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the traps clockwise (45°) in order to cover different sections of the plot. In the control plots,
traps baited with semiochemicals only were used. Six weeks after the initiation of the
experiments, five semiochemical-baited traps (untreated) were deployed in each plot for 3
successive days to trap ticks in the treated and control plots. The percentage of ticks
recovered in the fungus-treated plots were significantly lower (31.1 £ 5.2%) than in the
control plots (85.6% + 3%) (P <0.001), which represented a relative tick reduction of
63.7%. Mortality of 93.8 + 2.3% was observed among the ticks that were recovered from the
field and maintained in the laboratory for two weeks; while only 3.3 + 0.9% died from the

control plots.

The results of this study open up the possibility of developing an environmentally friendly,

low cost product to control these economically important ticks.
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(Kaaya et al., 1996; Frazzon et al., 2000; Onofre et al., 2001; Benjamin ef al. 2002; Kirkland
et al., 2004a: 2004b). In field experiments, Kaaya (2000b) and Benjamin ez al. (2002)
reduced R. appendiculatus larvae and Ixodes scapularis Say (Acari: Ixodidae) unfed adults,

in the vegetation by spraying the vegetation with aqueous suspensions of M. anisopliae.

Although these fungi are pathogenic to ticks, different fungal species as well as different
fungal isolates of the same species show varying degrees of virulence against ticks (Kirkland
et al.,2004a: 2004b and Samish et al., 2001). Therefore, screening of different fungal isolates
against different tick species is necessary for the development of an effective biological
control agent. So far, no literature is available documenting the susceptibility of R. pulchellus
to entomopathogenic fungi. Rhipicephalus pulchellus is one of the most abundant tick species
in East Africa (Walker ef al., 2003) and evaluation of fungal isolates for pathogenicity against

this species is essential to the selection of virulent isolates for further investigation.

The process of strain selection is the first important step in the development of fungal
pathogens for biological control (Soper and Ward, 1981). Diverse modes of inoculation are
used to evaluate the virulence of mitosporic Hyphomycetes for strain selection. They include
spraying conidia on the host organisms; exposing arthropods to treated leaves; dipping them
into titrated conidial suspensions; and exposing ticks to the substrate (Hall and Papierok,
1982). The most common mode of inoculation of ticks has so far been by dipping them into
titrated conidial suspensions (Frazzon et al., 2000; Onofre ef al., 2001; Samish et al., 2001;
Kirkland et al., 2004a). Laboratory dipping assays showed Metarhizium anisopliae (Metsch.)
Sorok. (Ascomycota: Hypocreales) to be an excellent pathogen of members of the genus
Rhipicephalus (Acari: Ixodidae) (Samish ef al., 2001; Gindin et al., 2002). However, this
method of inoculation is unlikely to occur in reality and can provide misleading data since
ticks walk on their tarsi or pulvilli, and in situations where fungal suspensions are sprayed on
the vegetation using ultra low volume application equipment, which produces small droplets.
In addition, dipping in a conidial suspension can cause blockage of the spiracles of the host,
resulting in high mortalities (Soarés, 1982). Optimization of a technique that replicates
potential methods of exposure may improve strain selection for tick control in the field. Ultra
low volume application has been used successfully to apply oil suspensions of Metarhizium
for control of locusts over wide area of land in Africa (Kooyman et al., 1997). This technique
may be useful in large-scale application of entomopathogenic fungi against of ticks that quest

from the vegetation.



















































example, Kaaya (2000b) and Benjamin et al. (2002) reported reduction of populations of R.
appendiculatus and I scapularis, respectively, following spray application of aqueous
formulation of M. anisopliae on the vegetation. Ticks that quest from vegetation could be
targeted by spraying the vegetation with fungal suspension. Alonso-Diaz et al. (2007)
obtained a reduction in the number of feeding R. microplus ticks following spray application
of aqueous formulation of M. anisopliae on naturally infested cattle. Applying fungal
suspensions on the host may not be practical in situations where livestock and wildlife share
the same habitats. The use of blanket spray may lead to contamination of non-target species
(Hajek and Geottel, 2000; Brownbridge and Glare, 2007). In addition, environmental factors
may reduce fungus efficacy (Luz and Fargues, 1998; Polar et al., 2005b). Therefore there is
need for alternative techniques such as autoinoculation. Such a technology would permit the
dissemination of tick pathogens among target tick population by using devices that attract
host ticks to come into contact with the pathogen before retreating to the population
(Maranga et al., 2006). In some instances, this might be the most suitable method for
example controlling “hunter” ticks such as 4. variegatum off-host. Using a fungus-treated
pheromone-baited trap, Maranga et al. (2006) were able to attract and infect A. variegatum
under field conditions. Other methods have been tried, for example Hornbostel et al. (2005)
treated nesting material of the white-footed mouse, Peromyscus leucopus, with M anisopliae
to control larvae of Ixodes scapularis with some positive results. An understanding of the
behaviour of the target tick species is advantageous in determining the best application

