector sampled independently and with the same 

distribution for all trees in the forest. RFs extend the concept of decision trees (described in 

Section 2.2.2.1) but unlike the latter, RFs do not produce an explicit model hence are in this 

category of black-boxes [26]. They also provide - as part of the process - a ranking of the 

features even though this is not necessarily used by the algorithm itself [27].  

RFs have also been widely used in the field of genomics including gene classification [28] 

and various genome-wide association studies [29,30].  

2.2.2 White-box classification algorithms 

White-box algorithms have one main characteristic in common: interpretability. One 

common group of these algorithms is ones that produce explicit rules generally named rule-

based classifiers. Rule-based classification algorithms such as Rough Sets [31,32] and 

Decision Trees can be easily translated into an IF-THEN model; The output is then easier to 

visualize for domain experts to make deductions from the model. Their level of complexity is 

not as high as most black-box methods; decision trees may perhaps be the simplest models 
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since they could even be constructed by hand for very simple data. These models also 

perform comparably with black-box methods in accuracy and speeds depending on 

algorithm implementation and dataset in question. 

2.2.2.1 Decision Trees 

A decision tree classifies data items by posing a series of questions about the features 

associated with the items. A simplified representation of a classification tree is shown in 

Figure 2. Each question is contained in a node, and every internal node points to one child 

node for each possible answer to its question [33]. An optimal decision tree attempts to 

reduce the depth (number of questions) [34] without compromising classification accuracy. 

This increases legibility as a deep tree increases complexity. 

Figure 2: Decision Tree Layout. Each non-leaf level represents a single feature with the edge being a 

value that the feature takes. Leaf nodes show the outcome of classification while the root node does 

not represent a feature. 

Applications of decision trees have been plentiful in the fields of computational biology [35–

37]  and medicine [38–40]. Rules can easily be extracted from these trees, a process named 

discrimination [34]. Implementations of trees have been done in many algorithms including 

MCFS (a filter for feature selection that uses classification trees) [41], C4.5 [42] and CART 

[43]. 
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2.2.2.2 Rough-sets 

Introduced by Pawlak (1982), Rough sets are a formal approximation of crisp sets. Built on 

Boolean reasoning, they aim to find a minimal combination of features, called Reducts, that 

discern between classes [44]. This makes them ideal for feature selection as well as 

classification. It is also possible to extract rules from the Reducts using various algorithms. 

ROSETTA [32] is an implementation of Rough sets that is able to perform the pipeline for 

classification in an easy to use Graphical User Interface (GUI) or a feature-rich command-line 

interface. The output from the training is a set of rules with quality measures (support, 

accuracy, coverage and strength) that enable a ranking of rules [31]. As output rules of 

ROSETTA can be numerous depending on the reduction algorithm used, the ranking of the 

rules and filtering options enables the user to consider a subset of the rules that sufficiently 

cover the dataset. The filtered rules can then be fed into VisuNet for visualization. 

Rough sets have also found much application in the field of computational biology [45–48] 

and perform quite comparably with other black-box methods depending on dataset 

complexity. The legible model produced allows the researchers, who would like to know the 

contribution and interaction of features do particular decision, to decipher the model and 

investigate the features further. 

2.3 Feature selection  

Most datasets in the field of biology tend to have features far greater than the number of 

objects. It is common to have a hundred or even fewer patients while observing tens of 

thousands of genes in gene expression data. Such high-dimensional cases are commonly 

referred to as the “small n large p problems” and present several challenges to the 

classification algorithms. This has been rightly named the ‘curse of dimensionality’ [49]. First 

of all, rarely for such problems do many of the features have requisite predictive power; 

they are either irrelevant or redundant. In terms of running time, the numerous features 

greatly impact the running time, especially since some algorithms scale very poorly with 

higher dimensions. Moreover, the high dimensionality will also lead to over-fitting – 

describing a random error or noise rather than an underlying data – thereby reducing 

classification accuracy. This is where feature selection (FS) or sub-setting algorithms come 

in; they select the set of features that has the most discriminative information from the 

original feature set. 
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However, in implementation of FS algorithms, a single feature may be considered irrelevant 

based on its correlation with the class, but it may become very relevant if combined with 

other features. The unintentional removal of these features can result in the loss of useful 

information and thus may cause poor classification performance [50]. It is therefore 

important that the FS algorithm takes into account interacting features or correlation 

between features. This is also a well-studied area and a lot of algorithms have been 

developed that consider some metric of correlation between features or feature subsets to 

the decision class [6,51–54]. It is this correlation that the tool described herein builds hopes 

to unveil by visualization. 

The uses of feature selection (FS) techniques are many fold. FS avoids the over fitting 

problem thereby improving the performance of classification models, develops fast and cost 

effective models, facilitates data visualization, reduces the measurement and storage 

requirements, reduces training and testing time of the prediction model [52] and enhances 

comprehensibility of learned results [51]. There are mainly three types of FS methods: 

wrappers that are wrapped around a classifier, filters that work as a pre-classification step, 

and embedded methods that are part of the classification algorithm. Embedded and 

wrapper methods are therefore tightly coupled to a classifier. The filter model evaluates the 

goodness of feature with pre-specified criteria, which is independent of learning algorithms 

[55]. 