strategy for a mycoacaricide.

1.2.6.5 Tick pheromones and host kairomones

Tick behaviour is mostly regulated by pheromones and kairomones, chemical compounds
that enhance intraspecies communication. There are three known types of pheromones in
ticks: sex pheromones (improves chances of mating), assembly pheromones (help safeguard
the survival of the individuals by bringing conspecifics together) and aggregation-attachment
pheromones (help ensure that ticks attach preferentially to a host on which they are more
likely to feed) (Hamilton, 1992). The sensory organ of ticks responsible for picking up
chemical stimuli is the Haller’s organ (Sonenshine, 1991). In members of the genus
Dermacentor, genital sex pheromones produced by females are perceived by the sensilla on
the chelicerae of male ticks. Members of the genus Amblyomma actively respond to the
attraction-aggregation-attachment-pheromones secreted by successfully feeding male ticks

and to kairomones (for example CO,) exhaled by their hosts (Norval et al., 1987). The large
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Tick behaviour can be exploited for on-host or off-host pheromone-assisted tick control
technology with satisfactory results (Sonenshine, 2006). A sex pheromone (2,6-
dichlorophenol)-acaricide impregnated decoy attracted and killed mate-seeking males of
Dermacentor variabilis on rabbits (Hamilton and Sonenshine, 1989). Allan et al. (2001)
developed a technology that kills I scapularis in vegetation, by incorporating components of
arrestment pheromones (elicit adult assembly) and permethrin into oil droplets. In another
study, plastic tail tags impregnated with AAA pheromone and flumethrin or cyfluthrin
coupled with the CO;, produced by the cattle was effective for the control of the tropical adult
bont tick A. hebraeum (Norval et al., 1996). Similarly, Maranga et al. (2006) used this
concept to attract adults of 4. variegatum from the vegetation to a CO, and pheromones-
baited traps to infect them with an entomopathogen. The combination of mycoacaricides
with pheromones may also enhance efficacy by attracting ticks to the pathogen, in a species-

targeted control method, concurrently reducing potential environmental contamination.

Although some work has been done in this regard, no commercial products combining tick
semiochemicals with an acaricide or biological control agent are available in the market. This
may be partially attributed to the lack of adequate information on tick responses at a species
level to subtle changes in the concentrations of single pheromones or constituents of
pheromone blends, and the absence of suitable application techniques for a mycoacaricide.
The aim of this thesis was to address the different aspects that could play a role in developing

effective products by integrating the different aspects discussed above.
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1.3

1.4

Hypothesis

Entomopathogenic fungi cause mortality in R. pulchellus and A. variegatum

Ticks are effectively attracted to pheromones and kairomones, which could result in
the development of a contamination trap in the field.

A combination of tick pheromones with host kairomones with conidia of
entomopathogenic fungi in a trap will attract more ticks and infect them before they

return to the environment.

Overall aim of study

To develop formulations and delivery systems for microbial control of ticks.

1.4.1
@)
(i)
(iif)

(iv)

(iv)

Specific objectives
To identify fungal isolates which are pathogenic against R. pulchellus in vitro.
To identify the most appropriate techniques for laboratory inoculation of nymphal
and adult stages of Rhipicephalus ticks with fungal conidia.
To optimize attraction of 4. variegatum adults by combining AAAP (pheromone)
with 1-octen 3-o0l and butyric acid (kairomones)
To evaluate the effects of formulations on the efficacy of a fungus-treated
semiochemical-baited trap for control of 4. variegatum population under field
conditions.
To evaluate the performance of a M. anisopliae-treated semiochemical-baited trap

to control Amblyomma variegatum in the field.
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2.4 Discussion

The result obtained in this study is in agreement with previous results that demonstrated the
susceptibility of Rhipicephalus ticks to M. anisopliae isolates under laboratory conditions
(Mwangi et al. 1995; Kaaya et al., 1996; Barbosa et al., 1997; Monteiro et al., 1998a: 1998b).
The results showed that Metarhizium isolates were relatively more virulent than Beauveria
isolates; the most effective isolate was M. anisopliae ICIPE 78. Gindin ef al. (2002), showed
that M. anisopliae isolates were more virulent than fungi species from other genera, i.e.,
Beauveria, Paecilomyces and Verticillium. In the current study, M. anisopliae-ICIPE 7
induced low mortality (5%) in R. pulchellus adults whereas high mortality levels (65%) were
obtained with the same isolate against R. appendiculatus adults in vegetation (Kaaya and
Hassan, 2000). The origin, stability and culture history of individual isolates of
entomopathogenic fungi may lead to significant variability in their virulence and host

specificity (Cherrya et al., 2005).

In the present study, ticks were killed when conidia were formulated in oil but no infection
occurred after treatment with aqueous suspensions, indicating that oil formulation enhances
virulence (Prior et al., 1988; Kaaya and Hassan, 2000). Oils are reasonably effective in
sticking spores to the hydrophobic cuticle of arthropod (Inglis et al., 2002). The presence of a
waterproof chitinous cuticle (Walker et al., 2003), which is also hydrophobic may prevent
adhesion of conidia or penetration of an aqueous treatment to susceptible regions of the

cuticle.

This study demonstrated the susceptibility of R. pulchellus to some isolates of M. anisopliae
Optimization of laboratory assay techniques is essential to provide predictive data on the
entomopathogenic fungi. In the next chapter, development of procedures to optimize tick

infection with the selected fungal strains will be presented.
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CHAPTER THREE
Optimizing modes of inoculation of Rhipicephalus ticks (Acari: Ixodidae)

with a mitosporic entomopathogenic fungus in the laboratory

3.1 Introduction

Strain selection is the primary step in the development of fungal pathogens for biological
control (Soper and Ward, 1981). Several modes of inoculation have been used to evaluate the
virulence of mitosporic Hyphomycetes. These include spraying conidia directly onto the
target; exposing arthropods to treated leaves; dipping arthropods into titrated conidial
suspensions; and treating the substrate (Hall and Papierok, 1982). Another technique was
developed for screening fungal pathogens against locust consists of applying inoculum on the
pronotum of the insect (Prior et al., 1995). The most common method used to inoculation
ticks has been by immersing them into titrated conidial suspensions (Frazzon et al., 2000;
Onofre et al., 2001; Samish ef al., 2001; Kirkland et al., 2004a). Dipping assays have shown
that M. anisopliae is a virulent pathogen of members of the genus Rhipicephalus (Acari:
Ixodidae) (Samish et al., 2001; Gindin et al., 2002). However, inoculation of ticks by dipping
optimizes exposure to a pathogen and may not allow the most virulent strains to be readily
differentiated from the less virulent ones. Dipping in conidial suspension can cause blockage
of the spiracles of the host, resulting in high mortalities (Soarés, 1982). Furthermore, dipping
of the ticks in conidial suspension does not closely “mimic” ULV spraying technique, which
might be suitable for application of fungal suspensions over large area of grass vegetation
infested with host seeking ticks (“ambusher”). In reality, these ticks will acquire the conidia
directly or indirectly from the foliage when crawling over the contaminated substrate in a
ULV spray application without being immersed in the suspension. Three-host ticks spend
most of their life in soil and vegetation, thus development of safe and effective methods for

controlling free-living ticks is warranted (Benjamin ef al., 2002).

The development of oil-based formulations for entomopathogenic fungi has improved the
control of many arthropod pests (Lomer et al. 2001; Kaaya and Hassan, 2000; Shi et al.,
2008). Pure oils are compatible with the established ULV spray technique that is suitable for
large-scale field application (Prior et al., 20052a). Considering that large areas, may require
treatments, as well as the costs involved with spore production and labour, pure oil

formulation may be more effective compared to 10% water-oil emulsion; since it is

30






3.2 Materials and methods
3.2.1 Tick

Ticks were obtained from the Animal and Quarantine Rearing Unit at icipe. The initial
colony was established from adult ticks collected from the vegetation in Mwea Game Park
reserve, Kenya, in 2006. Larvae, nymphs, and females were fed on New Zealand white
rabbits and incubated in clear Perspex chambers at 26°C + 1 and 85% + 5 RH for 12:12 L:D
photoperiod. Three to four week-old unfed adult ticks and 2-3 week old unfed nymphs were
used for this study.