In this study, we validate VisuNet against data studied by [56] and used to validate MCFS-ID, 

described later in Section 2.4.2. MCFS-ID is based on the Monte-Carlo Feature Selection 

(MCFS) algorithm [57]. The MCFS algorithm is a filter algorithm that selects a feature if it is 

likely to take part in the process of classifying samples into classes ‘more often than not’. It 

employs classification trees to calculate the relative importance (‘readiness’ of a feature to 

take part in the classification process) of a feature. The algorithm then ranks the features on 

basis of relative importance (RI) and provides a statistically-advised cut-off point. Features 

above the cut-off point are deemed sufficient to build a good classifier. We comment on 

similarities and differences between the results arrived at by the original paper, MCFS-ID 

and VisuNet. 
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2.4 Visualization in Networks 

2.4.1 Why Networks 

Networks provide an intuitive and natural way to interpret interactions and relationships. A 

lot of studies began with exploration of networks in nature and networks have been 

extrapolated into various inventions and algorithm development by human beings. For 

instance, networks occur in man-made transport networks – rail, flight, roads – that have 

now been mapped into GIS software and are easy to find information on, using various map-

providing software and websites like Google Maps. Also, the internet and social media 

networks that have almost become indispensable to human life in many regions of the 

world [58]. Even natural biological networks (metabolic reactions, neural networks, blood 

circulation, food webs) [59] have been and are currently being explored in various facets of 

science to discover the functioning of cells at a large scale. This is what makes network 

layout of data so intuitive. In this report, the terms graphs and networks may be used 

interchangeably. 

A formal definition of graph is given as follows according to [60]:  

A graph is an ordered triple 𝐺 = (𝑉(𝐺), 𝐸(𝐺), 𝐼𝐺), where 𝑉(𝐺) is a nonempty set whose 

elements are vertices (or nodes or points), 𝐸(𝐺) is a set whose elements are edges, disjoint 

from 𝑉(𝐺) and 𝐼𝐺 is an “incidence” relation that associates with each element of 𝐸(𝐺) an 

unordered pair of elements (same or distinct) of 𝑉(𝐺); 𝑉(𝐺) and 𝐸(𝐺) are the vertex set 

and edge set of G, respectively. If, for the edge e of G, 𝐼𝐺(𝑒) = {𝑢, 𝑣} we write it as: 𝐼𝐺(𝑒) =

𝑢𝑣.  

For example, given the sets: 

V(G) = {𝑣1, 𝑣2, 𝑣3, 𝑣4} 

E(G) = {e1, 𝑒2, 𝑒3} 

IG(e1) = {𝑣2, 𝑣4}, IG(e2) = {𝑣1, 𝑣4}, IG(e3) = {𝑣2, 𝑣3} 

In this case,  𝐺 = (V(G), E(G), IG) is a graph. A simple graph is a graph with neither loops - 

IG(ej) = {vi, vi} - nor parallel edges (edges with the same start and end vertices). A complex 

graph can contain loops and multiple/parallel edges. An ordered/directed graph is one in 

which the direction of the edges are taken into account such that if IG(ej) = {vi, vi+1} and 
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IG(ej+1) = {vi+1, vi}, then IG(ej)  ≠ IG(ej+1). In an unordered or undirected graph, 

IG(ej) = IG(ej+1). A graph is complete if each node has at least an edge connecting it to 

another, and incomplete if there is at least one node that has no edge. This tool presented 

in this paper will only produce simple, unordered and sometimes incomplete graphs. This is 

because the determinant of directionality would imply causality or some kind of flow, but 

we are more interested in the correlation. There is a possibility for causality but this could 

be merely as an artifact of the data rather than a rule.  

Graphs are easy to interpret into diagrams and hence the basis for this work. The above 

graph can be represented as shown in Figure 3. We seek to represent the rules input 

into the tool as a network of interactions between interacting features in the rules and allow 

for annotation of nodes and edges with biological networks for genomic datasets.  

Figure 3: Diagrammatic representation of a simple, unordered, complete graph. Graph has 4 

vertices (v1,v2,v3,v4) and 3 edges (e1,e2,e3). 

2.4.2 Similar Works 

Some tools have already been developed for the visualization of rules. Some are generic like 

Ciruvis [61] while others are tied to specific classifiers, for example MCFS-ID [54] and, 

Mosaic Plots [62] and arulesvis [63] R package that are specific to association rules to name 

a few. Ciruvis represents interactions between features in rule based classifiers in a closed 

circular form. The user can provide a grouping and coloring scheme in separate files for a 

customized view. Since it uses Scalable Vector Graphics (SVG) for its output, it provides a 

basic level of interactivity for showing labels, highlighting interactions on hover, and 
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showing rules that fire for a highlighted interaction. It provides the interactions and 

weighted view of features per decision class and an overall view for all decisions. The tool is 

intuitive and aesthetic producing good quality production ready images. A sample output of 

Ciruvis is shown in Figure 4. 

The Monte-Carlo Feature Selection and Interdependency Discovery (MCFS-ID) tool borrows 

part of its name from the feature selection algorithm, MCFS, upon which it is built. MCFS-ID 

uses a visualization of interdependencies between the selected features in a network 

layout.  It colors nodes based on their MCFS calculated RI of the features assigning the 

strongest intensity to the most important feature and reducing the intensity with reduced 

RI. The graph produced is a simple, ordered and incomplete graph having arrows in the 

edges pointing to the node with better RI. The thickness of the edges is the weighted 

strength of the interaction while the size of nodes grows with the number of edges going 

into it.  

Figure 4: A sample view of Feature Interactions in Ciruvis. Rule networks for Acute Lymphoblastic 

Leukemia related genes as described by [61]. 

Nevertheless, MCFS-ID does not provide much interactivity and is tightly coupled with the 

MCFS method for feature selection. It does not regard the feature ranking per decision class 
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and hence cannot provide discerning features between the classes. Despite these few 

limitations, it provides an intuitive view of the feature interdependencies and provides a 

good starting point for analysis. 