3.2.2 Fungus

Metarhizium anisopliae (ICIPE 60) used in this study was obtained from the icipe’s
Arthropod Germplasm Centre. The strain was originally isolated from soil in Kakelo Kisumu,
Kenya in 1996 and was previously reported to be infective against R. pulchellus (see Chapter
2). The fungus was cultured on SDA plates at 26 + 2°C. The virulence of the fungal strain
was maintained by regular passage through the R. pulchellus (Schaerffenberg, 1964). Two to
three week-old aerial conidia of M. anisopliae were harvested by scraping and suspended into
corn oil (CHEF cooking oil, Premier Oil Mills Ltd) in a universal bottle containing glass
beads. The suspension was then mixed in a vortex shaker for more than 5 minutes to
homogenize the suspension. Conidial concentration was determined using an improved
Neubauer haemocytometer and different test concentrations (106, 107, 108, 10° and 10'°
conidia ml™") were obtained by serial dilutions in corn oil. Viability of the conidia was
determined before each bioassay by spread-plating 0.1 ml of conidial suspension titrated at 1
x 10® conidia mI™! onto SDA plates which were examined under a light microscope 18 hours
later. Conidial germination was determined from 100-spore counts with four replicates.
Germination rates of >90 % were regularly obtained. Attempts to include petroleum oils
(kerosene and diesel) as carriers or in a mixture with corn oil in the current study was
abandoned because thick swirling cloud of droplets was produced following spray by

Burgerjon’s spray tower, which may contaminate the laboratory.

3.2.3 Inoculation procedures
Two inoculation methods were initially tested: (i) via a Burgerjon spray tower (Burgerjon,
1956); (ii) using a microapplicator. In preliminary experiment, oil-based formulation of M.

anisopliae (ICIPE 60) titred to 10° conidia ml” was applied to R. pulchellus adults using both
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application methods. Since comparatively lower infection rates were obtained following
treatment by microapplicator, all further treatments were delivered via Burgerjon’s sprayer.
In order to estimate the number of propagules on each tick 1 unfed male tick (size of tick was
approximately 4 mm long including mouth parts) and 1 nymph were placed into separate 10-
ml vial containing 0.05% Triton X-100 respectively. Vials were subjected to vigorous
shaking by a vortex shaker for 5 minutes to dislodge conidia from the tick surface. The
number of conidia ml™ was determined using an improved Neubauer haemocytometer. The
treatment consisted of 25 replicates per inoculation procedure. This method was not sensitive
enough to detect the number of propagules on ticks at lower concentrations of conidial

suspensions, especially for the nymphal stage.

3.2.3.1 Microapplication

Adult individual ticks were inoculated with 1 pl of conidial suspension titred at 10° conidia
ml™ formulated in oil applied around the anterior region on the joint between the idiosoma
and basis capitulum using a 1 mi-syringe fixed to a microapplicator (Arnold Hand
Microapplicator Burkard Manufacturing Co Ltd. Rickmansworth England) (Figure 3.1). In
the control, ticks were treated with oil without conidia. Test-ticks were transferred to 9cm-
diameter Petri dish after treatment and maintained at 25 + 1 °C and 85 + 5% RH. Mortality
was recorded weekly for four weeks. Mortality caused by fungus was confirmed by
microscopic examination of hyphae and spores on the body of dead ticks following
incubation under high humid condition for 4-5 days. There were 20 ticks per replicates and 6

replicates in total per treatment group.
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Scanning electron microgragh analysis of infected ticks showed that M. anisopliae conidia
preferred attachment sites at certain junctions, like those present in the tick legs (Arruda et
al., 2005). According to Sonenshine (1991), the cuticle is thinner in these areas. Cuticular
folds in arthropods exoskeletons may also be sites of high moisture (Inglis ef al., 2001). Other

workers such as Kirkland et al. (2004a) observed conidial germination varied by body region.