There exist other tools that have been employed in association rules used in data mining. 

The arulesviz [63] package in R provides a way of visualizing association rules in several 

formats.  It allows visualization of rules in graph format – shown in Figure 5 - or even 

hierarchical grouping [64] displayed as a matrix. It is designed for use with the arules [65] 

package in R and hence is tightly coupled too. 

Figure 5: Graph visualization of 10 rules from the Groceries dataset. Visualization was done using 

the R package arulesviz according to instructions in [64]. 

Graph-based visualization offers a very clear representation of rules but they tend to easily 

become cluttered and thus are only viable for very small sets of rules. This is the challenge 

with most non-interactive graph tools. Ability to zoom, selected subsets of data, search and 

filter and hence very necessary when visualizing large set of rules. A key thing in graph-
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based visualizations is also to provide labels that are of interest to the user. Usually, graph 

visualizations annotate nodes and edges with labels and adjust node coloring and edge 

widths to improve visual effect and highlight key nodes and edges.  

2.5 Aim of study 

Domain experts are usually not also power users and require user interfaces that are 

intuitive and informative so as to avoid an overhead of learning the complex tools. Also, 

interactive data visualization allows the user to control clutter and focus on areas of interest 

quickly. In this study, we present VisuNet: an interactive, web-based visualization of feature 

interactions in form of a simple, labelled, unordered and sometimes incomplete graph. The 

tool should allow as input rules formatted in a specified format or from ROSETTA, and 

provide a searchable and filterable view of the feature interactions in the input rules per 

decision class with ability to zoom. We hypothesize that annotation of such interactions 

with biological networks for genomic input will not only cut the time spent foraging through 

multiple genomic databases for information but also unravel interesting relationships at a 

glance.  We employ Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways for the initial version of the tool.  

3 Method 

3.1 Definition of terminology 

For consistency, the previous definitions defined by [61] were kept with a few changes to 

incorporate the differences in visualization. A rule has the form: 

IF feature=value [, feature=value] THEN class=decision 

Where feature=‘value’ (for example MIF=‘high’) is referred to as a condition. Henceforth, 

the words condition and feature may be used interchangeably. Conventionally, the IF part is 

called the antecedent or simply left hand side (LHS) and the ‘THEN’ part is termed 

consequent, or the right hand-side (RHS). A rule may have one or more conditions in the 

antecedent. Each condition is represented in VisuNet as a red-colored node. The stronger 

the color intensity of the condition, the higher the quality of the feature, that is, the feature 

occurs in top ranked rules. The ranking of a condition 𝑥 is based on connection defined as: 
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𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑥) = ∑ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑟) ∙ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑟)

𝑟∈𝑅(𝑥)

 

Where 𝑅(𝑥) is the set of all rules with condition𝑥. Similarly, two conditions are connected 

vertices/edges of a graph if they co-occur in some rule(s) and the score of the connection – 

which determines the thickness of the edge - between two conditions 𝑥, and 𝑦 is defined as: 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑥, 𝑦) = ∑ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑟) ∙ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑟)

𝑟∈𝑅(𝑥,𝑦)

 

Where 𝑅(𝑥, 𝑦) is the set of all rules in which x and y co-occur. A higher value of connection 

between any two nodes implies a thicker edge between them. 

The size of each node is determined by the number of edges emanating from it. It is 

important to note that a node may have many connections and hence be large although the 

connections are of low value hence not as stronger in color. The connection of the edges 

and nodes are weighted and scaled automatically in the visualization to produce a visual 

experience that will help discern the strength of the interactions.  

3.2 Architecture 

3.2.1 Presentation Layer 

VisuNet is designed as a three-layer web application as shown in Figure 6. The presentation 

layer allows the user to interact with the application in two main web pages. It is built using 

HTML5, CSS3 and JavaScript. HTML5’s form error handling is leveraged for simple client-side 

error handling. Other errors are displayed on this layer using AJAX although propagated 

from the business logic. Three major JavaScript libraries are used in the application: 

Bootstrap, JQuery and vis.js.  

Bootstrap is used for styling of components due to its adaptability to multiple screen sizes, 

theming and aesthetic effect. JQuery has become a de facto library for ease of writing 

JavaScript code that improves legibility and together with CSS3 selectors, reduces lines of 

code considerably. It also provides various commonly-used functions not included in plain 

JavaScript.  
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Figure 6: High-level architecture of VisuNet. 

The vis.js library is the core of the visualization in the presentation layer. It provides a 

network module that can create graphs from data in JSON format. It is able to handle large 

amounts of dynamic data. It uses HTML Canvas object which gives better performance than 

SVG although at the cost of difficulty obtaining vector-based graphics. It also provides 

functionality to automatically layout networks using the force-directed placement [66–68] 

which treats each node as ball and each edge as a spring. By considering repulsion between 

nodes dependent on their ‘mass’ property, the nodes avoid overlapping and the spring 

edges prevent them from moving too far. In a force-directed network layout attraction 

between nodes is based on their connectedness such those that are connected will attract 

one another while those repelling those that they are not connected to. The achieved effect 

is an aesthetically pleasant network view that attempts to minimize overlaps between 

nodes. This is why force-directed placement is one of the most successful and commonly 

used automatic graph-layout algorithms and has been implemented by several graphing 

libraries [69,70] .  
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3.2.2 Business Logic Layer 

To allow ease of access while maintaining a simple-to-maintain codebase, the application 

was made to be web-based and hosted on a secure web server running Apache 2.4. I also 

chose to use cross-platform languages to circumvent the need for cross-platform 

dependencies and hence can easily be hosted on any server platform with minimal changes. 