The calculated LCsy values showed that higher infection levels were obtained when nymphs
and adults of R. pulchellus were sprayed directly and maintained on treated substrate for 12
hours (SS) compared to when sprayed directly and transferred to clean dishes (SP) or
indirectly treated by exposure to contaminated substrate (SW). The higher dose of the
acquired inocula in SS could be responsible for the higher mortality recorded since mortality
was dose-dependent. Tick mortality increases with conidial concentrations (Zhioua et al.,
1997; Frazzon et al., 2000). Increased in conidia concentrations could have led to
corresponding increases in the actual number of conidia deposited on the tick, thus inducing
higher infection levels. Eventhough nymphs acquired lower dose of fungal propagules than
the adults, they were relatively more susceptible compared to the adults is the three
inoculation methods. The relatively smaller size of nymph and the lack of thick cuticle
compared to adult tick could have favoured the high levels of infection. It appears that the
number of spores on the cuticle must reach a certain threshold to induced high levels of tick
mortality. Previously, Zhioua et al. (1997) recorded sharp increase in mortality of R.
microplus engorged larvae and females at concentrations above 10° conidia ml™ and minimal
mortality below the concentration. It is thus important researchers obtain estimates of the
number of propagules on tick during bioassay to minimize variation in results obtained in

different laboratories with the same fungal isolates.

Based on the behaviour of Rhipicephalus ticks (“ambushers”), all the inoculation methods
were appropriate for screening of entomopathogenic fungal isolates in the pure oil carrier
against adults and nymphs. However, while conidia can be applied by direct spraying and
ticks retained within the assay arena (SS), the unacceptable high levels of control mortality
obtained ruled this method out for routine work. Direct spray treatment followed by removal
of ticks to a clean container (SP) is thus a more suitable method for screening
entomopathogenic fungi in an oil carrier against adult and nymph and indirect exposure to
treated substrate (SW) is suitable for immature stages. The main setback with the indirect

inoculation method (SS) is the difficuity to ensure presentation of a precise dose, which will
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CHAPTER FOUR
The use of a semiochemical bait to enhance exposure of Amblyomma
variegatum (Acari: Ixodidae) to Metarhizium anisopliae (Ascomycota:

Hypocreales)

4.1 Introduction

Amblyomma variegatum Fabricius 1794 (Acari: Ixodidae) or the tropical bont tick is the most
widely distributed tick species across the African continent (Walker et al., 2003) and was
recently introduced into the Caribbean (Barré ef al., 1995). It transmits Ehrlichia
ruminantium (Rickettsiales: Anaplasmataceae) a rickettsia that causes heartwater in
ruminants, and the bacterium Dermatophilus congolensis van Saceghem 1915
(Actinobacteria: Dermatophilaceae), an acute bovine dermatophilosis. Amblyomma
variegatum is also a vector of Rickettsia africae Kelly et al. (1996) sp. nov. (Rickettsiales:
Rickettsiaceae), the causative agent of African tick-bite fever (Morita et al., 2004). Although
endemic to sub-Saharan Africa (Kelly et al., 1996), the disease is spreading rapidly and is
regarded as the most widely distributed of all the rickettsial spotted fevers known to be
pathogenic to humans (Raoult and Roux, 1997). Infestation by ticks can also cause
considerable losses to the livestock industry in Africa and the Caribbean (Uilenberg et al.,
1984; Kvaria, 2006).

Current methods of tick control rely heavily on conventional chemical acaricides and
repellents. There are many problems associated with their widespread use including
development of resistance to these synthetic chemicals, and negative impacts on human
health and the environmental (Mukhebi and Perry, 1992; George, 2000; Jonsson et al., 2000;
Tingle et al., 2000). This has prompted the search for alternative methods of tick control that

can be used within integrated tick management programmes.

Controlling Ambyomma ticks off-host might be difficult because they are “hunters”and do not
climb up the vegetation in search of their host. Hence, an alternative strategy for fungus
application off-host would be to lure the ticks from the vegetation into contact with fungus in
traps baited with semiochemicals. Amblyomma ticks respond to a number of semiochemicals
including the attraction-aggregation-attachment-pheromone (AAAP) emitted by feeding

males and carbon dioxide (kairomone) exhaled from their hosts (Sonenshine, 2006). An
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4.3 Results