The core of the application (Business Logic Layer) is built using PHP 5.5 and Python 2.7.11. 

This was to leverage Python’s scripting novelty while leveraging PHP’s ease of session 

handling and interworking with JavaScript and HTML. The option of using Python’s web-

enabling libraries, such as Flask and Django, was considered but avoided to reduce the 

number of external libraries needed to install the application.  The web server used to serve 

pages and process PHP is Apache Web Server 2.4.  

In this layer, the user’s uploaded input files are processed. A local copy is saved during the 

duration of the processing and deleted once the processing is completed. A JSON containing 

the nodes, edges and rules is sent back to the presentation layer for display of the graph. 

Since given n nodes, the maximum number of edges – if all nodes are connected – is n x n, it 

is important to limit the amount of data going into the client side by doing some pre-

filtering on the data. The home page should provide some defaults (e.g. 0.7 for minimum 

accuracy, 70% for threshold).  

Additionally, the nodes and edges (interactions) are ranked by connection per decision. An 

extra decision, named ‘all’ contains all the interactions irrespective of the decision. This 

provides an overview of the major interactions in the dataset independent of their 

discerning power.  

3.2.3 Data Access Layer 

KEGG pathway diagrams can be accessed from the KEGG website which has a flexible URL 

structure. We leverage this URL structure to create links to the website to visualize a gene of 

interest in a selected pathway. In order to do this, we could query the KEGG data using their 

REST services but this proved very slow. Instead, we chose to host the necessary data 

(organisms, their genes and pathways for those genes) locally in a MySQL database. The 

same was the case with the GO databases. Another challenge was to allow the user to input 

gene symbols (BRCA1, IFIT2) in the extra data file since several databases use varying ID 

formats and, the HGNC format is not yet used by KEGG and Go databases. A RESTful API 
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provided by bioDBnet [71] is used to convert the KEGG gene ID’s into an official gene 

symbol.  

In-house scripts are used to keep the two databases up-to-date; they are run bi-weekly. All 

the scripts are bundled in the source code available on request.  

3.3 Performance 

For KEGG and GO terms, a local mirror of relevant subsets of the two databases was made 

so as to improve performance. In-house automated scripts are available to update the 

databases periodically. This is not so frequent since the two databases are not real-time-

growing; Weekly or even monthly updates would be sufficient. These can be easily made 

into scheduled jobs run automatically by the operating system. Database tuning was vital for 

performance of this tool in a bid to reduce processing time. To this effect each query was 

timed to find an optimal plan. Indexes were created on the necessary fields to decrease the 

query time. The database does not grow hence little need for maintenance. Each time a 

data file is uploaded, the mapping is loaded onto the database for querying. The table is 

created dynamically using a random ID to allow multi-user access. The table is dropped once 

the data is moved to the client-side for viewing. Similarly all the files uploaded are deleted 

on completion of the data processing and transformation steps. 

For visual performance (loading and interactivity), the library used (vis.js) is light-weight 

hence loads quite fast. The library also provides a fast filterable abstraction of data.  Tests 

on load times were performed using Google Chrome’s and Mozilla Firefox’s developer tools. 

AJAX data fetches that allow some tasks to be performed in parallel in the background also 

helped gain performance advantages. Nevertheless, there is still room to improve load 

times for large rule files (over 20MB). Parallelization of the processing stage is in the action 

plan. 

4 Results 

4.1 Features 

VisuNet allows a user to select two types of input files for rules on the landing page Figure 7: 

Line by line and ROSETTA. The latter is from the ROSETTA application. The former is a 
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generic four-column tab-separated file containing - for each rule - a comma-separated list of 

features in the antecedent of the rule, a comma-separated list of decisions, accuracy and 

support of the rules which can be written as: 

Cond1[,Cond2…]<tab>Decision1[,Decision2…]<tab>accuracy<tab>support 

For example, the below rule: 

IF Gene1= “high” and Gene2 = “low” THEN “Breast” 
(Accuracy: 0.98 Support: 20) 

Can be shown in one line in the input data file: 

Gene1=“high”,Gene2=“low”<tab>“Breast”<tab>0.9<tab>20 

This data file could easily be hacked to have any other weighting method for the rules.  The 

user also is able to select a second two-column tab-separated file mapping each condition to 

a gene name e.g. 

Gene1<tab>BRCA1 
Gene2<tab>IL6 

 

Additionally, the user can filter the rules by providing a threshold of the nodes to be shown. 

The default (70%) shows the top 70% of the nodes/features. This can be reduced to reduce 

clutter depending on the number of rules.   
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Figure 7: A screenshot of the VisuNet home page. User can select the rule file, filters and optionally 
select a data file for genomic data. 

After preprocessing, VisuNet presents to the user an interface such as one shown in Figure 

8. The user can change decision classes to see the interactions in that particular class. In 

addition, VisuNet provides search feature to locate nodes, a tabular view of the rules 

making up the node/edge, a full-screen option enhancing the canvas size in addition to 

collapsible side panels. The collapsible KEGG and GO term panels can also be used to select 

nodes; the user selects a pathway/term and all the nodes in the pathway/term are 

highlighted. The canvas provides a save image option (dependent on browser) that can be 

used to export to PNG format. The user can also take good quality screenshots in full-screen 

mode. To even focus further on nodes of interest, the user can filter the view by only 

showing selected nodes and their interactions.  Scrolling the mouse of button zooms in or 

out increasing visibility and clarity of text. For genomic data for which an input data file has 

been provided, the KEGG pathways, genes and GO terms link to external databases (KEGG, 

GeneCards and AMIGO respectively) for more detail. 