Table 4.2 Percentage relative attraction of A. variegatum adults (pooled data for males and

females) to semiochemicals in a two-choice olfactometer

Semiochemical % Relative attraction
Pooled Males and Females

AAAP

1100 pg -50%*

44 pg 20

22 ug 50

14.7 ug 30

Butyric acid

0.010 pg -20

0.001 pg -20

0.0005 pg -10

1-octen-3-o0l

0.032 pg -30

0.016 pg 50

0.008 ng 20

* Denotes attractive response was significantly different compared to the other concentrations
for each semiochemical within the column at P < 0.05. No significant difference in attraction

was observed between males and female, hence data was pooled.
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formulation, 1% and 2™ trial, respectively. Mortality was significantly higher in emulsifiable
and oil formulations in both trials (F=24.93; df = 2,12; P < 0.0001) for the trial in the rainy
season) and (F = 29.88; df =2,12; P < 0.0001) for the trial in the dry season) than the powder
formulation. Fungus-treated semiochemical-biated trap significantly reduced tick population

in buckets compared to the control treated traps.

4.3.4 Effect of fungal formulation in contaminating ticks

No significant differences (P > 0.05) were observed between the treatments in the first and
second trials, thus the data were pooled. The number of conidia picked up by individual ticks
immediately after the exposure was significantly higher (F = 170.66; df = 2,117; P < 0.0001)
in the powder formulation (6.7 x 10° + 8.4 x 10° conidia), followed by the emulsifiable
formulation (4.6 x 10° + 5.7 x 10* conidia) and oil formulation (2.3 x 10° + 2.3 x 10* conidia)
(Table 4.5). However, 48 h postinfection, ticks exposed to the powder formulation had a
significant (F = 106.6; df =1, 78; P < 0.0001) loss of 89.1% compared to 17.1% and 33.3%
with the emulsifiable (F = 0.35; df =1, 78; P > 0.55) and oil (F = 14.49; df=1,78; P <
0.0003) formulations, respectively (Table 4.5). A significantly (F = 78.4; df =2, 57; P<
0.0001 ) higher percentage of spores that were dislodged from ticks treated with fungus in the
emulsifiable formulation (27.78 = 4.5%) had germinated 48 h post-treatment compared to the
ULV oil (0.98 = 0.56%) and spore powder formulation (0.11 £ 0.059%) in the 2" trial (Table
4.6). No spore had germinated at 0 day post-treatment in the 2" trial.
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virulent against 4. variegatum (Kaaya et al., 1996). Conidia were mass produced using long
rice as a substrate (Milner R.J., unpubl.). Blastospores were cultured in liquid medium
containing glucose (30 g/1), peptone (10 g/1) and yeast extract (30 g/1) in a 250 ml Erlenmeyer
flask maintained in a shaker at 100 rpm and 26 + 2° C for 3 days. Glucose, peptone and yeast
extract were obtained from Sigma. The contents of the flask were autoclaved for 30 minutes
at 121°C and allowed to cool before inoculation with the conidia. Two kilograms of rice per
plastic bag was autoclaved for 1 h at 121°C, transferred to polyethylene autoclavable bags
and inoculated with the 3-day old culture of blastospores (50 ml). The blastospores
suspension was thoroughly mixed with the rice to distribute the inoculum throughout the
substrate and incubated between 26 and 30°C and 60—-75% R.H. for 21 days. The
polyethylene bag was then opened and the culture was allowed to dry for 5 days at room
temperature to approximately 10 - 15% moisture content. Conidia were harvested by sifting
the substrate through a sieve (295 pm mesh size) and approximately 200 g of spores was
produced per bag. Dry conidia were stored in a refrigerator (4—6°C) prior to use. The viability
of conidia was determined using the technique described by Goettel and Inglis (1997) before
before being used in the field trials. Germination rates > 90% after 24 h on Sabouraud
dextrose agar was considered adequate for use in the field trials. One litre of emulsifiable
conidial suspension containing 1 x 10° conidia mI™ was prepared for the trials (consisting of
49.5% sterile distilled water, fungal conidia, 49.5% corn oil [CHEF cooking oil, Premier Oil
Mills LTD] and 1% Tween 80). One litre of a control solution was also prepared in a similar

manner without the fungus for use in the control plots.