 
 

 

 

Figure 8: Network visualization in VisuNet. The nodes in the graph represent features while the edges are co-occurrences of the features in rule. The 
thicker the edges, the more the number of co-occurrences of the two nodes, weighted by the quality of the rules they appear in.  
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4.2 Validation 

To validate the application, two real datasets were employed. The first dataset of rules, 

taken from [54], was used for biological validation of the MCFS-ID tool. The dataset contains 

gene expression levels of 236 genes, of which 7 were control, in CD4+ T cells measured after 

4 and 48 hours. In the protocol to purify and activate the CD4+ T cells, they were either (1) 

activated in unbiased conditions (labelled Gene_Activated_4 or Gene_Activated_48), or (2) 

in biased conditions toward T helper 17 (TH17) (labelled Gene_Th17_4 or Gene_Th17_48), or 

(3) with addition of IFN-β (labelled Gene_IFNb_4 or Gene_IFNb_48). The CD4+ T cells were 

sampled from human blood from 348 healthy patients who were of three different 

ancestries: European (Caucasian), Asian, and African-American (abbreviated Afro herein). 

The original aim of the study by [56] had been to investigate variability in immune responses 

and uncover the genetic drivers for this variation.  

Ye et al (2014) have reported that the ancestry of the donors markedly influenced the 

responses with a stronger TH17 associated with the Afro group. In their study, they use a 

linear model to reveal an ancestry-differentiated expression of 94 out of the 229 genes.  

They reported, as shown in Figure 9, an overexpression of response genes for donors of 

African ancestry, lower for European ancestry, and a mixed pattern for Asian ancestry. Also 

notable was the high expression of the GSTM1 gene in the Afro group and the UTS2 gene in 

the Asian population. In addition, the study noted that the differentially responsive genes 

include key indicators of TH phenotypes, IL17 family cytokines (over-induced in individuals 

of African ancestry), and IFNG, which showed an opposite pattern. Over all, there was a 

notable differential expression of transcripts encoding cytokines, chemokines, or their 

receptors. For the purposes of brevity, we shall refer to this group as the original study. 

A study by [54] also analyzed the same dataset with a focus on ancestry differentiation by 

the genes under study. They used it to validate MCFS-ID, described previously herein, which 

graphs interdependencies between features.   In the study, they considered the top features 

generated from MFCSID and mapped their interactions as shown in Figure 11. According to 

the top features, the first five features represented the UTS2 gene in all their activation 

states. They further used the ROSETTA application to create a rule-based classifier and 
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visualized its feature interactions using Ciruvis (not shown here; see [54] for figure and 

links). We shall henceforth refer to this study that used MCFSID as the second study. 

 

Figure 9: Differential gene expression between the ancestries. Percent difference of average 
population expression (median) from overall average (median) that shows population differentiation 
in expression. Retrieved from supplementary materials of [56]. 

 

In this study, I have compared the rules generated by second study on ROSETTA using the 

top 100 features according to MCFS (as a pre-classification feature selection step). I used a 

minimum accuracy of 0.5 and a default support of 1. The results were visualized using 
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VisuNet as shown in Figure 10. There were notable similarities and differences from the first 

and second studies. First the top nodes - GSTM1 in the African class and UTS2 in the Asian 

class - corresponded to the notably high expression levels of these two genes observed in 

Figure 9 by the first study. The general overexpression in the African population is also 

notable from the list of top features. A tabular list of the top features per decision class 

(ancestry) is shown in Table 1.  

 

 

Figure 10: VisuNet representation of rule interactions. Networks of interaction for each of the three 

decision classes: (a) Afro, (b) Asian and (c) European. The nodes show genes with various treatments and 

their gene expression values. The edges are co-occurences of the nodes in rules  (per decision). 
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Table 1: List of top 20 features in each of the three ancestry groups. The capitalized text before the 
first underscore is the gene name. 

No. African-American Asian European 

1 GSTM1_IFNb_4=High UTS2_Th17_48=High UTS2_Activated_48=Mid 

2 HDGFRP3_IFNb_4=High UTS2_Activated_48=High IFIT2_IFNb_4=High 

3 PHEX_Th17_48=Low UTS2_Activated_4=High UTS2_Activated_4=Mid 

4 GNLY_Activated_4=High NPCDR1_IFNb_4=Low HDGFRP3_Th17_48=High 

5 NAIP_Activated_4=Low HDGFRP3_Activated_48=Low LYZ_Th17_48=Low 

6 HDGFRP3_Activated_48=High IFITM3_Th17_48=High UTS2_IFNb_4=Mid 

7 UTS2_Activated_48=Low IFITM3_Activated_48=High IFIT2_Unstim_4=High 

8 GNLY_IFNb_4=High UTS2_IFNb_4=High HDGFRP3_Activated_48=High 

9 MXRA7_Unstim_4=High FLJ36840_Activated_48=High UTS2_Unstim_4=Mid 

10 FADS2_Unstim_4=Low HDGFRP3_Th17_48=Low IFITM3_Activated_48=Low 

11 MXRA7_Activated_48=High HDGFRP3_IFNb_4=Low CCL4_Activated_4=Low 

12 HDGFRP3_Th17_48=High GPR109A_Activated_4=Low KLRG1_Unstim_4=High 

13 NPCDR1_Activated_4=High MXRA7_Activated_4=Mid FGL2_Th17_48=Low 

14 KYNU_Activated_48=High GNLY_Activated_4=Mid PLEK_Unstim_4=Low 

15 MXRA7_Activated_4=High NPCDR1_Th17_48=Low KLRG1_Activated_4=High 

16 IL6_Activated_4=High CCL2_IFNb_4=Low UTS2_Th17_48=Mid 

17 NAIP_Unstim_4=Low UTS2_Unstim_4=High IFIT2_Activated_48=High 

18 KLRG1_IFNb_4=Low CYBB_Activated_48=Mid CXCL9_Activated_48=Low 

19 CXCL10_Activated_48=High FLJ45825_Unstim_4=High UTS2_Th17_48=Low 

20 CXCL9_Th17_48=High UTY_Th17_48=Low PRG4_Activated_4=High 

 

In addition to visualizing interactions, VisuNet has the ability to annotate genomic data with 

KEGG and GO if the user provides an additional file mapping the node names to a gene 

name. We extracted the gene names ignoring the phenotypic variables, created the 

mapping file and fed it additionally with the rules from the top 100 features with the same 

settings as before. The result was an annotation with pathways which gave interesting 

overview of the data congruent to the first study. For instance, among the top pathways 

were Cytokine-cytokine receptor interaction and Chemokine signaling pathways shown in 

red text in Table 2, which had also been mentioned by the first study as key pathways 
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involved. In addition, other than the common general GO terms, the classes had a lot of 

terms that related to immune response that would give the researcher a good starting place 

for delving further into the variations if need be. 

Table 2: Top 10 metabolic pathways in each of the three ancestry groups annotated using KEGG 
data. Interesting pathways are highlighted in red text. 

No. African American Asian European 

1 Cytokine-cytokine receptor 

interaction 

AGE-RAGE signaling pathway in 

diabetic complications 

Biosynthesis of unsaturated 

fatty acids 

2 Toll-like receptor signaling 

pathway 

Cytokine-cytokine receptor 

interaction 

alpha-Linolenic acid 

metabolism 

3 Chemokine signaling 

pathway 

Malaria Fatty acid metabolism 

4 Legionellosis Hematopoietic cell lineage Toll-like receptor signaling 

pathway 

5 NOD-like receptor signaling 

pathway 

Chagas disease (American 

trypanosomiasis) 

PPAR signaling pathway 

6 Tryptophan metabolism Herpes simplex infection Chemokine signaling 

pathway 

7 Influenza A Influenza A Cytokine-cytokine receptor 

interaction 

8 Metabolic pathways Rheumatoid arthritis Salmonella infection 

9 HIF-1 signaling pathway NOD-like receptor signaling 

pathway 

Metabolic pathways 

10 AGE-RAGE signaling 

pathway in diabetic 

complications 

TNF signaling pathway NF-kappa B signaling 

pathway 

 

In the first study, they state that choices between effector phenotypes are themselves 

modulated by the cytokine network, such as the reinforcement of the TH17 identity through 

IL-23. These pathways also drive major immune-inflammatory diseases. Also, Pathogenic 

TH1 or TH17 cells have been implicated in rheumatoid arthritis, multiple sclerosis (MS), and 

inflammatory bowel disease (IBD), and TH2-type responses in asthma and other atopic 
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diseases. This can easily be seen in the GO terms and pathways listed in the VisuNet for the 

various classes without the need to go through external sources. Some interesting GO terms 

shown by VisuNet for the dataset are shown in Table 3. 

Table 3: Select Gene Ontology terms by ancestry. These were some of the most common and 
interesting terms that represent the functions of the genes in the network. 

No. African American Asian European 

1 
inflammatory response monocyte chemotaxis inflammatory response 

2 positive regulation of 
fibroblast proliferation humoral immune response 

cellular response to 
interferon-alpha 

3 positive regulation of synaptic 
transmission, cholinergic inflammatory response proteolysis 

4 
immune response innate immune response response to virus 

5 
innate immune response 

positive regulation of 
angiogenesis 

cytokine-mediated 
signaling pathway 

6 defense response to 
bacterium response to drug 

negative regulation of 
heart rate 

7 
cell proliferation response to testosterone 

regulation of blood 
pressure 

8 
chemokine activity 

cytokine-mediated signaling 
pathway 

negative regulation of 
insulin secretion 

9 chemokine-mediated 
signaling pathway immune response response to drug 

10 
cytokine activity response to interferon-gamma immune response 

 

The second study noted the overall importance of features in classification while not 

differentially examining their contributions to each class. Nevertheless, the top features and 

interactions between them hold a certain amount of truth although this would be more 

valuable modulo decision class. For instance, features representing the various states of the 

UTS2 gene form the top features. While this may be true for the Asian and European 

populace, it does not reflect the distinctions per decision class. In VisuNet, however, it is 

clear that low-expression of the UTS2 gene characterizes Afro group while High UTS2 gene 

expression is the key characteristic of Asian group; this is also consistent with the mean 

gene expression levels shown by the first study. Also, other than UTS2, the top features vary 

considerably from one class to the other in VisuNet. It is oftentimes important for such 

studies which look at differential expressions that the researcher has an outlook of what 

features are important for what class and also possibly delve into what values of a feature 



 

34 
 

are distinguishing e.g. high expression of a gene marks one class and low expression another 

etc.  

Figure 11: MCFS-ID graph showing top 50 features ordered by Relative Importance [54]. 