5.2.4 Semiochemicals and traps

The synthetic components of the attraction-aggregation-attachment pheromone (ortho-
nitrophenol, methyl salicylate and nonanioc acid), dicloromethane (DCM) and 1-octen-3-ol
were obtained from Sigma-Aldrich Chemie GmbH, Steinheim, Germany. Dry ice, which was
used as a source of CO, was obtained from Carbacid Kenya. The semiochemical-baited trap
used in this study was similar to the one described in Chapter 4. Briefly, the trap consisted of
a 900 cm” area demarked by four 10 cm-wooden pegs hammered into the ground. A2 x2x 2
cm’ rubber sponge impregnated with 16 ng of 1-octen-3-ol and 0.022 mg of AAAP was
attached on the top of each of the four wooden pegs per trap with dry ice dispenser (plastic

cup) of CO; placed in the centre.
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5.2.5 Treatments

Three days before application of the treatments, 118 laboratory-reared adult 4. variegatum
(59 males and 59 females) were seeded in the vegetation in each plot and allowed to
acclimatize. Five semiochemical-baited traps were placed at different positions within each
plot (1 central trap and 4 diagonal opposed traps). The positions of the diagonally opposed
traps were moved to new positions by rotating clockwise (45°) while the centrally placed trap
was shifted 1 m to the north after 14 days. The positions of the 4 diagonally opposed traps
were moved again after 4 weeks, moving them 1 m (towards the centre) and clockwise
direction by 45°; the central trap was moved 2 m to the south. The area within the confines of
each trap in the fungal test plots were treated with 250 ml of emulsifiable conidial suspension
using a high volume HV applicator (1.5 | Model) at a rate of approximately 150 1/hectare
prior to the attachment of the sponges and impreganation of the sponges with the synthetic
semiochemicals. In the control plots, traps were treated with the emulsifiable carrier only. All
treatments were applied again to previously untreated foliage after 14 and 28 days

immediately after rotating the trap as described above. The experiment lasted for 6 weeks.

5.2.6 Evaluation of the efficacy of treatments

At 6 weeks post-treatment, 5 semiochemical-baited traps were deployed in each plot in the
morning hours (9.00-12.00 am) in order to attract surviving ticks from the vegetation within
the plots. The positions of the traps were also changed daily and collections were made over
three consecutive mornings. Ticks collected in each plot were transferred to labelled 9 cm
diameter plastic Petri dishes (atmost 10 ticks per dish) and brought to the laboratory where
they were maintained at 26 + 1 °C, 85 + 5 % RH and 12:12 h L:D photoperiod for two weeks.
Mortality was recorded after two weeks. Dead ticks were surface-sterilized with 2.5% sodium
hypochlorite and 70% alcohol, rinsed twice in sterile distilled water, and then placed into 9-
cm diameter Petri dishes lined with moistened filter paper to promote outgrowth of fungi

from cadaver to confirm death due to mycosis.

5.2.7 Fungal Persistence

The persistence of inoculum on the treated foliage was also investigated during the trial. One
uppermost flag leaf of grass that was directly exposed to sunlight was cut within each fungus-
treated trap immediately and two weeks after treatment using a pair of sterile scissors. Grass

samples were kept separately in 9 cm diameter Petri dishes before being transferred to

65



universal bottles containing 10 ml of 0.05% Triton X-100. The samples were shakened
vigorously on a vortex shaker for 5 minutes to dislodged conidia from the treated foliage. The
concentration of the fungal suspensions was determined using an improved Neubauer
haemocytometer and was diluted to a concentration of 1.0 x 10° conidia m1™; 100 pl of the
suspension was spread over a SDA plate and a sterile microscope cover slip placed on each
plate. Plates were incubated at 25 + 2 °C, and germination was determined after 24 h, by
counting 100 conidia/plate (Goettel and Inglis, 1997). No M. anisopliae conidia were
recovered from flag leaf collected from control traps, hence the uninoculated control
treatment were excluded from the analyses of conidia persistence. Five replicates

representing S traps in each plot were used.

5.2.8 Data analysis

A student’s t-test was used to compare the following arcsin square root-transformed data at P
= (.05 significance level: (i) percentage of ticks recovered from control and fungus-treated
plots; (ii) percentage tick mortality in the laboratory of ticks recovered from control and
fungus-treated plots; and (iii) percentage germination of conidia recovered from treated
foliage, 0 and 14 days post-spray. All analyses were performed using the SAS (2001)
package. The relative (%) reduction of tick populations in fungus-treated plots was calculated
using the formula [(number of surviving ticks recovered from control plots - number of
surviving ticks recovered from fungus-treated plots)/number of surviving ticks recovered

from control plots] X 100 (European Medicines Agency, 2004).
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