5 Discussion 

Any classification algorithm in which the trained model can be extracted as a set of rules 

with at least one measure of rule ranking can make use of VisuNet. This will include, but not 

limited to, Rough Sets (e.g. from ROSETTA) and similar fuzzy rule-based algorithms and 

Decision trees (e.g. from C4.5, CART). Such algorithms are easily understood by researchers, 

both in output and working, and are quite useful in most classification cases where the 

classifier has to be opened up and features making up the rules in the trained model 

investigated [54]. Just as it is with other statistical inferencing techniques such as logistic 

regression, it is important that the researcher considers not only the ranking of the features 

based on some importance measure but also to identify features that co-operate in the 

classification of an object. This is definitely a major strength of VisuNet: visualizing these 

interactions. 
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Additionally, for genomic data, VisuNet provides the ability to plug in a mapping file to link 

features to genes and populates annotations from two biological networks – KEGG 

pathways and GO terms – in each class in an interactive way. The value of information for 

biological networks cannot be stressed enough. Scientists no longer consider individual 

molecules since the cell is one complex network of co-acting and interacting molecules. It is 

therefore important to study the system as a whole and the interactions within it. There are 

two main methods for identification of network structures: bottom-up (knowledge-driven) 

and top-down (data-driven) approaches [72].  

5.1 Biological Networks 

KEGG [73] Pathways and Gene Ontology [74] terms use a bottom-up approach for 

construction of the excellent and growing database of various biological networks. KEGG 

constructs excellent interaction diagrams of metabolic pathways for known cases, mostly 

curated using literature but also combining homology-searches for functional inference. GO 

is a resource that supplies information about gene product function using ontologies to 

represent biological knowledge. Both of these resources give references citing relevant 

sources of information making it easier for the researcher to look further than the network 

diagram. It is on the premise of such importance that VisuNet is built: the incorporation of 

biological networks in the tool allows the researcher a wealth of relevant information at the 

click of a button. It is important to reiterate clearly that network presented by VisuNet does 

not infer causality (hence no direction) even though any interactions that may occur in the 

same order (in VisuNet versus in KEGG Pathways, for instance) definitely would be quite 

interesting to investigate. 

5.2 Challenge of feature selection 

Feature selection is used in classification to reduce the number of features that a classifier 

uses based on some heuristic. Independent of the method used, feature selection aims to 

pick the most informative set of features from the universe of features. One example 

paradigm in feature selection is to pick features that are highly correlated to the decision 

class and less with each other [75]. This can lead to overshadowing of equally important but 

correlated features and hence for the interest of this study, loss of vital information. If two 

features are almost equally important but correlated, one may be lost and the other 

retained by the feature selection algorithm. After a classifier is built, we have fewer 
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correlating items than in the original dataset. Some algorithms, such as Random Reducts 

proposed by [76] in which features are picked randomly and Reducts calculated from them 

present an option that would prevent complete overshadowing. We therefore propose that 

the filtering process be done with overshadowing in consideration. For instance, the 

classification can be done without feature selection if it is computationally plausible.  

6 Conclusion 
In conclusion, VisuNet offers not only an aesthetically-pleasant, highly interactive and 

natural layout of the interactions between features but in addition, a user looking into a 

specific area of computational biology will be able to at first glance answer several 

questions: What are the highest ranking features in terms of contribution to top rules? 

What are the strongest interactions between features per decision class? What gene is 

represented by this feature? What pathways and terms does the gene participate in? What 

features in my current view are in this pathway? And many more such questions. The 

foraging through databases is reduced significantly and quick initial revelations could be 

made efficiently. 

7 Future work 

There is definitely a lot that could be achieved with VisuNet as-is but there is always need 

for continuous improvement. One of the key things would be to improve performance for 

large rule files and even greater fluidity of the UI.  Also, some scripts to update the KEGG 

and GO term mirrors periodically have been provided but will need improvement to prevent 

any disruption of service. The ability to store user settings by allowing them to log in, and 

keep data for some period is also worth discussing although privacy and security is of 

essence in such cases. 
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APPENDIX I: User’s Manual 
 

Introduction 

VisuNet is an interactive web-based application that visualizes interactions between features in rule-

based classifiers in a network layout. Optionally, it allows the user to add a mapping file for genomic 

data and annotates the network with biological information from Kyoto Encyclopedia of Genes and 

Genomes (KEGG) Pathways as well as Gene Ontology (GO) terms. You can find more information 

about KEGG and GO at http://www.kegg.jp/kegg/ and http://geneontology.org/ respectively. 

PART I: The Home Page 

Below is a screenshot of the application’s home page. The next sections will detail the file formats 

used as input and, the filtering options provided on the screen. Click the Choose file or Browse 

(IE/Firefox) button next to the Rule File label and select the file containing rules that you want to 

visualize. 

 

 If you have genic data, check the “Is this gene data” checkbox. This toggles a section with the 

organism and Mapping file labels. Select the organism in study and select a file for mapping. The file 

formats are described in the next session. Click the submit button to load the network of 

interactions. 

 

http://www.kegg.jp/kegg/
http://geneontology.org/
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You will see a Rubik’s cube image while the page is loading. Wait for the loading to complete and 

you will be automatically redirected to the next page. In case of errors, the application will show an 

appropriate error message.  

 

Section 1: Input File Types 

The application accepts two types of input files for the rules: ROSETTA rule file or a Line-By-Line text 

file. The ROSETTA file format (.ros) can be found if you use the ROSETTA rule-based classification 

tool found at http://www.lcb.uu.se/tools/rosetta/resources.php. The linked website also provides a 

manual on how to use ROSETTA to get a classifier. An example file for the ROSETTA format is as 

below: 

ER(1) AND (1) AND FABP(+) => Site(Ov) 

Supp. (LHS) = [1 object(s)] 

Supp. (RHS) = [1 object(s)] 

Acc.  (RHS) = [1] 

Cov.  (LHS) = [0.0042735] 

Cov.  (RHS) = [0.0384615] 

Stab. (LHS) = [1] 

Stab. (RHS) = [1] 

The Line-by-Line format presents each rule in the model as a single line. The features are separated 

by commas and should NOT have commas within the text since the comma is used as a 

separator e.g. age=[32,*], MXRA7_Activated_48=[26,*] are bad feature names/values.  

age=32-*,MXRA7_Activated_48=26-*, Afro 0.745 47 

weight.kg.=78.2-*,MXRA7_Activated_48=26-*, Afro 0.644 45 

CYBB_Activated_48=9-*,MXRA7_Activated_48=26-*, Afro 0.612 49 

UTS2_Activated_4=*-2,CYBB_Activated_48=9-*, Afro 0.579 57 

MXRA7_Activated_48=26-*,UTS2_Th17_48=*-2, Afro 0.545 66 

Section 2: Pre-Filtering 

The number of nodes generated can be so many and hence it is important to pre-filter the data to 

avoid clutter. The most straight forward and highly advised method to begin is to set the number of 

nodes to be displayed in the “Show n nodes” field. You can also set the threshold to only show top x 

percent of the nodes e.g. setting 70%, which is the default, shows the top 70% of the nodes.  

You can additionally filter by accuracy or support which excludes all rules with accuracy or support 

below the specified values in the downstream analysis.  

 

  

http://www.lcb.uu.se/tools/rosetta/resources.php
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PART II: Visualizing the network 

The next page after submission shows the network diagram at the centre. Three collapsible panels 

on the left (Information Bar), right (Details) and bottom (View Rules) give additional information. If 

on loading the network keeps going in a circular manner, kindly wait for it to stabilize and get an 

optimal layout. This could take a few minutes depending on the number of nodes in the diagram. 

 

Section 1: The network diagram 

The network is drawn on the centre of the page as shown below. The green group of buttons on 

bottom left (1) enable you to move the network diagram in all directions to adjust its position. The 

window can also be dragged using the mouse button (click, hold and move). The ones on the bottom 

right corner (2) enable you to fit the network diagram into the window and also zoom in/out. The 

zooming can be done using the scroll button on the mouse too.   

There is also a toolbar (3) above the network diagram with search box (search the nodes by part of 

feature name) and other buttons labelled in the screenshot below.  To search, you type the search 

term into the toolbar and press the “Enter” key or click Search button. All matching nodes are 

highlighted and their information shown on the details pane and the View Rules window. It is 

possible to collapse all the panels so as to enlarge the view of the centre pane where the network 

diagram is. Additionally the full-screen button allows the browser to go into full-screen mode giving 

an even larger view port.  The settings window allows the user to change some settings like colors 

and borders. The Show selected nodes button on the toolbar removes all non-selected nodes and 

only shows the selected nodes and interactions between them (if any). The Show all nodes button 

restores all the nodes into view.  

The circles in the network diagram are nodes/conditions. A condition is a feature/value pair, for 

example “GNLY_Activated_4=31-*” in the screenshot below.  Nodes are colored red with varying 

intensity. The best quality node is the brightest and strongest in color intensity e.g. 

NAIP_Activated_4 in the screenshot below. The lines connecting the nodes (edges) vary in thickness 

depending on the number of occurrences of the pair of features in rules and the quality of those 
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rules. The strongest interaction in the diagram (For example, between NAIP_Activated_4=*-13 and 

MXRA7_Activated_48=25-*) has the thickest width. 

 

Users can export the image in PNG format by right clicking the network window and selecting save 

image as or view image (opens in a new window/tab) buttons.  

 

Hovering over the nodes or edges also shows the details of the node/edge as shown below. 
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Section 2: The side panels 

When nodes or edges are selected, the details panel on the right shows information about the node.  

The node is highlighted in light blue with the edges emanating from it in a strong blue color as 

shown below. In the basic scenario (without a mapping file) there is not much information displayed. 

For nodes, the name, number of edges and a quality measure (connection) are shown. For edges, 

the ‘from’ and ‘to’  node names as well as connection  are shown. The ‘from’ and ‘to’ texts do not 

indicate direction but mere connectedness.  

 

The information panel on the left hand side has three basic sections as shown below:   
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The first section displays the information about the outcome (decision class) being displayed 

currently and the settings done in the home page. It also shows basic statistics about the displayed 

network. In this section, the user can change the decision outcome by selecting the item on the drop 

down menu and clicking the GO button adjacent to it. 
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The next two sections show the list of nodes in the network and the interactions respectively. Both 

are ordered by connection in descending order (e.g. top node first). Clicking the nodes selects it in 

the network diagram and displays its details in the detail pane. The rules in which the node is found 

are also shown in the view rules pane. The same goes for clicking the interactions. 

Section 3: Visualizing biological information 

If the user inputs a mapping file, VisuNet annotates the nodes with data of biological networks 

specifically from KEGG Metabolic pathways and GO terms. Two additional sections are added to the 

information pane as shown below . The numbers next to the name of the pathway or GO term  is the 

number of nodes in the visible network diagram that are found in the pathway or are annotated 

with GO term respectively. Clicking the list items selects the nodes and displays information about 

them  similar to selecting a node. 
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In addition, the details pane of a selected node will show links to the gene in question (on 

GeneCards website), links to the pathway diagrams (on KEGG website) and the links to the GO terms 

(on the AMIGO site).  If more than one node is selected, the terms that  are common between them 

as well as the common pathways are displayed (if any) as shown. 
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